JP2004176120A - Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same - Google Patents

Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same Download PDF

Info

Publication number
JP2004176120A
JP2004176120A JP2002343128A JP2002343128A JP2004176120A JP 2004176120 A JP2004176120 A JP 2004176120A JP 2002343128 A JP2002343128 A JP 2002343128A JP 2002343128 A JP2002343128 A JP 2002343128A JP 2004176120 A JP2004176120 A JP 2004176120A
Authority
JP
Japan
Prior art keywords
powder
weight
electrically conductive
metal powder
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002343128A
Other languages
Japanese (ja)
Inventor
Takuo Shindo
拓生 進藤
Fujio Makuta
富士雄 幕田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002343128A priority Critical patent/JP2004176120A/en
Publication of JP2004176120A publication Critical patent/JP2004176120A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide electrically conductive powder which has excellent crystallinity, dispersibility and oxidation resistance, and is used for thick film electrically conductive paste, e.g., for forming the internal electrode of a multilayer ceramic capacitor, to provide a production method therefor, and to provide electrically conductive paste obtained by using the same. <P>SOLUTION: The production method for electrically conductive powder comprises: a stage (A) where a dispersion solution of metal powder is added and mixed with boron oxide or boric acid of 40 to 100pts.wt. expressed in terms of B<SB>2</SB>O<SB>3</SB>to 100pts.wt. of the metal powder, and thereafter, the dispersion solution is dried to obtain a mixture consisting of the metal powder and boron oxide or boric acid; a stage (B) where the mixture is subjected to heating treatment in a neutral atmosphere to obtain a heat-treated product; and a stage (C) where the heat-treated product is subjected to dissolution treatment with water or acid to obtain metal powder. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、導電粉末、その製造方法、及びそれを用いた導電ペーストに関し、さらに詳しくは、積層セラミックコンデンサの内部電極形成用などの厚膜導電ペーストに用いられる結晶性、分散性、及び耐酸化性に優れた導電粉末の製造方法、及びそれを用いた導電ペーストに関する。
【0002】
【従来の技術】
導電粉末は、厚膜導電体の材料として積層セラミックコンデンサや多層セラミック基板等の積層セラミック部品の電極など電気回路の形成に使用されている。近年、積層セラミックコンデンサは、電子部品として急速に成長している。電子部品の高性能化に伴ない、積層セラミックコンデンサは小型化、高容量化が促進され、セラミック誘電体と内部電極は薄層化、多層化されつつある。現在、誘電体層厚2μm以下、内部電極層厚1μm前後、積層数100層以上の部品が作られている。
【0003】
この積層セラミックコンデンサの内部電極として、従来は白金、パラジウム、銀−パラジウム合金等の貴金属が用いられていたが、近年コスト低減のためより安価なニッケル等の卑金属を用いる技術が進歩し、その使用が増えている。
積層セラミックコンデンサは、セラミック誘電体と、金属の内部電極とを交互に層状に重ねて圧着し、これを焼成して一体化したものである。内部電極の形成は、導電性粉末などを、セルロース系樹脂等の有機バインダーをテルピネオール等の溶剤に溶解させた有機ビヒクルと混合し、スリーロールミル等によって混練・分散して得た導電ペーストを用いて、セラミック誘電体グリーンシート上に印刷し、セラミック誘電体グリーンシートと導電ペースト層(内部電極層)とが交互に層状になるように積層する。その後、積層体を中性又は還元雰囲気下で焼成して得る。
【0004】
焼成は、内部電極層に用いる金属の酸化を抑制するために還元雰囲気で行われる。しかし、還元雰囲気では電極ペースト中に含まれる有機ビヒクルの分解、燃焼が不完全となり、炭素が残留してしまう。そこで有機ビヒクルの分解、燃焼を完全にするために、焼成の最初の段階で、酸化性の雰囲気が導入される。ここで、耐酸化性の低い導電粉末を使用すると、酸化が進行し、酸化膨張によるクラックの発生や酸化による未焼結などの不具合が発生する。したがって、導電粉末に耐酸化性の付与が求められる。
【0005】
また、酸化チタン、チタン酸バリウム、複合ペロブスカイトなどのセラミック誘電体は、ニッケル粉末などを含む導電ペーストなどの内部電極材料よりも焼結開始温度が高く、しかも熱収縮率が小さい。特に、結晶性の低い導電粉末は、焼結温度が低く、熱収縮率も大きいので、セラミック誘電体との収縮度合の不適合が大きくなり、デラミネーションやクラックなどの構造欠陥を起こし易い。
さらに、粗大粒子や分散不良による凝集粒子などを含む導電粉末を用いたペーストを使用すると、表面に凹凸、突起あるいはボイドが発生して、絶縁不良や容量不足などの特性不安定が発生する。
したがって、積層セラミックコンデンサの内部電極形成用導電ペーストに好適な、即ち、結晶性が高く、耐酸化性に優れ、さらに粗大粒子や凝集粒子などを含まない分散性に優れた導電粉末が望まれていた。
【0006】
このような微粉のニッケル粉末などの製造法として、種々の方法が知られているが、積層セラミックコンデンサの内部電極形成用導電ペーストに用いるのに適したニッケル粉末、及びニッケルを主成分とする合金粉末などの製造方法として、下記の乾式法と湿式法がある。
(1)乾式法:粉末、またはガス状のニッケル化合物等を、熱分解するか、あるいは水素還元して金属(合金)粉末を得る方法。
(2)湿式法:ニッケル塩等を含有する溶液から還元析出によって金属(合金)粉末を得る方法。
【0007】
ここで、乾式法では、結晶性の高い金属粉末を得ることが可能である。特に、金属塩溶液をミストにして熱分解する噴霧熱分解法や、金属塩蒸気を水素ガスで還元する化学気相反応法(CVD法)は、ニッケルの場合には1000℃以上の温度で反応を行うので、結晶性の良い、かつ単分散粒子が製造できる。しかし、高温下での還元反応では、ニッケルの場合、結晶性の向上と共に、晶壁面の生成が起こりやすくなる傾向があり、その制御が必須である。また、量産規模で大量の粉末製造を行う工程では、粒子の成長速度を厳密に制御することが難しくなるので、粒径分布が広くなる。そのため、乾式法では、反応装置のコスト高、更には分級工程などによる製造コスト高を引き起こすため、粒子形状が球状に制御された均一な粒径の金属粉末を量産規模で低コストで生産することが困難であるという問題点がある。
【0008】
