JP2002080902A - Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts - Google Patents

Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts

Info

Publication number
JP2002080902A
JP2002080902A JP2001118339A JP2001118339A JP2002080902A JP 2002080902 A JP2002080902 A JP 2002080902A JP 2001118339 A JP2001118339 A JP 2001118339A JP 2001118339 A JP2001118339 A JP 2001118339A JP 2002080902 A JP2002080902 A JP 2002080902A
Authority
JP
Japan
Prior art keywords
powder
base metal
conductive
electrically conductive
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001118339A
Other languages
Japanese (ja)
Other versions
JP3918450B2 (en
Inventor
Hisamitsu Hongo
央光 本郷
Masayoshi Maeda
昌禎 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2001118339A priority Critical patent/JP3918450B2/en
Publication of JP2002080902A publication Critical patent/JP2002080902A/en
Application granted granted Critical
Publication of JP3918450B2 publication Critical patent/JP3918450B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize debinder treatment in an oxidizing atmosphere at a temperature sufficient for decomposing and removing organic matters and to improve the yield and productivity of laminated ceramic electronic parts of which an internal electrode is formed by using a electrically conductive paste by providing a method for efficiently producing electrically conductive powder having oxidation resistance, electrically conductive powder and electrically conductive paste using the same electrically conductive powder. SOLUTION: In this method for producing the electrically conductive powder, a reducing solution containing hydrogenated boride or/and amine borane is added and mixed into a metal solution containing at least one kind of base metal powder selected from Ni powder, Cu powder and alloy powder essentially consisting of Ni or/and Cu and Ni salt to deposit, on the surface of the base metal powder, Ni-B alloy powder having an average particle diameter smaller than that of the base metal powder by <=50 pts.wt. to 100 pts.wt. of the base metal powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐酸化性を有する
導電粉末の製造方法、上述の製造方法によって得られる
導電粉末、上述の導電粉末を含有してなる導電性ペース
ト、および上述の導電性ペーストを用いて内部電極が形
成された積層セラミック電子部品に関するものであり、
特に、積層セラミックコンデンサの内部電極形成に好適
な導電性ペーストに用いられる耐酸化性を有する導電粉
末の製造方法、導電粉末、導電性ペーストおよび積層セ
ラミックコンデンサに関する。
The present invention relates to a method for producing a conductive powder having oxidation resistance, a conductive powder obtained by the above-described method, a conductive paste containing the above-mentioned conductive powder, and a method for producing the above-mentioned conductive powder. The present invention relates to a multilayer ceramic electronic component having an internal electrode formed using a paste,
In particular, the present invention relates to a method for producing an oxidation-resistant conductive powder used for a conductive paste suitable for forming internal electrodes of a multilayer ceramic capacitor, a conductive powder, a conductive paste, and a multilayer ceramic capacitor.

【0002】[0002]

【従来の技術】従来、積層セラミック電子部品、例えば
積層セラミックコンデンサのように、生のセラミック積
層体とペースト塗布膜を同時焼成して焼結させる場合に
用いられる、内部電極形成用の導電性ペーストとして
は、高温下でも酸化に対して安定で、かつ素体セラミッ
ク焼成温度より融点の高いPd,Ag−Pd,Pt等の
貴金属粉末と、有機ビヒクルと、を含有してなる導電性
ペーストが用いられてきた。しかし、これら貴金属粉末
は高価であり、かつ価格が安定しないことから、近年で
はNi粉末,Cu粉末,またはこれらを主成分として含
有する粉末等の卑金属粉末を含有してなる導電性ペース
トを用いて内部電極を形成した、低コストな積層セラミ
ックコンデンサや多層セラミック基板等の積層セラミッ
ク電子部品が生産されている。
2. Description of the Related Art Conventionally, a conductive paste for forming an internal electrode has been used when a raw ceramic laminate and a paste coating film are simultaneously fired and sintered as in a multilayer ceramic electronic component, for example, a multilayer ceramic capacitor. For example, a conductive paste containing a noble metal powder, such as Pd, Ag-Pd, or Pt, which is stable against oxidation even at a high temperature and has a melting point higher than the elementary ceramic firing temperature, and an organic vehicle, is used. I have been. However, since these noble metal powders are expensive and prices are not stable, in recent years, a conductive paste containing a base metal powder such as a Ni powder, a Cu powder, or a powder containing these as a main component has been used. 2. Description of the Related Art Low-cost multilayer ceramic electronic components such as multilayer ceramic capacitors and multilayer ceramic substrates on which internal electrodes are formed have been produced.

【0003】上述のような積層セラミック電子部品の製
造工程においては、Ni粉末やCu粉末の酸化を防止す
るため、脱バインダー工程および本焼成工程における雰
囲気制御が非常に重要となる。このうち、脱バインダー
工程においては、これら卑金属粉末の酸化を防止するた
め、窒素気流中等の中性雰囲気か、もしくはこれら卑金
属粉末が酸化しない程度のごく低温の酸化雰囲気によ
り、有機物の分解を目的とした熱処理が行われている。
[0003] In the manufacturing process of the multilayer ceramic electronic component as described above, in order to prevent the oxidation of the Ni powder and the Cu powder, it is very important to control the atmosphere in the debinding step and the main firing step. Of these, in the binder removal step, in order to prevent oxidation of these base metal powders, a neutral atmosphere such as in a nitrogen stream or a very low temperature oxidizing atmosphere such that these base metal powders are not oxidized, with the purpose of decomposing organic substances. Heat treatment is performed.

【0004】[0004]

【発明が解決しようとする課題】有機物を熱分解させる
ためには、その燃焼に必要な十分な酸素量と温度が要求
されるが、従来の卑金属粉末を含有してなる導電性ペー
ストを用いる場合には、上述したように、窒素気流中等
の中性雰囲気か、もしくはこれら卑金属粉末が酸化しな
い程度のごく低温の酸化雰囲気中で脱バインダーを行な
わなければならない。したがって、工程雰囲気のバラツ
キによる有機物の分解や除去が不十分となると、残留し
たカーボン成分が本焼成時にセラミックの焼結を阻害
し、セラミックが焼結不足となり、十分な静電容量や絶
縁抵抗が得られないという問題が発生する。
In order to thermally decompose an organic substance, a sufficient amount of oxygen and temperature required for its combustion are required. However, when a conventional conductive paste containing a base metal powder is used. As described above, the binder must be removed in a neutral atmosphere such as in a nitrogen stream, or in an oxidizing atmosphere at a very low temperature such that the base metal powder is not oxidized. Therefore, if the decomposition and removal of the organic matter due to the variation in the process atmosphere become insufficient, the remaining carbon component hinders the sintering of the ceramic during the main firing, the ceramic becomes insufficiently sintered, and the sufficient capacitance and insulation resistance are not obtained. There is a problem that it cannot be obtained.

【0005】また、逆に、有機物の熱分解を確実に行な
うために、十分な酸素を与え高温で熱処理を行なうと、
脱バインダー時に卑金属粉末が酸化し、卑金属粉末の酸
化膨張による脱バインダー時の層剥がれといった構造不
良や、酸化による卑金属粉末の焼結不足による取得容量
の低下や、等価直列抵抗ならびにtanδの増加等の不
具合が発生する。したがって、脱バインダー時において
微妙な雰囲気管理が必要となり、工程管理が煩雑となり
工程不良原因となる問題がある。
On the other hand, in order to reliably perform thermal decomposition of organic substances, heat treatment is performed at a high temperature by supplying sufficient oxygen.
The base metal powder is oxidized at the time of debinding, and structural defects such as layer peeling at the time of debinding due to oxidative expansion of the base metal powder, a decrease in acquisition capacity due to insufficient sintering of the base metal powder due to oxidation, an increase in equivalent series resistance and tan δ, etc. Failure occurs. Therefore, there is a problem that delicate atmosphere control is required at the time of binder removal, which makes the process control complicated and causes process defects.

【0006】このような問題を解決する方法として、特
開平1−258306号公報,特開平1−265406
号公報ならびに特開平1−80008号公報において、
卑金属粉末の酸化防止のため、Ni粉末にB粉末または
B化合物粉末の1種もしくは1種以上を含ませるととも
に、無機質フィラーおよび有機ビヒクルを含有させた導
電性ペーストが開示されている。しかしながら、この方
法では、ペースト混練が不十分である場合、B粉末また
はB化合物の分散状態が不均一になり、卑金属粉末の耐
酸化性がばらつくという問題がある。
As a method for solving such a problem, Japanese Patent Application Laid-Open Nos. 1-258306 and 1-265406 are known.
In Japanese Patent Application Laid-Open Publication No. Hei.
In order to prevent oxidation of base metal powder, a conductive paste containing one or more of B powder or B compound powder in Ni powder and containing an inorganic filler and an organic vehicle is disclosed. However, this method has a problem that when the paste is insufficiently kneaded, the dispersion state of the B powder or the B compound becomes uneven, and the oxidation resistance of the base metal powder varies.

