WO2019187688A1 - Nickel powder and production method therefor - Google Patents

Nickel powder and production method therefor Download PDF

Info

Publication number
WO2019187688A1
WO2019187688A1 PCT/JP2019/004468 JP2019004468W WO2019187688A1 WO 2019187688 A1 WO2019187688 A1 WO 2019187688A1 JP 2019004468 W JP2019004468 W JP 2019004468W WO 2019187688 A1 WO2019187688 A1 WO 2019187688A1
Authority
WO
WIPO (PCT)
Prior art keywords
nickel powder
nickel
bonds
nitrogen
containing compound
Prior art date
Application number
PCT/JP2019/004468
Other languages
French (fr)
Japanese (ja)
Inventor
一元 西島
雅人 大栗
浅井 剛
貢 吉田
Original Assignee
東邦チタニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東邦チタニウム株式会社 filed Critical 東邦チタニウム株式会社
Priority to CN201980023766.2A priority Critical patent/CN111936254B/en
Priority to JP2019529663A priority patent/JP6647458B1/en
Priority to KR1020207024904A priority patent/KR102352835B1/en
Publication of WO2019187688A1 publication Critical patent/WO2019187688A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • One embodiment of the present invention relates to nickel powder and a method for manufacturing the same.
  • Niobium powder is used as a raw material for an internal electrode of a multilayer ceramic capacitor (MLCC).
  • the nickel powder can be produced by reducing nickel chloride gas with a reducing gas such as hydrogen.
  • nickel powder such as nickel oxide can be dispersed in a solvent and reduced using a reducing agent such as hydrazine to produce nickel powder.
  • the former is called a gas phase method, and the latter is called a liquid phase method.
  • One of the embodiments of the present invention is to provide a nickel powder exhibiting a high compression density and having a small volume shrinkage during high-temperature processing, and a method for producing the same.
  • Ni—Ni bond ratio 50% or more of Ni—Ni bonds, Ni—OH bonds, and Ni—O bonds derived from nickel oxide on the surface, and a heat shrinkage rate of 1200 ° C. Is 15% or less.
  • the proportion of Ni—Ni bond and the thermal shrinkage rate are estimated by X-ray photoelectron spectroscopy and thermomechanical analysis, respectively.
  • One embodiment according to the present invention is a method for producing nickel powder.
  • the method includes treating raw nickel powder with a solution of a nitrogen-containing compound.
  • the XPS measurement result of the nickel powder which concerns on one of embodiment of this invention The XPS measurement result of the nickel powder which concerns on one of embodiment of this invention.
  • the XPS measurement result of the nickel powder which concerns on one of embodiment of this invention The XPS measurement result of the nickel powder which concerns on one of embodiment of this invention.
  • the nickel powder 100 according to one embodiment of the present invention and a manufacturing method thereof will be described.
  • Nickel powder Nickel powder 100 is an aggregate of nickel particles, and the number average particle diameter of nickel powder 100 can be 50 nm to 500 nm, 50 nm to 300 nm, or 100 nm to 250 nm. Accordingly, the nickel powder 100 contains at least one nickel particle having a particle diameter in the above range. As the number average particle diameter, for example, the nickel powder 100 is observed with a scanning electron microscope, the particle diameters of a plurality of particles (for example, 1000 particles) are measured, and the average value can be adopted. The particle diameter is the diameter of the smallest circle inscribed in the particle, or the length of the long side of the square having the smallest area inscribed in the particle. Note that the nickel powder 100 may include an organic compound containing an amide group as represented by the following formula, for example, together with nickel particles.
  • Nickel atoms contained in the nickel particles exist in various bonded states.
  • the nickel atoms on the particle surface are not only Ni—Ni bonds but also Ni—OH bonds derived from surface hydroxyl groups, Ni—C bonds derived from carbonate (NiCO 3 ), or Ni derived from nickel oxide (NiOx).
  • a bonding state such as —O bonding can be taken.
  • the ratio of Ni—Ni bonds among Ni—Ni bonds, Ni—OH bonds, and Ni—O bonds is 50% or more.
  • the proportion of Ni—Ni bonds may be 50% or more and 95% or less, 65% or more and 93% or less, 76% or more and 93% or less, or 85% or more and 93% or less.
  • nickel exists as a zero-valent metal (metallic nickel) in the above-described range.
  • the nickel particle surface is a region from the surface of the nickel particle to 5 nm or from the surface to 10 nm.
  • the nickel particles constituting the nickel powder 100 are thin and have Ni—OH bonds and Ni—O bonds on the outermost surface side. It is considered that there is a large amount of Ni having Ni—Ni bonds on the inner side from the outermost surface.
  • the bonding state of nickel atoms can be estimated as follows by XPS (X-ray photoelectron spectroscopy) using a light source such as AlK ⁇ rays.
  • the measurement energy range of Ni2p is 884 to 844 (eV)
  • the measurement energy range of C1s is 298 to 279 (eV).
  • the area of the peak attributed to metallic nickel, that is, the peak derived from the Ni—Ni bond, is the sum of the peak areas of 852.4 (eV) and 858.5 (eV).
  • the peak areas attributed to the Ni—O bond are 853.4 (eV), 854.2 (eV), 855.3 (eV), 858.2 (eV), 860.6 (eV), 863.2 ( eV), and 865.4 (eV) peak area.
  • the peak area attributed to the Ni—OH bond is determined as follows. First, the sum of peak areas of 854.5 (eV), 855.7 (eV), 857.4 (eV), 861.1 (eV), 862.4 (eV), and 865.4 (eV) is obtained. . From this summation, the peak area of 288.5 (eV) attributed to the Ni—C bond is subtracted to obtain the peak area derived from the Ni—OH bond.
  • the peak position of the peak attributed to metallic nickel can be specified if Ni is used as a standard product.
  • the peak position of the peak attributed to the Ni—O bond can be specified by using NiO as a standard product.
  • the peak position of the peak attributed to the Ni—OH bond can be specified by using Ni (OH) 2 .
  • the peak position attributed to the Ni—C bond can be specified by using NiCO 3 .
  • the area ratio is the ratio of metallic nickel determined by XPS measurement.
  • the nickel particles contain metallic nickel on the surface at a high rate, the nickel powder 100 exhibits excellent characteristics.
  • the thermal shrinkage estimated by the thermomechanical analysis method is as low as 15% or less at 1200 ° C.
  • the thermal contraction rate may be 5% or more and 14% or less, or 7% or more and 13% or less.
  • the compression density of the nickel powder 100 is a high value of 4.8 g / cm 3 or more and 6.0 g / cm 3 or less, or 5.0 g / cm 3 or more and 6.0 or less g / cm 3 .
  • the measured value of the thermomechanical analysis method is determined by the following measurement.
  • the nickel powder 100 is formed into a pellet having a diameter of 5 mm and a height of 10 mm.
  • the measurement conditions for the thermomechanical analysis method are as follows: temperature range: room temperature to 1200 ° C., heating rate: 5 ° C./min, atmosphere: 2% H 2 , 98% N 2 mixed gas, 300 mL / min.
  • the thermal shrinkage rate is obtained by using the shrinkage obtained from the height (length) of the pellet at 1200 ° C. when the shrinkage is completed as a ratio to the original height.
  • the said compression density is calculated
  • the obtained nickel powder is molded under a pressure of 0.5 t.
  • the diameter, thickness, and weight of the molded body are measured, and the value obtained thereby is the compression density.
  • a nickel powder 100 according to an embodiment of the present invention can be manufactured by using nickel powder as a raw material, treating it with a nitrogen-containing compound, and drying it.
  • nickel powder produced by a vapor phase method or a liquid phase method can be used as a raw material.
  • raw material nickel powder an example using nickel powder produced by a vapor phase method (hereinafter referred to as raw material nickel powder) as a raw material will be described.
  • the production conditions of the raw material nickel powder can be selected as appropriate.
  • nickel chloride is obtained by spraying chlorine gas on raw materials such as nickel pellets, nickel powder, and nickel ingot.
  • Raw nickel powder can be obtained by vaporizing the nickel chloride and bringing the chlorinated nickel gas into contact with a reducing gas such as hydrogen gas or hydrazine.
  • the raw nickel powder may be further treated with a sulfur-containing compound to form a nickel sulfide coating on the surface.
  • the particle diameter of the raw material nickel powder is not particularly limited, and for example, a raw material nickel powder having a number average particle diameter of 50 nm to 500 nm, 50 nm to 300 nm, or 100 nm to 250 nm can be used.
  • the nickel powder 100 can be manufactured by treating the raw nickel powder with a mixed solution containing a nitrogen-containing compound or a solution (hereinafter, this mixed solution or solution is also referred to as a dispersant).
  • a mixed solution containing a nitrogen-containing compound or a solution hereinafter, this mixed solution or solution is also referred to as a dispersant.
  • the solvent include water, lower alcohols having 1 to 4 carbon atoms such as ethanol and propanol, glycol solvents such as ethylene glycol and propylene glycol, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide.
  • Nitrile solvents such as acetonitrile, cyclic carbonate solvents such as ethylene carbonate, and the like can be used.
  • water that is a nonflammable solvent and has low toxicity is preferable.
  • the nitrogen-containing compound is preferably a water-soluble nitrogen-containing compound.
  • a nitrogen-containing compound having high solubility in water is used.
  • the nitrogen-containing compound may be composed of a single component, or a mixture containing a plurality of components may be used as the nitrogen-containing compound.
