JP2004191396A - 光送受信装置 - Google Patents

光送受信装置 Download PDF

Info

Publication number
JP2004191396A
JP2004191396A JP2002355413A JP2002355413A JP2004191396A JP 2004191396 A JP2004191396 A JP 2004191396A JP 2002355413 A JP2002355413 A JP 2002355413A JP 2002355413 A JP2002355413 A JP 2002355413A JP 2004191396 A JP2004191396 A JP 2004191396A
Authority
JP
Japan
Prior art keywords
optical
light emitting
light
integrated chip
circuit board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355413A
Other languages
English (en)
Inventor
Takeshi Ikeda
健 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002355413A priority Critical patent/JP2004191396A/ja
Priority to TW092132430A priority patent/TWI229509B/zh
Priority to CN200310118182.4A priority patent/CN1507065B/zh
Priority to US10/728,613 priority patent/US7430375B2/en
Publication of JP2004191396A publication Critical patent/JP2004191396A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

【課題】簡単な構造で一芯双方向通信を実現できる光送受信装置を提供する。
【解決手段】光集積チップ2は、発光素子と受光素子が同一チップ上に形成され、発光部6と受光部7が近接して設けられる。回路基板3には、光ファイバ4が挿入されるバイアホール5が貫通して設けられる。光集積チップ2は、バイアホール5に発光部6と受光部7が収まる位置で、回路基板3の裏面に取り付けられる。また、光ファイバは、回路基板3の表面からバイアホール5に挿入されて固定される。これにより、発光部6からの光が光ファイバ4に入射するとともに、光ファイバ4からの光が受光部7に入射する構成となり、一芯双方向通信が実現される。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバを用いて一芯双方向通信を行う光送受信装置に関する。詳しくは、回路基板に設けたバイアホールに光ファイバを挿入して固定するとともに、発光素子と受光素子を同一チップ上に形成した光集積チップをバイアホールに対向して取り付けることで、簡単な構造で一芯双方向通信を行えるようにしたものである。
【0002】
【従来の技術】
光ファイバを利用した光通信を行う装置には、電気信号を発光素子で光信号に変換して光ファイバへ出力し、また、光ファイバからの光信号を受光素子で電気信号に変換して出力する光送受信装置が設けられている。
【0003】
従来の光送受信装置の構成は、発光素子および受光素子がそれぞれ個別の金属製カンパッケージ上もしくはシリコンのサブマウント上に実装され、光ファイバと良好な光学結合が得られるように、個別に調芯、固定されているのが一般的である。
【0004】
また、発光素子から出射される送信用の光が通る光ファイバと外部から入ってくる受信用の光が通る光ファイバを同一のものにする方式、いわゆる一芯双方向方式においては、発光素子、受光素子の他に、光を集光するためのレンズ、光路を分離するためのビームスプリッタ等が必要であった(例えば、特許文献1参照。)。
【0005】
図21は従来の光送受信装置の構成例を示す平面図である。発光素子100から出射された送信光はレンズ101によって集光され、ビームスプリッタ102を透過し、光ファイバ103のコアの部分に入射して伝播する。また、外部から光ファイバ103を通って伝わってきた受信光は、ビームスプリッタ102によって反射して光路が送信光と分離され、受光素子104に入射して電気信号に変換される。