これに対して、湿式法、例えば金属塩溶液の還元法で、内部電極形成用導電ペーストに用いるのに適した、球状の粒子形状で、粒径が0.1μm〜1.0μmのニッケル粉末を得ることは可能であるが、結晶子径が大きく成長せず、結晶性が劣る。そのため、酸化されやすく、かつ粉末の真密度が低いため、内部電極層の高密度化を満足することが出来ない。また、過焼結が発生しやすく、焼成時に体積変化が大きいため、デラミネーションやクラックが発生し易い。
【0009】
このようなニッケル粉末などの結晶性を改善する手段として、中性または還元性雰囲気中で高温度に加熱処理する方法が行われている。しかし、粉末の結晶性が充分に向上するように加熱処理を行うと、粉末中の粒子の凝集や焼結などによる凝集粒子や粗大粒子が発生するという問題がある。
この解決策として、加熱処理時の凝集や焼結を防止するために様々な物質を添加する方法が提案されており、代表的な方法としては、以下のようなものが挙げられる。
【0010】
(1)ニッケル微粉末と、アルカリ金属化合物もしくはアルカリ土類金属化合物とを混合し、介在物の共存下で加熱処理し、その後酸処理で介在物を溶解除去することで、結晶性と粒子径あるいは球形性を改良する(例えば、特許文献1、特許文献2参照)、
(2)銀粉、ニッケル粉、銅粉、パラジウム粉、又は銀−パラジウム粉の粒子表面にアルカリ土類金属の酸化物等の被膜を形成してから融点以下で熱処理し、その後、被膜を酸で浸出して、熱収縮率を改善する(例えば、特許文献3参照)、
(3)球状ニッケルにSiO・nHOまたはAl・nHOあるいは希土類化合物を添加し加熱処理することで、ニッケル粒子同士の融着、巨大化を防止する(例えば、特許文献4、特許文献5参照)、
(4)ニッケル粉末、銅粉末、ニッケルまたは/および銅を主成分とする合金粉末からなる群より選ばれる少なくとも1種の卑金属粉末の表面に、Ni−B合金粉末を析出させ、焼成での耐酸化性を付与する(例えば、特許文献6参照)。
【0011】
これらの提案は、導電粉末の結晶性、あるいは耐酸化性の改良に貢献しているが、それぞれ課題がある。
すなわち、アルカリ金属化合物もしくはアルカリ土類金属化合物と混合して加熱処理する方法では、ニッケル粉末など金属粉末の焼結を充分に防止することができず分散性が悪化する。また、アルカリ金属化合物もしくはアルカリ土類金属化合物が残留すると、積層セラミックコンデンサの内部電極形成用導電粉末として用いた場合、セラミック誘電体と反応して誘電率などの電気特性が劣化するという問題がある。さらに、残留したアルカリ金属化合物、もしくはアルカリ土類金属化合物は、導電粉末の耐酸化性の向上には寄与しない。
【0012】
また、SiO・nHOまたはAl・nHOを添加し加熱処理する方法では、SiO・nHOまたはAl・nHOは水溶性ではないので、これを除去するには多量の酸またはアルカリの使用が必須である。また残留した、SiO・nHOまたはAl・nHOは導電粉末の耐酸化性の向上には寄与しない。また、多量の高価な希土類化合物の添加には、コスト面で制約がある。
さらに、導電粉末の表面にNi−B合金粉末を析出させる方法では、結晶性の向上は考慮されていない。
【0013】
以上の状況から、積層セラミックコンデンサの内部電極形成用などの厚膜導電ペーストに用いられる結晶性、分散性、及び耐酸化性に優れた導電粉末の製造方法、及びこの製造方法で得られた導電粉末を用いた導電ペーストが求められている。
【0014】
【特許文献1】
特開平10−102109号公報(第1頁、第2頁)
【特許文献2】
特開平11−140513号公報(第1頁、第2頁)
【特許文献3】
特開2001−40401号公報(第1頁、第2頁)
【特許文献4】
特開2001−107103号公報(第1頁、第2頁)
【特許文献5】
特開2001−98337号公報(第1頁、第2頁)
【特許文献6】
特開2002−80902号公報(第1頁、第2頁)
【0015】
【発明が解決しようとする課題】
本発明の目的は、上記の従来技術の問題点に鑑み、積層セラミックコンデンサの内部電極形成用などの厚膜導電ペーストに用いられる結晶性、分散性、及び耐酸化性に優れた導電粉末の製造方法、それにより得られる導電粉末、さらにはこの導電粉末を用いた導電ペーストを提供することにある。
【0016】
【課題を解決するための手段】
本発明者らは、上記の課題に鑑み、鋭意研究を重ねた結果、金属粉末の分散溶液に、特定量の酸化硼素又は硼酸を添加し、得られた分散溶液を乾燥させた後に、中性雰囲気下で加熱処理し、次いで水または酸で溶解処理したところ、結晶性、分散性、及び耐酸化性に優れた導電粉末が得られることを見出し、本発明を完成するに至った。
【0017】
すなわち、本発明の第1の発明によれば、金属粉末の分散溶液中に、金属粉末100重量部に対してB換算で40重量部以上、100重量部以下の酸化硼素又は硼酸を添加し、混合した後に、該分散溶液を乾燥させて金属粉末と酸化硼素又は硼酸からなる混合物を得る工程(A)、該混合物を中性雰囲気下で加熱処理して熱処理生成物を得る工程(B)、および該熱処理生成物を、水または酸で溶解処理して金属粉末を得る工程(C)を含むことを特徴とする導電粉末の製造方法が提供される。
【0018】
また、本発明の第2の発明によれば、第1の発明において、工程(B)における加熱処理が、400℃以上、700℃以下の温度で行われることを特徴とする導電粉末の製造方法が提供される。
【0019】
また、本発明の第3の発明によれば、第1又は2の発明において、金属粉末が、ニッケル粉末、又はニッケルを主成分とする合金粉末であることを特徴とする導電粉末の製造方法が提供される。
【0020】
また、本発明の第4の発明によれば、第1〜3何れかの製造方法により得られる結晶性、分散性、及び耐酸化性に優れた導電粉末が提供される。
【0021】
さらに、本発明の第5の発明によれば、第4の発明の導電粉末を用いてなる導電ペーストが提供される。
【0022】
【発明の実施の形態】
以下、本発明の導電粉末、その製造方法、及びそれを用いた導電ペーストについて詳細に説明する。
本発明にかかる導電粉末の製造方法は、積層セラミックコンデンサの内部電極形成用などの厚膜導電ペーストに用いられる結晶性、分散性、及び耐酸化性に優れた導電粉末の製造方法であり、また導電ペーストは、この製造方法で得られた導電粉末を用いたものである。
【0023】
1 導電粉末の製造方法
本発明の導電粉末の製造方法は、金属粉末の分散溶液中に、金属粉末100重量部に対してB換算で40重量部以上、100重量部以下の酸化硼素又は硼酸を添加し、混合した後に、該分散溶液を乾燥させて金属粉末と酸化硼素又は硼酸からなる混合物を得る工程(A)、該混合物を中性雰囲気下で加熱処理して熱処理生成物を得る工程(B)、および該熱処理生成物を、水または酸で溶解処理して金属粉末を得る工程(C)を含む。
【0024】
(1)工程(A)
本発明の工程(A)は、金属粉末の分散溶液中に、金属粉末100重量部に対してB換算で40重量部以上、100重量部以下の酸化硼素又は硼酸を添加し、混合した後に、該分散溶液を乾燥させて金属粉末と酸化硼素又は硼酸からなる混合物を得る工程である。
本発明に用いる金属粉末としては、貴金属粉末に比べて安価な卑金属粉末、特にニッケル粉末、又はニッケルを主成分とする合金粉末である。ニッケルを主成分とする合金粉末としては、ニッケルに耐酸化性等の付与のためクロム、リン、亜鉛、貴金属、希土類金属などが添加された合金粉末がある。
【0025】
これらの金属粉末の製造方法は、特に限定されるものではなく、例えば、前記した乾式法、または湿式法のいずれの方法で製造された微粉末も用いられる。この中で特に、一般に結晶性、及び耐酸化性において問題がある湿式法による還元粉末が好適である。さらに導電ペーストに用いるのに適した形状、及び粒径分布を有する粉末、即ち粒子形状が球状で、平均粒径が0.1μm〜1.0μmの粉末が特に好ましい。なお、金属粉末が凝集粒子を含むときは、分散に先立って解粒処理を行い、分散を促進することが好ましい。この解粒処理は、特に限定されないが、衝撃式、衝突式、摩砕式、高水圧式等の各種の粉砕方式で行える。
【0026】
本発明の分散溶液は、例えば湿式法で金属粉末を得る場合には、金属粉末を析出させ水洗した後のスラリーでよく、また、例えば金属粉末と水とを混合し,撹拌等して金属粉末を懸濁させることにより得られる。これに、酸化硼素または硼酸を所定量添加して、混合する。水溶液へ溶解し易い硼酸の使用が望ましい。
ここで、酸化硼素もしくは硼酸を使用するのは、酸化硼素の溶融温度がニッケル、及びニッケルを主成分とする合金の熱処理に適切な温度であること、水溶性あるいは酸溶液に溶け、後処理が容易であること、耐酸化性がさらに一段と向上すること、などの理由による。
また、酸化硼素または硼酸の添加量は、金属粉末100重量部に対して、B換算で40重量部以上、好ましくは65重量部以上、100重量部以下である。すなわち、40重量部未満では、金属粉末の全体に酸化硼素が充分に行き渡らず、金属粉末の粒子の個々が酸化硼素で被覆されず、焼結の発生の防止が不十分となり、分散性を低下させるからである。100重量部を超えても、さらなる効果の上昇は得られず経済性を損なうのみである。
【0027】
金属粉末の溶液中の濃度は、特に限定されず工業的な操業に支障の無い条件で選ばれる。
また、本発明に用いる溶液は、水溶液の他に、例えばメタノール、エタノール等のアルコール、およびこれらを含む水溶液が使用できる。
