JP2004323866A - Method for manufacturing nickel powder, and nickel powder - Google Patents

Method for manufacturing nickel powder, and nickel powder Download PDF

Info

Publication number
JP2004323866A
JP2004323866A JP2003115672A JP2003115672A JP2004323866A JP 2004323866 A JP2004323866 A JP 2004323866A JP 2003115672 A JP2003115672 A JP 2003115672A JP 2003115672 A JP2003115672 A JP 2003115672A JP 2004323866 A JP2004323866 A JP 2004323866A
Authority
JP
Japan
Prior art keywords
nickel powder
particle size
nickel
compound
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003115672A
Other languages
Japanese (ja)
Inventor
Naoaki Ogata
直明 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2003115672A priority Critical patent/JP2004323866A/en
Publication of JP2004323866A publication Critical patent/JP2004323866A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing nickel powder by which nickel powder having uniform particle size and 50 to 300 nm average particle size can be manufactured with superior repeatability and average particle size can be controlled while keeping the uniformity of grain size and also to provide the nickel powder which has the objective grain size and minimal variability in grain size and is obtained by this method. <P>SOLUTION: A solution of nicel salt and a solution of reducing agent are mixed, and the resultant mixture is subjected to oxidation/reduction reaction in the presence of a compound containing N, C and H and having a ring structure in a molecule to precipitate the nickel powder. As the compound with the ring structure, at least one selected from pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethyl benzenediol and methoxy benzenediamine is used. Further, the additive quantity of the compound with the ring structure is made to 10 to 5,000 ppm on the basis of nickel quantity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本願発明は、積層セラミック電子部品の製造などに用いられる導電性ペースト用のニッケル粉末の製造方法及びニッケル粉末に関し、詳しくは、ニッケル塩溶液と還元剤溶液を混合し、酸化還元反応を行わせてニッケル粉末を析出させることによりニッケル粉末を製造するニッケル粉末の製造方法及び該方法により製造されるニッケル粉末に関する。
【0002】
【従来の技術】
積層セラミックコンデンサなどの積層セラミック電子部品は、素子中に内部電極(内部導体)を備えており、この内部電極は、通常、金属粉末を導電成分として含有する導電性ペーストを所定のパターンに塗布した未焼成のセラミックグリーンシートを積層、圧着してなる積層体を焼成して、導電性ペーストを焼結させることにより形成されている。
【0003】
このような積層セラミック電子部品において、小型化、高容量化を進めるためには、内部導体の厚みを極力薄くし、単位体積あたりの積層可能枚数を増大させることが必要になる。この目的を達成するためには、導電性ペーストに用いられる金属粉末の粒径をできるだけ小さくすることが求められる。
【0004】
このような粒子サイズの小さい金属粉末の製造方法としては、気相還元法による方法(例えば、特許文献1参照)や、液相還元法による方法(例えば、特許文献2参照)が知られている。
【0005】
【特許文献1】
特開平11−189801号公報
【特許文献2】
特開2000−87121号公報
【0006】
そして、上記特許文献2には、ヒドラジン化合物を溶媒に溶解した還元剤溶液を用いて、液相還元法により粒径が300nm以下となるような金属粉末を製造するにあたって、反応溶媒中にアルコールを用いる方法や、反応溶媒中にCuやPdを微粒化の添加剤として共存させる方法が開示されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記特許文献2のように、ニッケル塩溶液とヒドラジン化合物溶液(還元剤溶液)を混合し、酸化還元反応によりニッケル粉末を析出させる方法においては、粒径300nm程度あるいはそれ以下になると、反応が激しくなって粒径制御が難しくなるという問題点がある。
【0008】
具体的には、溶媒組成、Cuの添加量、原料ニッケルの種類やその調合割合などを調整することにより粒径が制御されるが、粒径のばらつきの小さいニッケル粉末を得ようとすると、50〜100nmという狭い平均粒径範囲内でしか粒径のばらつきの少ない金属粉末は得られず、100nm〜300nm程度の範囲まで粒径を制御すると、粒径のばらつきが大きくなるという問題点がある。
また、上記の方法の場合には、平均粒径が50〜100nmの範囲であっても粒径の再現性が悪いという問題点がある。
【0009】
一方、本願発明のニッケル粉末の主用途である、積層セラミックコンデンサなどの積層セラミック電子部品の内部電極用ニッケル粉末としては、粒径が微細であることが要求されるとともに、粒径にばらつきが小さいこと、及び粒径を精密に目標とする粒径に制御できることが要求される。
【0010】
これは、粒径にばらつきがあると、その表面エネルギーに差が生じ、積層セラミックコンデンサの内部電極に用いた場合に、個々の粒子の焼結開始温度に差異が生じ、均一で、カバレージの高い焼成膜を得ることが困難になることによる。
【0011】
また、平均粒径の再現性が悪いと、ニッケル粉末の焼結開始温度に差異が生じ、積層セラミックコンデンサの場合には、クラックやデラミネーションなどが発生するという問題点がある。
【0012】