【0006】
【特許文献1】
特開平9−325245号公報
【0007】
【発明が解決しようとする課題】
しかしながら、従来の光送受信装置では、発光素子と受信素子毎に個別に光ファイバとの調芯・固定作業を必要とするため、組立工数が増大し、大幅なコストアップを招いていた。同様に、調芯・固定用の部材が多数必要となるため、部品点数が増大し、大幅なコストアップを招いていた。また、光ファイバを支持するV溝を持つシリコン製の基板、ガラス製レンズ等の高価な材質を用いた部品と、これら部品を得るための複雑な加工を必要とするため、部材費、加工費が増大し、大幅なコストアップを招いていた。
【0008】
また、一芯双方向通信を行うためには、送信側と受信側の光のクロストークの影響を軽減するために、光アイソレータが必要となり、部品点数増、部材コスト増につながっていた。また、光路を分離するための光学部品であるビームスプリッタが非常に高価であり、光送受信装置全体のコスト増につながっていた。
【0009】
さらに、発光素子と受光素子を実装する際に、両素子の実装位置には非常に高精度が要求されるため、その誤差を最小限にするために組立工数、特に調芯に要する工数が増大し、大幅なコストアップを招いていた。
【0010】
本発明はこのような課題を解決するためになされたもので、簡単な構造で一芯双方向通信を実現した低コストな光送受信装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上述した課題を解決するため、本発明に係る光送受信装置は、電気信号を光信号に変換する発光素子と光信号を電気信号に変換する受光素子を備え、光ファイバを用いて一芯双方向通信を行う光送受信装置において、発光素子と受光素子が同一チップ上に形成され、発光素子の発光部と受光素子の受光部が近接して設けられた光集積チップと、光ファイバが挿入されるバイアホールが貫通して設けられる回路基板とを備え、バイアホールに発光部と受光部が収まる位置で、光集積チップが回路基板の一方の面に取り付けられ、回路基板の他方の面から、バイアホールに光ファイバが挿入されて固定されたものである。
【0012】
この本発明に係る光送受信装置によれば、バイアホールに挿入されて固定される光ファイバの端面に、光集積チップの発光部および受光部が対向する。これにより、発光部から出射される送信光は光ファイバに入射するとともに、光ファイバからの受信光は受光部に入射する。したがって、単純な構造で、一芯双方向通信を実現することができる。
【0013】
また、本発明に係る光送受信装置は、電気信号を光信号に変換する発光素子と光信号を電気信号に変換する受光素子を備え、光ファイバを用いて一芯双方向通信を行う光送受信装置において、発光素子と受光素子が同一チップ上に形成され、発光素子の発光部と受光素子の受光部が近接して設けられた光集積チップと、光ファイバが挿入されるバイアホールが貫通して設けられる回路基板と、発光部からの光路と受光部への光路を分離する光学部品とを備え、バイアホールに発光部と受光部が収まる位置で、光集積チップが回路基板の一方の面に取り付けられ、回路基板の他方の面から、バイアホールに光ファイバが挿入されて固定され、光集積チップと光ファイバとの間のバイアホール内に光学部品が取り付けられ、発光部および受光部と光ファイバの端面との間に、送信光が通る第1の導波路と受信光が通る第2の導波路が形成されたものである。
【0014】
この本発明に係る光送受信装置によれば、バイアホールに挿入されて固定される光ファイバの端面に、第1の導波路を介して光集積チップの発光部が対向するとともに、第2の導波路を介して受光部が対向する。これにより、発光部から出射される送信光は第1の導波路を通って光ファイバに入射するとともに、光ファイバからの受信光は第2の導波路を通って受光部に入射する。したがって、送信光と受信光が分離しているので、単純な構造でクロストークを抑えて、全二重の一芯双方向通信を実現することができる。
【0015】
【発明の実施の形態】
以下、図面を参照して本発明の光送受信装置の実施の形態を説明する。図1は第1の実施の形態の光送受信装置の構成例を示す説明図で、図1(a)は側断面図、図1(b)は要部平面図である。また、図2は第1の実施の形態の光送受信装置の構成例を示す一部破断斜視図である。
【0016】