また、本発明の金属粉末を含む分散溶液の他の調整法としては、前記したような湿式法で溶液中で可溶性の金属塩を還元して得られた金属粉末を湿潤状態のまま使用する。
このようにして調製された分散溶液を蒸発乾燥して、金属粉末と酸化硼素又は硼酸からなる混合物を得る。
【0028】
(2)工程(B)
本発明の工程(B)は、工程(A)で得られる金属粉末と酸化硼素又は硼酸からなる混合物を、中性雰囲気下で加熱処理して熱処理生成物を得る工程である。
前記混合物を、中性雰囲気中にて400℃以上、700℃以下で加熱する。すなわち、加熱温度が400℃未満では、金属粉末の加熱処理が充分に行われないからである。700℃を超えると金属粉末の粒成長が著しくなるので好ましくない。また、雰囲気を中性とするのは、酸化性雰囲気ではニッケル粉末等が酸化し、還元性雰囲気では酸化硼素が還元されてしまうからである。中性雰囲気としては、特に限定されないが窒素、アルゴン等の不活性ガス雰囲気が好ましい。
【0029】
ここで、金属粉末は、溶融した酸化硼素中に分散した状態で加熱処理されるので、各粒子の結晶子径が大きくなるとともに、凝集及び焼結は抑制されて、結晶性の良い分散した金属粉末を含む溶融体となる。加熱処理後、溶融した混合物は冷却され、熱処理生成物が得られる。
【0030】
(3)工程(C)
本発明の工程(C)は、工程(B)から得られた熱処理生成物を、水または酸を用いて溶解処理して金属粉末を得る工程である。
本発明の熱処理生成物は、酸化硼素中に金属粉末が分散した状態になっており、水、好ましくは酢酸水溶液等の弱酸で酸化硼素を完全に溶解処理して、残物を固液分離して金属粉末を回収する。その後、純水で洗浄、乾燥することにより、結晶性、分散性、耐酸化性に優れた導電粉末を得ることができる。
【0031】
2 導電ペースト
本発明の導電ペーストは、本発明の導電粉末と、有機ビヒクルを含む。使用される有機ビヒクルは、導電ペーストの対象部品、使用条件などで選定されるので限定されないが、積層セラミック部品で一般的であるものが使用できる。例えば、導電ペーストは、セルロース系樹脂等の有機バインダーをテルピネオール等の溶剤に溶解させた有機ビヒクルと混合し、スリーロールミル等によって混練・分散して得られる。
【0032】
【実施例】
以下に、本発明の実施例および比較例によって、本発明をさらに詳細に説明するが、これらの実施例によってなんら限定されるものではない。なお、実施例および比較例で用いた分析方法、測定方法は以下に準じて行った。
【0033】
(1)硼素の分析方法:硝酸溶解し、溶液中の硼素をICP発光分析法で分析した。
(2)結晶子径の測定方法:X線回折法で測定した。
(3)耐酸化性の評価方法:試料を空気中にて400℃1時間保持後の酸化による重量増加率を測定することで評価した。
(4)ニッケル粉末の分散性:走査型電子顕微鏡による観察で評価した。
(5)ペースト評価:試作したペーストを用いて、レイダウンを振るために印刷膜厚を3水準とってアルミナ基板に印刷し、乾燥、焼成後に以下の項目を評価し同等のレイダウンで比較する。レイダウン:印刷前後の基板の重量差と印刷面積から算出。比抵抗:印刷パターンの抵抗と膜厚、パターンの幅と長さから算出。焼成膜の被覆率:光を透過しない部分の面積の割合から算出。
【0034】
(実施例1)
湿式法で製造された市販の平均粒子径0.4μmのニッケル粉末(平均結晶子径140Å、住友金属鉱山(株)製SNP−551)10gを1lのガラス製ビーカに入れ、これに純水を500ml入れ撹拌し分散させた。その後これに7.6gの硼酸を添加し、液温度25℃で、超音波処理にて分散させた。この硼酸量は、ニッケル粉末100重量部に対してB換算で42.9重量部にあたる。次いで、60℃で8時間乾燥し、水分を蒸発させニッケル粉末と硼酸の混合物を得た。さらに、この混合物をアルミナ製の坩堝に入れ、窒素雰囲気中で600℃1時間の加熱処理を行った。次に、この溶融物を冷却後取り出し、酢酸の50重量%水溶液100mlに溶解した。その後、デカンテ−ションによって取りだし、1000mlの純水で3回洗浄し、80℃で乾燥してニッケル粉末を得た。
得られたニッケル粉末を用いて、X線回折、硼素含有率の分析、電子顕微鏡による観察、耐酸化性の評価を行った。結果を表1に示す。
得られたニッケル粉末のX線回折結果によれば、平均結晶子径は820Åで処理前の140Åに比べて大きくなり、結晶性が向上したことが確かめられた。またニッケル単体のピークの他に、極めて微弱なニッケルと硼素の化合物のピークも認められた。ニッケル粉末中の硼素含有率は0.01重量%であった。電子顕微鏡による観察によれば、粒子形状は球状で、粒子が良く分散しており、凝集や焼結が起きていないことが分かった。さらに、空気中400℃で1次間保持後の重量増加率は9.3%で、処理前に比べて小さく、耐酸化性が向上していることが分かった。
【0035】
(実施例2)
硼酸の添加量を17.8gとした以外は、実施例1と同様に行った。この硼酸量は、ニッケル粉末100重量部に対してB換算で100重量部にあたる。得られたニッケル粉末を用いて、X線回折、硼素含有率の分析、電子顕微鏡による観察、耐酸化性の評価を行った。結果を表1に示す。
得られたニッケル粉末の平均結晶子径は1000Å以上、硼素含有率は0.02重量%であり、また空気中400℃で1次間保持後の重量増加率は2.7%で、処理前に比べて小さく、耐酸化性が向上していることが分かった。さらに、電子顕微鏡による観察では、粒子が良く分散しており、凝集や焼結は無いことが分かった。
【0036】
(実施例3)
硼酸の添加量を11.8g、加熱処理温度を700℃とした以外は、実施例1と同様に行った。この硼酸量は、ニッケル粉末100重量部に対してB換算で66.7重量部にあたる。得られたニッケル粉末を用いて、X線回折、硼素含有率の分析、電子顕微鏡による観察、耐酸化性の評価を行った。結果を表1に示す。
得られたニッケル粉末の平均結晶子径は1000Å以上、硼素含有率は0.36重量%であり、また空気中400℃で1次間保持後の重量増加率は0.2%で、処理前に比べて一段と低く、硼素含有率が高いことで耐酸化性が向上していることが分かった。さらに、電子顕微鏡による観察では、粒子は良く分散しているが粒成長が認められた。
【0037】
(実施例4)
硼酸の添加量を17.8g、加熱処理温度を700℃とした以外は、実施例1と同様に行った。この硼酸量は、ニッケル粉末100重量部に対してB換算で100重量部にあたる。得られたニッケル粉末を用いて、X線回折、硼素含有率の分析、電子顕微鏡による観察、耐酸化性の評価を行った。結果を表1に示す。
得られたニッケル粉末の平均結晶子径は1000Å以上、硼素含有率は0.37重量%であり、また空気中400℃で1次間保持後の重量増加率は0.3%で、処理前に比べて一段と低く、硼素含有率が高いことで耐酸化性が向上していることが分かった。さらに、電子顕微鏡による観察では、粒子は良く分散しているが粒成長が認められた。
【0038】
(実施例5)
実施例2の方法と同様の方法にしたがって得たニッケル粉末を導電粉末として用いて、導電ペーストを調製しその性能を調査した。このニッケル粉末100重量部に対して、エチルセルロース8重量部とテルピネオール52重量部、エチルカルビトールアセテート40重量部からなるビヒクルを添加し、混合後、スリーロールミルで混練して導電ペーストを調製した。
次いで、アルミナ基板上に印刷し、120℃で15分間乾燥後、水素2容量%/窒素98容量%の混合気流中で1300℃1時間焼成した。そして、焼成後の基板からレイダウン、比抵抗、焼成膜の被覆率を求めペーストの評価を行った。焼成後のレイダウンが1.8mg/cmのもので、比抵抗が17.0Ω・cmと低く、焼成膜の被覆率が82.7%と高い結果が得られた。これより、結晶性が高いニッケル粉末を使用したので、焼結による収縮の進行が抑制されたことが分かる。ここで調製された導電ペーストは、積層セラミックコンデンサの内部電極形成用などの厚膜導電ペーストに好適であり、このニッケル粉末は、導電ペースト用として好適である。
【0039】
(比較例1)
実施例1と同様の平均結晶子径140Åのニッケル粉末10gを300mlの純水に分散させた後、60℃で8時間乾燥しニッケル粉末を取り出した。得られたニッケル粉末を用いて、X線回折、硼素含有率の分析、電子顕微鏡による観察、耐酸化性の評価を行った。結果を表1に示す。
得られたニッケル粉末の平均結晶子径は140Å、硼素含有率は0.01重量%以下であり、電子顕微鏡の観察では粒子は球状で分散していることが認められた。
【0040】
(比較例2)
硼酸の添加を行わない以外は、実施例1と同様に行った。得られたニッケル粉末を用いて、電子顕微鏡による観察を行った。結果を表1に示す。
得られたニッケル粉末の電子顕微鏡による観察では焼結が認められた。そのため、X線回折、硼素含有率の分析、及び耐酸化性の評価は実施しなかった。
【0041】
(比較例3)
硼酸を添加せず、加熱処理温度を700℃とした以外は、実施例1と同様に行った。得られたニッケル粉末を用いて、X線回折、硼素含有率の分析、電子顕微鏡による観察、及び耐酸化性の評価を行った。結果を表1に示す。