本願発明は、上記問題点を解決するものであり、平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することが可能であるとともに、粒径の均一性を保ったまま平均粒径を制御することが可能なニッケル粉末の製造方法、及び該方法により製造された、目標とする粒径を有し、かつ、粒径のばらつきの小さいニッケル粉末を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本願発明(請求項1)のニッケル粉末の製造方法は、
ニッケル塩を溶媒に溶解してニッケル塩溶液を調製する工程と、
ヒドラジン化合物を溶媒に溶解して還元剤溶液を調製する工程と、
前記ニッケル塩溶液と、前記還元剤溶液を混合し、N(窒素)、C(炭素)、及びH(水素)を含有し、かつ分子内に環状構造を有する化合物の存在下に酸化還元反応を行わせて、ニッケル粉末を析出させる工程と、
を具備することを特徴としている。
【0014】
ニッケル塩溶液と、還元剤溶液を混合し、N(窒素)、C(炭素)、及びH(水素)を含有し、かつ分子内に環状構造を有する化合物(以下、単に「環状構造化合物」ともいう)の共存下に、酸化還元反応を行わせてニッケル粉末を析出させるようにした本願発明(請求項1)のニッケル粉末の製造方法においては、環状構造化合物が、析出するニッケル粉末の粒径を大きくする方向に働く粒径制御剤として機能する。したがって、環状構造化合物の添加量を制御することにより、粒径の均一性を保ったまま平均粒径を制御することが可能になり、平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することが可能になる。
【0015】
なお、環状構造化合物の存在下にニッケル塩溶液と還元剤溶液を反応させることにより、粒径が均一で所望の粒径を有するニッケル粉末を製造することが可能になる理由は必ずしも明確ではないが、金属イオンと結合しやすいNを分子構造中に含むこと、分子サイズが大きく、ニッケルイオンとの結合により、還元初期の核生成過程でニッケルと結合し、ニッケルとヒドラジンとの結合及び還元反応を阻害してニッケル核の発生量を抑制することが主たる要因の1つであると推測される。
【0016】
本願発明において、「環状構造を有する化合物の存在下に酸化還元反応を行わせて」とは、ニッケル塩溶液と還元剤溶液のいずれか一方又は両方に環状構造を有する化合物を存在させておく場合を含む広い概念である。
【0017】
また、請求項2のニッケル粉末の製造方法は、前記環状構造を有する化合物が、ピラゾール、トリメチルピラゾール、ベンゼンジアミン、アミノフェニルエーテル、アミノエチルベンゼンジオール、メトキシベンゼンジアミンからなる群より選ばれる少なくとも1種であることを特徴としている。
【0018】
環状構造を有する化合物として、ピラゾール、トリメチルピラゾール、ベンゼンジアミン、アミノフェニルエーテル、アミノエチルベンゼンジオール、メトキシベンゼンジアミンからなる群より選ばれる少なくとも1種を用いることにより、粒径の均一性を保ったまま平均粒径を制御することが可能になり、平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することが可能になる。
【0019】
なお、N、C、Hを含有し、かつ分子内に環状構造を有する化合物としては、上述のようなピラゾール、トリメチルピラゾール、ベンゼンジアミン、アミノフェニルエーテル、アミノエチルベンゼンジオール、メトキシベンゼンジアミンなどの化合物が挙げられるが、これらの化合物は4員環から6員環の化合物であり、分子内にN元素を1個から2個含有している。実際の粒径制御効果は、環状構造を構成する分子の数に影響されることが多い。すなわち4員環、5員環、6員環と多員環になるほど粒径制御効果が高くなることが確認されている。
また、環状構造化合物の分子のサイズが大きい方が、より少量で効果が認められる傾向がある。
なお、分子内のN原子の位置と、実際の粒径制御効果の関係については十分明確にはなっていないが、環状化合物の構成原子となっている場合でも、環状化合物の構成原子となっていない場合(例えばアミンとして存在する場合)でも効果が認められる。
また、アミノフェニルエーテル、アミノエチルベンゼンジオールのように、分子内にヒドロキシル基を有する物質も使用可能である。
【0020】
また、請求項3のニッケル粉末の製造方法は、前記環状構造を有する化合物の添加量が、ニッケル量を基準として10〜5000ppmの範囲にあることを特徴としている。
【0021】
環状構造を有する化合物の添加量を、ニッケル量を基準として10〜5000ppmの範囲とすることにより、粒径の均一性を保ったまま平均粒径を確実に制御することが可能になり、平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することが可能になる。
環状構造化合物の添加量が10ppm未満になると添加効果が不十分になり、また、5000ppmを超えると、粉末への有機物残留が発生し、ペースト用用途としては、焼成時のカーボン残留など不具合が発生する場合がある。
なお、本願発明において、環状構造化合物の添加量の「ニッケル量を基準として10〜5000ppmの範囲」とは、ニッケル1モルに対して、環状構造化合物の添加量が100万分の10〜100万分の5000モルの範囲(モル比)であることを示す概念である。
また、本願発明において、環状構造化合物の添加量のより好ましい範囲は、50ppm〜1000ppmの範囲である。
【0022】
また、請求項4のニッケル粉末の製造方法は、前記ニッケル塩溶液がCuイオンを含むものであることを特徴としている。
【0023】
ニッケル塩溶液としてCuイオンを含むものを用いることにより、より確実に平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することが可能になる。
なお、液相反応で平均粒径が300nm以下となるような粉末を製造する場合には、反応溶媒にアルコールを添加する方法や、反応溶媒としてアルコールを用いる方法もあるが、ニッケル塩溶液にCuイオンを添加するほうが大きな効果を得ることができる。なお、ニッケル粉末の平均粒径が500nm以上の場合でも、銅イオンの添加は粒径制御に効果があるが、このような条件では、反応溶媒にアルコールを添加する方法や、反応溶媒としてアルコールを用いる方法で十分に対応できる場合が多い。
【0024】
また、本願発明(請求項5)のニッケル粉末は、請求項1〜4のいずれかに記載の方法により製造され、平均粒径が50〜300nmの範囲にあることを特徴としている。
【0025】
本願発明(請求項5)のニッケル粉末は、請求項1〜4のいずれかに記載の方法により製造されたものであって、平均粒径が50〜300nmの範囲にあり、かつ、粒径が均一であることから、積層セラミックコンデンサ、積層バリスタ、多層基板などの電子部品の内部電極を形成するために用いられる導電性ペースト用金属粉末として、種々の用途に広く用いることが可能である。
【0026】
【実施例】
以下、本願発明の実施例を示して、本願発明の特徴とするところをさらに詳しく説明する。
【0027】
[実施例1]
(1)硫酸ニッケル78gを水200ccに溶解した硫酸ニッケル水溶液に、硫酸銅を、硫酸ニッケルに対して重量比で1000ppmの割合となるように添加することによりニッケル塩溶液を調製した。
(2)また、水酸化ナトリウム32gと、60%抱水ヒドラジン67gと、純水144ccとを混合することにより、還元剤溶液を調製した。
そして、この還元剤溶液に、N、C、Hを含有し、かつ分子内に環状構造を有する化合物(環状構造化合物)として、ピラゾール、トリメチルピラゾール、ベンゼンジアミン、アミノフェニルエーテル、アミノエチルベンゼンジオール、メトキシベンゼンジアミンを、それぞれニッケル量に対するモル比で300ppm添加した。
(3)それから、ニッケル塩溶液と還元剤溶液を65℃に調整し、撹拌しながら2液を混合し、還元反応を行わせてニッケル粉末を析出させた。
(4)その後、ニッケル粉末を純水で十分に洗浄し、ろ過した後、80℃のオーブン中で5時間乾燥することにより、ニッケル粉末を得た。
そして、得られたニッケル粉末を、電子顕微鏡により1万倍で観察し、画像解析により平均粒径を求めた。その結果を表1に示す。
【0028】
【表1】