第1の実施の形態の光送受信装置1aは、発光素子と受光素子を同一チップ上に形成した光集積チップ2を回路基板3にフリップチップ実装するとともに、この光集積チップ2と光学的に結合する光ファイバ4を、回路基板3に設けたバイア(via)ホール5に挿入して固定したものである。
【0017】
図3は光集積チップ2の構成例を示す斜視図であり、まず、光集積チップ2の構成を説明する。光集積チップ2は、発光素子と受光素子を1チップ上に作り込んだもので、光集積チップ2の表面側に発光部6と受光部7が設けられる。発光部6は面発光素子であるVCSELで、この発光部6の周囲に受光部7が形成される。光集積チップ2のサイズは、例えば500×250μm程度である。
【0018】
ここで、光集積チップ2の製造は半導体製造プロセスを利用して行われるが、エピタキシャル成長法では、発光部6の周囲に不感帯8が形成される。この不感帯8を発光部6に対して偏芯した位置に形成することで、受光部7が発光部6に近接して配置される。なお、発光部6のサイズを例えば直径10μmで形成する場合、不感帯8は直径100μm程度、受光部7は内径120μm、外形170μm程度のサイズとする。このように、光集積チップ2を半導体製造プロセスを利用して形成することで、発光部6と受光部7を近接して、かつ、高い位置精度で配置することが可能となる。また、既存の半導体製造設備を利用できることから、高精度な光集積チップ2を低コストで製造することができる。
【0019】
光集積チップ2の表面には、受光部7のアノード電極7aとカソード電極7bが設けられる。また光集積チップ2の表面には、発光部6のアノード電極6aが設けられる。さらに光集積チップ2の裏面には、発光部6のカソード電極6bが設けられる。なお、各電極の配置は一例であり、発光部6のカソード電極をチップ表面側に形成してもよい。
【0020】
次に、この光集積チップ2が取り付けられる回路基板3等の構成について、図1および図2を参照して説明する。回路基板3は一般的なガラスエポキシ基板で、この回路基板3の裏面には、図3で説明したアノード電極6aおよび7aと、カソード電極7bと接続されるフリップチップ実装用の電極パッド9が設けられる。なお、図2では、一部の電極パッド9を表示してある。
【0021】
また回路基板3には、電極パッド9以外の回路パターンが作り込まれ、さらに、トランスインピーダンスアンプやリミッティングアンプ、もしくはそれらを集積したIC等の光学素子駆動用ICや受信用IC、その他、受動部品も実装される。
【0022】
そして、回路基板3は、外部からの電気信号を発光素子駆動用の信号に変換して、光集積チップ2へ送り出す機能を持つ。外部からの光信号(受信光)は、光集積チップ2の図示しない受光素子によって電気信号に変換され、回路基板3に入力される。回路基板3は、受信光による電気信号を後段のロジックに適合するような信号に変換する機能を持つ。
【0023】
光ファイバ4は、光が導波するコア部4aと、このコア部4aより屈折率が低いクラッド部4bから構成される。このクラッド部4bでコア部4aの周囲が覆われることで、コア部4aに光が閉じ込められる。ここで、本実施の形態では、光ファイバ4として、コア部4aの径が大きいマルチモードファイバが用いられる。そして、光集積チップ2の発光部6と受光部7は、それぞれの一部分、あるいは全部が、光ファイバ4のコア部4aの直径に収まる距離に設けられる。
【0024】
バイアホール5は回路基板3を貫通して設けられる。このバイアホール5は、例えばレーザ加工によって開けられる。ここで、バイアホール5の直径は、使用する光ファイバ4の直径に応じて100〜250μm程度となるが、レーザ加工により回路基板3に貫通孔を開けることで、バイアホール5は、光ファイバ4に対するクリアランスが直径で±20〜30μm(半径で10〜15μm)程度に設定される。このように、レーザ加工を用いて回路基板3に貫通孔を開けることで、光ファイバ4の径に対して高い寸法精度を持ったバイアホール5を形成することができる。
【0025】
回路基板3の裏面においては、バイアホール5の周囲の所定の位置に電極パッド9が配置される。これにより、回路基板3に光集積チップ2を取り付け、バイアホール5に光ファイバ4を取り付けると、光集積チップ2の発光部6および受光部7と、光ファイバ4の位置合わせが行われる。
【0026】
次に、第1の実施の形態の光送受信装置1aの組立工程を説明する。図4は第1の実施の形態の光送受信装置1aにおける光集積チップ2の取付工程例を示す説明図で、図4(a)は側断面図、図4(b)は要部平面図である。また、図5は第1の実施の形態の光送受信装置1aにおける光集積チップ2の取付工程例を示す一部破断斜視図である。