【0007】そこで、卑金属粉末の表面にB粉末または
B化合物を析出させることで、B粉末またはB化合物の
分散状態を向上させる方法が考えられる。卑金属粉末の
表面に金属(合金)を析出させる方法として、例えば特
開昭63−27567号公報で開示されているような、
従来の無電解めっき法が挙げられる。いわゆる無電解め
っき法とは、金属塩,還元剤,錯化剤,pH調整剤など
を適宜調整して得た、1液からなる無電解めっき液に被
めっき物を浸漬して、推測あるいは経験則により定めら
れた時間反応させた後に、反応を停止させる方法であ
る。しかしながら、従来の無電解めっき法の場合、被め
っき物が粉末であると例えば板状の被めっき物と比べて
比表面積が大きいため、めっき反応の速度が異常に速
く、所望の金属析出量の制御が困難な問題がある。ま
た、従来の無電解めっき液は、金属塩濃度が希薄であ
り、粉末のような比表面積が大きな被めっき物の場合、
粉末の投入時にめっき液が急速に分解し、粉末表面への
金属の析出が不充分になる問題がある。
Therefore, a method of improving the dispersion state of the B powder or the B compound by precipitating the B powder or the B compound on the surface of the base metal powder is considered. As a method of precipitating a metal (alloy) on the surface of a base metal powder, for example, as disclosed in JP-A-63-27567,
A conventional electroless plating method can be used. The so-called electroless plating method is to immerse the object to be plated in a one-part electroless plating solution obtained by appropriately adjusting a metal salt, a reducing agent, a complexing agent, a pH adjuster, etc. This is a method in which the reaction is stopped after the reaction is performed for a time determined by a rule. However, in the case of the conventional electroless plating method, when the material to be plated is a powder, for example, the specific surface area is larger than that of a plate-like material to be plated, so that the plating reaction speed is abnormally high, and the desired amount of metal deposition is reduced. There is a problem that is difficult to control. In addition, the conventional electroless plating solution has a low metal salt concentration, and in the case of an object to be plated having a large specific surface area such as a powder,
There is a problem that the plating solution is rapidly decomposed when the powder is charged, and the metal is not sufficiently deposited on the surface of the powder.

【0008】このようなさらなる問題を解決する手段と
して、例えば特開昭60−59070号公報において、
被めっき物である粉末を分散させた溶液に、無電解めっ
き液を添加する方法が開示されており、また特開昭62
−30885号公報において、被めっき物である粉末を
分散させた水溶液に、還元溶液と金属溶液の2液を同時
に添加する方法が開示されている。しかしながら、いず
れの方法による場合であっても、被めっき物である粉末
の表面近傍以外の場所、例えば反応容器の内壁、あるい
は単独で反応析出が生じるという問題がある。
As a means for solving such a further problem, for example, in Japanese Patent Application Laid-Open No. 60-59070,
A method of adding an electroless plating solution to a solution in which a powder to be plated is dispersed has been disclosed.
Japanese Patent No. -30885 discloses a method in which two solutions, a reducing solution and a metal solution, are simultaneously added to an aqueous solution in which a powder to be plated is dispersed. However, in either case, there is a problem that a reactive precipitation occurs in a place other than the vicinity of the surface of the powder to be plated, for example, on the inner wall of the reaction vessel or independently.

【0009】本発明の目的は、上述の問題点を解消すべ
くなされたもので、耐酸化性を有する導電粉末を製造す
る方法、導電粉末、およびこのような導電粉末を用いた
導電性ペーストを提供することで、有機物の分解ならび
に除去に十分な温度の酸化雰囲気中での脱バインダー処
理を可能とし、このような導電性ペーストを用いて内部
電極を形成する積層セラミック電子部品の歩留まりなら
びに生産性を向上させることにある。
An object of the present invention is to solve the above-mentioned problems, and a method for producing a conductive powder having oxidation resistance, a conductive powder, and a conductive paste using such a conductive powder are disclosed. By providing such a material, it is possible to perform a debinding treatment in an oxidizing atmosphere at a temperature sufficient for decomposing and removing organic substances, and to improve yield and productivity of a multilayer ceramic electronic component in which an internal electrode is formed using such a conductive paste. Is to improve.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、本発明の導電粉末の製造方法は、Ni粉末,Cu粉
末,Niまたは/およびCuを主成分とする合金粉末か
らなる群より選ばれる少なくとも1種の卑金属粉末とN
i塩とを含む金属溶液に、水素化硼化物または/および
アミンボランを含む還元溶液を添加・混合して、卑金属
粉末の表面に、卑金属粉末の平均粒径よりも小さく、卑
金属粉末100重量部に対して50重量部以下のNi−
B合金粉末を析出させることを特徴とする。
In order to achieve the above object, a method for producing a conductive powder according to the present invention is selected from the group consisting of Ni powder, Cu powder, and alloy powder containing Ni or / and Cu as a main component. At least one base metal powder and N
i. A reducing solution containing a borohydride and / or an amine borane is added to and mixed with the metal solution containing the salt, and the surface of the base metal powder is smaller than the average particle size of the base metal powder and 100 parts by weight of the base metal powder. 50% by weight or less of Ni-
It is characterized in that B alloy powder is precipitated.

【0011】また、本発明の導電粉末の製造方法は、上
述の析出工程の後に、Ni−B合金粉末が表面に析出し
た卑金属粉末を100℃以上で熱処理する熱処理工程を
さらに備えることが好ましい。
Preferably, the method for producing a conductive powder according to the present invention further comprises a heat treatment step of subjecting the base metal powder having the Ni-B alloy powder deposited on its surface to a heat treatment at 100 ° C. or higher after the above-mentioned precipitation step.

【0012】また、本発明の導電粉末の製造方法は、上
述の析出工程の後に、Ni−B合金粉末が表面に析出し
た卑金属粉末を粉砕処理する粉砕工程をさらに備えるこ
とが好ましい。
Preferably, the method for producing a conductive powder according to the present invention further comprises a pulverizing step of pulverizing the base metal powder having the Ni-B alloy powder deposited on the surface thereof after the above-described precipitation step.

【0013】また、本発明の導電粉末の製造方法におけ
る、卑金属粉末の平均粒径は、1.0μm以下であるこ
とが好ましい。
In the method for producing a conductive powder according to the present invention, the average particle size of the base metal powder is preferably 1.0 μm or less.

【0014】また、本発明の導電粉末の製造方法におけ
る、Ni−B合金粉末の平均粒径は、0.1μm以下で
あり、かつ卑金属粉末の平均粒径の1/2以下であるこ
とが好ましい。
In the method for producing a conductive powder according to the present invention, the average particle diameter of the Ni-B alloy powder is preferably 0.1 μm or less, and is preferably 1 / or less of the average particle diameter of the base metal powder. .

【0015】本発明の導電粉末は、上述の本発明の製造
方法によって得られたことを特徴とする。
[0015] The conductive powder of the present invention is characterized by being obtained by the above-mentioned production method of the present invention.

【0016】本発明の導電性ペーストは、上述の本発明
の導電粉末と、有機ビヒクルと、を含有してなることを
特徴とする。
The conductive paste of the present invention is characterized by containing the above-mentioned conductive powder of the present invention and an organic vehicle.

【0017】本発明の積層セラミック電子部品は、複数
のセラミック層が積層されてなるセラミック積層体と、
セラミック層間に形成された複数の内部電極と、を備え
る積層セラミック電子部品であって、内部電極は、本発
明の導電性ペーストを用いて形成されていることを特徴
とする。
A multilayer ceramic electronic component according to the present invention comprises: a ceramic laminate in which a plurality of ceramic layers are laminated;
A multilayer ceramic electronic component comprising: a plurality of internal electrodes formed between ceramic layers; wherein the internal electrodes are formed using the conductive paste of the present invention.

【0018】[0018]

【発明の実施の形態】本発明の導電粉末の製造方法は、
被めっき物である卑金属粉末、具体的にはNi粉末,C
u粉末,Niまたは/およびCuを主成分とする合金粉
末からなる群より選ばれる少なくとも1種の卑金属粉末
と、さらにNi塩を含有してなる金属溶液を準備し、こ
れに水素化硼化物または/およびアミンボランを含む還
元溶液を添加・混合することで、卑金属粉末の表面に、
卑金属粉末の平均粒径よりも小さく、卑金属粉末100
重量部に対して50重量部以下のNi−B合金粉末を析
出させることを特徴とする。卑金属粉末とNi塩をあら
かじめ混合しておくことにより、還元溶液の添加・混合
時に、卑金属粉末表面の触媒作用によって還元剤が粉末
表面で分解し、電子を放出する。したがって、卑金属粉
末の近傍にはNiイオンが高濃度で存在するため、Ni
イオンの還元がすぐに生じて、卑金属粉末の表面にNi
−B合金粉末が析出する。なお、還元溶液中の水素化硼
化物やアミンボラン等の濃度ならびに液相還元反応の反
応温度等を調整することにより、Ni−B合金粉末の平
均粒径や析出量を調整することができ、特に限定はしな
いが、例えば0.10μm以下のNi−B合金粉末を析
出させることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a conductive powder according to the present invention comprises:
Base metal powder to be plated, specifically Ni powder, C
u powder, at least one base metal powder selected from the group consisting of alloy powders containing Ni or / and Cu as a main component, and a metal solution further containing a Ni salt are prepared. / By adding and mixing a reducing solution containing amine borane, the surface of the base metal powder is
Smaller than the average particle size of the base metal powder,
It is characterized by depositing not more than 50 parts by weight of Ni-B alloy powder per part by weight. By preliminarily mixing the base metal powder and the Ni salt, when the reducing solution is added and mixed, the reducing agent is decomposed on the surface of the base metal by the catalytic action of the surface of the base metal powder to emit electrons. Therefore, since high concentration of Ni ions exists near the base metal powder,
Immediately after the reduction of ions, Ni
-B alloy powder precipitates. By adjusting the concentration of borohydride and amine borane in the reducing solution and the reaction temperature of the liquid phase reduction reaction, the average particle size and the amount of precipitation of the Ni-B alloy powder can be adjusted. Although not limited, for example, Ni-B alloy powder of 0.10 μm or less can be precipitated.