  • the nitrogen-containing compound can be selected from primary alkylamines and aliphatic amides. There is no restriction
  • the alkyl group may be linear or cyclic, and may be branched.
  • tetradecylamine C 14 H 29 NH 2
  • the nitrogen-containing compound may include a primary alkylamine and a carboxylic acid salt.
  • a carboxylic acid for example, a carboxylic acid having 1 to 4 carbon atoms such as formic acid and acetic acid can be used.
  • An example is a salt of tetradecylamine and acetic acid.
  • the above-described aliphatic amide may have a carboxyl group in the molecule.
  • the nitrogen-containing compound may further contain a tertiary amine having an alkyl group containing a hydroxyl group.
  • a compound represented by the following chemical formula can be used as the aliphatic amide.
  • R 1 is selected from an alkyl group having 6 to 18 carbon atoms
  • R 2 is selected from an alkyl group or alkenyl group having 1 to 4 carbon atoms
  • X is selected from an alkylene group having 1 to 5 carbon atoms.
  • undecyl group (C 11 H 23 ), methyl group, and ethylene group can be selected as R 1 , R 2 , and X, respectively.
  • Examples of the tertiary amine having an alkyl group containing a hydroxyl group include triethanolamine.
  • the treatment of the nickel powder 100 with the dispersant can be performed, for example, as follows. First, a slurry of raw material nickel powder, that is, a mixture containing a solvent such as water and raw material nickel, is mixed with a dispersant.
  • the raw material nickel powder in the slurry is such that the concentration of the raw material nickel powder is 90 wt% or more and 99.5 wt% or less and the concentration of the nitrogen-containing compound is 0.5 wt% or more and 10 wt% or less. And the concentration and amount of the dispersant are appropriately controlled.
  • the resulting mixture is stirred under an inert gas atmosphere such as nitrogen or argon.
  • the stirring time can be 1 minute or more and 1 hour or less, 1 minute or more and 30 minutes or less, or 1 minute or more and 10 minutes or less, and is typically 5 minutes.
  • stirring temperature for example, room temperature (15 to 30 degreeC or 15 to 25 degreeC) may be sufficient, and you may stir, heating.
  • the temperature is 40 degreeC or more, and stirring temperature can be selected in the range below the boiling point of a liquid mixture.
  • the ratio of nickel atoms present as metallic nickel on the surface can be effectively increased by performing the treatment particularly at room temperature. Then, it heats up and dries under nitrogen stream. Drying can be 20 ° C. or higher and 200 ° C. or lower, or 110 ° C. or higher and 150 ° C. or lower, and is typically 120 ° C. After drying, the nickel powder 100 may be classified.
  • the nickel powder 100 having a high ratio of nickel atoms present as metallic nickel on the surface and exhibiting a high compression density and a small heat shrinkage rate can be produced.
  • the heat shrinkage ratio of nickel powder When nickel powder is baked and used for electronic parts such as electrodes, if the heat shrinkage ratio of nickel powder is large, it causes a large volume change due to heating, so cracks occur or peels off from adjacent structures It is known that defects are likely to occur.
  • the proportion of nickel atoms present on the surface as a zero-valent metal is higher than when not treated with a dispersant.
  • the inventors have found that the nickel powder 100 exhibits a small shrinkage and has a large compression density. When the compression density is improved, the particle filling rate per unit volume is increased.
  • the voids per unit volume are sufficiently reduced during the formation of the member before the high heat treatment, and even if the nickel particles contract during the firing, the influence is mitigated, and as a result, the occurrence of cracks can be suppressed / reduced. Furthermore, if the thermal contraction rate at high temperature is reduced, the generation of cracks can be further suppressed. For this reason, defects such as generation of cracks during heating and firing and separation from adjacent structures can be greatly suppressed. Therefore, the nickel powder 100 can be used as a material for providing highly reliable electronic components with high yield.
  • Example 1 In this example, the results of evaluating the characteristics of the nickel powder 100 manufactured according to the above manufacturing method will be described.
  • Nickel Powder 15 g of raw material nickel powder having a number average particle diameter of 170 nm produced by a gas phase method was dispersed in 100 mL of water to obtain a nickel slurry. Next, the nitrogen-containing compound was dissolved in water to prepare an aqueous solution of the nitrogen-containing compound. Three types of nitrogen-containing compounds were used: NOF Corporation Cationic MA, Softilt AL-T, and Eslim 221P triethanolamine neutralized product. In addition, as for the Eslime 221P triethanolamine neutralized product, the active ingredient of the nitrogen-containing compound was used in 10% and 20%. The concentration of the nitrogen-containing compound in the total of the raw material nickel powder and the nitrogen-containing compound was 1.0% by weight and 2.0% by weight.
  • An aqueous solution of a nitrogen-containing compound was added to the nickel slurry under a nitrogen atmosphere at room temperature, and two different types of mixed liquids were prepared so that the concentration of each nitrogen-containing compound was the above concentration. After stirring the mixed solution for 5 minutes, the supernatant was removed, washed three times with water, and further heated to 120 ° C. in a nitrogen atmosphere and dried to obtain a nickel powder 100. As a comparative example, a sample not using a nitrogen-containing compound was also prepared, and the influence of the nitrogen-containing compound was examined.
  • XPS Measurement According to the measurement method described in the above embodiment, the proportion of metallic nickel in each nickel powder 100 was determined. For XPS measurement, k-alpha + manufactured by Thermo Fisher Scientific Co., Ltd. was used. The peak area was determined by the following method.
  • the background obtained from the spectrum obtained by the XPS measurement was removed by the Shirley method, and then the waveform was separated by a function combining the Lorentz function and the Gaussian function. Waveform-separated peaks were assigned to each bond as shown in Table 1.
  • the peak area of Ni—Ni bond is the sum of the peak areas of Ni2p3 metal1 and metal2
  • the peak area of Ni—O bond is the sum of the peak areas of Ni2p3 and NiO1 to NiO7
  • the peak area of the Ni—C bond is C1s scan A
  • the peak area of Ni—OH bond was a value obtained by subtracting the peak area of Ni—C bond from the total peak area of scan N from Ni2p3 scan I.
  • the peak area ratio thus obtained was defined as the ratio of each bond.
  • FIGS. 1 to 4 show cation MA (FIG. 1), softilt AL-T (FIG. 2), esliem 221P triethanolamine neutralized product (active ingredient 10%) (FIG. 3), eslime 221P trie as nitrogen-containing compounds, respectively.
  • the ratios of Ni—Ni bond, Ni—OH bond, and Ni—O bond are shown in percentage. As shown in these figures, it was found that the ratio of Ni—Ni bonds was increased when any nitrogen-containing compound was used as compared with the case where no nitrogen-containing compound was used. Further, as a general tendency, it was confirmed that the proportion of Ni—Ni bonds increases as the concentration of the nitrogen-containing compound increases.
  • the raw material nickel powder 100 gave a peak at 398 eV
  • the nickel powder 100 showed a peak at 400 eV (FIG. 7).
  • the peak at 398 eV is a peak attributed to metal nitride, and is considered to be derived from the Ni—N bond.
  • the peak at 400 eV is considered to be derived from the amide bond contained in the nitrogen-containing compound, which is also suggested from the fact that the peak intensity increases with increasing concentration of the nitrogen-containing compound.
  • an organic compound having an amide group is adsorbed on the surface of the nickel particles of the nickel powder 100 according to the embodiment of the present invention.
  • the nickel powder 100 contains an organic compound having an amide group.
  • thermal shrinkage rate was determined by the above method using nickel powder 100 manufactured using Eslime 221P triethanolamine neutralized product (active ingredient 20%) as a nitrogen-containing compound.
  • the equipment used was TMA8310 manufactured by Rigaku Corporation.
  • the shrinkage rate was 18%, and the volume was greatly reduced by heating.
  • the shrinkage rate decreases as the concentration of the nitrogen-containing compound increases, and when the concentration of the nitrogen-containing compound is 2.0%, the heat of 10% Shrinkage rate. From these results, it was confirmed that the nickel powder 100 exhibits a lower heat shrinkage rate as the proportion of nickel atoms present as metallic nickel on the surface is higher.
  • the compression density was measured by the above method using nickel powder 100 produced using a neutralized product of Esliem 221P triethanolamine (active ingredient 20%) as a nitrogen-containing compound.
  • the equipment is ENERPAC S.M. manufactured by Toyo Hydraulic Machinery Co., Ltd. Using E, the load was changed to 0.5 t, 1.0 t, and 3 t.
  • the compression density of the nickel powder 100 tends to increase as the concentration of the nitrogen-containing compound increases, that is, as the proportion of nickel atoms present as metallic nickel on the surface increases. I found out. For example, it was confirmed that when the concentration of the nitrogen-containing compound in the total of the raw material nickel powder and the nitrogen-containing compound is 2.0% by weight, the compression density increases by 15% compared to the nickel powder of the comparative example.