【0027】
まず、バイアホール5が予め開けられた回路基板3に、光集積チップ2をフリップチップ実装する。このとき、回路基板3の面やバイアホール5、光集積チップ2をCCD(Charge Coupled Device)カメラで撮影し、画像認識を行って、光集積チップ2の位置合わせを行う。そして、回路基板3の電極パッド9に光集積チップ2の各電極がフリップチップ実装されることによって、光集積チップ2は、発光部6がバイアホール5の中心と一致する位置で回路基板3に固定される。
【0028】
図6は第1の実施の形態の光送受信装置1aにおける光ファイバ4の取付工程例を示す説明図で、図6(a)は側断面図、図6(b)は要部平面図である。また、図7は第1の実施の形態の光送受信装置1aにおける光ファイバ4の取付工程例を示す一部破断斜視図である。
【0029】
光集積チップ2を回路基板3にフリップチップ実装した後、回路基板3のバイアホール5に、光集積チップ2とは反対側の表面側から光ファイバ4を挿入する。ここで、光ファイバ4は、その端面が光集積チップ2の表面に当接する位置まで挿入される。そして、光ファイバ4を樹脂10等を接着剤として用いて回路基板3に固定する。
【0030】
上述したように、回路基板3のバイアホール5は、光ファイバ4に対するクリアランスが直径で±20〜30μm程度とかなりの高精度で開けられている。このため、光ファイバ4が挿入されるだけで、バイアホール5は、光ファイバ4のコア部4aの中心をバイアホール5の中心にアライメントする機能を持つ。また、光ファイバ4を樹脂で固定する際に、光ファイバ4の外周面とバイアホール5の内周面との間に入り込む樹脂により、光ファイバ4は周囲から均等な張力がかかる。よって、接着によっても、光ファイバ4の径方向の位置をアライメントする機能が生じる。したがって、光ファイバ4の実装時には光ファイバ4の調芯を行う必要がなく、かつ位置決め用の部品を別に必要としない。さらに、発光部6と受光部7が光集積チップ2上に一体に形成されているので、受発光素子のそれぞれと光ファイバ4との調芯も不要である。
【0031】
ここで、樹脂10として光透過性の樹脂を利用することで、光ファイバ4の端面と光集積チップ2の表面との間に樹脂10を介在させる形態で接着を行うこともできる。
【0032】
以上のように、光集積チップ2および光ファイバ4を回路基板3に実装することで、図1および図2に示すように、光集積チップ2の発光部6の中心、バイアホール5の中心、そして光ファイバ4のコア部4aの中心が略一致した状態で固定される。
【0033】
これにより、外部から光送受信装置1aに入ってきた電気信号は、回路基板3に形成されたIC類や光集積チップ2の図示しない発光素子を介して光信号に変換され、発光部6から出射される送信光となる。送信光は光ファイバ4のコア部4aに入射し、光送受信装置1aの外部へと出て行く。
【0034】
また、外部から光ファイバ4を介して入ってきた受信光は、光集積チップ2の受光部7に入射され、回路基板3を介して電気信号として出力される。このようにして、第1の実施の形態の光送受信装置1aでは、半二重による一芯双方向通信が実現される。ここで、光集積チップ2の発光部6が光ファイバ4のコア部4aの中心と略一致するように取り付けられているが、不感帯8を偏芯させて設けることで、受光部7も、光ファイバ4のコア部4の中心と近い位置に配置される。これにより、受信光として強度の強い光を利用できる。
【0035】
次に、送信光と受信光の経路を分離して全二重による一芯双方向通信を行えるようにした第2および第3の実施の形態の光送受信装置について説明する。図8は第2の実施の形態の光送受信装置の構成例を示す説明図で、図8(a)は側断面図、図8(b)は要部平面図である。また、図9は第2の実施の形態の光送受信装置の構成例を示す一部破断斜視図である。なお、第1の実施の形態の光送受信装置1aと同一の構成の部位については、同じ番号を付して説明する。
【0036】
第2の実施の形態の光送受信装置1bは、光ファイバ4と光集積チップ2の間に送信光と受信光の経路を分離する光学部品11を入れたものである。光学部品11は、例えば2層構造のガラスファイバの外面に金属メッキを施したもので、内層部に対して外層部の屈折率を異ならせてある。これにより、内層部に光が閉じ込められることになり、この内層部によって第1の導波路11aを形成する。また、外層部によって第2の導波路11bを形成するため、光学部品11の外面に金属メッキ等によって全反射膜11cを形成して、光を閉じ込められるようにしてある。これにより、光学部品11においては、第1の導波路11aを通る光と第2の導波路11bを通る光が分離され、互いが干渉しないようになっている。