Figure 2004323866
【0029】
表1に示すように、ピラゾール、トリメチルピラゾール、ベンゼンジアミン、アミノフェニルエーテル、アミノエチルベンゼンジオール、メトキシベンゼンジアミンを添加した場合の平均粒径は、それぞれ150nm、180nm、220nm、280nm、200nm、220nmであった。
平均粒径のばらつきを示すC.V値(標準偏差/平均粒径)はいずれも5%以下であり、得られたニッケル粉末は平均粒径ばらつきの少ないものであった。
【0030】
[実施例2]
実施例1と同じニッケル塩溶液と還元剤溶液を準備し、この還元剤溶液にベンゼンジアミンを10ppm、50ppm、100ppm、500ppm、1000ppm、5000ppmの割合で添加して還元剤溶液を調製した。
そして、それぞれの還元剤溶液とニッケル塩溶液を実施例1と同様の方法で混合して還元反応を行わせ、析出したニッケル粉末を洗浄、乾燥して、6種のニッケル粉末を得た。
このニッケル粉末を上記実施例1の場合と同様の方法で観察し、平均粒径を求めた。その結果を表2に示す。
【0031】
【表2】
Figure 2004323866
【0032】
表2に示すように、ベンゼンジアミンの添加量が10ppm、50ppm、100ppm、500ppm、1000ppm、5000ppmと多くなるにつれて、平均粒径が100nm、120nm、150nm、210nm、220nm、220nmと大きくなり、ベンゼンジアミンの添加量を制御することにより、得られるニッケル粉末の粒径を制御できることが確認された。
また、平均粒径のばらつきを示すC.V値は、いずれも5%以下であり、得られたニッケル粉末は、粒径のばらつきの小さい、均一なニッケル粉末であることが確認された。
ただし、ベンゼンジアミンの添加量が500ppm以上になると、ベンゼンジアミンの添加量に対するニッケル粉末の粒径が増大する割合が緩やかになることが確認された。
【0033】
[実施例3]
実施例1と同じニッケル塩溶液と還元剤溶液を準備し、還元剤溶液にピラゾールをニッケル塩溶液のニッケル量に対するモル比で100ppmの割合で添加した。
そして、この還元剤溶液とニッケル塩溶液を実施例1と同様の方法で混合して還元反応を行わせ、析出したニッケル粉末を洗浄、乾燥して、5つのロットのニッケル粉末を得た。
そして、各ロットのニッケル粉末(5種のニッケル粉末)を上記実施例1の場合と同様の方法で観察し、平均粒径を求めた。その結果、5種のニッケル粉末の平均粒径は94〜103nmであり、反応ロット間の平均粒径ばらつき(C.V値)は、±5%以下と反応再現性に優れていることが確認された。
【0034】
[比較例1]
実施例1と同じニッケル塩溶液と還元剤溶液を準備し、この還元剤溶液に、C、H、Nを含み、環状構造を有していないエチレンジアミン4酢酸ナトリウムを、100ppm、500ppm、1000ppm、5000ppmの割合で添加した。
そして、この還元剤溶液とニッケル塩溶液を実施例1と同様の方法で混合して還元反応を行わせ、析出したニッケル粉末を洗浄、乾燥して、4種のニッケル粉末を得た。
この4種のニッケル粉末を上記実施例1の場合と同様の方法で観察し、平均粒径を求めた。
その結果、4種のニッケル粉末のそれぞれの平均粒径は100〜120nmであり、C、H、Nからなり環状構造を有していないエチレンジアミン4酢酸ナトリウムには粒径制御の効果がないことが確認された。
また、4種のニッケル粉末の、それぞれの平均粒径ばらつき(C.V値)はいずれも10%以上と大きく、エチレンジアミン4酢酸ナトリウムの添加量が多くなるにつれて反応槽にニッケル箔の発生が認められた。
【0035】
[比較例2]
還元剤溶液にピラゾールを添加しないことを除いて、実施例3と同様の方法で、5つのロットのニッケル粉末を製造した。
そして、各ロットのニッケル粉末(5種のニッケル粉末)を上記実施例1の場合と同様の方法で観察し、平均粒径を求めた。その結果、5種のニッケル粉末の平均粒径は85〜130nmであり、反応ロット間の平均粒径ばらつき(C.V値)は、±10%以上と再現性が悪いことが確認された。
【0036】
なお、上記の実施例1〜3では、ピラゾール、トリメチルピラゾール、ベンゼンジアミン、アミノフェニルエーテル、アミノエチルベンゼンジオール、メトキシベンゼンジアミンなどの環状化合物を還元剤溶液に添加するようにしているが、ニッケル塩溶液に添加することも可能である。すなわち、環状構造化合物をニッケル塩溶液と還元剤溶液のどちらに添加した場合にも、目的とする効果を得ることが可能である。
【0037】
ただし、例えば、ニッケル塩溶液を、所定の速度で還元剤溶液中に添加して、ニッケル塩溶液と還元剤溶液の2液を混合する場合には、ニッケル粉末の生成が還元剤溶液側で起こることになるため、還元剤溶液側に環状化合物を添加した方が、ニッケル粉末の生成時における環状化合物濃度の変動が少なくなり、結果としてニッケル粉末の粒径ばらつきをより小さくすることが可能になる。
【0038】
一方、例えば、還元剤溶液を、所定の速度でニッケル塩溶液中に添加して、還元剤溶液とニッケル塩溶液の2液を混合する場合には、ニッケル粉末の生成がニッケル塩溶液側で起こることになるため、ニッケル塩溶液側に環状化合物を添加した方が、ニッケル粉末の生成時における環状化合物濃度の変動が少なくなり、結果としてニッケル粉末の粒径ばらつきをより小さくすることが可能になる。
【0039】
なお、本願発明の方法により製造されるニッケル粉末は、所望の粒径を有し、かつ、粒径のばらつきの小さいことから、積層セラミックコンデンサ、積層バリスタ、多層基板などの電子部品の内部電極を形成するために用いられる導電性ペースト用金属粉末として、種々の用途に広く用いることが可能である。
【0040】
なお、本願発明は、上記実施例に限定されるものではなく、還元反応を行わせる際の具体的な条件、環状構造化合物の種類などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。
【0041】
【発明の効果】
上述のように、本願発明(請求項1)のニッケル粉末の製造方法は、ニッケル塩溶液と、還元剤溶液を混合し、N(窒素)、C(炭素)、及びH(水素)を含有する環状構造化合物の共存下に、酸化還元反応を行わせてニッケル粉末を析出させるようにしているので、環状構造化合物が、析出するニッケル粉末の粒径を大きくする方向に働く粒径制御剤として機能する。したがって、環状構造化合物の添加量を制御することにより、粒径の均一性を保ったまま平均粒径を制御することが可能になり、平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することが可能になる。
【0042】
また、請求項2のニッケル粉末の製造方法のように、環状構造を有する化合物として、ピラゾール、トリメチルピラゾール、ベンゼンジアミン、アミノフェニルエーテル、アミノエチルベンゼンジオール、メトキシベンゼンジアミンからなる群より選ばれる少なくとも1種を用いることにより、粒径の均一性を保ったまま平均粒径を制御することが可能になり、平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することができるようになる。
【0043】
また、請求項3のニッケル粉末の製造方法のように、環状構造を有する化合物の添加量を、ニッケル量を基準として10〜5000ppmの範囲とすることにより、粒径の均一性を保ったまま平均粒径を確実に制御することが可能になり、平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することができるようになる。
【0044】
また、請求項4のニッケル粉末の製造方法のように、ニッケル塩溶液としてCuイオンを含むものを用いることにより、より確実に平均粒径が50〜300nmの範囲で、粒径の均一なニッケル粉末を再現性よく製造することが可能になる。
【0045】
また、本願発明(請求項5)のニッケル粉末は、請求項1〜4のいずれかの方法により製造されたものであり、平均粒径が50〜300nmの範囲にあって、かつ、粒径が均一であることから、積層セラミックコンデンサ、積層バリスタ、多層基板などの電子部品の内部電極を形成するために用いられる導電性ペースト用金属粉末としての用途をはじめ、種々の用途に広く用いることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a nickel powder for a conductive paste used for producing a multilayer ceramic electronic component and the like, and a nickel powder.Specifically, a nickel salt solution and a reducing agent solution are mixed to cause an oxidation-reduction reaction The present invention relates to a method for producing a nickel powder by producing a nickel powder by depositing the nickel powder, and a nickel powder produced by the method.
[0002]
[Prior art]
A multilayer ceramic electronic component such as a multilayer ceramic capacitor includes an internal electrode (internal conductor) in an element, and the internal electrode is usually formed by applying a conductive paste containing a metal powder as a conductive component in a predetermined pattern. It is formed by sintering a conductive paste by sintering a laminate formed by stacking and pressing unfired ceramic green sheets, and sintering the conductive paste.
[0003]
In order to reduce the size and increase the capacity of such a multilayer ceramic electronic component, it is necessary to reduce the thickness of the internal conductor as much as possible and to increase the number of layers that can be laminated per unit volume. In order to achieve this object, it is required to reduce the particle size of the metal powder used for the conductive paste as much as possible.
[0004]
As a method for producing such a metal powder having a small particle size, a method using a gas phase reduction method (for example, see Patent Document 1) and a method using a liquid phase reduction method (for example, see Patent Document 2) are known. .
[0005]
[Patent Document 1]
JP-A-11-189801 [Patent Document 2]
JP 2000-87121 A
Patent Document 2 discloses that, when a metal powder having a particle diameter of 300 nm or less is produced by a liquid phase reduction method using a reducing agent solution in which a hydrazine compound is dissolved in a solvent, alcohol is added to the reaction solvent. There is disclosed a method of using and a method of coexisting Cu or Pd as an additive for atomization in a reaction solvent.
[0007]
[Problems to be solved by the invention]
However, in the method of mixing a nickel salt solution and a hydrazine compound solution (reducing agent solution) to precipitate nickel powder by an oxidation-reduction reaction as described in Patent Document 2, if the particle size becomes about 300 nm or less, the reaction proceeds. And the particle size control becomes difficult.
[0008]
Specifically, the particle size is controlled by adjusting the solvent composition, the added amount of Cu, the type of the raw material nickel, the mixing ratio thereof, and the like. A metal powder having a small variation in particle size can be obtained only within a narrow average particle size range of 100 nm to 100 nm. If the particle size is controlled to a range of about 100 nm to 300 nm, there is a problem that the variation in the particle size increases.
