JP2006089786A - Method for producing metallic nano-particle dispersed in polar solvent - Google Patents

Method for producing metallic nano-particle dispersed in polar solvent Download PDF

Info

Publication number
JP2006089786A
JP2006089786A JP2004274488A JP2004274488A JP2006089786A JP 2006089786 A JP2006089786 A JP 2006089786A JP 2004274488 A JP2004274488 A JP 2004274488A JP 2004274488 A JP2004274488 A JP 2004274488A JP 2006089786 A JP2006089786 A JP 2006089786A
Authority
JP
Japan
Prior art keywords
protective agent
polar solvent
metal
metal nanoparticles
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004274488A
Other languages
Japanese (ja)
Inventor
Emiko Ekusa
恵美子 江草
Kotaro Kuroda
浩太郎 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Belting Ltd
Original Assignee
Mitsuboshi Belting Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Belting Ltd filed Critical Mitsuboshi Belting Ltd
Priority to JP2004274488A priority Critical patent/JP2006089786A/en
Publication of JP2006089786A publication Critical patent/JP2006089786A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To produce a metallic nano-particles dispersed with high concentration in polar solvent with which the replacement of protective colloid in the metallic nano-particles dispersed with the high concentration in a non-polar solvent is performed in the polar solvent and only the metallic nano-particles protected with the protective colloid through the replacement is recovered as precipitate and these particles are dispersed in a polar solvent. <P>SOLUTION: Into solution mixing at least one kind of a metallic ion and a protective agent A having a functionality showing the affinity with the metallic nano-particle in the main chain and/or the side-chain, a reducing agent is dripped and the metallic nano-particle aggregate protected with the protective agent A, is deposited and recovered. The metallic nano-particles 2/non-polar solvent dispersed liquid (1), obtained by dissolving this metallic nano-particle aggregate into the non-polar solvent 1, that is, protected with the protective agent A, and a protective agent B/polar solvent dissolved liquid (2), obtained by dissolving the protective agent B having the functional group showing the affinity with the metallic nano-particle in the main-chain and/or the side chain and also, the high functional group of the affinity with the solvent in the polar solvent, are mixed and stirred, and the metallic nano-particles 2 interchanging the protective agent A into the protective agent B, are recovered as the precipitate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、極性溶媒に分散した金属ナノ粒子の製造方法に係り、詳しくは非極性溶媒中に分散させた金属ナノ粒子の保護コロイドの交換を極性溶媒中で行い、この交換した保護コロイドで保護した金属ナノ粒子のみを沈殿物として回収し、これを極性溶媒に分散させることで極性溶媒に高濃度に分散した金属ナノ粒子を製造する方法に関する。   The present invention relates to a method for producing metal nanoparticles dispersed in a polar solvent. Specifically, the protective colloid of metal nanoparticles dispersed in a nonpolar solvent is exchanged in a polar solvent, and the protected colloid is protected by the exchanged protective colloid. The present invention relates to a method for producing metal nanoparticles dispersed in a polar solvent at a high concentration by recovering only the deposited metal nanoparticles as a precipitate and dispersing the precipitate in a polar solvent.

金属ナノ粒子は、極めて微小な粒径に起因する様々な特異な物性を示すことから、導電材料、着色材料、コンデンサー、バイオセンサー、化学センサー、蛍光材料、偏光材料、磁気メモリー材料などの種々の分野で利用されている。   Since metal nanoparticles exhibit various unique properties due to extremely small particle sizes, various kinds of materials such as conductive materials, colored materials, capacitors, biosensors, chemical sensors, fluorescent materials, polarizing materials, magnetic memory materials, etc. Used in the field.

金属ナノ粒子の合成法は、ブレイクダウン法とビルドアップ法に大別されるが、金属は展性、並びに延性に富むため主にビルドアップ法により製造されている。また、ビルドアップ法は乾式法と湿式法に区別され、多くの製造方法が開示されている。   The synthesis method of metal nanoparticles is roughly divided into a breakdown method and a build-up method, but metals are mainly manufactured by the build-up method because they are rich in malleability and ductility. Further, the build-up method is classified into a dry method and a wet method, and many manufacturing methods are disclosed.

乾式法での金属ナノ粒子製造方法としては、ガス中蒸発法により金属ナノ粒子を製造する方法が開示されている。また、真空蒸着法により高分子マトリクス膜上に金属を蒸着することにより金属ナノ粒子を製造する方法が開示されている。これらの方法で得られる金属ナノ粒子は大変高濃度である上に、不純物をほとんど含まれない利点を有しているが、粒度分布が広いため、金属ナノ粒子の粒径に依存する物性(サイズ効果)を利用した用途には不適であった。また、これらの方法では、金属蒸気を作製するための特別な装置が必要であるため、製造上、不利であった。   As a method for producing metal nanoparticles by a dry method, a method of producing metal nanoparticles by a gas evaporation method is disclosed. Also disclosed is a method of producing metal nanoparticles by depositing metal on a polymer matrix film by vacuum deposition. The metal nanoparticles obtained by these methods have a very high concentration and have the advantage of containing almost no impurities, but because of the wide particle size distribution, the physical properties (size) depend on the particle size of the metal nanoparticles. It was unsuitable for applications using (effect). Further, these methods are disadvantageous in production because a special apparatus for producing metal vapor is required.

一方、溶液中で金属イオンを還元することにより金属ナノ粒子が得られる湿式法は、特別な設備を必要とせず、スケールアップが容易である利点を有する。生成した金属ナノ粒子の凝集を防ぐため、金属ナノ粒子表面に保護層を作製することが通常である。   On the other hand, the wet method in which metal nanoparticles are obtained by reducing metal ions in a solution does not require special equipment and has the advantage of being easy to scale up. In order to prevent aggregation of the generated metal nanoparticles, it is usual to produce a protective layer on the surface of the metal nanoparticles.

しかし、上記湿式法で製造可能な金属ナノ粒子濃度は、せいぜい数mM程度であり、高濃度の金属ナノ粒子を得るためには、濃縮やデカンテーションによる沈降回収が必要であった。これは、高濃度の金属イオンが還元される場合、生成した金属ナノ粒子濃度が上昇し、保護層により金属ナノ粒子が安定される前に粒子間の凝集が進行するためである。   However, the concentration of metal nanoparticles that can be produced by the above wet method is at most about several mM, and in order to obtain high-concentration metal nanoparticles, sedimentation recovery by concentration or decantation was required. This is because when a high concentration of metal ions is reduced, the concentration of the generated metal nanoparticles increases, and aggregation between the particles proceeds before the metal nanoparticles are stabilized by the protective layer.

このような課題を解決する手法として、非特許文献1には、次の金属ナノ粒子の製造方法が開示されている。即ち、金イオンが存在する水溶液、及びテトラオクチルアンモニウムとアルカンチオールが存在する水と非混和性の有機溶媒を混合攪拌して懸濁液体となし、金イオンを水相から有機溶媒相に相間移動せしめ、その後還元剤である水素化ホウ素ナトリウム水溶液を混合し攪拌することで、水相と有機溶媒相の界面で還元剤と金イオンが接触し、金イオンの還元が進行し、金ナノ粒子が有機溶媒相中に生成する。この時、金ナノ粒子はアルカンチオールとの相互作用により保護され、有機溶媒相内で均一に分散した金ナノ粒子が得られる方法である。   As a technique for solving such a problem, Non-Patent Document 1 discloses the following method for producing metal nanoparticles. In other words, an aqueous solution containing gold ions, and water containing tetraoctylammonium and alkanethiol and an immiscible organic solvent are mixed and stirred to form a suspension, and gold ions are transferred from the aqueous phase to the organic solvent phase. Then, by mixing and stirring an aqueous sodium borohydride solution that is a reducing agent, the reducing agent and gold ions come into contact with each other at the interface between the aqueous phase and the organic solvent phase, the reduction of the gold ions proceeds, and the gold nanoparticles become Formed in the organic solvent phase. At this time, the gold nanoparticles are protected by the interaction with the alkanethiol, and gold nanoparticles dispersed uniformly in the organic solvent phase are obtained.