【0019】なお、卑金属粉末の表面にNi−B合金粉
末を析出させる場合、析出させた後に100℃以上で熱
処理を行ない、さらに粉砕処理を行なうことが好まし
い。熱処理を行なうことで、粉末の粉砕処理時ならびに
ペースト作製時にNi−B合金粉末が卑金属粉末の表面
から離脱することが抑制されて本発明の効果が顕著とな
る。また、Ni−B合金粉末の析出や熱処理を行なうこ
とで、粉末の凝集が起こり易いため、熱処理後に粉砕処
理を行なうことが好ましい。
When the Ni-B alloy powder is deposited on the surface of the base metal powder, it is preferable to perform a heat treatment at a temperature of 100 ° C. or more after the precipitation, and further perform a pulverization treatment. By performing the heat treatment, detachment of the Ni-B alloy powder from the surface of the base metal powder during pulverization of the powder and preparation of the paste is suppressed, and the effect of the present invention is remarkable. In addition, since the aggregation of the powder is likely to occur by precipitation or heat treatment of the Ni-B alloy powder, it is preferable to perform the pulverization treatment after the heat treatment.

【0020】また、析出させて得られるNi−B合金粉
末の平均粒径は、卑金属粉末の平均粒径よりも小さいこ
とを要する。卑金属粉末の平均粒径よりも小さい場合
に、上述したように酸化硼素が卑金属粉末を被覆し、卑
金属粉末の耐酸化性が高まるという本発明の効果が得ら
れる。他方、卑金属粉末の平均粒径以上であると、この
ような導電粉末を含有してなる導電性ペーストを用いて
内部電極を形成した積層セラミック電子部品は、卑金属
粉末の酸化膨張による脱バインダー時の層剥がれといっ
た構造不良や、酸化による卑金属粉末の焼結不足による
取得容量の低下や、等価直列抵抗ならびにtanδの増
加等の不具合が発生する。
The average particle size of the Ni-B alloy powder obtained by precipitation must be smaller than the average particle size of the base metal powder. When the average particle diameter is smaller than that of the base metal powder, the effect of the present invention that the base metal powder is coated with boron oxide and the oxidation resistance of the base metal powder is increased as described above is obtained. On the other hand, when the average particle size of the base metal powder is equal to or larger than the average particle size of the base metal powder, the multilayer ceramic electronic component in which the internal electrodes are formed using the conductive paste containing such a conductive powder, when the binder is removed by the oxidative expansion of the base metal powder. Problems such as structural failure such as layer peeling, decrease in the acquired capacity due to insufficient sintering of the base metal powder due to oxidation, and increase in equivalent series resistance and tan δ occur.

【0021】また、Ni−B合金粉末の卑金属粉末表面
への析出量は、卑金属粉末100重量部に対して、50
重量部以下であることを要する。Ni−B合金粉末の析
出量が50重量%以下であれば、適量のNi−B合金粉
末が熔融し、内部電極が電極としての機能を損なうこと
がない。なお、Ni−B合金粉末の析出量の下限値は特
に限定はしないが、Ni−B合金粉末の析出量が0.1
重量%程度あれば、導電粉末の酸化開始温度が上昇し、
すなわち卑金属粉末の耐酸化性を向上させる効果が得ら
れ、このような導電粉末を粉末を含有してなる導電性ペ
ーストを用いて内部電極を形成した積層セラミック電子
部品において、導電粉末の酸化膨張による脱バインダー
時の層剥がれといった構造不良の発生、酸化による導電
粉末の焼結不足による取得容量の低下、等価直列抵抗な
らびにtanδの増加等の不具合の発生を抑制すること
ができる。
The amount of Ni-B alloy powder deposited on the surface of the base metal powder is 50 parts by weight per 100 parts by weight of the base metal powder.
It must be less than parts by weight. When the precipitation amount of the Ni-B alloy powder is 50% by weight or less, an appropriate amount of the Ni-B alloy powder is melted, and the function of the internal electrode as an electrode is not impaired. The lower limit of the amount of Ni-B alloy powder deposited is not particularly limited.
If it is about weight%, the oxidation start temperature of the conductive powder increases,
That is, the effect of improving the oxidation resistance of the base metal powder is obtained, and in a multilayer ceramic electronic component in which an internal electrode is formed using a conductive paste containing such a conductive powder, the oxidative expansion of the conductive powder It is possible to suppress the occurrence of structural defects such as layer peeling at the time of binder removal, a decrease in the obtained capacity due to insufficient sintering of the conductive powder due to oxidation, and an increase in equivalent series resistance and tan δ.

【0022】また、卑金属粉末の平均粒径は、1.0μ
m以下であることが好ましい。一般的に、卑金属粉末は
平均粒径が小さくなるほど比表面積が増えて活性にな
り、酸化が起こりやすくなる。特に、卑金属粉末の平均
粒径が1.0μm以下の場合に酸化が起こりやすくなる
傾向がある。そのため、本発明において、卑金属粉末の
平均粒径が1.0μm以下である場合に本発明の耐酸化
効果が十分に発揮される。卑金属粉末の平均粒径が1.
0μmを超える粉末を用いた場合も本発明の耐酸化効果
は得られるが、もともと比表面積が小さく酸化に対して
敏感でないため、その耐酸化効果は1.0μm以下の粉
末の場合ほど顕著ではない。
The average particle size of the base metal powder is 1.0 μm.
m or less. In general, as the average particle size of the base metal powder becomes smaller, the specific surface area increases and the base metal powder becomes active, so that oxidation is easily caused. In particular, when the average particle size of the base metal powder is 1.0 μm or less, oxidation tends to occur easily. Therefore, in the present invention, when the average particle diameter of the base metal powder is 1.0 μm or less, the oxidation resistance effect of the present invention is sufficiently exhibited. The average particle size of the base metal powder is 1.
The use of a powder having a particle diameter of more than 0 μm can provide the anti-oxidation effect of the present invention. .

【0023】また、Ni−B合金粉末の平均粒径は0.
10μm以下で、かつ卑金属粉末の平均粒径の1/2以
下であることが好ましい。上述の範囲内である場合、N
i−B合金粉末が卑金属粉末の表面をより均一に被覆す
ることができ、卑金属粉末の耐酸化性が十分に得られ
る。
The average particle size of the Ni-B alloy powder is 0.1.
It is preferably 10 μm or less and 1 / or less of the average particle size of the base metal powder. If within the above range, N
The i-B alloy powder can more uniformly coat the surface of the base metal powder, and the oxidation resistance of the base metal powder can be sufficiently obtained.

【0024】次に、本発明による一つの実施形態におけ
る導電粉末について、図1(a)および図1(b)に基
づいて詳細に説明する。導電粉末1は、図1(a)に示
すように、卑金属粉末2と、Ni−B合金粉末3aと、
からなる。
Next, the conductive powder according to one embodiment of the present invention will be described in detail with reference to FIGS. 1 (a) and 1 (b). As shown in FIG. 1A, the conductive powder 1 includes a base metal powder 2, a Ni-B alloy powder 3a,
Consists of

【0025】卑金属粉末2は、例えば、Ni粉末,Cu
粉末,Ni−P合金粉末,Ni−Cr合金粉末,Cu−
Zn合金粉末,Pd粉末が付着したNi粉末,Agが付
着したNi粉末,Pd−Ag合金粉末が付着したNi粉
末、Pt粉末が付着したNi粉末、Pd粉末が付着した
Cu粉末,Agが付着したCu粉末,Pd−Ag合金粉
末が付着したCu粉末、Pt粉末が付着したCu粉末等
が挙げられ、積層セラミック電子部品のセラミック特性
に合わせ適宜選択される。
The base metal powder 2 is, for example, Ni powder, Cu
Powder, Ni-P alloy powder, Ni-Cr alloy powder, Cu-
Zn powder, Ni powder with Pd powder, Ni powder with Ag, Ni powder with Pd-Ag alloy powder, Ni powder with Pt powder, Cu powder with Pd powder, Ag powder Examples thereof include Cu powder, Cu powder to which Pd-Ag alloy powder is attached, and Cu powder to which Pt powder is attached, and are appropriately selected according to the ceramic characteristics of the multilayer ceramic electronic component.