Further, in the case of the above method, there is a problem that the reproducibility of the particle size is poor even when the average particle size is in the range of 50 to 100 nm.
[0009]
On the other hand, the nickel powder for an internal electrode of a multilayer ceramic electronic component such as a multilayer ceramic capacitor, which is a main use of the nickel powder of the present invention, is required to have a fine particle size and a small variation in the particle size. And that the particle size can be precisely controlled to the target particle size.
[0010]
This is because, if there is a variation in the particle size, a difference occurs in the surface energy, and when used for an internal electrode of a multilayer ceramic capacitor, a difference occurs in the sintering start temperature of each particle, resulting in a uniform and high coverage. This is because it becomes difficult to obtain a fired film.
[0011]
Further, if the reproducibility of the average particle size is poor, there is a difference in the sintering start temperature of the nickel powder, and in the case of a multilayer ceramic capacitor, there is a problem that cracks and delaminations occur.
[0012]
The present invention solves the above-mentioned problems, and it is possible to produce a nickel powder having a uniform particle size with good reproducibility in an average particle size range of 50 to 300 nm, and to improve the uniformity of the particle size. To provide a method for producing a nickel powder capable of controlling the average particle size while maintaining the same, and a nickel powder having a target particle size and a small variation in the particle size, produced by the method. The purpose is to:
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing a nickel powder according to the present invention (claim 1) includes:
Dissolving the nickel salt in a solvent to prepare a nickel salt solution,
Dissolving the hydrazine compound in a solvent to prepare a reducing agent solution,
The nickel salt solution and the reducing agent solution are mixed, and an oxidation-reduction reaction is performed in the presence of a compound containing N (nitrogen), C (carbon), and H (hydrogen) and having a cyclic structure in the molecule. Performing a step of depositing nickel powder,
It is characterized by having.
[0014]
A compound containing a nickel salt solution and a reducing agent solution, containing N (nitrogen), C (carbon), and H (hydrogen) and having a cyclic structure in the molecule (hereinafter, also simply referred to as “cyclic structure compound”). In the method for producing nickel powder according to the present invention (claim 1) in which an oxidation-reduction reaction is performed in the coexistence of nickel powder, the cyclic structure compound has a particle size of nickel powder deposited. It functions as a particle size control agent that works in the direction of increasing the particle size. Therefore, by controlling the amount of the cyclic structure compound to be added, it is possible to control the average particle size while maintaining the uniformity of the particle size, and to control the average particle size within the range of 50 to 300 nm. It is possible to produce a nickel powder with good reproducibility.
[0015]
The reason why it is possible to produce a nickel powder having a uniform particle size and a desired particle size by reacting a nickel salt solution and a reducing agent solution in the presence of a cyclic structure compound is not necessarily clear, but it is not clear. N, which is easily bonded to metal ions, is included in the molecular structure. The molecular size is large. By bonding with nickel ions, it is bonded to nickel in the nucleation process at the initial stage of reduction, and the bonding and reduction reaction between nickel and hydrazine. It is presumed that one of the main factors is to inhibit the generation amount of nickel nuclei by inhibiting them.
[0016]
In the present invention, "performing an oxidation-reduction reaction in the presence of a compound having a cyclic structure" means that a compound having a cyclic structure is present in one or both of a nickel salt solution and a reducing agent solution. Is a broad concept including
[0017]
In the method for producing nickel powder according to claim 2, the compound having a cyclic structure is at least one selected from the group consisting of pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethylbenzenediol, and methoxybenzenediamine. It is characterized by having.
[0018]
By using at least one member selected from the group consisting of pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethylbenzenediol, and methoxybenzenediamine as the compound having a cyclic structure, the average is maintained while maintaining the uniformity of the particle diameter. The particle size can be controlled, and a nickel powder having a uniform particle size can be produced with good reproducibility when the average particle size is in the range of 50 to 300 nm.
[0019]
Compounds containing N, C, H and having a cyclic structure in the molecule include compounds such as pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethylbenzenediol, and methoxybenzenediamine as described above. Although these compounds are mentioned, these compounds are compounds having a 4- to 6-membered ring, and contain 1 to 2 N elements in the molecule. The actual particle size control effect is often influenced by the number of molecules constituting the cyclic structure. That is, it has been confirmed that the particle size control effect increases as the number of rings becomes four, five, or six.
In addition, when the size of the molecule of the cyclic structure compound is larger, the effect tends to be recognized with a smaller amount.
Although the relationship between the position of the N atom in the molecule and the actual effect of controlling the particle diameter is not sufficiently clear, even if it is a constituent atom of a cyclic compound, it is a constituent atom of a cyclic compound. Even in the absence (for example, when present as an amine), an effect is observed.
Further, substances having a hydroxyl group in the molecule, such as aminophenyl ether and aminoethylbenzenediol, can also be used.
[0020]
The method for producing a nickel powder according to claim 3 is characterized in that the amount of the compound having a cyclic structure is in the range of 10 to 5000 ppm based on the nickel amount.
[0021]
By setting the amount of the compound having a cyclic structure in the range of 10 to 5000 ppm based on the amount of nickel, it is possible to reliably control the average particle size while maintaining the uniformity of the particle size. When the diameter is in the range of 50 to 300 nm, nickel powder having a uniform particle size can be produced with good reproducibility.