また特許文献1には、金属ナノ粒子の保護剤として櫛形ブロックコポリマーを用いた金属ナノ粒子分散液の製造の方法が開示されている。櫛形ブロックコポリマーの保護能力が高いため金属イオンが高濃度で存在する場合でも、金属ナノ粒子間の凝集が抑制され、独立分散した金属ナノ粒子が得られる。それに加え、櫛形ブロックコポリマーは金属イオンの還元力を有しており、その還元能が一般に用いられる水素化ホウ素ナトリウムやヒドラジンなどの還元剤に比べて弱いため、高濃度の金属イオンが存在する溶液であっても、生成する金属ナノ粒子の凝集を起こすことなく、均一に分散した金属ナノ粒子が得られるものである。   Patent Document 1 discloses a method for producing a metal nanoparticle dispersion using a comb block copolymer as a protective agent for metal nanoparticles. Since the comb block copolymer has a high protective ability, even when metal ions are present at a high concentration, aggregation between the metal nanoparticles is suppressed, and independently dispersed metal nanoparticles can be obtained. In addition, comb-shaped block copolymers have the ability to reduce metal ions, and their reducing ability is weak compared to commonly used reducing agents such as sodium borohydride and hydrazine, so a solution containing high concentrations of metal ions is present. Even so, uniformly dispersed metal nanoparticles can be obtained without causing aggregation of the generated metal nanoparticles.

しかし、これらの方法は、水とそれに非混和性の有機溶媒からなる2相還元法を用いていることから、水溶液を除去する工程が必要となり、バッチによる金属ナノ粒子製造方法に限定される。また、金属イオンを還元する際に、有機若しくは高分子副生成物が生じる結果、金属ナノ粒子以外の不純物が有機溶媒中に存在するため、デカンテーションや遠心分離等の精製工程が必要となる。それに加え、前記方法は金属イオン濃度の上限が100mM程度であるため、多量の金属ナノ粒子を製造するために多量の溶媒が必要となり、これは多量の廃液を産出する問題があった。   However, since these methods use a two-phase reduction method consisting of water and an organic solvent immiscible with it, a step for removing the aqueous solution is required, and the method is limited to batch production of metal nanoparticles. In addition, when reducing metal ions, organic or polymer by-products are generated, and impurities other than metal nanoparticles are present in the organic solvent, so that a purification step such as decantation or centrifugation is required. In addition, since the upper limit of the metal ion concentration in the method is about 100 mM, a large amount of solvent is required to produce a large amount of metal nanoparticles, which has a problem of producing a large amount of waste liquid.

このため、湿式法で煩雑な工程を経ることなく、高濃度の金属ナノ粒子を連続して合成可能な金属ナノ粒子製造方法が望まれている。   For this reason, the metal nanoparticle manufacturing method which can synthesize | combine a high concentration metal nanoparticle continuously without going through a complicated process with a wet method is desired.

また水溶性あるいは極性溶媒分散の金属ナノ粒子を得る場合、湿式法で製造可能な金属ナノ粒子濃度は、せいぜい数mM程度と極めて小さかった。(非特許文献2に開示)   When obtaining water-soluble or polar solvent-dispersed metal nanoparticles, the concentration of metal nanoparticles that can be produced by a wet method was at most about several mM. (Disclosed in Non-Patent Document 2)

更に非特許文献3に開示されているように、相溶しない二相系の溶媒中で相間移動により保護コロイド交換を行い、ナノ粒子の溶媒分散性を変える方法では、過剰な保護コロイドが生じる結果、デカンテーションや遠心分離等の精製工程が必要になった。
特開平11−80647号公報 Journal of Chemical Society Cemical Communication 801(1994) Journal of Colloid and Interface Science 249,336−345(2002) Angewandte Chemie International Edition 2001,40,3001
Furthermore, as disclosed in Non-Patent Document 3, the method of changing the solvent dispersibility of nanoparticles by performing protective colloid exchange by phase transfer in an incompatible two-phase solvent results in the formation of excessive protective colloids. In addition, purification steps such as decantation and centrifugation are required.
Japanese Patent Laid-Open No. 11-80647 Journal of Chemical Society Chemical Communication 801 (1994) Journal of Colloid and Interface Science 249, 336-345 (2002) Angelwandte Chemie International Edition 2001, 40, 3001

従って、本発明はかかる要望に応え、従来における上記した問題点を解決し、非極性溶媒中に高濃度に分散させた金属ナノ粒子の保護コロイドの交換を極性溶媒中で行い、このように交換した保護コロイドで保護した金属ナノ粒子のみを沈殿物として回収し、これを極性溶媒に分散させることで極性溶媒に高濃度に分散した金属ナノ粒子を製造することを目的としている。   Accordingly, the present invention responds to such a demand, solves the above-mentioned problems in the prior art, and exchanges the protective colloid of metal nanoparticles dispersed at a high concentration in a nonpolar solvent in a polar solvent. It is an object to produce metal nanoparticles dispersed in a polar solvent at a high concentration by recovering only the metal nanoparticles protected by the protective colloid as a precipitate and dispersing the precipitate in a polar solvent.

本願発明は、少なくとも1種の金属イオンと、主鎖および/または側鎖に金属ナノ粒子と親和性を示す官能基を有する保護剤Aとを混合した溶液に、還元剤を滴下して保護剤Aで保護した金属ナノ粒子集合体を沈降させて回収し、該金属ナノ粒子集合体を非極性溶媒に溶解して得た、保護剤Aで保護した金属ナノ粒子/非極性溶媒分散液と、
主鎖および/または側鎖に金属ナノ粒子と親和性を示す官能基と、溶媒と親和性の高い官能基を有する保護剤Bを極性溶媒に溶解して得た、保護剤B/極性溶媒溶解液を用意し、
上記保護剤Aで保護した金属ナノ粒子/非極性溶媒分散液と保護剤B/極性溶媒溶解液とを混合攪拌し、保護剤Aを保護剤Bに交換した金属ナノ粒子を沈澱物として回収する、極性溶媒に分散した金属ナノ粒子の製造方法にある。
The present invention relates to a protective agent obtained by adding a reducing agent dropwise to a solution in which at least one metal ion and a protective agent A having a functional group having an affinity for metal nanoparticles in the main chain and / or side chain are mixed. Metal nanoparticles / nonpolar solvent dispersion protected with protective agent A, obtained by precipitating and recovering the metal nanoparticle aggregate protected with A, and dissolving the metal nanoparticle aggregate in a nonpolar solvent;
Protective agent B / polar solvent dissolution obtained by dissolving, in a polar solvent, a protective agent B having a functional group having affinity for metal nanoparticles in the main chain and / or side chain and a functional group having a high affinity for the solvent Prepare the liquid,
The metal nanoparticles / nonpolar solvent dispersion liquid protected with the protective agent A and the protective agent B / polar solvent solution are mixed and stirred, and the metal nanoparticles obtained by exchanging the protective agent A with the protective agent B are recovered as precipitates. And a method for producing metal nanoparticles dispersed in a polar solvent.

本願発明は、保護剤Aを保護剤Bに交換した金属ナノ粒子の沈殿物を回収し、得られたものを極性溶媒に分散した場合を含む。   The present invention includes a case where a precipitate of metal nanoparticles obtained by exchanging the protective agent A with the protective agent B is collected, and the resultant is dispersed in a polar solvent.