【0026】Ni−B合金粉末3aは、卑金属粉末2の
表面に析出しており、卑金属粉末2の平均粒径よりも小
さく、析出量は卑金属粉末100重量部に対して50重
量部以下である。本発明の導電粉末を構成するNi−B
合金粉末3aを分析した結果、この合金粉末は非晶質で
あり、また合金粉末中に含まれているB成分の構成割合
は約25モル%であった。なお、Ni−B合金粉末に含
まれるB成分の構成割合については、特に限定はしな
い。
The Ni-B alloy powder 3a is deposited on the surface of the base metal powder 2, is smaller than the average particle size of the base metal powder 2, and the amount of deposition is 50 parts by weight or less with respect to 100 parts by weight of the base metal powder. . Ni-B constituting the conductive powder of the present invention
As a result of analyzing the alloy powder 3a, the alloy powder was amorphous, and the composition ratio of the B component contained in the alloy powder was about 25 mol%. The composition ratio of the B component contained in the Ni-B alloy powder is not particularly limited.

【0027】次に、本発明による一つの実施形態におけ
る、上述の導電粉末1に熱を加えた場合について、図1
(b)に基づいて詳細に説明する。加熱された導電粉末
1aは、卑金属粉末2と、酸化硼素膜3bとからなる。
Next, in one embodiment according to the present invention, FIG.
This will be described in detail based on (b). The heated conductive powder 1a includes the base metal powder 2 and the boron oxide film 3b.

【0028】酸化硼素膜3bは、Ni−B合金粉末3a
に含まれるB成分を酸化させた後、熔融させて卑金属粉
末の表面を略被覆するように残留させたものである。N
i−B合金粉末3aは、温度が上昇すると、まずB成分
が酸化して酸化硼素になり、さらに温度が上昇すると酸
化硼素が熔融する。このように酸化硼素が卑金属粉末の
表面を略被覆することによって、卑金属粉末の酸化を防
止する。つまり、Ni−B合金粉末を卑金属粉末の表面
に析出させた導電粉末を含有する導電性ペーストは、ペ
ースト中にB粉末またはB化合物を添加して分散させた
導電性ペーストに比べて、ペースト中にNi−B合金粉
末が均一に分散され、卑金属粉末の耐酸化性のばらつき
が少なくなる。また、卑金属粉末の近傍にNi−B合金
粉末が存在することで、酸化硼素が卑金属粉末を被覆す
る割合が高くなり、このような導電粉末を含有してなる
導電性ペーストを用いて内部電極を形成した積層セラミ
ック電子部品は、その製造過程である焼成工程におい
て、酸化硼素が卑金属粉末の表面を略被覆することか
ら、卑金属粉末の耐酸化性が高まる。
The boron oxide film 3b is made of Ni-B alloy powder 3a.
After oxidizing the B component contained in the base metal powder and leaving it so as to substantially cover the surface of the base metal powder. N
When the temperature rises, the i-B alloy powder 3a first oxidizes the B component to boron oxide, and when the temperature further rises, the boron oxide melts. As described above, the boron oxide substantially covers the surface of the base metal powder, thereby preventing oxidation of the base metal powder. That is, the conductive paste containing the conductive powder obtained by depositing the Ni-B alloy powder on the surface of the base metal powder has a larger amount of paste in the paste than the conductive paste in which the B powder or the B compound is added and dispersed. Ni-B alloy powder is uniformly dispersed in the base metal powder, and the variation in oxidation resistance of the base metal powder is reduced. In addition, the presence of the Ni-B alloy powder in the vicinity of the base metal powder increases the rate at which boron oxide covers the base metal powder, and the internal electrode is formed using a conductive paste containing such a conductive powder. In the formed multilayer ceramic electronic component, the oxidation resistance of the base metal powder is increased because boron oxide substantially covers the surface of the base metal powder in the firing step of the manufacturing process.

【0029】次に、本発明の導電性ペーストを説明す
る。本発明の導電性ペーストは、上述した本発明の導電
粉末と、有機ビヒクルと、を含有してなる。有機ビヒク
ルの材料は、特に限定はしないが、従来より積層セラミ
ック電子部品の内部電極形成に好適な導電性ペーストに
一般的に用いられている有機ビヒクル、具体的には、例
えばエチルセルロース樹脂等の有機バインダーをテルピ
ネオール等の溶剤に溶解させたもの等を適宜用いること
ができる。
Next, the conductive paste of the present invention will be described. The conductive paste of the present invention contains the above-described conductive powder of the present invention and an organic vehicle. The material of the organic vehicle is not particularly limited, but an organic vehicle conventionally used generally for a conductive paste suitable for forming an internal electrode of a multilayer ceramic electronic component, specifically, an organic vehicle such as an ethylcellulose resin. What dissolved the binder in solvents, such as terpineol, etc. can be used suitably.

【0030】次に、本発明の積層セラミック電子部品の
一つの実施形態について、図2に基づいて詳細に説明す
る。すなわち、積層セラミック電子部品11は、セラミ
ック積層体12と、内部電極13,13と、端子電極1
4,14と、めっき膜15,15とから構成される。
Next, one embodiment of the multilayer ceramic electronic component of the present invention will be described in detail with reference to FIG. That is, the multilayer ceramic electronic component 11 includes a ceramic laminate 12, internal electrodes 13, 13, and terminal electrodes 1.
4 and 14 and plating films 15 and 15.

【0031】セラミック積層体12は、BaTiO3
主成分とする誘電体材料からなるセラミック層12aが
複数積層された生のセラミック積層体が焼成されてな
る。
The ceramic laminate 12 is formed by firing a green ceramic laminate in which a plurality of ceramic layers 12a made of a dielectric material containing BaTiO 3 as a main component are laminated.

【0032】内部電極13,13は、セラミック積層体
12内のセラミック層12a間にあって、複数の生のセ
ラミック層12a上に本発明の導電性ペーストが印刷さ
れ、生のセラミック層とともに積層されてなる生のセラ
ミック積層体と同時焼成されてなり、内部電極13,1
3のそれぞれの端縁は、セラミック積層体12の何れか
の端面に露出するように形成されている。
The internal electrodes 13, 13 are located between the ceramic layers 12a in the ceramic laminate 12, and the conductive paste of the present invention is printed on a plurality of green ceramic layers 12a and laminated together with the raw ceramic layers. It is fired at the same time as the raw ceramic laminate, and the internal electrodes 13 and 1
3 is formed so as to be exposed at any end face of the ceramic laminate 12.

【0033】端子電極14,14は、セラミック積層体
12の端面に露出した内部電極13,13の一端と電気
的かつ機械的に接合されるように、端子電極形成用の導
電性ペーストがセラミック積層体12の端面に塗布され
焼付けられてなる。
The terminal electrodes 14 and 14 are made of a ceramic laminate so as to be electrically and mechanically joined to one ends of the internal electrodes 13 and 13 exposed on the end faces of the ceramic laminate 12. It is applied to the end face of the body 12 and baked.

【0034】めっき膜15,15は、例えば、SnやN
i等の無電解めっきや、はんだめっき等からなり、端子
電極14,14上に少なくとも1層形成されてなる。
The plating films 15 are made of, for example, Sn or N
At least one layer is formed on the terminal electrodes 14 and 14 by electroless plating such as i or solder plating.

【0035】なお、本発明の積層セラミック電子部品の
セラミック積層体12の材料は、上述の実施形態に限定
されることなく、例えばPbZrO3等その他の誘電体
材料や、絶縁体、磁性体、半導体材料からなっても構わ
ない。また、本発明の積層セラミック電子部品の内部電
極13の枚数は、上述の実施形態に限定されることな
く、何層形成されていても構わない。また、端子電極の
形成位置ならびに個数は、上述の実施形態に限定されな
い。また、めっき膜5,5は、必ずしも備えている必要
はなく、また何層形成されていても構わない。
The material of the ceramic laminate 12 of the multilayer ceramic electronic component of the present invention is not limited to the above-mentioned embodiment, but may be any other dielectric material such as PbZrO 3 , an insulator, a magnetic material, or a semiconductor. It may be made of material. Further, the number of the internal electrodes 13 of the multilayer ceramic electronic component of the present invention is not limited to the above-described embodiment, and any number of layers may be formed. Further, the formation position and the number of the terminal electrodes are not limited to the above-described embodiment. Further, the plating films 5 and 5 are not necessarily required to be provided, and any number of layers may be formed.

【0036】[0036]

【実施例】(実施例1)まず、表1に示した平均粒径
(0.5μmまたは1.0μm)のNi粉末とNi塩
(NiSO4・6H2O)とを純水中に溶解させた金属溶
液と、水素化硼素ナトリウムおよび水酸化ナトリウムを
純水中に溶解させた還元溶液と、を調整し、金属溶液に
還元溶液を添加して、表1に示したNi−B合金粉末の
析出量ならびに平均粒径となるように、Ni粉末の表面
にNi−B合金粉末を還元析出させ、これを純水で十分
に洗浄して、Ni−B合金粉末を析出させた試料1〜7
の導電粉末を得た。
EXAMPLES (Example 1) First, dissolve the Ni powder and Ni salt having an average particle diameter shown in Table 1 (0.5 [mu] m or 1.0μm) (NiSO 4 · 6H 2 O) in deionized water And a reducing solution prepared by dissolving sodium borohydride and sodium hydroxide in pure water. The reducing solution was added to the metal solution to obtain a Ni-B alloy powder shown in Table 1. Samples 1 to 7 in which the Ni-B alloy powder was reduced and precipitated on the surface of the Ni powder so as to have the amount of precipitation and the average particle diameter, and this was sufficiently washed with pure water to precipitate the Ni-B alloy powder.
Was obtained.