Abstract

One of the problems addressed by the present invention is to provide: a nickel powder which has a high compacted density, and a small volume reduction under high temperature treatment; and a production method therefor. The nickel powder contains nickel particles, and among the Ni-Ni bonds, Ni-OH bonds, and Ni-O bonds derived from nickel oxide on the surface of the nickel particles, the proportion of Ni-Ni bonds is at least 50%, and the thermal shrinkage rate is at most 15% at 1200°C. The proportion of Ni-Ni bonds and the thermal shrinkage rate are estimated by X-ray photoelectron spectroscopy and thermomechanical analysis, respectively.

Description

ニッケル粉体、およびその製造方法Nickel powder and method for producing the same
 本発明の実施形態の一つは、ニッケル粉体、およびその製造方法に関する。 One embodiment of the present invention relates to nickel powder and a method for manufacturing the same.
 微細な金属粒子(金属粉体)は種々の分野で利用されており、例えばニッケル粉体は、積層セラミックコンデンサ(MLCC)の内部電極用の原材料として利用されている。ニッケル粉体は、ニッケルの塩化物のガスを水素などの還元性ガスで還元することで製造することができる。あるいは酸化ニッケルなどのニッケル塩を溶媒中に分散させ、ヒドラジンなどの還元剤を用いて還元することでニッケル粉体を製造することも可能である。前者は気相法と呼ばれ、後者は液相法と呼ばれる。このような方法で得られるニッケル粉体の表面を適宜処理することで、その特性や焼結時の挙動を制御することができる(特許文献1、2参照)。 Fine metal particles (metal powder) are used in various fields. For example, nickel powder is used as a raw material for an internal electrode of a multilayer ceramic capacitor (MLCC). The nickel powder can be produced by reducing nickel chloride gas with a reducing gas such as hydrogen. Alternatively, nickel powder such as nickel oxide can be dispersed in a solvent and reduced using a reducing agent such as hydrazine to produce nickel powder. The former is called a gas phase method, and the latter is called a liquid phase method. By appropriately treating the surface of the nickel powder obtained by such a method, the characteristics and behavior during sintering can be controlled (see Patent Documents 1 and 2).
特開2014-29013号公報JP 2014-29013 A 特開2006-152439号公報JP 2006-152439 A
 本発明の実施形態の一つは、高い圧縮密度を示し、高温処理において体積収縮が小さいニッケル粉体、およびその製造方法を提供することを目的の一つとする。 One of the embodiments of the present invention is to provide a nickel powder exhibiting a high compression density and having a small volume shrinkage during high-temperature processing, and a method for producing the same.
 本発明に係る実施形態の一つはニッケル粉体である。このニッケル粉体は、表面におけるNi-Ni結合、Ni-OH結合、および酸化ニッケルに由来するNi-O結合のうち、Ni-Ni結合の割合が50%以上であり、熱収縮率が1200℃において15%以下である。Ni-Ni結合の割合と熱収縮率は、それぞれX線光電子分光法と熱機械分析法によって見積もられる。 One of the embodiments according to the present invention is nickel powder. This nickel powder has a Ni—Ni bond ratio of 50% or more of Ni—Ni bonds, Ni—OH bonds, and Ni—O bonds derived from nickel oxide on the surface, and a heat shrinkage rate of 1200 ° C. Is 15% or less. The proportion of Ni—Ni bond and the thermal shrinkage rate are estimated by X-ray photoelectron spectroscopy and thermomechanical analysis, respectively.
 本発明に係る実施形態の一つは、ニッケル粉体を製造する方法である。この方法は、原料ニッケル粉体を窒素含有化合物の溶液で処理することを含む。 One embodiment according to the present invention is a method for producing nickel powder. The method includes treating raw nickel powder with a solution of a nitrogen-containing compound.
本発明の実施形態の一つに係るニッケル粉体のXPS測定結果。The XPS measurement result of the nickel powder which concerns on one of embodiment of this invention. 本発明の実施形態の一つに係るニッケル粉体のXPS測定結果。The XPS measurement result of the nickel powder which concerns on one of embodiment of this invention. 本発明の実施形態の一つに係るニッケル粉体のXPS測定結果。The XPS measurement result of the nickel powder which concerns on one of embodiment of this invention. 本発明の実施形態の一つに係るニッケル粉体のXPS測定結果。The XPS measurement result of the nickel powder which concerns on one of embodiment of this invention. 本発明の実施形態の一つに係るニッケル粉体の熱機械分析(TMA)結果。The thermomechanical analysis (TMA) result of the nickel powder which concerns on one of embodiment of this invention. 本発明の実施形態の一つに係るニッケル粉体の圧縮密度測定結果。The compression density measurement result of nickel powder concerning one of the embodiments of the present invention. 本発明の実施形態の一つに係るニッケル粉体、および原料ニッケル粉体のXPS測定結果。The XPS measurement result of the nickel powder which concerns on one of embodiment of this invention, and raw material nickel powder. 本発明の実施形態の一つに係るニッケル粉体の製造フローManufacturing flow of nickel powder according to one embodiment of the present invention
 以下、本発明の各実施形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention can be implemented in various modes without departing from the gist thereof, and is not construed as being limited to the description of the embodiments exemplified below.
 以下、本発明の実施形態の一つに係るニッケル粉体100とその製造方法について説明を行う。 Hereinafter, the nickel powder 100 according to one embodiment of the present invention and a manufacturing method thereof will be described.
1.ニッケル粉体
 ニッケル粉体100はニッケルの粒子の集合体であり、ニッケル粉体100の個数平均粒子径は50nm以上500nm以下、50nm以上300nm以下、あるいは100nm以上250nmとすることができる。したがって、ニッケル粉体100は上記範囲の粒子径を有するニッケルの粒子を少なくとも一つ含有する。個数平均粒子径としては、例えば走査電子顕微鏡によりニッケル粉体100を観察し、複数の粒子(例えば1000個)の粒径を測定し、その平均値を採用することができる。粒子径は粒子を内接する最小円の直径、あるいは粒子を内接する最小面積の四角形の長辺の長さである。なお、ニッケル粉体100は、ニッケルの粒子とともに例えば後述の式で表されるようなアミド基を含む有機化合物を含んでもよい。
1. Nickel powder Nickel powder 100 is an aggregate of nickel particles, and the number average particle diameter of nickel powder 100 can be 50 nm to 500 nm, 50 nm to 300 nm, or 100 nm to 250 nm. Accordingly, the nickel powder 100 contains at least one nickel particle having a particle diameter in the above range. As the number average particle diameter, for example, the nickel powder 100 is observed with a scanning electron microscope, the particle diameters of a plurality of particles (for example, 1000 particles) are measured, and the average value can be adopted. The particle diameter is the diameter of the smallest circle inscribed in the particle, or the length of the long side of the square having the smallest area inscribed in the particle. Note that the nickel powder 100 may include an organic compound containing an amide group as represented by the following formula, for example, together with nickel particles.
 ニッケル粒子に含まれるニッケル原子は、種々の結合状態で存在する。例えば粒子表面のニッケル原子は、Ni-Ni結合のみならず、表面水酸基に由来するNi-OH結合、炭酸塩(NiCO3)に由来するNi-C結合、あるいは酸化ニッケル(NiOx)に由来するNi-O結合などの結合状態を取ることができる。ニッケル粉体100のニッケル粒子表面では、Ni-Ni結合、Ni-OH結合、およびNi-O結合のうち、Ni-Ni結合の割合が50%以上である。Ni-Ni結合の割合は、50%以上95%以下、65%以上93%以下、76%以上93%以下、あるいは85%以上93%以下としてよい。すなわち、ニッケル粉体100のニッケル粒子表面において、上述した範囲の割合でニッケルは0価の金属(金属ニッケル)として存在する。なお、ここでニッケル粒子表面とは、ニッケル粒子の表面から5nmまで、あるいは表面から10nmまでの領域である。発明者らの推定であるが、窒素含有化合物やアミド基を含む有機化合物を除いて考えると、ニッケル粉体100を構成するニッケル粒子は最表面側に薄くNi-OH結合およびNi-O結合を有するNiが存在し、該最表面から内側においてNi-Ni結合を有するNiが多く存在すると考えられる。 Nickel atoms contained in the nickel particles exist in various bonded states. For example, the nickel atoms on the particle surface are not only Ni—Ni bonds but also Ni—OH bonds derived from surface hydroxyl groups, Ni—C bonds derived from carbonate (NiCO 3 ), or Ni derived from nickel oxide (NiOx). A bonding state such as —O bonding can be taken. On the nickel particle surface of the nickel powder 100, the ratio of Ni—Ni bonds among Ni—Ni bonds, Ni—OH bonds, and Ni—O bonds is 50% or more. The proportion of Ni—Ni bonds may be 50% or more and 95% or less, 65% or more and 93% or less, 76% or more and 93% or less, or 85% or more and 93% or less. That is, on the surface of the nickel particles of the nickel powder 100, nickel exists as a zero-valent metal (metallic nickel) in the above-described range. Here, the nickel particle surface is a region from the surface of the nickel particle to 5 nm or from the surface to 10 nm. As estimated by the inventors, when excluding nitrogen-containing compounds and organic compounds containing amide groups, the nickel particles constituting the nickel powder 100 are thin and have Ni—OH bonds and Ni—O bonds on the outermost surface side. It is considered that there is a large amount of Ni having Ni—Ni bonds on the inner side from the outermost surface.