得られたニッケル粉末の平均結晶子径は620Å、硼素含有率は0.01重量%以下であり、電子顕微鏡による観察では焼結が認められた。
【0042】
(比較例4)
硼酸の添加量を2.0g、加熱処理温度を700℃とした以外は、実施例1と同様に行った。この硼酸量は、ニッケル粉末100重量部に対してB換算で11.1重量部にあたる。得られたニッケル粉末を用いて、X線回折、硼素含有率の分析、及び電子顕微鏡による観察を行った。結果を表1に示す。
得られたニッケル粉末の平均結晶子径は890Å、硼素含有率は0.38重量%であり、電子顕微鏡による観察では焼結が認められた。
【0043】
(比較例5)
硼酸の添加量を4.4g、加熱処理温度を700℃とした以外は、実施例1と同様に行った。この硼酸量は、ニッケル粉末100重量部に対してB換算で25.0重量部にあたる。得られたニッケル粉末を用いて、X線回折、硼素含有率の分析、及び電子顕微鏡による観察を行った。結果を表1に示す。
得られたニッケル粉末の平均結晶子径は700Å、硼素含有率は0.35重量%であり、電子顕微鏡による観察では焼結が認められた。
【0044】
(比較例6)
導電粉末として比較例1のニッケル粉末を用いた以外は、実施例5と同様に行った。そして、焼成後の基板からレイダウン、比抵抗、焼成膜の被覆率を求めペーストの評価を行った。焼成後のレイダウンが1.8mg/cmのもので、比抵抗が20.7Ω・cmと高く、焼成膜の被覆率が55.4%と低い結果が得られた。これより、結晶性が劣る粉末を使用したので、焼結が過剰に進行し収縮が大きくなったことが分かる。
【0045】
【表1】

Figure 2004176120
【0046】
以上、表1より、実施例1〜4では、酸化硼素の添加量が、ニッケル粉末100重量部に対してB換算で40重量部以上、100重量部以下で本発明の方法にしたがって行われたので、結晶性、分散性、及び耐酸化性に優れたニッケル粉末が得られることが分かる。これに対して、比較例1〜5では、酸化硼素の添加量がこの条件に合わないので結晶性、あるいは焼結による分散性の悪化によつて満足すべき結果が得られない。
さらに実施例5を比較例6を比べると、本発明の導電ペーストは、満足すべき結果が得られることが分かる。
【0047】
【発明の効果】
以上説明したように、本発明によれば、積層セラミックコンデンサの内部電極形成用などの厚膜導電ペーストに好適に用いられる、結晶性、分散性、及び耐酸化性に優れた導電粉末が、容易に得られるので、その工業的価値は極めて大きい。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive powder, a method for producing the same, and a conductive paste using the same, and more particularly, to crystallinity, dispersibility, and oxidation resistance used for a thick film conductive paste for forming internal electrodes of a multilayer ceramic capacitor. The present invention relates to a method for producing a conductive powder having excellent properties, and a conductive paste using the same.
[0002]
[Prior art]
The conductive powder is used as a material of a thick film conductor for forming an electric circuit such as an electrode of a multilayer ceramic component such as a multilayer ceramic capacitor or a multilayer ceramic substrate. In recent years, multilayer ceramic capacitors have been rapidly growing as electronic components. With the improvement in the performance of electronic components, multilayer ceramic capacitors are being reduced in size and capacity, and ceramic dielectrics and internal electrodes are becoming thinner and more multilayered. At present, components having a dielectric layer thickness of 2 μm or less, an internal electrode layer thickness of about 1 μm, and a lamination number of 100 or more are being manufactured.
[0003]
Conventionally, noble metals such as platinum, palladium, and silver-palladium alloy have been used as the internal electrodes of this multilayer ceramic capacitor. Is increasing.
The multilayer ceramic capacitor is obtained by alternately stacking ceramic dielectrics and metal internal electrodes in layers and pressing them, and firing and integrating them. The formation of the internal electrode is performed by using a conductive paste obtained by mixing a conductive powder or the like with an organic vehicle in which an organic binder such as a cellulose resin is dissolved in a solvent such as terpineol, and kneading and dispersing the mixture using a three-roll mill or the like. Then, printing is performed on the ceramic dielectric green sheets, and the ceramic dielectric green sheets and the conductive paste layers (internal electrode layers) are alternately layered. Thereafter, the laminate is obtained by firing in a neutral or reducing atmosphere.
[0004]
The firing is performed in a reducing atmosphere in order to suppress oxidation of the metal used for the internal electrode layers. However, in a reducing atmosphere, decomposition and combustion of the organic vehicle contained in the electrode paste become incomplete, and carbon remains. Therefore, in order to completely decompose and burn the organic vehicle, an oxidizing atmosphere is introduced at the first stage of the firing. Here, when a conductive powder having low oxidation resistance is used, oxidation proceeds, and problems such as generation of cracks due to oxidation expansion and unsintering due to oxidation occur. Therefore, it is required to impart oxidation resistance to the conductive powder.