If the amount of the cyclic structure compound is less than 10 ppm, the effect of the addition becomes insufficient. If the amount exceeds 5000 ppm, organic substances remain in the powder, and for paste use, problems such as residual carbon during firing occur. May be.
In the present invention, the term "the range of 10 to 5000 ppm based on the amount of nickel" of the amount of the cyclic structure compound added means that the amount of the cyclic structure compound added is 1 / 10,000 to 1,000,000 per 1 mol of nickel. This is a concept indicating that the range is 5,000 moles (molar ratio).
Further, in the present invention, a more preferable range of the amount of the cyclic structure compound added is in the range of 50 ppm to 1000 ppm.
[0022]
The method for producing nickel powder according to claim 4 is characterized in that the nickel salt solution contains Cu ions.
[0023]
By using a solution containing Cu ions as the nickel salt solution, it is possible to more reliably produce a nickel powder having a uniform particle size in a range of 50 to 300 nm with good reproducibility.
When a powder having an average particle diameter of 300 nm or less is produced by a liquid phase reaction, a method of adding alcohol to the reaction solvent or a method of using alcohol as the reaction solvent may be used. Greater effects can be obtained by adding ions. Even when the average particle size of the nickel powder is 500 nm or more, the addition of copper ions is effective in controlling the particle size. However, under such conditions, the method of adding alcohol to the reaction solvent, or the method of using alcohol as the reaction solvent, In many cases, the method used can be sufficient.
[0024]
The nickel powder of the present invention (claim 5) is produced by the method according to any one of claims 1 to 4, and has an average particle size in the range of 50 to 300 nm.
[0025]
The nickel powder of the present invention (claim 5) is produced by the method according to any one of claims 1 to 4, and has an average particle size in a range of 50 to 300 nm and a particle size of 50 to 300 nm. Since it is uniform, it can be widely used in various applications as a metal powder for a conductive paste used for forming internal electrodes of electronic components such as multilayer ceramic capacitors, multilayer varistors, and multilayer substrates.
[0026]
【Example】
Hereinafter, features of the present invention will be described in more detail by showing embodiments of the present invention.
[0027]
[Example 1]
(1) A nickel salt solution was prepared by adding copper sulfate to a nickel sulfate aqueous solution in which 78 g of nickel sulfate was dissolved in 200 cc of water at a weight ratio of 1000 ppm to nickel sulfate.
(2) Further, a reducing agent solution was prepared by mixing 32 g of sodium hydroxide, 67 g of 60% hydrazine hydrate, and 144 cc of pure water.
In this reducing agent solution, pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethylbenzenediol, methoxy, and the like are compounds containing N, C, and H and having a cyclic structure in the molecule (cyclic structure compound). Benzenediamine was added at a molar ratio of 300 ppm to the nickel amount.
(3) Then, the nickel salt solution and the reducing agent solution were adjusted to 65 ° C., and the two liquids were mixed with stirring to carry out a reduction reaction to precipitate nickel powder.
(4) Thereafter, the nickel powder was sufficiently washed with pure water, filtered, and dried in an oven at 80 ° C for 5 hours to obtain a nickel powder.
Then, the obtained nickel powder was observed at a magnification of 10,000 with an electron microscope, and the average particle size was determined by image analysis. Table 1 shows the results.
[0028]
[Table 1]
Figure 2004323866
[0029]
As shown in Table 1, when pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethylbenzenediol, and methoxybenzenediamine were added, the average particle size was 150 nm, 180 nm, 220 nm, 280 nm, 200 nm, and 220 nm, respectively. Was.
C. showing variation in average particle size. The V value (standard deviation / average particle size) was 5% or less in each case, and the obtained nickel powder had little variation in average particle size.
[0030]
[Example 2]
The same nickel salt solution and reducing agent solution as in Example 1 were prepared, and benzenediamine was added to the reducing agent solution at a ratio of 10 ppm, 50 ppm, 100 ppm, 500 ppm, 1000 ppm, and 5000 ppm to prepare a reducing agent solution.
Then, the respective reducing agent solutions and nickel salt solutions were mixed in the same manner as in Example 1 to cause a reduction reaction, and the precipitated nickel powder was washed and dried to obtain six types of nickel powder.
This nickel powder was observed in the same manner as in Example 1 to determine the average particle size. Table 2 shows the results.
[0031]
[Table 2]
Figure 2004323866
[0032]
As shown in Table 2, as the amount of benzenediamine added increased to 10 ppm, 50 ppm, 100 ppm, 500 ppm, 1000 ppm, and 5000 ppm, the average particle size increased to 100 nm, 120 nm, 150 nm, 210 nm, 220 nm, 220 nm, and benzenediamine. It has been confirmed that the particle size of the obtained nickel powder can be controlled by controlling the amount of the nickel powder added.
Further, C.I. The V value was 5% or less in each case, and it was confirmed that the obtained nickel powder was a uniform nickel powder having a small variation in particle diameter.
However, it was confirmed that when the amount of benzenediamine added was 500 ppm or more, the ratio of the increase in the particle size of the nickel powder to the amount of benzenediamine became gentle.
[0033]
[Example 3]
The same nickel salt solution and reducing agent solution as in Example 1 were prepared, and pyrazole was added to the reducing agent solution at a molar ratio of 100 ppm to the nickel amount of the nickel salt solution.
Then, the reducing agent solution and the nickel salt solution were mixed in the same manner as in Example 1 to cause a reduction reaction, and the precipitated nickel powder was washed and dried to obtain five lots of nickel powder.
Then, the nickel powder (five types of nickel powder) of each lot was observed in the same manner as in Example 1 to determine the average particle size. As a result, the average particle size of the five types of nickel powder was 94 to 103 nm, and the average particle size variation (CV value) between the reaction lots was ± 5% or less, indicating that the reaction reproducibility was excellent. Was done.