 ニッケル原子の結合状態は、例えばAlKα線などの光源を用いるXPS(X線光電子分光)により、以下のように見積もることができる。Ni2pの測定エネルギー範囲は884~844(eV)とし、C1sの測定エネルギー範囲は298~279(eV)とする。金属ニッケルに帰属するピーク、すなわちNi-Ni結合に由来するピークの面積は、852.4(eV)および858.5(eV)のピーク面積の合算とする。Ni-O結合に帰属するピーク面積は、853.4(eV)、854.2(eV)、855.3(eV)、858.2(eV)、860.6(eV)、863.2(eV)、および865.4(eV)のピーク面積の合算とする。Ni-OH結合に帰属するピーク面積は以下により求める。まず、854.5(eV)、855.7(eV)、857.4(eV)、861.1(eV)、862.4(eV)および865.4(eV)のピーク面積の合算を求める。この合算からNi-C結合に帰属される288.5(eV)のピーク面積を引いてNi-OH結合に由来するピーク面積とする。なお、金属ニッケルに帰属するピークのピーク位置は標準品としてNiを使用すれば特定可能である。Ni-O結合に帰属するピークのピーク位置は標準品としてNiOを使用すれば特定可能である。Ni-OH結合に帰属するピークのピーク位置はNi(OH)2を使用すれば特定可能である。Ni-C結合に帰属するピーク位置はNiCO3を使用すれば特定可能である。本明細書と請求項では、Ni-Ni結合に帰属するピーク面積、Ni-O結合に帰属するピーク面積、およびNi-OH結合に帰属するピーク面積の合計に占めるNi-Ni結合に帰属するピーク面積の割合が、XPS測定により求めた金属ニッケルの割合である。 The bonding state of nickel atoms can be estimated as follows by XPS (X-ray photoelectron spectroscopy) using a light source such as AlKα rays. The measurement energy range of Ni2p is 884 to 844 (eV), and the measurement energy range of C1s is 298 to 279 (eV). The area of the peak attributed to metallic nickel, that is, the peak derived from the Ni—Ni bond, is the sum of the peak areas of 852.4 (eV) and 858.5 (eV). The peak areas attributed to the Ni—O bond are 853.4 (eV), 854.2 (eV), 855.3 (eV), 858.2 (eV), 860.6 (eV), 863.2 ( eV), and 865.4 (eV) peak area. The peak area attributed to the Ni—OH bond is determined as follows. First, the sum of peak areas of 854.5 (eV), 855.7 (eV), 857.4 (eV), 861.1 (eV), 862.4 (eV), and 865.4 (eV) is obtained. . From this summation, the peak area of 288.5 (eV) attributed to the Ni—C bond is subtracted to obtain the peak area derived from the Ni—OH bond. In addition, the peak position of the peak attributed to metallic nickel can be specified if Ni is used as a standard product. The peak position of the peak attributed to the Ni—O bond can be specified by using NiO as a standard product. The peak position of the peak attributed to the Ni—OH bond can be specified by using Ni (OH) 2 . The peak position attributed to the Ni—C bond can be specified by using NiCO 3 . In the present specification and claims, the peak attributed to the Ni—Ni bond in the total of the peak area attributed to the Ni—Ni bond, the peak area attributed to the Ni—O bond, and the peak area attributed to the Ni—OH bond. The area ratio is the ratio of metallic nickel determined by XPS measurement.
 上述したようにニッケル粒子は高い割合で表面に金属ニッケルを含むため、ニッケル粉体100は優れた特性を示す。例えば熱機械分析法によって見積もられる熱収縮率は、1200℃において15%以下と低い。熱収縮率は5%以上14%以下、あるいは7%以上13%以下であってよい。また、ニッケル粉体100の圧縮密度も、4.8g/cm3以上6.0g/cm3以下、あるいは5.0g/cm3以上6.0以下g/cm3と高い値となる。 As described above, since the nickel particles contain metallic nickel on the surface at a high rate, the nickel powder 100 exhibits excellent characteristics. For example, the thermal shrinkage estimated by the thermomechanical analysis method is as low as 15% or less at 1200 ° C. The thermal contraction rate may be 5% or more and 14% or less, or 7% or more and 13% or less. Also, the compression density of the nickel powder 100 is a high value of 4.8 g / cm 3 or more and 6.0 g / cm 3 or less, or 5.0 g / cm 3 or more and 6.0 or less g / cm 3 .
 上記熱機械分析法の測定値は以下の測定により求められる。まず、ニッケル粉体100をφ5mm、高さ10mmのペレットに成形する。熱機械分析法測定の測定条件は温度範囲:室温から1200℃、昇温速度:5℃/分、雰囲気:2%H2、98%N2の混合ガス、300mL/分とする。収縮が終了した1200℃のときのペレットの高さ(長さ)から求めた収縮分をもとの高さに対する割合として熱収縮率が求まる。また、上記圧縮密度は以下の測定により求められる。ニッケル粉体1gに樟脳3wt%とアセトンを加え、混合物が乾燥するまで攪拌する。得られたニッケル粉体を圧力0.5tの条件で成形する。成形体の直径、厚み、および重量を測定し、これにより得られる値が圧縮密度である。 The measured value of the thermomechanical analysis method is determined by the following measurement. First, the nickel powder 100 is formed into a pellet having a diameter of 5 mm and a height of 10 mm. The measurement conditions for the thermomechanical analysis method are as follows: temperature range: room temperature to 1200 ° C., heating rate: 5 ° C./min, atmosphere: 2% H 2 , 98% N 2 mixed gas, 300 mL / min. The thermal shrinkage rate is obtained by using the shrinkage obtained from the height (length) of the pellet at 1200 ° C. when the shrinkage is completed as a ratio to the original height. Moreover, the said compression density is calculated | required by the following measurements. Add 3 wt% camphor and acetone to 1 g of nickel powder and stir until the mixture is dry. The obtained nickel powder is molded under a pressure of 0.5 t. The diameter, thickness, and weight of the molded body are measured, and the value obtained thereby is the compression density.
2.製造方法
 図8に示すように、本発明の実施形態に係るニッケル粉体100は、ニッケル粉体を原料として用い、これを窒素含有化合物と処理し、乾燥することで製造することができる。この製造方法では、気相法、あるいは液相法で製造されたニッケル粉体を原料として用いることができる。以下、気相法で製造されたニッケル粉末(以下、原料ニッケル粉体と記す)を原料として用いる例により説明を行う。
2. Manufacturing Method As shown in FIG. 8, a nickel powder 100 according to an embodiment of the present invention can be manufactured by using nickel powder as a raw material, treating it with a nitrogen-containing compound, and drying it. In this production method, nickel powder produced by a vapor phase method or a liquid phase method can be used as a raw material. Hereinafter, an example using nickel powder produced by a vapor phase method (hereinafter referred to as raw material nickel powder) as a raw material will be described.
 原料ニッケル粉体の製造条件は適宜選択することができる。通常、ニッケルペレット、ニッケル粉末、ニッケルインゴットなどの原料に塩素ガスを吹き付けて塩化ニッケルを得る。この塩化ニッケルを気化し、塩化したニッケルガスを水素ガスやヒドラジンなどの還元性ガスと接触させることで原料ニッケル粉体を得ることができる。この原料ニッケル粉体をさらに硫黄含有化合物で処理し、表面に硫化ニッケルの被膜を形成してもよい。原料ニッケル粉体の粒径に特に制約は無く、例えば個数平均粒子径が50nm以上500nm以下、50nm以上300nm以下、あるいは100nm以上250nmの原料ニッケル粉体を用いることができる。 The production conditions of the raw material nickel powder can be selected as appropriate. Usually, nickel chloride is obtained by spraying chlorine gas on raw materials such as nickel pellets, nickel powder, and nickel ingot. Raw nickel powder can be obtained by vaporizing the nickel chloride and bringing the chlorinated nickel gas into contact with a reducing gas such as hydrogen gas or hydrazine. The raw nickel powder may be further treated with a sulfur-containing compound to form a nickel sulfide coating on the surface. The particle diameter of the raw material nickel powder is not particularly limited, and for example, a raw material nickel powder having a number average particle diameter of 50 nm to 500 nm, 50 nm to 300 nm, or 100 nm to 250 nm can be used.
 ニッケル粉体100は、原料ニッケル粉体を窒素含有化合物を含む混合液、あるいは溶液(以下、この混合液や溶液を分散剤とも言う)と処理することで製造することができる。溶媒としては、水、エタノールやプロパノールなどの炭素数1以上4以下の低級アルコール、エチレングリコール、プロピレングリコールなどのグルコール系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド系溶媒、アセトニトリルなどのニトリル系溶媒、エチレンカルボナートなどの環状カルボナート系溶媒などを用いることができる。中でも不燃性溶媒であり、かつ、毒性の低い水が好適である。 The nickel powder 100 can be manufactured by treating the raw nickel powder with a mixed solution containing a nitrogen-containing compound or a solution (hereinafter, this mixed solution or solution is also referred to as a dispersant). Examples of the solvent include water, lower alcohols having 1 to 4 carbon atoms such as ethanol and propanol, glycol solvents such as ethylene glycol and propylene glycol, amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide. Nitrile solvents such as acetonitrile, cyclic carbonate solvents such as ethylene carbonate, and the like can be used. Among them, water that is a nonflammable solvent and has low toxicity is preferable.
 窒素含有化合物としては水溶性の窒素含有化合物が好ましい。水を溶媒として用いる場合には、水に対する溶解度が高い窒素含有化合物が用いられる。窒素含有化合物は単独成分で構成されても良く、複数成分を含む混合物を窒素含有化合物として使用してもよい。 The nitrogen-containing compound is preferably a water-soluble nitrogen-containing compound. When water is used as a solvent, a nitrogen-containing compound having high solubility in water is used. The nitrogen-containing compound may be composed of a single component, or a mixture containing a plurality of components may be used as the nitrogen-containing compound.
 窒素含有化合物としては、一級アルキルアミンや脂肪族アミドから選択することができる。一級アルキルアミンの炭素数、および脂肪族アミド基の炭素や窒素に結合されるアルキル基の炭素数に制約は無く、1以上18以下から選択することができる。また、アルキル基は直鎖状でも環状でもよく、分岐していてもよい。一級アルキルアミンとしては、テトラデシルアミン(C1429NH2)が例示される。 The nitrogen-containing compound can be selected from primary alkylamines and aliphatic amides. There is no restriction | limiting in carbon number of primary alkylamine, and carbon number of the alkyl group couple | bonded with carbon of an aliphatic amide group, or nitrogen, It can select from 1-18. The alkyl group may be linear or cyclic, and may be branched. As the primary alkylamine, tetradecylamine (C 14 H 29 NH 2 ) is exemplified.