【0037】また、3液混合の比較例として、平均粒径
0.5μmのNi粉末を純水中に分散させたNi水溶液
と、Ni塩(NiSO4・6H2O)を純水中に溶解させ
た金属溶液と、水素化硼素ナトリウムおよび水酸化ナト
リウムを純水中に溶解させた還元溶液と、を準備し、N
i水溶液に、金属溶液と還元溶液を同時に添加して、N
i粉末の表面にNi−B合金粉末を還元析出させ、これ
を純水で十分に洗浄して、Ni−B合金粉末を析出させ
た試料8の導電粉末を得た。
As a comparative example of three-liquid mixing, a Ni aqueous solution in which Ni powder having an average particle size of 0.5 μm is dispersed in pure water, and a Ni salt (NiSO 4 .6H 2 O) are dissolved in pure water. Prepared metal solution, and a reducing solution obtained by dissolving sodium borohydride and sodium hydroxide in pure water.
i. A metal solution and a reducing solution are simultaneously added to an aqueous solution,
The Ni-B alloy powder was reduced and precipitated on the surface of the i-powder, and this was sufficiently washed with pure water to obtain a conductive powder of Sample 8 in which the Ni-B alloy powder was precipitated.

【0038】また、2液混合の比較例として、平均粒径
0.5μmのNi粉末と、Ni塩(NiSO4・6H
2O)を純水中に溶解させた金属溶液と、水素化硼素ナ
トリウムおよび水酸化ナトリウムを純水中に溶解させた
還元溶液と、を準備し、Ni粉末を還元溶液中に分散さ
せた後、金属溶液を添加して、Ni粉末の表面にNi−
B合金粉末を還元析出させ、これを純水で十分に洗浄し
て、Ni−B合金粉末を析出させた試料9の導電粉末を
得た。
Further, as a comparative example of the two-liquid mixing, and Ni powder having an average particle size of 0.5 [mu] m, Ni salts (NiSO 4 · 6H
After preparing a metal solution in which 2 O) is dissolved in pure water and a reducing solution in which sodium borohydride and sodium hydroxide are dissolved in pure water, after dispersing the Ni powder in the reducing solution, , A metal solution was added, and Ni-
The B alloy powder was reduced and precipitated, and this was sufficiently washed with pure water to obtain a conductive powder of Sample 9 in which a Ni-B alloy powder was precipitated.

【0039】また、従来の導電粉末として、表1に示し
た平均粒径のNi粉末を準備し、これを試料10〜14
の導電粉末とした。
As a conventional conductive powder, Ni powder having an average particle size shown in Table 1 was prepared, and this was used as a sample 10 to 14.
Of conductive powder.

【0040】そこで、Ni−B合金粉末が析出したNi
粉末の耐酸化性の確認のため、試料1〜9,13,14
の導電粉末の酸化開始温度を、示差熱天秤を用いて空気
気流中での室温より1000℃までの質量変化を測定
し、導電粉末の酸化による重量増加が始まる温度を酸化
開始温度と規定し、これを表1にまとめた。なお、試料
10〜12の導電粉末については、導電性ペーストを作
製後にこれを乾燥させて再び粉末化させ、同じく示差熱
天秤を用いて上述の試料1〜9,13,14と同様に測
定を行ない、これを表1にまとめた。
Therefore, the Ni-B alloy powder deposited Ni
Samples 1 to 9, 13, 14 were used to confirm the oxidation resistance of the powder.
The oxidation start temperature of the conductive powder of the mass was measured from room temperature to 1000 ° C. in an air stream using a differential thermal balance, and the temperature at which the weight increase due to oxidation of the conductive powder started was defined as the oxidation start temperature, This is summarized in Table 1. For the conductive powders of Samples 10 to 12, after the conductive paste was prepared, it was dried and powdered again, and similarly measured using the differential thermobalance in the same manner as in Samples 1 to 9, 13, and 14 described above. This was summarized in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】表1から明らかであるように、Ni粉末と
Ni塩を含む金属溶液に還元剤を含む還元溶液を添加し
て得た試料2の導電粉末の酸化開始温度は360℃であ
るが、Ni粉末を含む水溶液にNi塩を含む金属溶液と
還元剤を含む還元溶液を同時添加して得た試料8の導電
粉末の酸化開始温度は315℃、Ni粉末と還元剤を含
む還元溶液にNi塩を含む金属溶液を添加して得た試料
9の導電粉末の酸化開始温度も315℃であり、試料2
の導電粉末の酸化開始温度が高いことが分かる。試料
2,8,9の導電粉末は、Ni粉末の平均粒径、Ni−
B合金粉末とNi粉末の粒径比、ならびにNi−B合金
粉末の析出量が、それぞれ0.5μm,0.10,1.
0重量%で共通していることから、反応析出の方法、す
なわちNi粉末とNi塩を含む金属溶液に還元剤を含む
還元溶液を添加することで、導電粉末の耐酸化性効率が
高まることが分かる。
As is clear from Table 1, the oxidation starting temperature of the conductive powder of Sample 2 obtained by adding a reducing solution containing a reducing agent to a metal solution containing Ni powder and a Ni salt is 360 ° C. The oxidation starting temperature of the conductive powder of Sample 8 obtained by simultaneously adding the metal solution containing the Ni salt and the reducing solution containing the reducing agent to the aqueous solution containing the Ni powder is 315 ° C., and the reducing solution containing the Ni powder and the reducing agent contains Ni. The oxidation start temperature of the conductive powder of Sample 9 obtained by adding the metal solution containing salt was also 315 ° C.
It can be seen that the oxidation start temperature of the conductive powder is high. The conductive powders of Samples 2, 8, and 9 have an average particle size of Ni powder, Ni-
The particle size ratio between the B alloy powder and the Ni powder and the precipitation amount of the Ni—B alloy powder were 0.5 μm, 0.10, 1..
Since it is common at 0% by weight, the method of reaction precipitation, that is, the addition of a reducing solution containing a reducing agent to a metal solution containing Ni powder and a Ni salt increases the oxidation resistance efficiency of the conductive powder. I understand.

【0043】また、Ni粉末の平均粒径が0.5μmで
あり、Ni−B合金粉末が表面に析出している試料1〜
5の導電粉末は、Ni粉末の平均粒径が同じく0.5μ
mであり、Ni−B合金粉末が析出していない試料13
の導電粉末と比較して、酸化開始温度が高温方向へ推移
しており、その程度はNi−B合金粉末の析出量に比例
していることが分かる。
Samples 1 and 2 in which the average particle size of the Ni powder was 0.5 μm and the Ni—B alloy powder was deposited on the surface
In the conductive powder of No. 5, the average particle diameter of the Ni powder is also 0.5 μm.
sample 13 in which no Ni-B alloy powder was precipitated.
It can be seen that the oxidation start temperature changes in the direction of higher temperature as compared with the conductive powder of No. 5, and the degree is proportional to the amount of the precipitated Ni-B alloy powder.

【0044】また、Ni粉末の平均粒径が0.5μm、
Ni−B合金粉末の平均粒径が0.05μm、Ni−B
合金粉末の析出量ならびに添加量がそれぞれ0.1重量
%,1.0重量%,10.0重量%である、試料1と試
料10,試料2と試料11,試料3と試料12の導電粉
末を比較すると、酸化開始温度はそれぞれ330℃と3
05℃,360℃と310℃,500℃と460℃であ
り、Ni粉末の表面にNi−B合金粉末を析出させた試
料1〜3の導電粉末のほうが、耐酸化性が高く優れるこ
とが分かる。
The average particle size of the Ni powder is 0.5 μm,
Ni-B alloy powder having an average particle size of 0.05 μm, Ni-B
Conductive powder of Samples 1 and 10, Samples 2 and 11, and Samples 3 and 12 in which the amount of alloy powder deposited and the amount of addition are 0.1% by weight, 1.0% by weight and 10.0% by weight, respectively. , The oxidation onset temperatures are 330 ° C. and 3 ° C., respectively.
05 ° C, 360 ° C and 310 ° C, and 500 ° C and 460 ° C. It can be seen that the conductive powders of Samples 1 to 3 in which Ni-B alloy powder was deposited on the surface of Ni powder had higher oxidation resistance and were more excellent. .