本願発明は、保護剤Aがアミノ基、カルボン酸塩基、そしてアミド基から選ばれた少なくとも1つ以上の官能基を有している場合や、保護剤Bがメルカプト基からなる金属ナノ粒子と親和性を示す官能基と、カルボン酸塩基そしてヒドロキシル基から選ばれた少なくとも1種の溶媒と親和性の高い官能基を有している場合や、金属イオンの金属が金、銀、白金、パラジウム、ロジウム、ルテニウム、銅、そしてインジウムから選ばれる少なくとも1種である場合や、金属イオンの金属が銀と銅の組合せからなる場合を含んでいる。   In the present invention, when the protective agent A has at least one functional group selected from an amino group, a carboxylate group, and an amide group, the protective agent B has an affinity for metal nanoparticles having a mercapto group. Having a functional group having a high affinity with at least one solvent selected from a carboxylate group and a hydroxyl group, or a metal ion metal is gold, silver, platinum, palladium, This includes the case where at least one selected from rhodium, ruthenium, copper and indium, and the case where the metal ion metal is a combination of silver and copper.

本願発明によれば、極性溶媒中に高濃度に分散させた金属ナノ粒子の保護コロイドの交換を極性溶媒中で行い、このように交換した保護コロイドで保護した金属ナノ粒子のみを沈殿物として回収し、これを極性溶媒に再分散させることで極性溶媒に高濃度に分散した金属ナノ粒子を得ることができる。   According to the present invention, the protective colloid of the metal nanoparticles dispersed at a high concentration in the polar solvent is exchanged in the polar solvent, and only the metal nanoparticles protected by the exchanged protective colloid are recovered as a precipitate. Then, by redispersing it in a polar solvent, metal nanoparticles dispersed at a high concentration in the polar solvent can be obtained.

本発明では、最初に少なくとも1種の金属イオンと、主鎖および/または側鎖に金属ナノ粒子と親和性を示す官能基を有する保護剤Aとを混合した溶液に、還元剤を滴下して保護剤Aで保護した金属ナノ粒子集合体を沈降させて回収し、該金属ナノ粒子集合体を非極性溶媒に溶解して得た、保護剤Aで保護した金属ナノ粒子/非極性溶媒分散液を用意する。   In the present invention, first, a reducing agent is dropped into a solution in which at least one metal ion and a protective agent A having a functional group having affinity for metal nanoparticles in the main chain and / or side chain are mixed. Metal nanoparticles / nonpolar solvent dispersion protected with protective agent A, obtained by precipitating and collecting metal nanoparticle aggregates protected with protective agent A and dissolving the metal nanoparticle aggregates in a nonpolar solvent Prepare.

上記少なくとも1種の金属イオンは、溶媒に可溶性のある金属化合物であり、あるいはこの金属酸化物を溶解することで調製できるものである。該金属化合物は特に限定されず、例えば塩化金酸/またはその塩、硝酸銀、塩化銀、酢酸銀、塩化白金酸/またはその塩、塩化パラジウム、硝酸パラジウム、酢酸パラジウム、硝酸パラジウム/またはその塩、塩化銅(2)、硝酸銅(2)、酢酸銅(2)等が挙げられる。   The at least one metal ion is a metal compound that is soluble in a solvent, or can be prepared by dissolving the metal oxide. The metal compound is not particularly limited. For example, chloroauric acid / or salt thereof, silver nitrate, silver chloride, silver acetate, chloroplatinic acid / or salt thereof, palladium chloride, palladium nitrate, palladium acetate, palladium nitrate / or salt thereof, Examples include copper chloride (2), copper nitrate (2), and copper acetate (2).

金属イオンとしては特に限定されず、例えば金、銀、白金、パラジウム、ロジウム、ルテニウム、銅、そしてインジウム等を挙げることができる。無論、これらの金属を組合せることもできる。   The metal ion is not particularly limited, and examples thereof include gold, silver, platinum, palladium, rhodium, ruthenium, copper, and indium. Of course, these metals can also be combined.

上記金属イオン溶液の濃度は、溶媒に溶解可能な範囲であれば特に限定されず、好ましくは100mM以上である。100mM未満であると、十分高濃度の金属ナノ粒子が連続して得られないため、好ましくない。   The concentration of the metal ion solution is not particularly limited as long as it can be dissolved in a solvent, and is preferably 100 mM or more. If it is less than 100 mM, a sufficiently high concentration of metal nanoparticles cannot be obtained continuously, such being undesirable.

上記金属イオン溶液は2種類以上の金属イオンを含有することが可能であり、異種の金属イオンを同時に還元することで合金若しくは2種類以上の金属が1粒子中に局在化した多元系金属ナノ粒子を得ることができ、例えば銀イオンと銅イオンの組合せや、銀イオンとインジウムイオンとの組合せがある。   The metal ion solution can contain two or more kinds of metal ions, and an alloy or multi-component metal nano-particles in which two or more kinds of metals are localized in one particle by simultaneously reducing different kinds of metal ions. Particles can be obtained, for example, a combination of silver ions and copper ions, or a combination of silver ions and indium ions.

保護剤Aは、主鎖および/または側鎖に金属ナノ粒子と親和性を示す官能基を有するものであり、この官能基としてはアミノ基、カルボン酸塩基、そしてアミド基から選ばれた少なくとも1つ以上である。具体的には、ブチルアミン、オクチルアミン、ドデシルアミン、オクタデシルアミン、アミノドデカン、ココアミン、ステアリルアミン、ジステアリルアミン、トリオクチルアミン、オレイン酸アミド、ステアリン酸アミド、ヘキサン酸、オクタン酸、デカン酸、ヘキサデカン酸、ナフテン酸などを挙げることができる。   The protective agent A has a functional group having an affinity for metal nanoparticles in the main chain and / or side chain, and the functional group is at least one selected from an amino group, a carboxylate group, and an amide group. More than one. Specifically, butylamine, octylamine, dodecylamine, octadecylamine, aminododecane, cocoamine, stearylamine, distearylamine, trioctylamine, oleic acid amide, stearic acid amide, hexanoic acid, octanoic acid, decanoic acid, hexadecane Examples thereof include acid and naphthenic acid.

上記還元剤としては、溶媒に溶解した還元剤含有溶液を使用するもので、例えば水素化ホウ素ナトリウム、ヒドラジン化合物、クエン酸又はその塩、コハク酸又はその塩、アスコルビン酸又はその塩、ホスフィン酸又はその塩、酒石酸/またはその塩等を使用することができる。   As the reducing agent, a reducing agent-containing solution dissolved in a solvent is used. For example, sodium borohydride, hydrazine compound, citric acid or a salt thereof, succinic acid or a salt thereof, ascorbic acid or a salt thereof, phosphinic acid or Its salt, tartaric acid / or its salt, etc. can be used.

上記還元剤含有溶液の濃度は、溶媒に溶解可能な範囲であれば特に限定されず、好ましくは金属イオンモル濃度に対し0.1倍以上である。0.1倍未満であると、金属イオン含有溶液の滴下量に比べ多量の還元剤含有溶液が必要となり、工業的に不利なため好ましくない。   The concentration of the reducing agent-containing solution is not particularly limited as long as it can be dissolved in a solvent, and is preferably 0.1 times or more the metal ion molar concentration. If it is less than 0.1 times, a larger amount of reducing agent-containing solution is required than the amount of the metal ion-containing solution added, which is not preferable because it is industrially disadvantageous.

上記還元剤含有溶液の滴下速度は、反応器内の金属イオン濃度に対し0.1〜30倍になるように設定することが好ましい。0.1倍未満になると、金属イオンの還元速度が遅くなり、連続生産性が低下する。一方30倍を超えると、金属イオンの還元速度が速くなりすぎるため、金属ナノ粒子間の凝集が進み、均一に分散した金属ナノ粒子が得られない。より好ましくは、0.5〜20倍である。   The dropping rate of the reducing agent-containing solution is preferably set so as to be 0.1 to 30 times the metal ion concentration in the reactor. If it is less than 0.1 times, the reduction rate of the metal ions becomes slow, and the continuous productivity is lowered. On the other hand, if it exceeds 30 times, the reduction rate of the metal ions becomes too fast, so that aggregation between the metal nanoparticles proceeds and uniform dispersed metal nanoparticles cannot be obtained. More preferably, it is 0.5 to 20 times.