[0034]
[Comparative Example 1]
The same nickel salt solution and reducing agent solution as in Example 1 were prepared. In this reducing agent solution, 100 ppm, 500 ppm, 1000 ppm, and 5000 ppm of ethylenediaminetetraacetate containing C, H, and N and having no cyclic structure were prepared. At a rate of
Then, the reducing agent solution and the nickel salt solution were mixed in the same manner as in Example 1 to cause a reduction reaction, and the precipitated nickel powder was washed and dried to obtain four types of nickel powder.
The four types of nickel powders were observed in the same manner as in Example 1 to determine the average particle size.
As a result, the average particle size of each of the four nickel powders is 100 to 120 nm, and sodium ethylenediaminetetraacetate composed of C, H, and N and having no cyclic structure has no particle size control effect. confirmed.
The average particle size variation (CV value) of each of the four nickel powders was as large as 10% or more, and generation of nickel foil was observed in the reaction tank as the amount of sodium ethylenediaminetetraacetate added increased. Was done.
[0035]
[Comparative Example 2]
Five lots of nickel powder were produced in the same manner as in Example 3, except that pyrazole was not added to the reducing agent solution.
Then, the nickel powder (five types of nickel powder) of each lot was observed in the same manner as in Example 1 to determine the average particle size. As a result, the average particle size of the five types of nickel powder was 85 to 130 nm, and the average particle size variation (CV value) among the reaction lots was ± 10% or more, which was poor reproducibility.
[0036]
In Examples 1 to 3 above, cyclic compounds such as pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethylbenzenediol, and methoxybenzenediamine are added to the reducing agent solution. Can also be added. That is, the desired effect can be obtained regardless of whether the cyclic structure compound is added to either the nickel salt solution or the reducing agent solution.
[0037]
However, for example, when the nickel salt solution is added to the reducing agent solution at a predetermined speed and the two solutions of the nickel salt solution and the reducing agent solution are mixed, the generation of nickel powder occurs on the reducing agent solution side. Therefore, when the cyclic compound is added to the reducing agent solution side, the fluctuation of the cyclic compound concentration at the time of generation of the nickel powder is reduced, and as a result, the particle size variation of the nickel powder can be reduced. .
[0038]
On the other hand, for example, when the reducing agent solution is added to the nickel salt solution at a predetermined speed and the two solutions of the reducing agent solution and the nickel salt solution are mixed, the nickel powder is generated on the nickel salt solution side. Therefore, when the cyclic compound is added to the nickel salt solution side, the fluctuation of the cyclic compound concentration during the generation of the nickel powder is reduced, and as a result, the particle size variation of the nickel powder can be reduced. .
[0039]
The nickel powder produced by the method of the present invention has a desired particle size and has a small variation in particle size. Therefore, the internal electrodes of electronic components such as a multilayer ceramic capacitor, a multilayer varistor, and a multilayer substrate are used. As a metal powder for a conductive paste used for forming, it can be widely used for various uses.
[0040]
The invention of the present application is not limited to the above-described embodiment, and various applications and modifications are made within the scope of the invention with respect to specific conditions for performing the reduction reaction, types of cyclic structural compounds, and the like. It is possible.
[0041]
【The invention's effect】
As described above, in the method for producing nickel powder of the present invention (claim 1), a nickel salt solution and a reducing agent solution are mixed, and N (nitrogen), C (carbon), and H (hydrogen) are contained. In the presence of a cyclic structure compound, the oxidation-reduction reaction is performed to precipitate nickel powder, so the cyclic structure compound functions as a particle size control agent that works to increase the particle size of the precipitated nickel powder. I do. Therefore, by controlling the amount of the cyclic structure compound to be added, it is possible to control the average particle size while maintaining the uniformity of the particle size, and to control the average particle size within the range of 50 to 300 nm. It is possible to produce a nickel powder with good reproducibility.
[0042]
Further, as in the method for producing nickel powder according to claim 2, the compound having a cyclic structure is at least one selected from the group consisting of pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethylbenzenediol, and methoxybenzenediamine. Makes it possible to control the average particle size while maintaining the uniformity of the particle size, and to produce a nickel powder having a uniform particle size with good reproducibility within the range of 50 to 300 nm. Will be able to do it.
[0043]
Further, as in the method for producing a nickel powder according to claim 3, the addition amount of the compound having a cyclic structure is in the range of 10 to 5000 ppm based on the nickel amount, so that the average particle size can be maintained while the uniformity of the particle size is maintained. The particle size can be reliably controlled, and a nickel powder having a uniform particle size can be produced with good reproducibility when the average particle size is in the range of 50 to 300 nm.
[0044]
In addition, by using a nickel salt solution containing Cu ions as in the method for producing a nickel powder according to claim 4, the nickel powder having an average particle diameter in the range of 50 to 300 nm and having a uniform particle diameter is more reliably obtained. Can be manufactured with good reproducibility.
[0045]
The nickel powder according to the present invention (claim 5) is produced by the method according to any one of claims 1 to 4, has an average particle size in a range of 50 to 300 nm, and has a particle size of 50 to 300 nm. Because of its uniformity, it can be widely used for various applications, including as a metal powder for conductive paste used to form internal electrodes of electronic components such as multilayer ceramic capacitors, multilayer varistors, and multilayer substrates. .