 あるいは窒素含有化合物は、一級アルキルアミンとカルボン酸の塩を含んでもよい。カルボン酸としては、例えばギ酸、酢酸など、炭素数が1以上4以下のカルボン酸を用いることができる。一例として、テトラデシルアミンと酢酸の塩が挙げられる。 Alternatively, the nitrogen-containing compound may include a primary alkylamine and a carboxylic acid salt. As the carboxylic acid, for example, a carboxylic acid having 1 to 4 carbon atoms such as formic acid and acetic acid can be used. An example is a salt of tetradecylamine and acetic acid.
 上述した脂肪族アミドは、分子内にカルボキシル基を有していてもよい。この場合、窒素含有化合物はさらに水酸基を含むアルキル基を有する三級アミンを含んでもよい。脂肪族アミドとしては、例えば以下の化学式で表される化合物を用いることができる。 The above-described aliphatic amide may have a carboxyl group in the molecule. In this case, the nitrogen-containing compound may further contain a tertiary amine having an alkyl group containing a hydroxyl group. As the aliphatic amide, for example, a compound represented by the following chemical formula can be used.
Figure JPOXMLDOC01-appb-C000002
 ここで、R1は炭素数6以上18以下のアルキル基から、R2は炭素数1以上4以下のアルキル基あるいはアルケニル基から、Xは炭素数1から5のアルキレン基から選択される。一例として、R1、R2、Xとしてそれぞれウンデシル基(C1123)、メチル基、エチレン基を選択することができる。水酸基を含むアルキル基を有する三級アミンとしては、例えばトリエタノールアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000002
Here, R 1 is selected from an alkyl group having 6 to 18 carbon atoms, R 2 is selected from an alkyl group or alkenyl group having 1 to 4 carbon atoms, and X is selected from an alkylene group having 1 to 5 carbon atoms. As an example, undecyl group (C 11 H 23 ), methyl group, and ethylene group can be selected as R 1 , R 2 , and X, respectively. Examples of the tertiary amine having an alkyl group containing a hydroxyl group include triethanolamine.
 ニッケル粉体100の分散剤による処理は、例えば以下のように行うことができる。まず、原料ニッケル粉体のスラリー、すなわち水などの溶媒と原料ニッケルを含む混合物を作製し、これと分散剤とを混合する。この混合液において原料ニッケル粉体の濃度が90重量%以上99.5重量%以下、窒素含有化合物の濃度が0.5重量%以上10重量%以下となるように、スラリー中の原料ニッケル粉体の量や分散剤の濃度、量が適宜制御される。得られる混合液を窒素やアルゴンなどの不活性ガスの雰囲気下で攪拌する。攪拌時間は1分以上1時間以下、1分以上30分以下、あるいは1分以上10分以下とすることができ、典型的には5分である。攪拌温度にも制約は無く、例えば室温(15℃以上30℃以下、あるいは15℃以上25℃以下)でも良く、加熱しながら攪拌を行ってもよい。加熱する場合、その温度は40℃以上であり混合液の沸点以下の範囲で攪拌温度を選択することができる。実施例で示すように、特に室温で処理を行うことで、表面において金属ニッケルとして存在するニッケル原子の割合を効果的に増大させることができる。その後、昇温を行い、窒素気流下で乾燥する。乾燥は、20℃以上200℃以下、あるいは110℃以上150℃以下とすることができ、典型的には120℃である。乾燥後、ニッケル粉体100に対して分級を行ってもよい。 The treatment of the nickel powder 100 with the dispersant can be performed, for example, as follows. First, a slurry of raw material nickel powder, that is, a mixture containing a solvent such as water and raw material nickel, is mixed with a dispersant. The raw material nickel powder in the slurry is such that the concentration of the raw material nickel powder is 90 wt% or more and 99.5 wt% or less and the concentration of the nitrogen-containing compound is 0.5 wt% or more and 10 wt% or less. And the concentration and amount of the dispersant are appropriately controlled. The resulting mixture is stirred under an inert gas atmosphere such as nitrogen or argon. The stirring time can be 1 minute or more and 1 hour or less, 1 minute or more and 30 minutes or less, or 1 minute or more and 10 minutes or less, and is typically 5 minutes. There is no restriction | limiting also in stirring temperature, for example, room temperature (15 to 30 degreeC or 15 to 25 degreeC) may be sufficient, and you may stir, heating. When heating, the temperature is 40 degreeC or more, and stirring temperature can be selected in the range below the boiling point of a liquid mixture. As shown in the examples, the ratio of nickel atoms present as metallic nickel on the surface can be effectively increased by performing the treatment particularly at room temperature. Then, it heats up and dries under nitrogen stream. Drying can be 20 ° C. or higher and 200 ° C. or lower, or 110 ° C. or higher and 150 ° C. or lower, and is typically 120 ° C. After drying, the nickel powder 100 may be classified.
 上記製造方法により、表面において金属ニッケルとして存在するニッケル原子の割合が高く、これに起因して高い圧縮密度と小さな熱収縮率を示すニッケル粉体100を製造することができる。 According to the above production method, the nickel powder 100 having a high ratio of nickel atoms present as metallic nickel on the surface and exhibiting a high compression density and a small heat shrinkage rate can be produced.
 ニッケル粉体を焼成して電極などの電子部品に利用する場合、ニッケル粉体の熱収縮率が大きいと加熱によって大きな体積変化を伴うため、クラックが発生する、あるいは隣接する構造体から剥離するなどの不良が発生しやすいことが知られている。これに対し、本実施形態に係るニッケル粉体100では、分散剤で処理していな場合と比較し、ニッケル原子は表面において0価の金属として存在する割合が高い。その結果、実施例で示すように、ニッケル粉体100は小さい収縮率を示し、かつ、大きな圧縮密度を有することが発明者らによって見出された。圧縮密度が向上すると単位体積あたりの粒子充填割合が高まる。よって、高熱処理前の部材形成時に単位体積当たりの空隙が十分に減少し、仮に焼成時にニッケル粒子が収縮してもその影響が緩和され、結果としてクラックの発生を抑制・低下できると考えられる。さらに、高温での熱収縮率が小さくなれば、クラック発生をより抑制できる。このため、加熱焼成時のクラックの発生や隣接する構造体からの剥離といった不良を大幅に抑制することができる。したがって、ニッケル粉体100は、信頼性の高い電子部品を歩留まり良く提供するための材料として利用することが可能である。 When nickel powder is baked and used for electronic parts such as electrodes, if the heat shrinkage ratio of nickel powder is large, it causes a large volume change due to heating, so cracks occur or peels off from adjacent structures It is known that defects are likely to occur. On the other hand, in the nickel powder 100 according to the present embodiment, the proportion of nickel atoms present on the surface as a zero-valent metal is higher than when not treated with a dispersant. As a result, as shown in Examples, the inventors have found that the nickel powder 100 exhibits a small shrinkage and has a large compression density. When the compression density is improved, the particle filling rate per unit volume is increased. Therefore, it is considered that the voids per unit volume are sufficiently reduced during the formation of the member before the high heat treatment, and even if the nickel particles contract during the firing, the influence is mitigated, and as a result, the occurrence of cracks can be suppressed / reduced. Furthermore, if the thermal contraction rate at high temperature is reduced, the generation of cracks can be further suppressed. For this reason, defects such as generation of cracks during heating and firing and separation from adjacent structures can be greatly suppressed. Therefore, the nickel powder 100 can be used as a material for providing highly reliable electronic components with high yield.
1.実施例1
 本実施例では、上記製造方法に従って製造したニッケル粉体100の特性を評価した結果について説明する。
1. Example 1
In this example, the results of evaluating the characteristics of the nickel powder 100 manufactured according to the above manufacturing method will be described.
1-1.ニッケル粉体の製造
 気相法により製造した、個数平均粒子径170nmの原料ニッケル粉体15gを100mLの水に分散させてニッケルスラリーを得た。次に、窒素含有化合物を水に溶解して窒素含有化合物の水溶液を調製した。窒素含有化合物としては、日油株式会社製のカチオンMA、ソフティルトAL-T、エスリーム221Pトリエタノールアミン中和品の三種類を用いた。なお、エスリーム221Pトリエタノールアミン中和品は、窒素含有化合物の有効成分が10%、20%の二種類を用いた。原料ニッケル粉体および窒素含有化合物の合計における窒素含有化合物の濃度は、1.0重量%、2.0重量%とした。
1-1. Production of Nickel Powder 15 g of raw material nickel powder having a number average particle diameter of 170 nm produced by a gas phase method was dispersed in 100 mL of water to obtain a nickel slurry. Next, the nitrogen-containing compound was dissolved in water to prepare an aqueous solution of the nitrogen-containing compound. Three types of nitrogen-containing compounds were used: NOF Corporation Cationic MA, Softilt AL-T, and Eslim 221P triethanolamine neutralized product. In addition, as for the Eslime 221P triethanolamine neutralized product, the active ingredient of the nitrogen-containing compound was used in 10% and 20%. The concentration of the nitrogen-containing compound in the total of the raw material nickel powder and the nitrogen-containing compound was 1.0% by weight and 2.0% by weight.
 室温、窒素雰囲気下でニッケルスラリーに窒素含有化合物の水溶液を加え、それぞれの窒素含有化合物の濃度が上記濃度となるように、異なる二種類の混合液を調整した。混合液を5分攪拌した後、上澄みを除去し、水を用いて三回洗浄し、さらに窒素雰囲気下で120℃に加熱して乾燥することでニッケル粉体100を得た。比較例として窒素含有化合物を用いない試料も調整し、窒素含有化合物の影響を検討した。 An aqueous solution of a nitrogen-containing compound was added to the nickel slurry under a nitrogen atmosphere at room temperature, and two different types of mixed liquids were prepared so that the concentration of each nitrogen-containing compound was the above concentration. After stirring the mixed solution for 5 minutes, the supernatant was removed, washed three times with water, and further heated to 120 ° C. in a nitrogen atmosphere and dried to obtain a nickel powder 100. As a comparative example, a sample not using a nitrogen-containing compound was also prepared, and the influence of the nitrogen-containing compound was examined.