金属イオンと保護剤Aとを混合した溶液に、還元剤を滴下して金属に還元し、更に0.5〜3時間攪拌し、得られたろ過液をエバポレータで濃縮した液体を得る。この液体に溶媒を加えて沈澱物を生成させた後、吸引ろ過することによって保護剤Aで保護した金属ナノ粒子固形物を得た。そして、この金属ナノ粒子固形物を非極性溶媒に溶解して保護剤Aで保護した金属ナノ粒子/非極性溶媒分散液を得た。   A reducing agent is dropped into a solution in which metal ions and protective agent A are mixed to reduce it to metal, and the mixture is further stirred for 0.5 to 3 hours. A liquid obtained by concentrating the obtained filtrate with an evaporator is obtained. A solvent was added to this liquid to form a precipitate, followed by suction filtration to obtain a solid metal nanoparticle protected with the protective agent A. And this metal nanoparticle solid substance was melt | dissolved in the nonpolar solvent, and the metal nanoparticle / nonpolar solvent dispersion liquid protected with the protective agent A was obtained.

ここで使用する非極性溶媒としては、トルエン、へキサン、シクロヘキサン、ヘプタン、シクロヘプタン、オクタン、デカン、ウンデカン、ドデカン、トリデカン、トリメチルペンタン、ベンゼン、キシレン等を挙げることができる。非極性溶媒は単一、/または複数のものを混合して用いることができる。   Examples of the nonpolar solvent used here include toluene, hexane, cyclohexane, heptane, cycloheptane, octane, decane, undecane, dodecane, tridecane, trimethylpentane, benzene, xylene and the like. A nonpolar solvent can be used singly or in combination.

また別に、保護剤Bを極性溶媒に溶解して得た保護剤B/極性溶媒溶解液を用意する。   Separately, a protective agent B / polar solvent solution obtained by dissolving the protective agent B in a polar solvent is prepared.

ここで使用する保護剤Bは、主鎖および/または側鎖に金属ナノ粒子と親和性を示すメルカプト基等の官能基と、溶媒と親和性の高いカルボン酸塩基およびヒドロキシル基の少なくとも1種からなる官能基を備え、主鎖および/または側鎖に3〜50個の炭素数から構成されているもので、具体的にはメルカプトコハク酸、メルカプトプロパンジオール、チオサリチル酸等が挙げられる。   The protective agent B used here is composed of at least one of a functional group such as a mercapto group having affinity with the metal nanoparticles in the main chain and / or side chain, a carboxylate group having a high affinity for the solvent, and a hydroxyl group. The main chain and / or the side chain is composed of 3 to 50 carbon atoms, and specific examples include mercaptosuccinic acid, mercaptopropanediol, and thiosalicylic acid.

上記保護剤B中の主鎖及び/または側鎖の炭素数が3個未満であると、金属ナノ粒子の凝集を防止する能力が十分でなく、他方50個を超えると極性溶媒に溶解しないか、または金属ナノ粒子に配位吸着した後も沈降することなく、金属ナノ粒子/保護剤の複合体として溶媒中に分散安定状態を保つことになる。より好ましくは、5〜30個である。   If the number of carbons in the main chain and / or side chain in the protective agent B is less than 3, the ability to prevent the metal nanoparticles from aggregating is not sufficient, and if the number exceeds 50, does not dissolve in the polar solvent? Or, after being coordinated and adsorbed to the metal nanoparticles, the metal nanoparticle / protective agent composite is maintained in a dispersion stable state without being settled. More preferably, it is 5-30.

保護剤Bの添加量は金属ナノ粒子の固形物1に対して0.01〜100(重量比)であり、好ましくは0.1〜10である。0.01未満の場合には、保護剤の交換が全て行われないことになり沈澱量が少なく収率が低い。一方、100を越えると、保護剤の交換には充分な量であり過剰な保護剤Bが洗浄後の不純物として残る恐れがある。   The addition amount of the protective agent B is 0.01-100 (weight ratio) with respect to the solid 1 of a metal nanoparticle, Preferably it is 0.1-10. If it is less than 0.01, the replacement of the protective agent is not performed at all, and the amount of precipitation is small and the yield is low. On the other hand, if it exceeds 100, the amount is sufficient for replacement of the protective agent, and an excessive amount of the protective agent B may remain as an impurity after washing.

ここで使用する極性溶媒は、例えばメタノール、エタノール、イソプロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ペプタノール、α−テレピネオールなどのアルコール類、水、ジメチルフォルムアミド、酢酸エチル、1−メチル−2−ピロリドン、酢酸ブチル等を挙げることができる。極性溶媒は単一、または複数のものを混合して用いることができる。   The polar solvent used here is, for example, alcohols such as methanol, ethanol, isopropanol, butanol, pentanol, hexanol, cyclohexanol, peptanol, α-terpineol, water, dimethylformamide, ethyl acetate, 1-methyl-2- Examples include pyrrolidone and butyl acetate. The polar solvent can be used singly or in combination.

しかして、本発明では、上記保護剤Aで保護した金属ナノ粒子/非極性溶媒分散液と保護剤B/極性溶媒溶解液とを混合攪拌し、保護剤Aを保護剤Bに交換した金属ナノ粒子を沈澱物として回収する。これをモデル図によって説明する。   Therefore, in the present invention, the metal nanoparticle / nonpolar solvent dispersion liquid protected with the protective agent A and the protective agent B / polar solvent solution are mixed and stirred, and the metal nanoparticle obtained by exchanging the protective agent A with the protective agent B is mixed. The particles are recovered as a precipitate. This will be described with reference to a model diagram.

まず図1は、保護剤Aで保護された金属ナノ粒子を非極性溶媒に分散したモデル図であり、コロイド状分散した保護剤Aによって保護された金属ナノ粒子2が非極性溶媒1中に分散している。図2に示すように、この分散液とコロイド状分散した保護剤Bを含む極性溶媒とを混合攪拌すると、溶媒が極性と非極性の混合溶媒3になり、図3に示すように金属ナノ粒子と溶媒のどちらにも親和性の高い保護剤Bが金属ナノ粒子2にアタックして金属ナノ粒子2を保護する。そして、図4に示すように、保護剤Aは金属ナノ粒子2から遊離し、コロイド状分散した保護剤Bによって保護された金属ナノ粒子1の集合体は沈降する。これを回収して再度 極性溶媒に分散させることで高濃度に分散した金属ナノ粒子を製造することができる。   First, FIG. 1 is a model diagram in which metal nanoparticles protected with a protective agent A are dispersed in a nonpolar solvent. Metal nanoparticles 2 protected with a colloidally dispersed protective agent A are dispersed in a nonpolar solvent 1. is doing. As shown in FIG. 2, when this dispersion and a polar solvent containing colloidally dispersed protective agent B are mixed and stirred, the solvent becomes a mixed solvent 3 of polar and nonpolar properties, and metal nanoparticles as shown in FIG. The protective agent B having a high affinity for both the solvent and the solvent attacks the metal nanoparticles 2 to protect the metal nanoparticles 2. Then, as shown in FIG. 4, the protective agent A is released from the metal nanoparticles 2, and the aggregate of the metal nanoparticles 1 protected by the colloidally dispersed protective agent B settles. By recovering this and redispersing it in a polar solvent, metal nanoparticles dispersed at a high concentration can be produced.