【0037】
光集積チップ2の構成は図3で説明した通りであり、この光集積チップ2は、発光素子と受光素子を1チップ上に作り込んだもので、光集積チップ2の表面側に発光部6と受光部7が設けられる。発光部6の周囲に形成される不感帯8を、発光部6に対して偏芯した位置に形成することで、受光部7が発光部6に近接して配置される。
【0038】
回路基板3には光ファイバ4が挿入されるバイアホール5が貫通して設けられる。また、回路基板3の裏面には、バイアホール5の周囲の所定の位置に、光集積チップ2のアノード電極6a等と接続される電極パッド9が設けられる。
【0039】
次に、第2の実施の形態の光送受信装置1bの組立工程を説明する。図10は第2の実施の形態の光送受信装置1bにおける光集積チップ2の取付工程例を示す説明図で、図10(a)は側断面図、図10(b)は要部平面図である。また、図11は第2の実施の形態の光送受信装置1bにおける光集積チップ2の取付工程例を示す一部破断斜視図である。
【0040】
まず、光学部品11の一方の端面を光集積チップ2の表面に突き当てるようにして、光学部品11を光集積チップ2の表面に光透過性の樹脂10を接着剤として用いて接着する。光学部品11の実装時は、光集積チップ2と光学部品11の径方向の位置関係が重要であり、光集積チップ2の発光部6から上方へ出射される光が光学部品11の第1の導波路11aにほぼ入るように実装される。
【0041】
このとき、受光部7の上部には第2の導波路11bが位置するように光学部品11の径等は設計されており、第2の導波路11bを介して外部から入ってきた光は、光集積チップ2の受光部7もしくは不感帯8に照射される。
【0042】
次に、バイアホール5が予め開けられた回路基板3に、光学部品11を取り付けた光集積チップ2をフリップチップ実装する。このとき、回路基板3の面やバイアホール5、光集積チップ2および光学部品11をCCDカメラで撮影し、画像認識を行って、光集積チップ2の位置合わせを行う。そして、回路基板3の電極パッド9に光集積チップ2の各電極がフリップチップ実装されることによって、光集積チップ2は、発光部6がバイアホール5の中心と一致する位置で回路基板3に固定される。なお、光学部品11の径はバイアホール5の径より小さく、光学部品11がバイアホール5に挿入された状態で、光集積チップ2の位置決めが行えるようになっている。
【0043】
図12は第2の実施の形態の光送受信装置1bにおける光ファイバ4の取付工程例を示す説明図で、図12(a)は側断面図、図12(b)は要部平面図である。また、図13は第2の実施の形態の光送受信装置1bにおける光ファイバ4の取付工程例を示す一部破断斜視図である。
【0044】
光学部品11が取り付けられた光集積チップ2を回路基板3にフリップチップ実装した後、回路基板3のバイアホール5に、光集積チップ2とは反対側の表面側から光ファイバ4を挿入する。ここで、光ファイバ4は、その端面が光学部品11の他方の端面に当接する位置まで挿入される。そして、光ファイバ4を樹脂10を接着剤として用いて回路基板3に固定する。
【0045】
上述したように、回路基板3のバイアホール5は、光ファイバ4に対するクリアランスが直径で±20〜30μm程度とかなりの高精度で開けられている。このため、光ファイバ4が挿入されるだけで、バイアホール5は、光ファイバ4のコア部4aの中心をバイアホール5の中心にアライメントする機能を持つ。また、光ファイバ4を樹脂で固定する際に、光ファイバ4の外周面とバイアホール5の内周面との間に入り込む樹脂により、光ファイバ4は周囲から均等な張力がかかる。よって、接着によっても、光ファイバ4の径方向の位置をアライメントする機能が生じる。
【0046】
以上のように、光集積チップ2および光ファイバ4を回路基板3に実装することで、図8および図9に示すように、光集積チップ2の発光部6の中心、光学部品11の第1の導波路11aの中心、バイアホール5の中心、そして光ファイバ4のコア部4aの中心が略一致した状態で固定される。
【0047】
これにより、外部から光送受信装置1bに入ってきた電気信号は、回路基板3に形成されたIC類や光集積チップ2の図示しない発光素子を介して光信号に変換され、発光部6から出射される送信光となる。送信光は光学部品11の第1の導波路11aを伝わって光ファイバ4のコア部4aに入射し、光送受信装置1bの外部へと出て行く。