[0005]
Further, ceramic dielectrics such as titanium oxide, barium titanate, and composite perovskite have a higher sintering start temperature and a smaller heat shrinkage than internal electrode materials such as conductive pastes containing nickel powder and the like. In particular, a conductive powder having low crystallinity has a low sintering temperature and a large heat shrinkage, so that the mismatch of the degree of shrinkage with the ceramic dielectric increases, and structural defects such as delamination and cracks are likely to occur.
Further, when a paste using a conductive powder containing coarse particles or agglomerated particles due to poor dispersion is used, irregularities, protrusions or voids are generated on the surface, and characteristic instability such as poor insulation or insufficient capacity occurs.
Therefore, a conductive powder suitable for a conductive paste for forming an internal electrode of a multilayer ceramic capacitor, that is, having high crystallinity, excellent oxidation resistance, and excellent dispersibility not containing coarse particles or aggregated particles is desired. Was.
[0006]
Various methods are known as a method for producing such fine nickel powder. Nickel powder suitable for use as a conductive paste for forming an internal electrode of a multilayer ceramic capacitor, and an alloy containing nickel as a main component As a method for producing powder or the like, there are the following dry method and wet method.
(1) Dry method: A method in which a powder or a gaseous nickel compound is thermally decomposed or reduced with hydrogen to obtain a metal (alloy) powder.
(2) Wet method: a method of obtaining metal (alloy) powder by reduction precipitation from a solution containing a nickel salt or the like.
[0007]
Here, in the dry method, it is possible to obtain a metal powder having high crystallinity. In particular, a spray pyrolysis method in which a metal salt solution is misted into a mist and a chemical vapor phase method (CVD method) in which a metal salt vapor is reduced with hydrogen gas are used at a temperature of 1000 ° C. or more in the case of nickel. Is performed, monodisperse particles having good crystallinity can be produced. However, in a reduction reaction at a high temperature, in the case of nickel, the crystallinity tends to be improved and the generation of crystal wall surfaces tends to occur easily, and its control is essential. Further, in the process of producing a large amount of powder on a mass production scale, it becomes difficult to strictly control the growth rate of the particles, so that the particle size distribution is widened. Therefore, in the dry method, the cost of the reactor is increased, and the production cost is increased due to the classification process and the like. Is difficult.
[0008]
On the other hand, in a wet method, for example, a reduction method of a metal salt solution, nickel powder having a spherical particle shape and a particle diameter of 0.1 μm to 1.0 μm suitable for use as a conductive paste for forming an internal electrode is used. Although it can be obtained, the crystallite diameter does not grow so large that the crystallinity is poor. Therefore, the powder is easily oxidized and the true density of the powder is low, so that it is not possible to satisfy the high density of the internal electrode layer. In addition, oversintering tends to occur and the volume change during firing is large, so that delamination and cracks are likely to occur.
[0009]
As a means for improving the crystallinity of such nickel powder or the like, a method of performing heat treatment at a high temperature in a neutral or reducing atmosphere has been used. However, if the heat treatment is performed so that the crystallinity of the powder is sufficiently improved, there is a problem that agglomerated particles and coarse particles are generated due to agglomeration and sintering of the particles in the powder.
As a solution to this, there has been proposed a method of adding various substances in order to prevent agglomeration and sintering at the time of heat treatment, and the following are typical methods.
[0010]
(1) Nickel fine powder and an alkali metal compound or an alkaline earth metal compound are mixed and heat-treated in the presence of inclusions, and then the inclusions are dissolved and removed by an acid treatment to obtain crystallinity and particle size. Alternatively, the sphericity is improved (for example, see Patent Documents 1 and 2),
(2) Silver oxide, nickel powder, copper powder, palladium powder, or a silver-palladium powder is coated on its surface with an oxide of an alkaline earth metal, and then heat-treated at a temperature equal to or lower than the melting point. Leaching to improve the heat shrinkage (see, for example, Patent Document 3),
(3) SiO on spherical nickel 2 ・ NH 2 O or Al 2 O 3 ・ NH 2 By adding O or a rare earth compound and performing a heat treatment, the fusion and the enlargement of the nickel particles are prevented (for example, see Patent Documents 4 and 5).
(4) Ni-B alloy powder is precipitated on the surface of at least one kind of base metal powder selected from the group consisting of nickel powder, copper powder, and alloy powder containing nickel or copper as a main component, and acid resistance during firing. (See, for example, Patent Document 6).
[0011]
These proposals have contributed to the improvement of the crystallinity or oxidation resistance of the conductive powder, but each has its own problems.
That is, in the method of performing heat treatment after mixing with an alkali metal compound or an alkaline earth metal compound, sintering of a metal powder such as a nickel powder cannot be sufficiently prevented, and dispersibility deteriorates. Further, when an alkali metal compound or an alkaline earth metal compound remains, when used as a conductive powder for forming an internal electrode of a multilayer ceramic capacitor, it reacts with a ceramic dielectric to cause a problem that electrical characteristics such as a dielectric constant are deteriorated. . Further, the remaining alkali metal compound or alkaline earth metal compound does not contribute to improving the oxidation resistance of the conductive powder.
[0012]
In addition, SiO 2 ・ NH 2 O or Al 2 O 3 ・ NH 2 In the method of adding O and performing heat treatment, SiO 2 ・ NH 2 O or Al 2 O 3 ・ NH 2 Since O is not water-soluble, its use requires a large amount of acid or alkali to remove it. Also, the remaining SiO 2 ・ NH 2 O or Al 2 O 3 ・ NH 2 O does not contribute to improving the oxidation resistance of the conductive powder. In addition, the addition of a large amount of expensive rare earth compounds has restrictions in terms of cost.
Furthermore, in the method of precipitating the Ni-B alloy powder on the surface of the conductive powder, improvement in crystallinity is not considered.
[0013]
From the above situation, a method for producing a conductive powder excellent in crystallinity, dispersibility, and oxidation resistance used for a thick film conductive paste such as for forming internal electrodes of a multilayer ceramic capacitor, and a conductive powder obtained by this production method There is a need for a conductive paste using powder.
[0014]
[Patent Document 1]
JP-A-10-102109 (pages 1 and 2)
[Patent Document 2]
JP-A-11-140513 (pages 1 and 2)
[Patent Document 3]
JP 2001-40401 A (pages 1 and 2)
[Patent Document 4]
JP 2001-107103 A (pages 1 and 2)
[Patent Document 5]
JP 2001-98337 A (pages 1 and 2)
[Patent Document 6]
JP-A-2002-80902 (pages 1 and 2)
[0015]
[Problems to be solved by the invention]
An object of the present invention is to produce a conductive powder having excellent crystallinity, dispersibility, and oxidation resistance used for a thick-film conductive paste for forming internal electrodes of a multilayer ceramic capacitor in view of the above-mentioned problems of the prior art. It is an object of the present invention to provide a method, a conductive powder obtained by the method, and a conductive paste using the conductive powder.
[0016]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above problems, and as a result, added a specific amount of boron oxide or boric acid to a dispersion of metal powder, dried the resulting dispersion, and then neutralized. Heat treatment in an atmosphere, followed by dissolution treatment with water or acid, found that a conductive powder excellent in crystallinity, dispersibility, and oxidation resistance was obtained, and completed the present invention.
[0017]
That is, according to the first aspect of the present invention, B is added to 100 parts by weight of the metal powder in the dispersion of the metal powder. 2 O 3 Step (A) of adding and mixing 40 parts by weight or more and 100 parts by weight or less of boron oxide or boric acid, and then drying the dispersion to obtain a mixture of metal powder and boron oxide or boric acid. In a neutral atmosphere to obtain a heat-treated product, and a step (C) of dissolving the heat-treated product with water or an acid to obtain a metal powder. A method for producing a conductive powder is provided.