以下、本発明を実施例に基づいて説明する。これらの例は単なる例示であって、本発明を何ら限定するものではない。   Hereinafter, the present invention will be described based on examples. These examples are merely illustrative and do not limit the present invention in any way.

実施例1
酢酸銅3.27g、酢酸銀27.0g、ナフテン酸146g、オクチルアミン140gにイソオクタン0.7Lを加え、室温で攪拌し溶解させた。この混合溶液に攪拌し、0.1モル/Lの水素化ホウ素ナトリウムを含むプロパノール溶液0.7Lを20分で滴下し、銅および銀を還元した。更に、1時間攪拌して、ろ過液をエバポレータで濃縮し、黒色の液体を得た。この液体にメタノール1Lを加えて褐色の沈殿物を生成させた後、吸引ろ過により銅7atom%、有機分40wt%の有機分とナノ粒子とからなる銅銀合金ナノ粒子固形物を得た。収率は92%であった。
得られた固形物を透過型電子顕微鏡によって観察すると、平均粒径3nmのナノ粒子が生成していることが確認された。反応溶媒濃度0.1モル/Lで銅銀合金ナノ粒子固形物を得た。
Example 1
0.7 L of isooctane was added to 3.27 g of copper acetate, 27.0 g of silver acetate, 146 g of naphthenic acid, and 140 g of octylamine, and the mixture was stirred and dissolved at room temperature. The mixed solution was stirred, and 0.7 L of a propanol solution containing 0.1 mol / L sodium borohydride was added dropwise over 20 minutes to reduce copper and silver. Furthermore, it stirred for 1 hour and concentrated the filtrate with the evaporator and obtained the black liquid. 1 L of methanol was added to this liquid to produce a brown precipitate, and then a copper silver alloy nanoparticle solid consisting of 7 atom% copper, 40 wt% organic content and nanoparticles was obtained by suction filtration. The yield was 92%.
When the obtained solid was observed with a transmission electron microscope, it was confirmed that nanoparticles with an average particle diameter of 3 nm were generated. A copper silver alloy nanoparticle solid was obtained at a reaction solvent concentration of 0.1 mol / L.

上記ナフテン酸とオクチルアミンで保護した銅銀ナノ粒子8.26g(金属濃度61wt%)をイソオクタン20mLに溶解させ、銅銀ナノ粒子を分散したイソオクタン溶液(第1液)を作製した。   8.26 g (metal concentration 61 wt%) of copper silver nanoparticles protected with naphthenic acid and octylamine was dissolved in 20 mL of isooctane to prepare an isooctane solution (first liquid) in which the copper silver nanoparticles were dispersed.

そして、保護剤Bとしてメルカプトコハク酸3.45gを極性溶媒であるイソプロパノール0.9Lに溶解させ、メルカプトコハク酸イソプロパノール溶液(第2液)を作製した。   Then, 3.45 g of mercaptosuccinic acid as protective agent B was dissolved in 0.9 L of isopropanol, which is a polar solvent, to prepare a mercaptosuccinic acid isopropanol solution (second liquid).

メルカプトコハク酸イソプロパノール溶液(第2液)に銅銀ナノ粒子を分散したイソオクタン溶液(第1液)を添加し、一晩攪拌混合後吸引ろ過し、沈殿物を回収した。回収した沈殿物にメタノールを添加した後、吸引ろ過して黒色のろ液を得た。該ろ液を濃縮、乾燥し、黒色の固形物6.2gを得た。固形物の金属濃度は58wt%であった。   An isooctane solution (first solution) in which copper silver nanoparticles were dispersed was added to a mercaptosuccinic acid isopropanol solution (second solution), and the mixture was stirred and mixed overnight, followed by suction filtration to collect a precipitate. Methanol was added to the collected precipitate, and suction filtration was performed to obtain a black filtrate. The filtrate was concentrated and dried to obtain 6.2 g of a black solid. The metal concentration of the solid was 58 wt%.

得られた黒色の固形物はエチルカルビトールに分散して最終物を得た。この最終物の金属濃度は9wt%であった。上記沈澱物を卓上型蛍光X線装置にて組成を計測すると、沈殿物から硫黄、銅、銀が定性でき、硫黄24atom%、銅0.3atom%、銀76atom%の割合であった。   The resulting black solid was dispersed in ethyl carbitol to obtain the final product. The metal concentration of this final product was 9 wt%. When the composition of the precipitate was measured with a desktop fluorescent X-ray apparatus, sulfur, copper, and silver could be qualitatively determined from the precipitate, and the ratios were 24 atom% sulfur, 0.3 atom% copper, and 76 atom% silver.

実施例2
実施例1において、保護剤Bとしてメルカプトコハク酸3.45gを極性溶媒であるイソプロパノール0.9Lに溶解させ、メルカプトコハク酸イソプロパノール溶液(第2液)を作製する工程があるが、本実施例では保護剤Bであるメルカプトコハク酸を極性溶媒である他のエタノールに溶解させた。これ以外は実施例1と同様にして黒色の固形物を得た。得られた黒色の固形物はエチルカルビトールに分散して最終物を得た。この最終物の金属濃度は12wt%であった。上記沈澱物を卓上型蛍光X線装置にて組成を計測すると、沈殿物から硫黄、銅、銀が定性でき、硫黄24atom%、銅0.3atom%、銀76atom%の割合であった。
Example 2
In Example 1, as a protective agent B, there is a step of dissolving 3.45 g of mercaptosuccinic acid in 0.9 L of polar solvent isopropanol to prepare a mercaptosuccinic acid isopropanol solution (second liquid). In this example, Mercaptosuccinic acid as the protective agent B was dissolved in another ethanol as a polar solvent. Otherwise, a black solid was obtained in the same manner as in Example 1. The resulting black solid was dispersed in ethyl carbitol to obtain the final product. The metal concentration of this final product was 12 wt%. When the composition of the precipitate was measured with a desktop fluorescent X-ray apparatus, sulfur, copper, and silver could be qualitatively determined from the precipitate, and the ratios were 24 atom% sulfur, 0.3 atom% copper, and 76 atom% silver.

実施例3
実施例1において、保護剤Bとしてメルカプトコハク酸3.45gを極性溶媒であるイソプロパノール0.9Lに溶解させ、メルカプトコハク酸イソプロパノール溶液(第2液)を作製する工程があるが、本実施例ではメルカプトコハク酸をメルカプトプロパンジオールにした以外は実施例1と同様にして赤色の固形物を得た。得られた赤色の固形物は水に分散して最終物を得た。この最終物の金属濃度は6wt%であった。上記沈澱物を卓上型蛍光X線装置にて組成を計測すると、沈殿物から硫黄、銅、銀が定性でき、硫黄18atom%、銅0.3atom%、銀81atom%の割合であった。
Example 3
In Example 1, as a protective agent B, there is a step of dissolving 3.45 g of mercaptosuccinic acid in 0.9 L of polar solvent isopropanol to prepare a mercaptosuccinic acid isopropanol solution (second liquid). In this example, A red solid was obtained in the same manner as in Example 1 except that mercaptosuccinic acid was changed to mercaptopropanediol. The obtained red solid was dispersed in water to obtain a final product. The metal concentration of this final product was 6 wt%. When the composition of the precipitate was measured with a desktop fluorescent X-ray apparatus, sulfur, copper, and silver could be qualitatively determined from the precipitate, and the ratios were 18 atom% sulfur, 0.3 atom% copper, and 81 atom% silver.