1-2.XPS測定
 上記実施形態に記載した測定方法に従い、各ニッケル粉体100における金属ニッケルの割合を求めた。XPS測定にはサーモフィッシャーサイエンティフィク株式会社製k-alpha+を使用した。ピーク面積は以下の方法により求めた。
1-2. XPS Measurement According to the measurement method described in the above embodiment, the proportion of metallic nickel in each nickel powder 100 was determined. For XPS measurement, k-alpha + manufactured by Thermo Fisher Scientific Co., Ltd. was used. The peak area was determined by the following method.
 XPS測定によって得られたスペクトルに対し、シャーリー法でバックグラウンドを除去した後、ローレンツ関数とガウス関数を組み合わせた関数で波形分離を行った。波形分離されたピークを、表1に示すように各結合に帰属した。Ni-Ni結合のピーク面積はNi2p3 metal1とmetal2のピーク面積の合計とし、Ni-O結合のピーク面積はNi2p3、NiO1からNiO7のピーク面積の合計とし、Ni-C結合のピーク面積はC1s scan Aのピーク面積とし、Ni-OH結合のピーク面積はNi2p3 scan Iからscan Nのピーク面積の合計からNi-C結合のピーク面積を差し引いた値とした。こうして得られたピーク面積比を各結合の割合とした。 The background obtained from the spectrum obtained by the XPS measurement was removed by the Shirley method, and then the waveform was separated by a function combining the Lorentz function and the Gaussian function. Waveform-separated peaks were assigned to each bond as shown in Table 1. The peak area of Ni—Ni bond is the sum of the peak areas of Ni2p3 metal1 and metal2, the peak area of Ni—O bond is the sum of the peak areas of Ni2p3 and NiO1 to NiO7, and the peak area of the Ni—C bond is C1s scan A The peak area of Ni—OH bond was a value obtained by subtracting the peak area of Ni—C bond from the total peak area of scan N from Ni2p3 scan I. The peak area ratio thus obtained was defined as the ratio of each bond.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 結果を図1から図4に示す。図1から図4はそれぞれ、窒素含有化合物としてカチオンMA(図1)、ソフティルトAL-T(図2)、エスリーム221Pトリエタノールアミン中和品(有効成分10%)(図3)、エスリーム221Pトリエタノールアミン中和品(有効成分20%)(図4)を用いて製造されたニッケル粉体100の測定結果である。これらの図では、Ni-Ni結合、Ni-OH結合、Ni-O結合の割合が百分率で示されている。これらの図に示すように、いずれの窒素含有化合物を用いても、窒素含有化合物を用いない場合と比較してNi-Ni結合の割合が増大していることが分かった。また、一般的な傾向として、Ni-Ni結合の割合は窒素含有化合物の濃度が増大するにしたがって増大することが確認された。 The results are shown in FIGS. FIGS. 1 to 4 show cation MA (FIG. 1), softilt AL-T (FIG. 2), esliem 221P triethanolamine neutralized product (active ingredient 10%) (FIG. 3), eslime 221P trie as nitrogen-containing compounds, respectively. It is a measurement result of the nickel powder 100 manufactured using the ethanolamine neutralized product (active ingredient 20%) (FIG. 4). In these figures, the ratios of Ni—Ni bond, Ni—OH bond, and Ni—O bond are shown in percentage. As shown in these figures, it was found that the ratio of Ni—Ni bonds was increased when any nitrogen-containing compound was used as compared with the case where no nitrogen-containing compound was used. Further, as a general tendency, it was confirmed that the proportion of Ni—Ni bonds increases as the concentration of the nitrogen-containing compound increases.
 ここで、原料ニッケル粉体と、エスリーム221Pトリエタノールアミン中和品(有効成分20%)を窒素含有化合物として用いて製造されたニッケル粉体100の390eVから410eVの範囲におけるスペクトルを比較したところ、原料ニッケル粉体は398eVにピークを与えるのに対し、ニッケル粉体100は400eVにピークを示すことが分かった(図7)。398eVのピークは金属窒化物に帰属されるピークであり、Ni-N結合に由来するものと考えられる。一方、400eVのピークは窒素含有化合物に含まれるアミド結合に由来するものと考えられ、これは、窒素含有化合物の濃度の増大とともにこのピーク強度が増大することからも示唆される。このことから、本発明の実施形態に係るニッケル粉体100のニッケル粒子表面には、アミド基を有する有機化合物が吸着していることが示唆される。換言すると、ニッケル粉体100はアミド基を有する有機化合物を含むと言える。 Here, when the spectrum in the range of 390 eV to 410 eV of the nickel powder 100 manufactured using the raw material nickel powder and the Eslime 221P triethanolamine neutralized product (active ingredient 20%) as a nitrogen-containing compound was compared, It was found that the raw material nickel powder gave a peak at 398 eV, whereas the nickel powder 100 showed a peak at 400 eV (FIG. 7). The peak at 398 eV is a peak attributed to metal nitride, and is considered to be derived from the Ni—N bond. On the other hand, the peak at 400 eV is considered to be derived from the amide bond contained in the nitrogen-containing compound, which is also suggested from the fact that the peak intensity increases with increasing concentration of the nitrogen-containing compound. This suggests that an organic compound having an amide group is adsorbed on the surface of the nickel particles of the nickel powder 100 according to the embodiment of the present invention. In other words, it can be said that the nickel powder 100 contains an organic compound having an amide group.
1-3.熱収縮率測定
 エスリーム221Pトリエタノールアミン中和品(有効成分20%)を窒素含有化合物として用いて製造されたニッケル粉体100を使用し、上記方法により熱収縮率を求めた。機器はリガク株式会社製TMA8310を使用した。
1-3. Measurement of thermal shrinkage rate The thermal shrinkage rate was determined by the above method using nickel powder 100 manufactured using Eslime 221P triethanolamine neutralized product (active ingredient 20%) as a nitrogen-containing compound. The equipment used was TMA8310 manufactured by Rigaku Corporation.
 結果を図5に示す。図5に示すように、窒素含有化合物を使用していない場合には収縮率は18%となり、加熱によって体積が大きく減少することが分かった。これに対し窒素含有化合物を使用して製造されたニッケル粉体100では、窒素含有化合物の濃度が増大するにつれて収縮率は低下し、窒素含有化合物の濃度が2.0%の時には10%の熱収縮率であった。これらの結果から、表面において金属ニッケルとして存在するニッケル原子の割合が高いほどニッケル粉体100は低い熱収縮率を示すことが確認された。 The results are shown in FIG. As shown in FIG. 5, it was found that when no nitrogen-containing compound was used, the shrinkage rate was 18%, and the volume was greatly reduced by heating. On the other hand, in the nickel powder 100 manufactured using the nitrogen-containing compound, the shrinkage rate decreases as the concentration of the nitrogen-containing compound increases, and when the concentration of the nitrogen-containing compound is 2.0%, the heat of 10% Shrinkage rate. From these results, it was confirmed that the nickel powder 100 exhibits a lower heat shrinkage rate as the proportion of nickel atoms present as metallic nickel on the surface is higher.
1-4.圧縮密度測定
エスリーム221Pトリエタノールアミン中和品(有効成分20%)を窒素含有化合物として用いて製造されたニッケル粉体100を用い、上記方法により圧縮密度を測定した。機器は東洋油圧機械株式会社製ENERPAC S.Eを用い、負荷を0.5t、1.0t、3tと変えて測定した。
1-4. Compression Density Measurement The compression density was measured by the above method using nickel powder 100 produced using a neutralized product of Esliem 221P triethanolamine (active ingredient 20%) as a nitrogen-containing compound. The equipment is ENERPAC S.M. manufactured by Toyo Hydraulic Machinery Co., Ltd. Using E, the load was changed to 0.5 t, 1.0 t, and 3 t.
 結果を表2と図6に示す。表2と図6から理解されるように、窒素含有化合物の濃度が増大するほど、すなわち、表面において金属ニッケルとして存在するニッケル原子の割合が高いほどニッケル粉体100の圧縮密度は増大する傾向があることが分かった。例えば原料ニッケル粉体および窒素含有化合物の合計における窒素含有化合物の濃度が2.0重量%の時には、比較例のニッケル粉体と比較し、15%圧縮密度が増大することが確認された。 The results are shown in Table 2 and FIG. As understood from Table 2 and FIG. 6, the compression density of the nickel powder 100 tends to increase as the concentration of the nitrogen-containing compound increases, that is, as the proportion of nickel atoms present as metallic nickel on the surface increases. I found out. For example, it was confirmed that when the concentration of the nitrogen-containing compound in the total of the raw material nickel powder and the nitrogen-containing compound is 2.0% by weight, the compression density increases by 15% compared to the nickel powder of the comparative example.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。 The embodiments described above as embodiments of the present invention can be implemented in appropriate combination as long as they do not contradict each other. Also, those in which those skilled in the art appropriately added, deleted, or changed the design based on the display device of each embodiment, or those in which the process was added, omitted, or changed in conditions are also included in the present invention. As long as the gist is provided, it is included in the scope of the present invention.
 上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。 Of course, other operational effects different from the operational effects brought about by the aspects of the above-described embodiments are obvious from the description of the present specification or can be easily predicted by those skilled in the art. It is understood that this is brought about by the present invention.
 100:ニッケル粉体 100: Nickel powder