[0018]
According to a second aspect of the present invention, in the first aspect, the heat treatment in the step (B) is performed at a temperature of 400 ° C. or more and 700 ° C. or less. Is provided.
[0019]
According to a third aspect of the present invention, there is provided a method for producing a conductive powder according to the first or second aspect, wherein the metal powder is a nickel powder or an alloy powder containing nickel as a main component. Provided.
[0020]
Further, according to the fourth invention of the present invention, there is provided a conductive powder having excellent crystallinity, dispersibility, and oxidation resistance obtained by any one of the first to third production methods.
[0021]
Further, according to the fifth invention of the present invention, there is provided a conductive paste using the conductive powder of the fourth invention.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the conductive powder of the present invention, a method for producing the same, and a conductive paste using the same will be described in detail.
The method for producing a conductive powder according to the present invention is a method for producing a conductive powder having excellent crystallinity, dispersibility, and oxidation resistance used for a thick-film conductive paste for forming internal electrodes of a multilayer ceramic capacitor, and The conductive paste uses the conductive powder obtained by this manufacturing method.
[0023]
1 Method for producing conductive powder
The method for producing a conductive powder according to the present invention comprises the steps of: 2 O 3 Step (A) of adding and mixing 40 parts by weight or more and 100 parts by weight or less of boron oxide or boric acid, and then drying the dispersion to obtain a mixture of metal powder and boron oxide or boric acid. In a neutral atmosphere to obtain a heat-treated product, and a step (C) of dissolving the heat-treated product with water or an acid to obtain a metal powder.
[0024]
(1) Step (A)
In the step (A) of the present invention, B is added to 100 parts by weight of the metal powder in the dispersion solution of the metal powder. 2 O 3 In this step, 40 parts by weight or more and 100 parts by weight or less of boron oxide or boric acid are added and mixed, and then the dispersion solution is dried to obtain a mixture of metal powder and boron oxide or boric acid.
The metal powder used in the present invention is a base metal powder which is less expensive than a noble metal powder, particularly a nickel powder or an alloy powder containing nickel as a main component. As an alloy powder containing nickel as a main component, there is an alloy powder in which chromium, phosphorus, zinc, a noble metal, a rare earth metal, or the like is added to nickel to impart oxidation resistance or the like.
[0025]
The method for producing these metal powders is not particularly limited, and for example, fine powder produced by any of the above-mentioned dry method and wet method is used. Of these, reduced powders obtained by a wet method, which generally have problems in crystallinity and oxidation resistance, are preferred. Further, a powder having a shape and a particle size distribution suitable for use as a conductive paste, that is, a powder having a spherical particle shape and an average particle size of 0.1 μm to 1.0 μm is particularly preferable. When the metal powder contains agglomerated particles, it is preferable to perform a crushing treatment prior to the dispersion to promote the dispersion. This pulverization treatment is not particularly limited, but can be performed by various pulverization methods such as an impact type, a collision type, a grinding type, and a high hydraulic type.
[0026]
The dispersion solution of the present invention may be, for example, a slurry obtained by precipitating the metal powder and washing it with water when the metal powder is obtained by a wet method, or by mixing the metal powder with water, stirring, or the like. Is obtained by suspending A predetermined amount of boron oxide or boric acid is added thereto and mixed. It is desirable to use boric acid which is easily dissolved in an aqueous solution.
Here, boron oxide or boric acid is used because the melting temperature of boron oxide is a temperature suitable for heat treatment of nickel and an alloy containing nickel as a main component. This is because it is easy and the oxidation resistance is further improved.
The amount of boron oxide or boric acid added is 100 parts by weight of metal powder, 2 O 3 It is 40 parts by weight or more, preferably 65 parts by weight or more and 100 parts by weight or less in conversion. That is, when the amount is less than 40 parts by weight, boron oxide is not sufficiently distributed to the entire metal powder, and the individual particles of the metal powder are not covered with boron oxide. It is because they do. If the amount exceeds 100 parts by weight, no further increase in the effect can be obtained and only economic efficiency is impaired.
[0027]
The concentration of the metal powder in the solution is not particularly limited and is selected under conditions that do not hinder industrial operation.
As the solution used in the present invention, in addition to an aqueous solution, for example, alcohols such as methanol and ethanol, and an aqueous solution containing these can be used.
As another method for preparing the dispersion containing the metal powder of the present invention, the metal powder obtained by reducing the soluble metal salt in the solution by the above-mentioned wet method is used in a wet state.
The dispersion solution thus prepared is evaporated to dryness to obtain a mixture comprising the metal powder and boron oxide or boric acid.
[0028]
(2) Step (B)
Step (B) of the present invention is a step of subjecting a mixture of the metal powder obtained in step (A) and boron oxide or boric acid to a heat treatment in a neutral atmosphere to obtain a heat-treated product.
The mixture is heated at 400 ° C. or more and 700 ° C. or less in a neutral atmosphere. That is, when the heating temperature is lower than 400 ° C., the heat treatment of the metal powder is not sufficiently performed. When the temperature exceeds 700 ° C., the grain growth of the metal powder becomes remarkable, which is not preferable. The reason why the atmosphere is neutral is that nickel powder or the like is oxidized in an oxidizing atmosphere and boron oxide is reduced in a reducing atmosphere. The neutral atmosphere is not particularly limited, but is preferably an inert gas atmosphere such as nitrogen or argon.
[0029]
Here, since the metal powder is heat-treated in a state of being dispersed in the molten boron oxide, the crystallite diameter of each particle increases, aggregation and sintering are suppressed, and the dispersed metal with good crystallinity is obtained. It becomes a melt containing powder. After the heat treatment, the melted mixture is cooled to obtain a heat-treated product.
[0030]
(3) Step (C)
Step (C) of the present invention is a step of dissolving the heat-treated product obtained from step (B) using water or an acid to obtain a metal powder.
The heat-treated product of the present invention is in a state where the metal powder is dispersed in boron oxide, and the boron oxide is completely dissolved in water, preferably a weak acid such as an aqueous acetic acid solution, and the residue is separated into solid and liquid. To collect the metal powder. Thereafter, by washing and drying with pure water, a conductive powder having excellent crystallinity, dispersibility, and oxidation resistance can be obtained.
[0031]
2 Conductive paste
The conductive paste of the present invention contains the conductive powder of the present invention and an organic vehicle. The organic vehicle to be used is not limited because it is selected depending on the target component of the conductive paste, the use conditions, and the like, but those commonly used in multilayer ceramic components can be used. For example, the conductive paste is obtained by mixing an organic vehicle in which an organic binder such as a cellulose resin is dissolved in a solvent such as terpineol, and kneading and dispersing the mixture using a three-roll mill or the like.
[0032]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples. The analysis method and measurement method used in Examples and Comparative Examples were performed according to the following.
[0033]
(1) Method for analyzing boron: Nitric acid was dissolved, and boron in the solution was analyzed by ICP emission spectrometry.
(2) Method of measuring crystallite diameter: measured by X-ray diffraction method.
(3) Oxidation resistance evaluation method: Evaluation was made by measuring the rate of weight increase due to oxidation after holding the sample in air at 400 ° C. for 1 hour.
(4) Dispersibility of nickel powder: evaluated by observation with a scanning electron microscope.
(5) Paste evaluation: The prototype paste was printed on an alumina substrate with a printed film thickness of three levels in order to shake the laydown, and after drying and firing, the following items were evaluated and compared at the same laydown. Laydown: Calculated from the weight difference between the substrate before and after printing and the printing area. Specific resistance: calculated from the resistance and film thickness of the printed pattern, and the width and length of the pattern. Coverage of fired film: calculated from the ratio of the area of the portion that does not transmit light.