比較例1
実施例1と同様に、酢酸銅3.27g、酢酸銀27.0g、ナフテン酸146g、オクチルアミン140gにイソオクタン0.7Lを加え、室温で攪拌し溶解させた。この混合溶液に攪拌し、0.1モル/Lの水素化ホウ素ナトリウムを含むプロパノール溶液0.7Lを20分で滴下し、銅および銀を還元した。更に、1時間攪拌して、ろ過液をエバポレータで濃縮し、黒色の液体を得た。この液体にメタノール1Lを加えて褐色の沈殿物を生成させた後、吸引ろ過により銅7atom%、有機分40wt%の有機分とナノ粒子とからなる銅銀合金ナノ粒子固形物を得た。収率は92%であった。
Comparative Example 1
In the same manner as in Example 1, 0.7L of isooctane was added to 3.27 g of copper acetate, 27.0 g of silver acetate, 146 g of naphthenic acid, and 140 g of octylamine, and the mixture was stirred and dissolved at room temperature. The mixed solution was stirred, and 0.7 L of a propanol solution containing 0.1 mol / L sodium borohydride was added dropwise over 20 minutes to reduce copper and silver. Furthermore, it stirred for 1 hour and concentrated the filtrate with the evaporator and obtained the black liquid. 1 L of methanol was added to this liquid to produce a brown precipitate, and then a copper silver alloy nanoparticle solid consisting of 7 atom% copper, 40 wt% organic content and nanoparticles was obtained by suction filtration. The yield was 92%.

上記ナフテン酸とオクチルアミンで保護した銅銀ナノ粒子8.26g(金属濃度61wt%)をイソオクタン20mLに溶解させ、銅銀ナノ粒子を分散したイソオクタン溶液(第1液)を作製した。   8.26 g (metal concentration 61 wt%) of copper silver nanoparticles protected with naphthenic acid and octylamine was dissolved in 20 mL of isooctane to prepare an isooctane solution (first liquid) in which the copper silver nanoparticles were dispersed.

そして、イソプロパノール溶液に銅銀ナノ粒子を分散したイソオクタン溶液(第1液)を添加して一晩攪拌混合後吸引ろ過し、沈殿物を回収した。回収した沈殿物にメタノールを添加した後、吸引ろ過して黒色のろ液を得た。該ろ液を濃縮、乾燥して固形物を得た。得られた固形物はエチルカルビトールに分散しなかった。   And the isooctane solution (1st liquid) which disperse | distributed the copper silver nanoparticle to the isopropanol solution was added, and it stirred and mixed overnight, and suction-filtered, and collect | recovered deposits. Methanol was added to the collected precipitate, and suction filtration was performed to obtain a black filtrate. The filtrate was concentrated and dried to obtain a solid. The obtained solid was not dispersed in ethyl carbitol.

比較例2
硫酸銅(2)五水和物 0.012g、硝酸銀 0.076g、メルカプトコハク酸0.37gにイソプロパノール 50mLを加え、室温で攪拌し、溶解させた。この混合溶液を攪拌し、0.1モル/L水素化ホウ素ナトリウムを含むイソプロパノール溶液5mLを20分で滴下し、銅および銀を還元したところ、黒色の沈殿物が生成した。しかし、回収した沈殿物は水やエタノールなどのアルコールに分散せず、極性溶媒に分散することができなかった。
Comparative Example 2
50 mL of isopropanol was added to 0.012 g of copper sulfate (2) pentahydrate, 0.076 g of silver nitrate, and 0.37 g of mercaptosuccinic acid, and the mixture was stirred and dissolved at room temperature. The mixed solution was stirred, and 5 mL of an isopropanol solution containing 0.1 mol / L sodium borohydride was added dropwise over 20 minutes to reduce copper and silver. As a result, a black precipitate was formed. However, the collected precipitate was not dispersed in alcohol such as water or ethanol, and could not be dispersed in a polar solvent.

本発明に係る極性溶媒に分散した金属ナノ粒子の製造方法によれば、極性溶媒に高濃度に分散した金属ナノ粒子を高価な設備を必要とせず簡便且つ安価に連続して得ることができ、金属ナノ粒子のペーストを用いて電気抵抗値の低い基板を製造することができる。   According to the method for producing metal nanoparticles dispersed in a polar solvent according to the present invention, metal nanoparticles dispersed in a high concentration in a polar solvent can be obtained easily and inexpensively without requiring expensive equipment, A substrate having a low electrical resistance value can be manufactured using a paste of metal nanoparticles.

保護剤Aで保護された金属ナノ粒子を非極性溶媒に分散したモデル図である。It is a model figure which disperse | distributed the metal nanoparticle protected with the protective agent A to the nonpolar solvent. 金属ナノ粒子の非極性溶媒分散液と保護剤Bを含む極性溶媒とを混合させた初期状態を示すモデル図である。It is a model figure which shows the initial state which mixed the nonpolar solvent dispersion liquid of the metal nanoparticle, and the polar solvent containing the protective agent B. 保護剤Aから保護剤Bに交換した状態を示すモデル図である。It is a model figure which shows the state exchanged to the protective agent B from the protective agent A. 保護剤Bによって保護された金属ナノ粒子が沈降している状態のモデル図を示す。The model figure of the state which the metal nanoparticle protected by the protective agent B has settled is shown.

符号の説明Explanation of symbols

1 非極性溶媒
2 金属ナノ粒子
3 混合溶媒
1 Nonpolar solvent 2 Metal nanoparticles 3 Mixed solvent

Claims (6)

少なくとも1種の金属イオンと、主鎖および/または側鎖に金属ナノ粒子と親和性を示す官能基を有する保護剤Aとを混合した溶液に、還元剤を滴下して保護剤Aで保護した金属ナノ粒子集合体を沈降させて回収し、該金属ナノ粒子集合体を非極性溶媒に溶解して得た、保護剤Aで保護した金属ナノ粒子/非極性溶媒分散液と、
主鎖および/または側鎖に金属ナノ粒子と親和性を示す官能基とともに溶媒と親和性の高い官能基を有する保護剤Bを極性溶媒に溶解して得た、保護剤B/極性溶媒溶解液とを用意し、
上記保護剤Aで保護した金属ナノ粒子/非極性溶媒分散液と保護剤B/極性溶媒溶解液とを混合攪拌し、保護剤Aを保護剤Bに交換した金属ナノ粒子を沈澱物として回収する、
ことを特徴とする極性溶媒に分散した金属ナノ粒子の製造方法。
A reducing agent was dropped into a solution in which at least one metal ion and a protective agent A having a functional group having an affinity for metal nanoparticles in the main chain and / or side chain were mixed, and the protective agent A was protected. A metal nanoparticle aggregate / nonpolar solvent dispersion obtained by precipitating and recovering the metal nanoparticle aggregate, and dissolving the metal nanoparticle aggregate in a nonpolar solvent;
Protective agent B / polar solvent solution obtained by dissolving, in a polar solvent, protective agent B having a functional group having a high affinity with the solvent together with a functional group having affinity for metal nanoparticles in the main chain and / or side chain And prepare
The metal nanoparticles / nonpolar solvent dispersion liquid protected with the protective agent A and the protective agent B / polar solvent solution are mixed and stirred, and the metal nanoparticles obtained by exchanging the protective agent A with the protective agent B are recovered as precipitates. ,
A method for producing metal nanoparticles dispersed in a polar solvent.
保護剤Aを保護剤Bに交換した金属ナノ粒子の沈殿物を回収し、得られたものを極性溶媒に分散した請求項1記載の極性溶媒に分散した金属ナノ粒子の製造方法。   The method for producing metal nanoparticles dispersed in a polar solvent according to claim 1, wherein the precipitate of the metal nanoparticles obtained by exchanging the protective agent A with the protective agent B is collected, and the obtained precipitate is dispersed in the polar solvent. 保護剤Aは、アミノ基、カルボン酸塩基、そしてアミド基から選ばれた少なくとも1つ以上の官能基を有している請求項1記載の極性溶媒に分散した金属ナノ粒子の製造方法。   The method for producing metal nanoparticles dispersed in a polar solvent according to claim 1, wherein the protective agent A has at least one functional group selected from an amino group, a carboxylate group, and an amide group. 保護剤Bは、メルカプト基からなる金属ナノ粒子と親和性を示す官能基と、カルボン酸塩基そしてヒドロキシル基から選ばれた少なくとも1種の溶媒と親和性の高い官能基
を有している請求項1記載の極性溶媒に分散した金属ナノ粒子の製造方法。
The protective agent B has a functional group having an affinity for metal nanoparticles composed of a mercapto group, and a functional group having a high affinity for at least one solvent selected from a carboxylate group and a hydroxyl group. A method for producing metal nanoparticles dispersed in a polar solvent according to 1.
金属イオンの金属は、金、銀、白金、パラジウム、ロジウム、ルテニウム、銅、そしてインジウムから選ばれる少なくとも1種である請求項1乃至4記載の何れかに記載の極性溶媒に分散した金属ナノ粒子の製造方法。   The metal nanoparticle dispersed in the polar solvent according to any one of claims 1 to 4, wherein the metal of the metal ion is at least one selected from gold, silver, platinum, palladium, rhodium, ruthenium, copper, and indium. Manufacturing method. 金属イオンの金属は、銀と銅の組合せからなる請求項5記載の極性溶媒に分散した金属ナノ粒子の製造方法。
6. The method for producing metal nanoparticles dispersed in a polar solvent according to claim 5, wherein the metal of the metal ion is a combination of silver and copper.
JP2004274488A 2004-09-22 2004-09-22 Method for producing metallic nano-particle dispersed in polar solvent Pending JP2006089786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004274488A JP2006089786A (en) 2004-09-22 2004-09-22 Method for producing metallic nano-particle dispersed in polar solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004274488A JP2006089786A (en) 2004-09-22 2004-09-22 Method for producing metallic nano-particle dispersed in polar solvent