Claims (13)

  1.  ニッケル粒子を含み、
     X線光電子分光法によって見積もられた、前記ニッケル粒子の表面におけるNi-Ni結合、Ni-OH結合、および酸化ニッケルに由来するNi-O結合のうち、Ni-Ni結合の割合が50%以上であり、
     熱機械分析法によって見積もられる熱収縮率が1200℃において15%以下であるニッケル粉体。
    Contains nickel particles,
    Of the Ni—Ni bonds, Ni—OH bonds, and Ni—O bonds derived from nickel oxide on the surface of the nickel particles estimated by X-ray photoelectron spectroscopy, the ratio of Ni—Ni bonds is 50% or more. And
    Nickel powder whose thermal shrinkage estimated by thermomechanical analysis is 15% or less at 1200 ° C.
  2.  前記ニッケル粉体の個数平均粒子径は、50nm以上500nm以下である、請求項1に記載のニッケル粉体。 The nickel powder according to claim 1, wherein the nickel powder has a number average particle diameter of 50 nm or more and 500 nm or less.
  3.  アミド基を含む有機化合物をさらに含む、請求項1に記載のニッケル粉体。 The nickel powder according to claim 1, further comprising an organic compound containing an amide group.
  4.  原料ニッケル粉体を窒素含有化合物を含む混合液あるいは溶液で処理することを含む、ニッケル粉体を製造する方法。 A method for producing nickel powder, comprising treating raw material nickel powder with a mixed solution or solution containing a nitrogen-containing compound.
  5.  前記処理は、15℃以上30℃以下の範囲から選択される温度で行われる、請求項4に記載の方法。 The method according to claim 4, wherein the treatment is performed at a temperature selected from a range of 15 ° C or higher and 30 ° C or lower.
  6.  前記窒素含有化合物は、一級アルキルアミン、脂肪族アミドから選択される、請求項4に記載の方法。 The method according to claim 4, wherein the nitrogen-containing compound is selected from primary alkylamines and aliphatic amides.
  7.  前記窒素含有化合物は、一級アルキルアミンとカルボン酸の塩を含む、請求項4に記載の方法。 The method according to claim 4, wherein the nitrogen-containing compound includes a salt of a primary alkylamine and a carboxylic acid.
  8.  前記脂肪族アミドは、分子内にカルボキシル基を含む、請求項6に記載の方法。 The method according to claim 6, wherein the aliphatic amide contains a carboxyl group in the molecule.
  9.  前記脂肪族アミドは、以下の化学式で表され、
    Figure JPOXMLDOC01-appb-C000001
     R1は炭素数6以上18以下のアルキル基であり、R2は炭素数1以上4以下のアルキル基あるいはアルケニル基であり、Xは炭素数1から5のアルキレン基である、請求項8に記載の方法。
    The aliphatic amide is represented by the following chemical formula:
    Figure JPOXMLDOC01-appb-C000001
    R 1 is an alkyl group having 6 to 18 carbon atoms, R 2 is an alkyl group or alkenyl group having 1 to 4 carbon atoms, and X is an alkylene group having 1 to 5 carbon atoms. The method described.
  10.  前記処理は、前記原料ニッケル粉体および前記窒素含有化合物の合計における前記原料ニッケル粉体が90重量%以上99.5重量%以下、前記窒素含有化合物が0.5重量%以上10重量%以下の濃度となるように行われる、請求項4に記載の方法。 In the treatment, the raw nickel powder in the total of the raw nickel powder and the nitrogen-containing compound is 90 wt% or more and 99.5 wt% or less, and the nitrogen-containing compound is 0.5 wt% or more and 10 wt% or less. The method according to claim 4, wherein the method is performed so as to obtain a concentration.
  11.  前記原料ニッケル粉体は気相法で製造される、請求項4に記載の方法。 The method according to claim 4, wherein the raw nickel powder is produced by a vapor phase method.
  12.  前記溶液の溶媒が水である、請求項4に記載の方法。 The method according to claim 4, wherein the solvent of the solution is water.
  13.  前記処理は、前記ニッケル粉体に含まれるニッケル粒子が有するNi-Ni結合、Ni-OH結合、および酸化ニッケルに起因するNi-O結合のうち、Ni-Ni結合の割合が50%以上であり、かつ前記ニッケル粉体の熱収縮率が1200℃において15%以下となるように行われ、
     前記Ni-Ni結合の前記割合と前記熱収縮率は、それぞれX線光電子分光法と熱機械分析法によって見積もられる、請求項4に記載の方法。
    In the treatment, the proportion of Ni—Ni bonds among Ni—Ni bonds, Ni—OH bonds, and Ni—O bonds attributed to nickel oxide contained in nickel particles contained in the nickel powder is 50% or more. And the thermal contraction rate of the nickel powder is 15% or less at 1200 ° C.,
    The method according to claim 4, wherein the ratio of the Ni-Ni bond and the thermal shrinkage rate are estimated by X-ray photoelectron spectroscopy and thermomechanical analysis, respectively.
PCT/JP2019/004468 2018-03-29 2019-02-07 Nickel powder and production method therefor WO2019187688A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980023766.2A CN111936254B (en) 2018-03-29 2019-02-07 Nickel powder and method for producing same
JP2019529663A JP6647458B1 (en) 2018-03-29 2019-02-07 Nickel powder and method for producing the same
KR1020207024904A KR102352835B1 (en) 2018-03-29 2019-02-07 Nickel powder and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-063599 2018-03-29
JP2018063599 2018-03-29