【0045】また、Ni粉末の平均粒径が1.0μmで
あり、Ni−B合金粉末が表面に析出している試料7の
導電粉末についても、Ni粉末の平均粒径が同じく1.
0μmであり、Ni−B合金粉末が析出していない試料
14の導電粉末と比較して、酸化開始温度が高温方向へ
推移していることが分かる。 (実施例2)次いで、試料1〜14の導電粉末を用い
て、導電性ペーストを作製した。すなわち、表2に示す
ように、導電粉末50重量%と、有機バインダーである
エチルセルロース樹脂20重量部と溶剤であるテルピネ
オール80重量部とを混合してなる有機ビヒクル50重
量%と、を混合した後に三本ロールにて分散処理を行な
い、試料1〜14の導電性ペーストを作製した。なお、
試料10〜12の導電性ペーストについては、上述の混
合の際に、それぞれ0.1重量%,1.0重量%,1
0.0重量%のNi−B合金粉末をさらに添加し同時に
混合した後に三本ロールにて分散処理を行ない、試料1
0〜12の導電性ペーストとした。
The average particle size of the Ni powder is 1.0 μm, and the average particle size of the Ni powder is also the same as that of the conductive powder of Sample 7 in which the Ni—B alloy powder is precipitated on the surface.
0 μm, which indicates that the oxidation start temperature has shifted to a higher temperature as compared with the conductive powder of Sample 14 in which the Ni—B alloy powder has not been precipitated. (Example 2) Next, a conductive paste was prepared using the conductive powders of Samples 1 to 14. That is, as shown in Table 2, after mixing 50% by weight of conductive powder, 50% by weight of an organic vehicle obtained by mixing 20 parts by weight of ethyl cellulose resin as an organic binder and 80 parts by weight of terpineol as a solvent, Dispersion treatment was performed with three rolls to produce conductive pastes of Samples 1 to 14. In addition,
For the conductive pastes of Samples 10 to 12, 0.1% by weight, 1.0% by weight,
After further adding 0.0% by weight of a Ni-B alloy powder and mixing them at the same time, a dispersion treatment was carried out using a three-roll mill.
0 to 12 conductive pastes were obtained.

【0046】[0046]

【表2】 [Table 2]

【0047】次いで、試料1〜14の導電性ペーストを
用いて内部電極を形成した、設計段階の静電容量が1.
6μFである積層セラミックコンデンサを作製する。す
なわち、BaTiO3を主成分とするセラミック層を準
備し、所定枚数のセラミック層の表面上に一方の端縁が
セラミック層の何れかの端面側に露出するように、試料
1〜14の導電性ペーストを用いて内部電極となるべき
電極膜を印刷し、これら複数のセラミック層を所定枚数
積層し圧着して、試料1〜14の生のセラミック積層体
を複数準備した。
Next, the internal electrodes were formed using the conductive pastes of Samples 1 to 14, and the capacitance at the design stage was 1.
A multilayer ceramic capacitor of 6 μF is manufactured. That is, a ceramic layer containing BaTiO 3 as a main component is prepared, and the conductivity of the samples 1 to 14 is set such that one edge is exposed on one of the end faces of the ceramic layer on the surface of a predetermined number of ceramic layers. An electrode film to be used as an internal electrode was printed using the paste, a predetermined number of these ceramic layers were laminated and pressed, and a plurality of raw ceramic laminates of Samples 1 to 14 were prepared.

【0048】次いで、試料1〜14の生のセラミック積
層体を脱バインダーさせるにあたり、条件を表3のよう
に設定した。すなわち、耐酸化性の無い導電粉末を用い
た導電性ペーストの場合に導電粉末の酸化が生じ易い条
件として、トップ温度450℃,キープ1時間,Air
雰囲気と設定し、これを脱バインダー条件Aとした。他
方、導電粉末の酸化は生じにくいが、有機バインダーの
熱分解が不十分となり易い条件として、トップ温度30
0℃,キープ1時間,N2雰囲気と設定し、これを脱バ
インダー条件Bとした。
Next, the conditions were set as shown in Table 3 for debinding the green ceramic laminates of Samples 1 to 14. That is, in the case of a conductive paste using a conductive powder having no oxidation resistance, conditions under which the conductive powder is liable to be oxidized are as follows: top temperature 450 ° C., keep 1 hour, Air
The atmosphere was set, and this was set as the debinding condition A. On the other hand, oxidation of the conductive powder is unlikely to occur, but thermal decomposition of the organic binder tends to be insufficient.
The atmosphere was set at 0 ° C., kept for 1 hour, and in an N 2 atmosphere.

【0049】[0049]

【表3】 [Table 3]

【0050】次いで、上述の脱バインダー処理後に焼成
し、さらにセラミック積層体の両端面にAgを導電成分
とする端子電極形成用の導電性ペーストを浸漬塗布し、
乾燥させた後これを焼付けて、内部電極に電気的かつ機
械的に接合された一対の端子電極を備える、試料1〜1
4の積層セラミックコンデンサを10000個ずつ得
た。
Next, the binder is fired after the binder removal treatment, and a conductive paste for forming a terminal electrode containing Ag as a conductive component is dip-coated on both end surfaces of the ceramic laminate.
Samples 1 to 1 were baked after drying and provided with a pair of terminal electrodes electrically and mechanically joined to the internal electrodes.
10000 laminated ceramic capacitors were obtained.

【0051】そこで、まず試料1〜14の導電性ペース
トをガラス板上にドクターブレードを用いて5μmの厚
さに塗布して、これを100℃で乾燥させた後、触針式
膜厚計で十点表面粗さ(Rz)を測定し、これを表4に
まとめた。次いで、試料1〜14の積層セラミックコン
デンサを100個ずつ抜き取り、静電容量(100個平
均),ショート不良発生率,層剥がれ不良発生率を測定
し、先に表4にまとめた十点表面粗さ(Rz)を含む4
項目を総合して評価を付し、これらを表4にまとめた。
Therefore, the conductive pastes of Samples 1 to 14 were first applied to a glass plate to a thickness of 5 μm using a doctor blade and dried at 100 ° C. The ten-point surface roughness (Rz) was measured and is summarized in Table 4. Next, 100 multilayer ceramic capacitors of Samples 1 to 14 were extracted, and the capacitance (average of 100 capacitors), the occurrence rate of short-circuit failure, and the incidence rate of layer peeling failure were measured. Including 4 (Rz)
The items were comprehensively evaluated and are summarized in Table 4.

【0052】なお、評価は、静電容量が1.6±0.2
μF、ショート不良発生率が0%、層剥がれ不良発生率
が0%であり、Ni−B合金粉末を析出させていない試
料13,14の導電粉末を用いた積層セラミックコンデ
ンサと比較して表面粗さが略同等である、本発明の範囲
内である試料について○を、本発明の範囲外の試料につ
いて×を付した。
In the evaluation, the capacitance was 1.6 ± 0.2.
μF, occurrence rate of short-circuit failure is 0%, occurrence rate of layer peeling failure is 0%, and the surface roughness is lower than that of the multilayer ceramic capacitors using conductive powders of Samples 13 and 14 in which Ni-B alloy powder is not deposited. The samples that are within the range of the present invention and whose values are substantially the same are marked with a circle, and the samples that are outside the range of the present invention are marked with a cross.

【0053】[0053]

【表4】 [Table 4]

【0054】表4から明らかであるように、本発明の反
応析出方法である、Ni粉末とNi塩を含む金属溶液に
還元剤を含む還元溶液を添加する方法により、Ni粉末
の平均粒径よりも小さく、Ni粉末100重量部に対し
て50重量部以下のNi−B合金粉末を析出させた試料
1〜4,7の導電粉末を用いた積層セラミックコンデン
サは、静電容量が1.5〜1.6μFであり、ショート
不良発生率,層剥がれ不良発生率が何れも0%であり、
Ni−B合金粉末を析出させていない試料13,14の
導電粉末を用いた積層セラミックコンデンサと比較して
表面粗さも略同等あるいは低く優れることから、本発明
の範囲内となった。
As is evident from Table 4, the reaction precipitation method of the present invention, in which a reducing solution containing a reducing agent is added to a metal solution containing Ni powder and a Ni salt, is used to calculate the average particle size of the Ni powder. The multilayer ceramic capacitors using the conductive powders of Samples 1 to 4 and 7, in which 50 parts by weight or less of Ni-B alloy powder is precipitated per 100 parts by weight of Ni powder, have a capacitance of 1.5 to 1.6 μF, the short-circuit defect occurrence rate and the layer peeling defect occurrence rate are both 0%,
The surface roughness was substantially the same or lower than that of the multilayer ceramic capacitors using the conductive powders of Samples 13 and 14 in which the Ni-B alloy powder was not deposited, and thus, they were within the scope of the present invention.

【0055】これに対して、3液混合の比較例である、
Ni粉末を含む水溶液にNi塩を含む金属溶液と還元剤
を含む還元溶液を同時添加する方法により、Ni粉末の
平均粒径よりも小さく、Ni粉末100重量部に対して
50重量部以下のNi−B合金粉末を析出させた試料8
の導電粉末を用いた積層セラミックコンデンサは、静電
容量が1.5μFであり、ショート不良発生率が0%で
あったが、層剥がれ不良発生率が2%生じたため、本発
明の範囲外となった。
On the other hand, this is a comparative example of three-liquid mixing.
By simultaneously adding a metal solution containing a Ni salt and a reducing solution containing a reducing agent to an aqueous solution containing a Ni powder, the Ni particle having a size smaller than the average particle size of the Ni powder and not more than 50 parts by weight per 100 parts by weight of the Ni powder is obtained. -Sample 8 on which -B alloy powder was precipitated
The multilayer ceramic capacitor using the conductive powder of (1) had a capacitance of 1.5 μF and a short-circuit failure occurrence rate of 0%, but a layer peeling failure occurrence rate of 2% occurred. became.