Publications (1)

Publication Number Publication Date
JP2006089786A true JP2006089786A (en) 2006-04-06

Family

ID=36231042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004274488A Pending JP2006089786A (en) 2004-09-22 2004-09-22 Method for producing metallic nano-particle dispersed in polar solvent

Country Status (1)

Country Link
JP (1) JP2006089786A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095194A (en) * 2006-10-05 2008-04-24 Xerox Corp Silver-containing nanoparticle with replacement stabilizer, process for fabricating electronic device, and thin film transistor
WO2008149870A1 (en) 2007-05-30 2008-12-11 Dowa Electronics Materials Co., Ltd. Method for production of silver fine powder covered with organic substance, and silver fine powder
JP2009116452A (en) * 2007-11-02 2009-05-28 Toyo Ink Mfg Co Ltd Method for manufacturing conductive substrate for touch panel and touch panel equipped with this substrate
JP2009158129A (en) * 2007-12-25 2009-07-16 Dowa Electronics Materials Co Ltd Manufacturing method of silver conductive film
WO2009087919A1 (en) 2008-01-06 2009-07-16 Dowa Electronics Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
JP2009292896A (en) * 2008-06-03 2009-12-17 Denso Corp Nanoparticle composite and heat transport fluid
JP2010065267A (en) * 2008-09-10 2010-03-25 Tohoku Univ Method for producing aqueous solvent-dispersible silver fine powder
JP2010275609A (en) * 2009-05-29 2010-12-09 Fuji Electric Holdings Co Ltd Surface treatment method for particle and particle
JP2011032509A (en) * 2009-07-30 2011-02-17 Dowa Electronics Materials Co Ltd Metal nanoparticle-dispersed solution
JP2011038128A (en) * 2009-08-06 2011-02-24 Dowa Electronics Materials Co Ltd Metal nanoparticle dispersion, method for producing the same, metal nanoparticle aggregate, and method for producing the same
JP2011038134A (en) * 2009-08-07 2011-02-24 Harima Chemicals Inc Method for producing metal powder, and metal powder produced by the method
JP2011195951A (en) * 2010-03-23 2011-10-06 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, ink composition using the same, and method for producing the composition
JP2013504692A (en) * 2009-09-14 2013-02-07 ハンファ ケミカル コーポレーション Method for producing water-soluble nanoparticles and dispersion thereof
WO2013146509A1 (en) * 2012-03-26 2013-10-03 富士フイルム株式会社 Method for producing metal nanowire dispersed liquid, metal nanowire dispersed liquid, conductive member which is formed using metal nanowire dispersed liquid, touch panel using conductive member which is formed using metal nanowire dispersed liquid, and solar cell
JP2014055332A (en) * 2012-09-13 2014-03-27 Nippon Handa Kk Production method of heating sinterability metal microparticle, pasty metal microparticle composition, solid shape metal or production method of solid shape metal alloy, joint method of metal made member subject, production method of print circuit board, and production method of electric circuit connection bump
JP2014111800A (en) * 2012-12-05 2014-06-19 Nippon Handa Kk Pasty metal particulate composition, method for manufacturing solid metal or solid metal alloy, method for joining metallic members, method for manufacturing print wire board, and method for manufacturing bump for connecting electric circuits
US8916068B2 (en) 2008-01-06 2014-12-23 Dowa Electronics Materials Co., Ltd. Silver micropowder, silver ink, silver coating, and methods for production of these materials
CN104607657A (en) * 2015-03-06 2015-05-13 中国科学院上海硅酸盐研究所 Copper-silver double-metal nanowire and preparation method thereof
CN107492421A (en) * 2016-06-12 2017-12-19 中国科学院上海硅酸盐研究所 A kind of processing method of copper nano-wire electric conductor
CN113996799A (en) * 2021-10-08 2022-02-01 郑州工程技术学院 Preparation method of copper nano material

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504374A (en) * 1995-12-28 2000-04-11 アール. ヒース,ジェイムズ Monodisperse microcrystals of organically functionalized metals
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
WO2001070435A1 (en) * 2000-03-22 2001-09-27 Ebara Corporation Ultra fine composite metal particles
WO2002013999A1 (en) * 2000-08-11 2002-02-21 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same, and coating material containing the same
JP2002317215A (en) * 2001-04-19 2002-10-31 Mitsuboshi Belting Ltd Method for producing metallic fine particle
WO2002094953A1 (en) * 2001-05-21 2002-11-28 Nippon Paint Co., Ltd. Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition
JP2003013117A (en) * 2001-07-03 2003-01-15 Fuji Photo Film Co Ltd Liquid-phase synthesis method for metal or metal- chalcogen nanoparticle, and phase-change photorecording medium using the nanoparticle
JP2003147417A (en) * 2001-11-02 2003-05-21 Japan Science & Technology Corp Nano-size metal particles and method for manufacturing the same
JP2003193118A (en) * 2001-12-28 2003-07-09 Mitsuboshi Belting Ltd Method of producing metallic fine particle
JP2004232012A (en) * 2003-01-29 2004-08-19 Fuji Photo Film Co Ltd Method for producing high-concentration metal microparticle dispersion

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000504374A (en) * 1995-12-28 2000-04-11 アール. ヒース,ジェイムズ Monodisperse microcrystals of organically functionalized metals
WO2000076699A1 (en) * 1999-06-15 2000-12-21 Kimoto, Masaaki Ultrafine composite metal powder and method for producing the same
WO2001070435A1 (en) * 2000-03-22 2001-09-27 Ebara Corporation Ultra fine composite metal particles
WO2002013999A1 (en) * 2000-08-11 2002-02-21 Ishihara Sangyo Kaisha, Ltd. Colloidal metal solution, process for producing the same, and coating material containing the same
JP2002317215A (en) * 2001-04-19 2002-10-31 Mitsuboshi Belting Ltd Method for producing metallic fine particle
WO2002094953A1 (en) * 2001-05-21 2002-11-28 Nippon Paint Co., Ltd. Colloidal alcohol solution of noble metal or copper, process for producing the same, and coating composition
JP2003013117A (en) * 2001-07-03 2003-01-15 Fuji Photo Film Co Ltd Liquid-phase synthesis method for metal or metal- chalcogen nanoparticle, and phase-change photorecording medium using the nanoparticle
JP2003147417A (en) * 2001-11-02 2003-05-21 Japan Science & Technology Corp Nano-size metal particles and method for manufacturing the same
JP2003193118A (en) * 2001-12-28 2003-07-09 Mitsuboshi Belting Ltd Method of producing metallic fine particle
JP2004232012A (en) * 2003-01-29 2004-08-19 Fuji Photo Film Co Ltd Method for producing high-concentration metal microparticle dispersion