Publications (1)

Publication Number Publication Date
WO2019187688A1 true WO2019187688A1 (en) 2019-10-03

Family

ID=68058693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004468 WO2019187688A1 (en) 2018-03-29 2019-02-07 Nickel powder and production method therefor

Country Status (5)

Country Link
JP (1) JP6647458B1 (en)
KR (1) KR102352835B1 (en)
CN (1) CN111936254B (en)
TW (1) TWI735846B (en)
WO (1) WO2019187688A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323866A (en) * 2003-04-21 2004-11-18 Murata Mfg Co Ltd Method for manufacturing nickel powder, and nickel powder
JP2016188419A (en) * 2015-03-30 2016-11-04 新日鉄住金化学株式会社 Nickel particle composition, joint material and joint method using the same
WO2017122689A1 (en) * 2016-01-12 2017-07-20 東邦チタニウム株式会社 Nickel powder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4021361B2 (en) * 2003-04-23 2007-12-12 東邦チタニウム株式会社 Nickel powder dispersion and method for preparing the same, and method for preparing conductive paste using the powder dispersion
KR100695131B1 (en) * 2003-11-25 2007-03-14 삼성전자주식회사 Carbon-containing nickel powder and method for producing the same
EP1785207A4 (en) * 2004-06-16 2009-05-20 Toho Titanium Co Ltd Nickel powder and manufacturing method thereof
JP4807581B2 (en) * 2007-03-12 2011-11-02 昭栄化学工業株式会社 Nickel powder, method for producing the same, conductor paste, and multilayer ceramic electronic component using the same
JP6241908B2 (en) * 2011-02-04 2017-12-06 国立大学法人山形大学 Coated fine metal particles and production method thereof
JP6095422B2 (en) * 2012-04-04 2017-03-15 新日鉄住金化学株式会社 Nickel particles and method for producing the same
JP5882960B2 (en) * 2013-08-13 2016-03-09 Jx金属株式会社 Surface-treated metal powder and method for producing the same
KR102410080B1 (en) * 2014-07-31 2022-06-16 스미토모 긴조쿠 고잔 가부시키가이샤 Conductive paste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004323866A (en) * 2003-04-21 2004-11-18 Murata Mfg Co Ltd Method for manufacturing nickel powder, and nickel powder
JP2016188419A (en) * 2015-03-30 2016-11-04 新日鉄住金化学株式会社 Nickel particle composition, joint material and joint method using the same
WO2017122689A1 (en) * 2016-01-12 2017-07-20 東邦チタニウム株式会社 Nickel powder

Also Published As

Publication number Publication date
JP6647458B1 (en) 2020-02-14
KR102352835B1 (en) 2022-01-18
JPWO2019187688A1 (en) 2020-04-30
TWI735846B (en) 2021-08-11
CN111936254B (en) 2023-02-28
KR20200111791A (en) 2020-09-29
TW201942374A (en) 2019-11-01
CN111936254A (en) 2020-11-13

Similar Documents

Publication Publication Date Title
US7507480B2 (en) Corrosion-resistant metal surfaces
Yonezawa et al. Low temperature sintering process of copper fine particles under nitrogen gas flow with Cu 2+-alkanolamine metallacycle compounds for electrically conductive layer formation
JP6241908B2 (en) Coated fine metal particles and production method thereof
JP5712635B2 (en) Silver-containing composition
CN104471652B (en) Silver composition and silver composition form base material
JP2019002054A (en) Copper particle
WO2019187688A1 (en) Nickel powder and production method therefor
JP2015160964A (en) Nickel powder and method for producing the same
JP4970836B2 (en) Method for stabilizing ceramic powders and slurries by introducing chemical working groups
JP2014051575A (en) Cleaning composition
TWI765992B (en) Manufacturing method of metal powder
JP2017048425A (en) Surface treated metal powder excellent in dispersibility and manufacturing method therefor
JP2016033260A (en) Composite compound, and suspension
JPWO2015045932A1 (en) Copper thin film forming composition
WO2022085461A1 (en) Method for manufacturing conductive pattern-provided structure
TWI699240B (en) Manufacturing method of metal powder
JP2020180329A (en) Method for producing copper powder
WO2023163083A1 (en) Copper powder and method for producing copper powder
KR101472634B1 (en) Metal nano particle, and method for surface treating the same
WO2021090893A1 (en) Structure with conductive pattern and method for manufacturing same
TW201705235A (en) Production method of electrode
JP2016145396A (en) Copper particle and method for producing the same, conductive material and conductor using the same
JP6515829B2 (en) Copper powder and method for producing the same
TWI476202B (en) Silver-containing compositions and substrates
JP2013231230A (en) Nickel composite particle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019529663

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19778105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207024904

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19778105

Country of ref document: EP

Kind code of ref document: A1