[0034]
(Example 1)
10 g of a commercially available nickel powder having an average particle diameter of 0.4 μm (average crystallite diameter 140 °, SNP-551 manufactured by Sumitomo Metal Mining Co., Ltd.) manufactured by a wet method is put into a 1-liter glass beaker, and pure water is added thereto. 500 ml was stirred and dispersed. Thereafter, 7.6 g of boric acid was added thereto and dispersed by ultrasonic treatment at a liquid temperature of 25 ° C. The amount of boric acid is determined based on 100 parts by weight of nickel powder. 2 O 3 It is equivalent to 42.9 parts by weight. Next, the mixture was dried at 60 ° C. for 8 hours, and water was evaporated to obtain a mixture of nickel powder and boric acid. Further, this mixture was placed in an alumina crucible and subjected to a heat treatment at 600 ° C. for 1 hour in a nitrogen atmosphere. Next, the melt was taken out after cooling, and dissolved in 100 ml of a 50% by weight aqueous solution of acetic acid. Thereafter, the powder was taken out by decantation, washed three times with 1000 ml of pure water, and dried at 80 ° C. to obtain a nickel powder.
Using the obtained nickel powder, X-ray diffraction, analysis of boron content, observation with an electron microscope, and evaluation of oxidation resistance were performed. Table 1 shows the results.
According to the X-ray diffraction result of the obtained nickel powder, the average crystallite diameter was 820 °, which was larger than 140 ° before the treatment, and it was confirmed that the crystallinity was improved. In addition to the peak of nickel alone, a very weak peak of a compound of nickel and boron was also recognized. The boron content in the nickel powder was 0.01% by weight. According to observation with an electron microscope, it was found that the particles had a spherical shape, the particles were well dispersed, and no aggregation or sintering occurred. Furthermore, the rate of increase in weight after primary holding at 400 ° C. in air was 9.3%, which was smaller than that before the treatment, indicating that the oxidation resistance was improved.
[0035]
(Example 2)
Example 1 was repeated except that the amount of boric acid was changed to 17.8 g. The amount of boric acid is determined based on 100 parts by weight of nickel powder. 2 O 3 This is equivalent to 100 parts by weight. Using the obtained nickel powder, X-ray diffraction, analysis of boron content, observation with an electron microscope, and evaluation of oxidation resistance were performed. Table 1 shows the results.
The average crystallite diameter of the obtained nickel powder was 1000 ° or more, the boron content was 0.02% by weight, and the rate of weight increase after holding at 400 ° C. in air for the first time was 2.7%. It was found that the oxidation resistance was improved as compared with that of Example 1. Further, observation with an electron microscope showed that the particles were well dispersed and did not undergo aggregation or sintering.
[0036]
(Example 3)
The same operation as in Example 1 was performed except that the amount of boric acid added was 11.8 g and the heat treatment temperature was 700 ° C. The amount of boric acid is determined based on 100 parts by weight of nickel powder. 2 O 3 It is equivalent to 66.7 parts by weight. Using the obtained nickel powder, X-ray diffraction, analysis of boron content, observation with an electron microscope, and evaluation of oxidation resistance were performed. Table 1 shows the results.
The obtained nickel powder has an average crystallite diameter of 1000 ° or more, a boron content of 0.36% by weight, and a weight increase rate of 0.2% after being kept in air at 400 ° C. for a first time. It was found that the oxidation resistance was improved due to the higher boron content, which was much lower than that of the above. Further, observation with an electron microscope showed that the particles were well dispersed but grain growth was observed.
[0037]
(Example 4)
Example 1 was repeated except that the amount of boric acid added was 17.8 g and the heat treatment temperature was 700 ° C. The amount of boric acid is determined based on 100 parts by weight of nickel powder. 2 O 3 This is equivalent to 100 parts by weight. Using the obtained nickel powder, X-ray diffraction, analysis of boron content, observation with an electron microscope, and evaluation of oxidation resistance were performed. Table 1 shows the results.
The average crystallite size of the obtained nickel powder was 1000 ° or more, the boron content was 0.37% by weight, and the weight increase rate after primary holding at 400 ° C. in air was 0.3%. It was found that the oxidation resistance was improved due to the higher boron content, which was much lower than that of the above. Further, observation with an electron microscope showed that the particles were well dispersed but grain growth was observed.
[0038]
(Example 5)
Using a nickel powder obtained according to a method similar to that of Example 2 as a conductive powder, a conductive paste was prepared and its performance was examined. A vehicle consisting of 8 parts by weight of ethyl cellulose, 52 parts by weight of terpineol, and 40 parts by weight of ethyl carbitol acetate was added to 100 parts by weight of the nickel powder, mixed, and kneaded with a three-roll mill to prepare a conductive paste.
Next, printing was performed on an alumina substrate, dried at 120 ° C. for 15 minutes, and fired at 1300 ° C. for 1 hour in a mixed gas stream of 2% by volume of hydrogen / 98% by volume of nitrogen. Then, the laydown, the specific resistance and the coverage of the fired film were obtained from the fired substrate, and the paste was evaluated. Laydown after firing is 1.8mg / cm 2 The results showed that the specific resistance was as low as 17.0 Ω · cm, and the coverage of the fired film was as high as 82.7%. This indicates that the use of nickel powder having high crystallinity suppressed the progress of shrinkage due to sintering. The conductive paste prepared here is suitable for a thick-film conductive paste for forming internal electrodes of a multilayer ceramic capacitor, and the nickel powder is suitable for a conductive paste.
[0039]
(Comparative Example 1)
10 g of nickel powder having the same average crystallite diameter of 140 ° as in Example 1 was dispersed in 300 ml of pure water, and dried at 60 ° C. for 8 hours to take out the nickel powder. Using the obtained nickel powder, X-ray diffraction, analysis of boron content, observation with an electron microscope, and evaluation of oxidation resistance were performed. Table 1 shows the results.
The obtained nickel powder had an average crystallite diameter of 140 ° and a boron content of 0.01% by weight or less. Observation with an electron microscope confirmed that the particles were spherical and dispersed.
[0040]
(Comparative Example 2)
The same operation as in Example 1 was performed except that boric acid was not added. Observation with an electron microscope was performed using the obtained nickel powder. Table 1 shows the results.
Observation by an electron microscope of the obtained nickel powder showed sintering. Therefore, X-ray diffraction, analysis of boron content, and evaluation of oxidation resistance were not performed.
[0041]
(Comparative Example 3)
Example 1 was repeated except that boric acid was not added and the heat treatment temperature was 700 ° C. Using the obtained nickel powder, X-ray diffraction, analysis of boron content, observation with an electron microscope, and evaluation of oxidation resistance were performed. Table 1 shows the results.
The obtained nickel powder had an average crystallite diameter of 620 ° and a boron content of 0.01% by weight or less, and sintering was observed by observation with an electron microscope.
[0042]
(Comparative Example 4)
Example 1 was repeated except that the amount of boric acid added was 2.0 g and the heat treatment temperature was 700 ° C. The amount of boric acid is determined by adding B to 100 parts by weight of nickel powder. 2 O 3 It is equivalent to 11.1 parts by weight. Using the obtained nickel powder, X-ray diffraction, analysis of boron content, and observation with an electron microscope were performed. Table 1 shows the results.
The obtained nickel powder had an average crystallite diameter of 890 ° and a boron content of 0.38% by weight, and sintering was observed by observation with an electron microscope.
[0043]
(Comparative Example 5)
The procedure was performed in the same manner as in Example 1 except that the amount of boric acid added was 4.4 g and the heat treatment temperature was 700 ° C. The amount of boric acid is determined by adding B to 100 parts by weight of nickel powder. 2 O 3 It is equivalent to 25.0 parts by weight. Using the obtained nickel powder, X-ray diffraction, analysis of boron content, and observation with an electron microscope were performed. Table 1 shows the results.