Claims (5)

ニッケル塩を溶媒に溶解してニッケル塩溶液を調製する工程と、
ヒドラジン化合物を溶媒に溶解して還元剤溶液を調製する工程と、
前記ニッケル塩溶液と、前記還元剤溶液を混合し、N(窒素)、C(炭素)、及びH(水素)を含有し、かつ分子内に環状構造を有する化合物の存在下に酸化還元反応を行わせて、ニッケル粉末を析出させる工程と、
を具備することを特徴とするニッケル粉末の製造方法。
Dissolving the nickel salt in a solvent to prepare a nickel salt solution,
Dissolving the hydrazine compound in a solvent to prepare a reducing agent solution,
The nickel salt solution and the reducing agent solution are mixed, and an oxidation-reduction reaction is performed in the presence of a compound containing N (nitrogen), C (carbon), and H (hydrogen) and having a cyclic structure in the molecule. Performing a step of depositing nickel powder,
A method for producing nickel powder, comprising:
前記環状構造を有する化合物が、ピラゾール、トリメチルピラゾール、ベンゼンジアミン、アミノフェニルエーテル、アミノエチルベンゼンジオール、メトキシベンゼンジアミンからなる群より選ばれる少なくとも1種であることを特徴とする請求項1記載のニッケル粉末の製造方法。The nickel powder according to claim 1, wherein the compound having a cyclic structure is at least one selected from the group consisting of pyrazole, trimethylpyrazole, benzenediamine, aminophenylether, aminoethylbenzenediol, and methoxybenzenediamine. Manufacturing method. 前記環状構造を有する化合物の添加量が、ニッケル量を基準として10〜5000ppmの範囲にあることを特徴とする請求項1又は2記載のニッケル粉末の製造方法。3. The method for producing nickel powder according to claim 1, wherein the amount of the compound having a cyclic structure is in the range of 10 to 5000 ppm based on the amount of nickel. 前記ニッケル塩溶液がCuイオンを含むものであることを特徴とする請求項1〜3のいずれかに記載のニッケル粉末の製造方法。The method for producing a nickel powder according to any one of claims 1 to 3, wherein the nickel salt solution contains Cu ions. 請求項1〜4のいずれかに記載の方法により製造され、平均粒径が50〜300nmの範囲にあることを特徴とするニッケル粉末。A nickel powder produced by the method according to any one of claims 1 to 4, having an average particle size in a range of 50 to 300 nm.
JP2003115672A 2003-04-21 2003-04-21 Method for manufacturing nickel powder, and nickel powder Withdrawn JP2004323866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003115672A JP2004323866A (en) 2003-04-21 2003-04-21 Method for manufacturing nickel powder, and nickel powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003115672A JP2004323866A (en) 2003-04-21 2003-04-21 Method for manufacturing nickel powder, and nickel powder