【0056】また、2液混合の比較例である、Ni粉末
と還元剤を含む還元溶液にNi塩を含む金属溶液を添加
する方法により、Ni粉末の平均粒径よりも小さく、N
i粉末100重量部に対して50重量部以下のNi−B
合金粉末を析出させた試料9の導電粉末を用いた積層セ
ラミックコンデンサは、静電容量が1.5μFであり、
ショート不良発生率が0%であったが、層剥がれ不良発
生率が3%生じたため、本発明の範囲外となった。
Further, by a method of adding a metal solution containing a Ni salt to a reducing solution containing a Ni powder and a reducing agent, which is a comparative example of the two-liquid mixing, the average particle size of the Ni powder is smaller than that of the Ni powder.
50 parts by weight or less of Ni-B per 100 parts by weight of i-powder
The multilayer ceramic capacitor using the conductive powder of Sample 9 in which the alloy powder was precipitated had a capacitance of 1.5 μF,
Although the short-circuit defect occurrence rate was 0%, the layer peeling defect occurrence rate was 3%, which was out of the range of the present invention.

【0057】また、本発明の反応析出方法により、Ni
粉末の平均粒径よりも小さいが、Ni粉末100重量部
に対して70重量部のNi−B合金粉末を析出させた試
料5の導電粉末を用いた積層セラミックコンデンサは、
静電容量が0.8μFで低く許容範囲外であったため、
本発明の範囲外となった。
Further, according to the reaction deposition method of the present invention, Ni
The multilayer ceramic capacitor using the conductive powder of Sample 5, which is smaller than the average particle size of the powder, but has 70 parts by weight of the Ni-B alloy powder deposited per 100 parts by weight of the Ni powder,
Because the capacitance was as low as 0.8 μF and out of the allowable range,
It is outside the scope of the present invention.

【0058】また、本発明の反応析出方法により、Ni
粉末100重量部に対して50重量部以下のNi−B合
金粉末を析出させているが、Ni−B合金粉末の平均粒
径がNi粉末の平均粒径と同等である試料6の導電粉末
を用いた積層セラミックコンデンサは、静電容量が0.
7μFで低く許容範囲外であり、層剥がれ不良発生率が
15%で高く劣ったため、本発明の範囲外となった。
Further, according to the reaction deposition method of the present invention, Ni
Although 50 parts by weight or less of Ni-B alloy powder is precipitated with respect to 100 parts by weight of the powder, the conductive powder of Sample 6 in which the average particle diameter of the Ni-B alloy powder is equal to the average particle diameter of Ni powder is used. The multilayer ceramic capacitor used had a capacitance of 0.1.
The value was 7 μF, which was low and out of the allowable range, and the occurrence rate of layer peeling defect was as high as 15%, which was out of the range of the present invention.

【0059】また、導電性ペースト中にNi−B合金粉
末を添加した試料10〜12の積層セラミックコンデン
サは、静電容量が1.2μFで低く許容範囲外であり、
層剥がれ不良発生率が20%で高く劣った。
The multilayer ceramic capacitors of Samples 10 to 12 in which the Ni—B alloy powder was added to the conductive paste had a low capacitance of 1.2 μF, which was out of the allowable range.
The rate of occurrence of layer peeling failure was high and inferior at 20%.

【0060】また、従来のNi粉末である試料13,1
4の導電粉末を用いた試料13A,13B,14A,1
4Bの積層セラミックコンデンサは、脱バインダー条件
がAir雰囲気中でトップ温度が高い場合には、静電容
量が極端に低くなって層剥がれ不良発生率が高くなり、
2雰囲気中でトップ温度が低い場合には、ショート不
良発生率が高くなることが分かる。
The samples 13, 1 which are conventional Ni powders
Samples 13A, 13B, 14A, 1 using conductive powder of No. 4
In the case of the multilayer ceramic capacitor of 4B, when the binder removal condition is high in the air atmosphere and the top temperature is high, the capacitance becomes extremely low, and the occurrence rate of the layer peeling failure increases,
It can be seen that when the top temperature is low in the N 2 atmosphere, the short-circuit defect occurrence rate increases.

【0061】[0061]

【発明の効果】以上のように本発明によれば、Ni粉
末,Cu粉末,Niまたは/およびCuを主成分とする
合金粉末からなる群より選ばれる少なくとも1種の卑金
属粉末とNi塩とを含む金属溶液に、水素化硼化物また
は/およびアミンボランを含む還元溶液を添加・混合し
て、卑金属粉末の表面に、卑金属粉末の平均粒径よりも
小さく、卑金属粉末100重量部に対して50重量部以
下のNi−B合金粉末を析出させることを特徴とするこ
とで、耐酸化性を有する導電粉末およびこのような導電
粉末を用いた導電性ペーストを提供することができ、有
機物の分解ならびに除去に十分な温度の酸化雰囲気中で
の脱バインダー処理を可能とし、このような導電性ペー
ストを用いて内部電極を形成する積層セラミック電子部
品の歩留まりならびに生産性を向上させることができ
る。
As described above, according to the present invention, at least one base metal powder selected from the group consisting of Ni powder, Cu powder, and alloy powder containing Ni or / and Cu as a main component, and Ni salt are used. A reducing solution containing a borohydride and / or an amine borane is added to and mixed with the metal solution containing, and the surface of the base metal powder is smaller than the average particle size of the base metal powder, and 50 parts by weight based on 100 parts by weight of the base metal powder. Parts or less of the Ni-B alloy powder is deposited, whereby a conductive powder having oxidation resistance and a conductive paste using such a conductive powder can be provided, and decomposition and removal of organic substances can be provided. Debonding treatment in an oxidizing atmosphere at a temperature sufficient for the use of such conductive paste to form internal electrodes and yield of multilayer ceramic electronic components Thereby improving the productivity.

【0062】また、上述の卑金属粉末の平均粒径は、
1.0μm以下であることを特徴とすることで、一般に
卑金属粉末は粒径が小さくなるほど比表面積が増えて活
性になり、酸化が起こりやすくなるが、卑金属粉末の耐
酸化性を向上させるという本発明の効果が顕著となり、
また積層セラミック電子部品のさらなる薄層化や多層化
に貢献できる効果がある。
The average particle diameter of the base metal powder is as follows:
By being characterized in that the base metal powder is 1.0 μm or less, the specific surface area of the base metal powder generally increases as the particle size decreases, and the base metal powder becomes active and oxidized easily. The effect of the invention becomes remarkable,
Also, there is an effect that it is possible to contribute to further thinning and multilayering of the multilayer ceramic electronic component.

【0063】また、上述のNi−B合金粉末の平均粒径
は、0.1μm以下であり、かつ卑金属粉末の平均粒径
の1/2以下であることを特徴とすることで、Ni−B
合金粉末が卑金属粉末の表面をより均一に被覆すること
ができ、卑金属粉末の耐酸化性が十分に得られるという
効果がある。
The Ni-B alloy powder has an average particle size of 0.1 μm or less and a half or less of the average particle size of the base metal powder.
The alloy powder can more uniformly coat the surface of the base metal powder, and has an effect that the oxidation resistance of the base metal powder can be sufficiently obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る一つの実施形態の導電粉末の断面
図であり、(a)は卑金属粉末の表面にNi−B合金粉
末が析出した状態の説明図であり、(b)は酸化硼素が
卑金属粉末の表面を略被覆した状態の説明図である。
FIG. 1 is a cross-sectional view of a conductive powder according to one embodiment of the present invention, in which (a) is an explanatory view of a state in which a Ni—B alloy powder is precipitated on the surface of a base metal powder, and (b) is an oxidized powder. FIG. 3 is an explanatory diagram of a state where boron substantially covers the surface of a base metal powder.