The average crystallite diameter of the obtained nickel powder was 700 °, the boron content was 0.35% by weight, and sintering was observed by observation with an electron microscope.
[0044]
(Comparative Example 6)
Example 5 was repeated except that the nickel powder of Comparative Example 1 was used as the conductive powder. Then, the laydown, the specific resistance and the coverage of the fired film were obtained from the fired substrate, and the paste was evaluated. Laydown after firing is 1.8mg / cm 2 The result was that the specific resistance was as high as 20.7 Ω · cm and the coverage of the fired film was as low as 55.4%. From this, it can be seen that sintering proceeded excessively and shrinkage increased because powder having poor crystallinity was used.
[0045]
[Table 1]
Figure 2004176120
[0046]
As described above, from Table 1, in Examples 1 to 4, the amount of boron oxide added was 100% by weight of nickel powder. 2 O 3 Since it was carried out according to the method of the present invention at a conversion of 40 parts by weight or more and 100 parts by weight or less, it can be seen that a nickel powder excellent in crystallinity, dispersibility, and oxidation resistance can be obtained. On the other hand, in Comparative Examples 1 to 5, satisfactory results cannot be obtained due to deterioration of crystallinity or dispersibility due to sintering because the amount of boron oxide added does not meet this condition.
Further, when Example 5 is compared with Comparative Example 6, it is found that the conductive paste of the present invention can obtain satisfactory results.
[0047]
【The invention's effect】
As described above, according to the present invention, a conductive powder excellent in crystallinity, dispersibility, and oxidation resistance, which is suitably used for a thick-film conductive paste for forming internal electrodes of a multilayer ceramic capacitor, can be easily obtained. Therefore, its industrial value is extremely large.

Claims (5)

金属粉末の分散溶液中に、金属粉末100重量部に対してB換算で40重量部以上、100重量部以下の酸化硼素又は硼酸を添加し、混合した後に、該分散溶液を乾燥させて金属粉末と酸化硼素又は硼酸からなる混合物を得る工程(A)、該混合物を中性雰囲気下で加熱処理して熱処理生成物を得る工程(B)、および該熱処理生成物を、水または酸で溶解処理して金属粉末を得る工程(C)を含むことを特徴とする導電粉末の製造方法。After adding and mixing 40 parts by weight or more and 100 parts by weight or less of boron oxide or boric acid in terms of B 2 O 3 with respect to 100 parts by weight of the metal powder, the dispersion is dried. (A) obtaining a mixture of metal powder and boron oxide or boric acid by heating, heating the mixture in a neutral atmosphere to obtain a heat-treated product (B), and treating the heat-treated product with water or acid. A method for producing a conductive powder, comprising a step (C) of obtaining a metal powder by performing a dissolution treatment on the substrate. 工程(B)における加熱処理が、400℃以上、700℃以下の温度で行われることを特徴とする請求項1に記載の導電粉末の製造方法。The method according to claim 1, wherein the heat treatment in the step (B) is performed at a temperature of 400 ° C. or more and 700 ° C. or less. 金属粉末が、ニッケル粉末、又はニッケルを主成分とする合金粉末であることを特徴とする請求項1又は2に記載の導電粉末の製造方法。The method for producing a conductive powder according to claim 1, wherein the metal powder is a nickel powder or an alloy powder containing nickel as a main component. 請求項1〜3のいずれかに記載の製造方法により得られる、結晶性、分散性、及び耐酸化性に優れた導電粉末。A conductive powder having excellent crystallinity, dispersibility, and oxidation resistance, obtained by the production method according to claim 1. 請求項4に記載の導電粉末を用いてなる導電ペースト。A conductive paste comprising the conductive powder according to claim 4.
JP2002343128A 2002-11-27 2002-11-27 Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same Pending JP2004176120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343128A JP2004176120A (en) 2002-11-27 2002-11-27 Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343128A JP2004176120A (en) 2002-11-27 2002-11-27 Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same

Publications (1)

Publication Number Publication Date
JP2004176120A true JP2004176120A (en) 2004-06-24

Family

ID=32704978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343128A Pending JP2004176120A (en) 2002-11-27 2002-11-27 Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same

Country Status (1)

Country Link
JP (1) JP2004176120A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006299385A (en) * 2005-04-25 2006-11-02 Noritake Co Ltd Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
US7632427B2 (en) 2004-06-28 2009-12-15 Tdk Corporation Conductive paste and multilayer ceramic electronic device and its method of production
JP2010043345A (en) * 2008-08-18 2010-02-25 Sumitomo Electric Ind Ltd Nickel powder or alloy powder composed mainly of nickel and method for producing the same, conductive paste, and multilayer ceramic capacitor
JP2010189695A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Metallic member
KR100983065B1 (en) * 2006-10-25 2010-09-20 후지쯔 가부시끼가이샤 Electrically conductive paste and method of making the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7632427B2 (en) 2004-06-28 2009-12-15 Tdk Corporation Conductive paste and multilayer ceramic electronic device and its method of production
JP2006299385A (en) * 2005-04-25 2006-11-02 Noritake Co Ltd Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
KR100983065B1 (en) * 2006-10-25 2010-09-20 후지쯔 가부시끼가이샤 Electrically conductive paste and method of making the same
JP2010043345A (en) * 2008-08-18 2010-02-25 Sumitomo Electric Ind Ltd Nickel powder or alloy powder composed mainly of nickel and method for producing the same, conductive paste, and multilayer ceramic capacitor
WO2010021202A1 (en) * 2008-08-18 2010-02-25 住友電気工業株式会社 Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
CN102123805A (en) * 2008-08-18 2011-07-13 住友电气工业株式会社 Nickel powder or alloy powder comprising nickel as main component, method for producing the same, conductive paste and laminated ceramic capacitor
JP2010189695A (en) * 2009-02-17 2010-09-02 Fujifilm Corp Metallic member

Similar Documents

Publication Publication Date Title
KR102150818B1 (en) MXene particle material, slurry, secondary battery, transparent electrode, manufacturing method of MXene particle material
KR101671324B1 (en) Copper powder
JP3787032B2 (en) Metallic nickel powder
US7604679B2 (en) Fine nickel powder and process for producing the same
JP4978785B2 (en) Method for producing nickel powder
JP5831055B2 (en) Plate-like ruthenium oxide powder and method for producing the same, and thick film resistor composition using the same
JP2006299385A (en) Platinum powder, production method therefor and platinum paste for piezoelectric ceramic material
JP4100244B2 (en) Nickel powder and method for producing the same
JP3984712B2 (en) Nickel powder for conductive paste
JP5327442B2 (en) Nickel-rhenium alloy powder and conductor paste containing the same
JP3812359B2 (en) Method for producing metal powder
JP5526856B2 (en) Nickel powder and method for producing the same
JP2004176120A (en) Electrically conductive powder, production method therefor, and electrically conductive paste obtained by using the same
KR20190123777A (en) Nickel Powder And Nickel Paste
JP5756694B2 (en) Flat metal particles
JP3474170B2 (en) Nickel powder and conductive paste
JP3705052B2 (en) Method for producing ultrafine conductor paste
JP2009079269A (en) Copper powder for electroconductive paste, production method therefor and electroconductive paste
KR100508693B1 (en) Synthetic method of nano-sized ni powder
JP2004002923A (en) Method for manufacturing nickel powder, and nickel powder
JP4111000B2 (en) Ru-Ti-O fine powder, method for producing the same, and thick film resistor composition using the same
JP2004323884A (en) Nickel powder of hyperfine particle, and production method therefor
JP4285315B2 (en) Ru-MO powder, method for producing the same, and thick film resistor composition using the same
JP2004263205A (en) Metallic impalpable powder, manufacturing method therefor, and conductive paste using the metallic impalpable powder
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component