Publications (1)

Publication Number Publication Date
JP2004323866A true JP2004323866A (en) 2004-11-18

Family

ID=33496151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003115672A Withdrawn JP2004323866A (en) 2003-04-21 2003-04-21 Method for manufacturing nickel powder, and nickel powder

Country Status (1)

Country Link
JP (1) JP2004323866A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152327A (en) * 2004-11-25 2006-06-15 Dowa Mining Co Ltd Silver powder and production method therefor
CN100450676C (en) * 2006-03-09 2009-01-14 兰州大学 Method for preparing nano nickel powder in emulsion system
JP2010272837A (en) * 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
JP2016166391A (en) * 2015-03-10 2016-09-15 新日鉄住金化学株式会社 Manufacturing method of nickel particle
KR20180061296A (en) * 2015-10-19 2018-06-07 스미토모 긴조쿠 고잔 가부시키가이샤 Manufacturing method of nickel powder
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
US10076032B2 (en) 2014-03-20 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
JP2018141233A (en) * 2017-02-15 2018-09-13 住友金属鉱山株式会社 Method fir producing nickel powder
KR20180113163A (en) * 2017-04-05 2018-10-15 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
CN108695072A (en) * 2017-04-05 2018-10-23 太阳诱电株式会社 The manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
KR20180125875A (en) * 2017-05-16 2018-11-26 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
KR20180125876A (en) * 2017-05-16 2018-11-26 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
US10237976B2 (en) 2014-03-27 2019-03-19 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
KR20190084078A (en) * 2016-12-05 2019-07-15 스미토모 긴조쿠 고잔 가부시키가이샤 Manufacturing method of nickel powder
WO2019187688A1 (en) * 2018-03-29 2019-10-03 東邦チタニウム株式会社 Nickel powder and production method therefor

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152327A (en) * 2004-11-25 2006-06-15 Dowa Mining Co Ltd Silver powder and production method therefor
CN100450676C (en) * 2006-03-09 2009-01-14 兰州大学 Method for preparing nano nickel powder in emulsion system
JP2010272837A (en) * 2009-04-24 2010-12-02 Sumitomo Electric Ind Ltd Substrate for printed wiring board, printed wiring board, and method for producing substrate for printed wiring board
US10076032B2 (en) 2014-03-20 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10237976B2 (en) 2014-03-27 2019-03-19 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing substrate for printed circuit board
US10076028B2 (en) 2015-01-22 2018-09-11 Sumitomo Electric Industries, Ltd. Substrate for printed circuit board, printed circuit board, and method for producing printed circuit board
JP2016166391A (en) * 2015-03-10 2016-09-15 新日鉄住金化学株式会社 Manufacturing method of nickel particle
KR20180061296A (en) * 2015-10-19 2018-06-07 스미토모 긴조쿠 고잔 가부시키가이샤 Manufacturing method of nickel powder
KR102091143B1 (en) * 2015-10-19 2020-03-20 스미토모 긴조쿠 고잔 가부시키가이샤 Method for manufacturing nickel powder
KR102253292B1 (en) * 2016-12-05 2021-05-20 스미토모 긴조쿠 고잔 가부시키가이샤 Method for producing nickel powder
KR20190084078A (en) * 2016-12-05 2019-07-15 스미토모 긴조쿠 고잔 가부시키가이샤 Manufacturing method of nickel powder
JP2018141233A (en) * 2017-02-15 2018-09-13 住友金属鉱山株式会社 Method fir producing nickel powder
KR20180113163A (en) * 2017-04-05 2018-10-15 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
CN108695072A (en) * 2017-04-05 2018-10-23 太阳诱电株式会社 The manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
JP2018181940A (en) * 2017-04-05 2018-11-15 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
JP2018181941A (en) * 2017-04-05 2018-11-15 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
KR102520018B1 (en) * 2017-04-05 2023-04-11 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
KR20180125875A (en) * 2017-05-16 2018-11-26 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP2018195799A (en) * 2017-05-16 2018-12-06 太陽誘電株式会社 Multilayer ceramic capacitor and method for manufacturing the same
KR102412983B1 (en) * 2017-05-16 2022-06-24 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP7169069B2 (en) 2017-05-16 2022-11-10 太陽誘電株式会社 Multilayer ceramic capacitor and manufacturing method thereof
KR102491421B1 (en) * 2017-05-16 2023-01-26 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
KR20180125876A (en) * 2017-05-16 2018-11-26 다이요 유덴 가부시키가이샤 Multilayer ceramic capacitor and manufacturing method of multilayer ceramic capacitor
JP6647458B1 (en) * 2018-03-29 2020-02-14 東邦チタニウム株式会社 Nickel powder and method for producing the same
WO2019187688A1 (en) * 2018-03-29 2019-10-03 東邦チタニウム株式会社 Nickel powder and production method therefor
KR20200111791A (en) * 2018-03-29 2020-09-29 도호 티타늄 가부시키가이샤 Nickel powder and its manufacturing method
KR102352835B1 (en) 2018-03-29 2022-01-18 도호 티타늄 가부시키가이샤 Nickel powder and its manufacturing method

Similar Documents

Publication Publication Date Title
JP2004323866A (en) Method for manufacturing nickel powder, and nickel powder
US4477296A (en) Method for activating metal particles
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
TW200536636A (en) Highly crystalline silver powder and method for production thereof
CN108602129A (en) Nickel powder, the manufacturing method of nickel powder and internal electrode cream and electronic unit using nickel powder
US20160035490A1 (en) Composite oxide-coated metal powder, production method therefor, conductive paste using composite oxide-coated metal powder, and multilayer ceramic electronic component
JP2001214201A (en) Nickel powder, producing method therefor and paste for forming electrode for electronic part
JP2008308733A (en) Nickel powder coated with carbon and production method therefor
US5402305A (en) Oxidation-resistant palladium powder, production method thereof and thick-film conductive paste and multilayered ceramic capacitor produced therefrom
JP4100244B2 (en) Nickel powder and method for producing the same
JP4244883B2 (en) Method for producing nickel powder
JP2002334614A (en) Conductive particles
JP4940520B2 (en) Metal powder and manufacturing method thereof, conductive paste and multilayer ceramic electronic component
JPH0543921A (en) Production of nickel fine powder
JP2002080902A (en) Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts
JP2009024204A (en) Carbide-coated nickel powder and method for producing the same
KR100709822B1 (en) Method for Surface treatment of Ni particle with Acid solution
JPH087644A (en) High temperature baking complying noble metal powder and conductor paste
JP2013042104A (en) Conductive paste for multilayer ceramic capacitor and manufacturing method thereof
WO2010035573A1 (en) Nickel-copper alloy powder, process for producing the nickel-copper alloy powder, conductive paste, and electronic component
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
WO2005117029A1 (en) Nickel compound containing solution, method for production thereof, and method for forming thin nickel metal film using the same
JPH10158059A (en) Ceramics for electronic parts, powdery ceramic material and their production
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
CN104416165B (en) Manufacture the method and multilayer ceramic capacitor of metal-powder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060704