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379195B1 (en) * 2006-10-05 2014-03-31 제록스 코포레이션 Silver-containing nanoparticles with replacement stabilizer
EP1916671A2 (en) 2006-10-05 2008-04-30 Xerox Corporation Silver-containing nanoparticles with replacement stabilizer
US7919015B2 (en) 2006-10-05 2011-04-05 Xerox Corporation Silver-containing nanoparticles with replacement stabilizer
JP2008095194A (en) * 2006-10-05 2008-04-24 Xerox Corp Silver-containing nanoparticle with replacement stabilizer, process for fabricating electronic device, and thin film transistor
EP1916671A3 (en) * 2006-10-05 2009-08-12 Xerox Corporation Silver-containing nanoparticles with replacement stabilizer
WO2008149870A1 (en) 2007-05-30 2008-12-11 Dowa Electronics Materials Co., Ltd. Method for production of silver fine powder covered with organic substance, and silver fine powder
US8420165B2 (en) 2007-05-30 2013-04-16 Dowa Electronics Materials Co., Ltd. Method for production of silver fine powder covered with organic substance, and silver fine powder
JP2009116452A (en) * 2007-11-02 2009-05-28 Toyo Ink Mfg Co Ltd Method for manufacturing conductive substrate for touch panel and touch panel equipped with this substrate
JP2009158129A (en) * 2007-12-25 2009-07-16 Dowa Electronics Materials Co Ltd Manufacturing method of silver conductive film
US8916068B2 (en) 2008-01-06 2014-12-23 Dowa Electronics Materials Co., Ltd. Silver micropowder, silver ink, silver coating, and methods for production of these materials
US8486307B2 (en) 2008-01-06 2013-07-16 Dowa Electroncis Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
WO2009087919A1 (en) 2008-01-06 2009-07-16 Dowa Electronics Materials Co., Ltd. Silver micropowder having excellent affinity for polar medium, and silver ink
JP2009292896A (en) * 2008-06-03 2009-12-17 Denso Corp Nanoparticle composite and heat transport fluid
JP2010065267A (en) * 2008-09-10 2010-03-25 Tohoku Univ Method for producing aqueous solvent-dispersible silver fine powder
JP2010275609A (en) * 2009-05-29 2010-12-09 Fuji Electric Holdings Co Ltd Surface treatment method for particle and particle
JP2011032509A (en) * 2009-07-30 2011-02-17 Dowa Electronics Materials Co Ltd Metal nanoparticle-dispersed solution
JP2011038128A (en) * 2009-08-06 2011-02-24 Dowa Electronics Materials Co Ltd Metal nanoparticle dispersion, method for producing the same, metal nanoparticle aggregate, and method for producing the same
JP2011038134A (en) * 2009-08-07 2011-02-24 Harima Chemicals Inc Method for producing metal powder, and metal powder produced by the method
JP2013504692A (en) * 2009-09-14 2013-02-07 ハンファ ケミカル コーポレーション Method for producing water-soluble nanoparticles and dispersion thereof
JP2011195951A (en) * 2010-03-23 2011-10-06 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, ink composition using the same, and method for producing the composition
US8728350B2 (en) 2010-03-23 2014-05-20 Samsung Electro-Mechanics Co., Ltd. Method for producing metal nanoparticles, ink composition using the same and method for producing the same
WO2013146509A1 (en) * 2012-03-26 2013-10-03 富士フイルム株式会社 Method for producing metal nanowire dispersed liquid, metal nanowire dispersed liquid, conductive member which is formed using metal nanowire dispersed liquid, touch panel using conductive member which is formed using metal nanowire dispersed liquid, and solar cell
JP2014055332A (en) * 2012-09-13 2014-03-27 Nippon Handa Kk Production method of heating sinterability metal microparticle, pasty metal microparticle composition, solid shape metal or production method of solid shape metal alloy, joint method of metal made member subject, production method of print circuit board, and production method of electric circuit connection bump
JP2014111800A (en) * 2012-12-05 2014-06-19 Nippon Handa Kk Pasty metal particulate composition, method for manufacturing solid metal or solid metal alloy, method for joining metallic members, method for manufacturing print wire board, and method for manufacturing bump for connecting electric circuits
CN104607657A (en) * 2015-03-06 2015-05-13 中国科学院上海硅酸盐研究所 Copper-silver double-metal nanowire and preparation method thereof
CN107492421A (en) * 2016-06-12 2017-12-19 中国科学院上海硅酸盐研究所 A kind of processing method of copper nano-wire electric conductor
CN107492421B (en) * 2016-06-12 2019-03-19 中国科学院上海硅酸盐研究所 A kind of processing method of copper nano-wire electric conductor
CN113996799A (en) * 2021-10-08 2022-02-01 郑州工程技术学院 Preparation method of copper nano material
CN113996799B (en) * 2021-10-08 2024-02-02 郑州工程技术学院 Preparation method of copper nanomaterial

Similar Documents

Publication Publication Date Title
JP2006089786A (en) Method for producing metallic nano-particle dispersed in polar solvent
KR101004553B1 (en) Micro Silver Particle-Containing Composition, Method for Producing It, Method for Producing Micro Silver Particle
US8529963B2 (en) Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
JP2005220435A (en) Method of producing metal nanoparticle and dispersion of metal nanoparticle
US9539643B2 (en) Making metal and bimetal nanostructures with controlled morphology
US10226822B2 (en) Method for preparing metal nanoparticles using a multi-functional polymer and a reducing agent
Sun et al. Roughness-controlled copper nanowires and Cu nanowires–Ag heterostructures: synthesis and their enhanced catalysis
KR101541930B1 (en) Organoamine stabilized silver nanoparticles and process for producing same
KR20120115298A (en) Compositions and methods for growing copper nanowires
WO2004078641A1 (en) Metal nano-particles coated with silicon oxide and manufacturing method thereof
JP5059317B2 (en) Method for producing silver particles
JP2006213955A (en) Particle powder of silver and method for producing the same
US10464136B2 (en) Preparation method of copper nano-structures
KR101423563B1 (en) Sythesis of metal and metal oxide nanocrystals and nanoplate using polyethylenimine as a reducing agent and stabilizer
Sun et al. A green method for synthesis of silver nanodendrites
JP2006118010A (en) Ag NANOPARTICLE, METHOD FOR PRODUCING THE SAME AND DISPERSED SOLUTION OF Ag NANOPARTICLE
Huang et al. Synthesis of nanocrystalline and monodispersed copper particles of uniform spherical shape
JP2006022394A (en) Method for producing metallic copper fine particle
JP5540279B2 (en) Method for producing metal nanoparticles and method for producing metal nanoparticle dispersion solution
JP2006299329A (en) Method for producing metal nanoparticle
JP3607656B2 (en) Method for producing noble metal nanoparticles
KR20060116421A (en) Process for preparing nano-sized silver colloid in organic solvents
JP5210467B2 (en) Method for producing metal fine particle dispersion
JP2009191298A (en) Method for producing metal particulate-dispersed liquid
KR20080004796A (en) A process of manufacturing for cu nanoparticles using pre-dispersed na pastes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100608