【図2】本発明に係る一つの実施形態の積層セラミック
電子部品の断面図である。
FIG. 2 is a cross-sectional view of a multilayer ceramic electronic component according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 導電粉末 2 卑金属粉末 3a Ni−B合金粉末 11 積層セラミック電子部品 12a セラミック層 12 セラミック積層体 13 内部電極 DESCRIPTION OF SYMBOLS 1 Conductive powder 2 Base metal powder 3a Ni-B alloy powder 11 Multilayer ceramic electronic component 12a Ceramic layer 12 Ceramic laminated body 13 Internal electrode

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01B 1/00 H01B 1/00 L 1/22 1/22 A 13/00 501 13/00 501Z H01G 4/12 361 H01G 4/12 361 // C04B 35/46 C04B 35/46 D Fターム(参考) 4G031 AA06 AA11 AA39 BA09 CA03 GA01 4K017 AA04 BA03 BA05 BB05 BB06 BB13 DA01 EA03 EJ01 FB07 4K018 BA02 BA04 BB04 BC01 BC24 BD04 5E001 AB03 AH01 AH09 AJ01 AJ02 5G301 DA02 DA06 DA10 DD01 DE03──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01B 1/00 H01B 1/00 L 1/22 1/22 A 13/00 501 13/00 501Z H01G 4 / 12 361 H01G 4/12 361 // C04B 35/46 C04B 35/46 DF term (reference) 4G031 AA06 AA11 AA39 BA09 CA03 GA01 4K017 AA04 BA03 BA05 BB05 BB06 BB13 DA01 EA03 EJ01 FB07 4K018 BA02 BA03 BB04 BC001 BC24 AH01 AH09 AJ01 AJ02 5G301 DA02 DA06 DA10 DD01 DE03

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 Ni粉末,Cu粉末,Niまたは/およ
びCuを主成分とする合金粉末からなる群より選ばれる
少なくとも1種の卑金属粉末とNi塩とを含む金属溶液
に、水素化硼化物または/およびアミンボランを含む還
元溶液を添加・混合して、 前記卑金属粉末の表面に、前記卑金属粉末の平均粒径よ
りも小さく、前記卑金属粉末100重量部に対して50
重量部以下のNi−B合金粉末を析出させることを特徴
とする、導電粉末の製造方法。
1. A borohydride or borohydride solution is added to a metal solution containing at least one base metal powder selected from the group consisting of Ni powder, Cu powder, alloy powder containing Ni or / and Cu as a main component, and a Ni salt. And / or a reducing solution containing amine borane is added and mixed, and the surface of the base metal powder is smaller than the average particle size of the base metal powder and 50 parts by weight based on 100 parts by weight of the base metal powder.
A method for producing a conductive powder, comprising depositing not more than part by weight of a Ni-B alloy powder.
【請求項2】 前記析出工程の後に、前記Ni−B合金
粉末が表面に析出した前記卑金属粉末を100℃以上で
熱処理する熱処理工程をさらに備えることを特徴とす
る、請求項1に記載の導電粉末の製造方法。
2. The conductive material according to claim 1, further comprising, after the precipitation step, a heat treatment step of heat-treating the base metal powder having the Ni-B alloy powder deposited on its surface at 100 ° C. or higher. Powder manufacturing method.
【請求項3】 前記析出工程の後に、前記Ni−B合金
粉末が表面に析出した前記卑金属粉末を粉砕処理する粉
砕工程をさらに備えることを特徴とする、請求項1また
は2に記載の導電粉末の製造方法。
3. The conductive powder according to claim 1, further comprising a pulverizing step of pulverizing the base metal powder having the Ni-B alloy powder precipitated on a surface thereof after the precipitating step. Manufacturing method.
【請求項4】 前記卑金属粉末の平均粒径は、1.0μ
m以下であることを特徴とする、請求項1〜3の何れか
に記載の導電粉末の製造方法。
4. An average particle size of the base metal powder is 1.0 μm.
The method for producing a conductive powder according to any one of claims 1 to 3, wherein m is equal to or less than m.
【請求項5】 前記Ni−B合金粉末の平均粒径は、
0.1μm以下であり、かつ前記卑金属粉末の平均粒径
の1/2以下であることを特徴とする、請求項1〜4の
何れかに記載の導電粉末の製造方法。
5. The Ni-B alloy powder has an average particle size of:
The method for producing a conductive powder according to any one of claims 1 to 4, wherein the diameter is 0.1 µm or less and 1/2 or less of the average particle diameter of the base metal powder.
【請求項6】 請求項1〜5の何れかに記載の製造方法
によって得られたことを特徴とする、導電粉末。
6. A conductive powder obtained by the method according to claim 1.
【請求項7】 請求項6に記載の導電粉末と、有機ビヒ
クルと、を含有してなることを特徴とする、導電性ペー
スト。
7. A conductive paste comprising the conductive powder according to claim 6 and an organic vehicle.
【請求項8】 複数のセラミック層が積層されてなるセ
ラミック積層体と、前記セラミック層間に形成された複
数の内部電極と、を備える積層セラミック電子部品であ
って、 前記内部電極は、請求項7に記載の導電性ペーストを用
いて形成されていることを特徴とする、積層セラミック
電子部品。
8. A multilayer ceramic electronic component comprising: a ceramic laminate in which a plurality of ceramic layers are laminated; and a plurality of internal electrodes formed between the ceramic layers, wherein the internal electrodes are A multilayer ceramic electronic component characterized by being formed using the conductive paste described in (1).
JP2001118339A 2000-07-05 2001-04-17 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component Expired - Lifetime JP3918450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001118339A JP3918450B2 (en) 2000-07-05 2001-04-17 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-204098 2000-07-05
JP2000204098 2000-07-05
JP2001118339A JP3918450B2 (en) 2000-07-05 2001-04-17 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2002080902A true JP2002080902A (en) 2002-03-22
JP3918450B2 JP3918450B2 (en) 2007-05-23

Family

ID=26595445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118339A Expired - Lifetime JP3918450B2 (en) 2000-07-05 2001-04-17 Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component

Country Status (1)

Country Link
JP (1) JP3918450B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183703A (en) * 2001-12-11 2003-07-03 Murata Mfg Co Ltd Production method for conductive powder, conductive powder, conductive paste, and laminated ceramic electronic part
JP2011103301A (en) * 2009-11-11 2011-05-26 Samsung Electronics Co Ltd Conductive paste and solar cell using the same
KR20120015997A (en) * 2010-08-13 2012-02-22 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
CN102376379A (en) * 2010-08-13 2012-03-14 三星电子株式会社 Conductive thickener, electronic device and solar battery comprising electrodes formed by conductive thickener
US8940195B2 (en) 2011-01-13 2015-01-27 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
US8974703B2 (en) 2010-10-27 2015-03-10 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the same
US8987586B2 (en) 2010-08-13 2015-03-24 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US9105370B2 (en) 2011-01-12 2015-08-11 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003183703A (en) * 2001-12-11 2003-07-03 Murata Mfg Co Ltd Production method for conductive powder, conductive powder, conductive paste, and laminated ceramic electronic part
JP2011103301A (en) * 2009-11-11 2011-05-26 Samsung Electronics Co Ltd Conductive paste and solar cell using the same
US9984787B2 (en) 2009-11-11 2018-05-29 Samsung Electronics Co., Ltd. Conductive paste and solar cell
KR20120015997A (en) * 2010-08-13 2012-02-22 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
CN102376379A (en) * 2010-08-13 2012-03-14 三星电子株式会社 Conductive thickener, electronic device and solar battery comprising electrodes formed by conductive thickener
US8987586B2 (en) 2010-08-13 2015-03-24 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
KR101960463B1 (en) * 2010-08-13 2019-03-21 삼성전자주식회사 Conductive paste and electronic device and solar cell including an electrode formed using the conductive paste
US8974703B2 (en) 2010-10-27 2015-03-10 Samsung Electronics Co., Ltd. Conductive paste and electronic device and solar cell including an electrode formed using the same
US9105370B2 (en) 2011-01-12 2015-08-11 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same
US8940195B2 (en) 2011-01-13 2015-01-27 Samsung Electronics Co., Ltd. Conductive paste, and electronic device and solar cell including an electrode formed using the same

Also Published As

Publication number Publication date
JP3918450B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
JP4081987B2 (en) Metal powder manufacturing method, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP3644235B2 (en) Multilayer ceramic electronic components
JP5407495B2 (en) Metal powder, metal powder manufacturing method, conductive paste, and multilayer ceramic capacitor
TW200920857A (en) Nickel powder or alloy powder comprising nickel as main component and manufacturing method thereof, conductive paste and multi-layer ceramic condenser
JP3137035B2 (en) Nickel powder and method for producing the same
JP2003013103A (en) Method for manufacturing electroconductive powder, electroconductive powder, electroconductive paste and laminated ceramic electronic component
JP2002080902A (en) Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts
JPH07207185A (en) Coated palladium fine powder and conductive paste
KR970004274B1 (en) Seramic capacitor
JP2004323866A (en) Method for manufacturing nickel powder, and nickel powder
JP5206246B2 (en) Nickel powder and method for producing the same
JP2002334614A (en) Conductive particles
JP3473548B2 (en) Method for producing metal powder, metal powder, conductive paste using the same, and multilayer ceramic electronic component using the same
JP2002275511A (en) Method for manufacturing metal powder, metal powder, conductive paste and laminated ceramic electronic parts
JP3414502B2 (en) Noble metal powder and conductor paste for high temperature firing
JP3698098B2 (en) Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2009024204A (en) Carbide-coated nickel powder and method for producing the same
JP2004183027A (en) Method for manufacturing nickel powder, nickel powder, electroconductive paste, and multilayered ceramic electronic component
JP2002332509A (en) Metal powder and its manufacturing method, conductive paste, and multilayer ceramic electronic parts
JP4595235B2 (en) Method for producing conductive powder having oxidation resistance, conductive powder, conductive paste, and multilayer ceramic electronic component
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JP2004068090A (en) Method for manufacturing conductive powder, conductive powder, conductive paste and electronic partt of laminated ceramic
JP2003027115A (en) Method for producing metal powder, metal powder, electrically conductive paste and multilayer ceramic electronic parts
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3918450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

EXPY Cancellation because of completion of term