【0048】
また、外部から光ファイバ4を介して入ってきた受信光は、光学部品11の第1の導波路11aと第2の導波路11bの両方に入り、第2の導波路11bを伝わった光は光集積チップ2の受光部7に入射され、回路基板3を介して電気信号として出力される。ここで、発光部6のエリアは第1の導波路11aの断面積に比べて十分小さいため、第1の導波路11aと第2の導波路11bに入射した受信光のうち、第1の導波路11aを伝わる光のほとんどは不感帯8に落ち、送信信号、受信信号に影響を及ぼさない。このように、第2の実施の形態の光送受信装置1bでは、光学部品11によって送信光と受信光の経路が分離され、全二重による一芯双方向通信が実現される。
【0049】
図14は第3の実施の形態の光送受信装置の構成例を示す説明図で、図14(a)は側断面図、図14(b)は要部平面図である。また、図15は第3の実施の形態の光送受信装置の構成例を示す一部破断斜視図である。なお、第1の実施の形態の光送受信装置1aと同一の構成の部位については、同じ番号を付して説明する。
【0050】
第3の実施の形態の光送受信装置1cは、光ファイバ4と光集積チップ2の間に送信光と受信光の経路を分離する光学部品12を入れ、バイアホール5の内面に全反射膜13を形成したものである。光学部品12は、例えばガラス管の周りに金属メッキによる全反射膜12aを形成したもので、全反射膜12aの内側に光が閉じ込められる第1の導波路12bが形成される。
【0051】
光集積チップ2の構成は図3で説明した通りである。また、回路基板3には光ファイバ4が挿入されるバイアホール5が貫通して設けられる。このバイアホール5の内面に、例えば金属メッキによる全反射膜13が形成される。光学部品12の径はバイアホール5の径より小さく、光学部品12の外面とバイアホール5の内面との間には光が通る隙間が形成される。そして、バイアホール5の内面の全反射膜13と光学部品12の外面の全反射膜12aにより、光学部品12の外面とバイアホール5の内面との間に光が閉じ込められる第2の導波路13aが形成される。
【0052】
次に、第3の実施の形態の光送受信装置1cの組立工程を説明する。図16は第3の実施の形態の光送受信装置1cにおける光集積チップ2の取付工程例を示す説明図で、図16(a)は側断面図、図16(b)は要部平面図である。また、図17は第3の実施の形態の光送受信装置1cにおける光集積チップ2の取付工程例を示す一部破断斜視図である。
【0053】
まず、光学部品12の一方の端面を光集積チップ2の表面に突き当てるようにして、光学部品12を光集積チップ2の表面に光透過性の樹脂10を接着剤として用いて接着する。光学部品12の実装時は、光集積チップ2と光学部品12の径方向の位置関係が重要であり、光集積チップ2の発光部6から上方へ出射される光が光学部品12の第1の導波路12bにほぼ入るように実装される。
【0054】
次に、バイアホール5が予め開けられ、かつ、このバイアホール5の内面に全反射膜13が形成された回路基板3に、光学部品12を取り付けた光集積チップ2をフリップチップ実装する。このとき、回路基板3の面やバイアホール5、光集積チップ2および光学部品12をCCDカメラで撮影し、画像認識を行って、光集積チップ2の位置合わせを行う。そして、回路基板3の電極パッド9に光集積チップ2の各電極がフリップチップ実装されることによって、光集積チップ2は、発光部6がバイアホール5の中心と一致する位置で回路基板3に固定される。
【0055】
図18は第3の実施の形態の光送受信装置1cにおける光ファイバ4の取付工程例を示す説明図で、図18(a)は側断面図、図18(b)は要部平面図である。また、図19は第3の実施の形態の光送受信装置1cにおける光ファイバ4の取付工程例を示す一部破断斜視図である。
【0056】
光学部品12が取り付けられた光集積チップ2を回路基板3にフリップチップ実装した後、回路基板3のバイアホール5に、光集積チップ2とは反対側の表面側から光ファイバ4を挿入する。ここで、光ファイバ4は、その端面が光学部品12の他方の端面に当接する位置まで挿入される。そして、光ファイバ4を樹脂10を接着剤として用いて回路基板3に固定する。
【0057】
以上のように、光集積チップ2および光ファイバ4を回路基板3に実装することで、図14および図15に示すように、光集積チップ2の発光部6の中心、光学部品12の第1の導波路12bの中心、バイアホール5の中心、そして光ファイバ4のコア部4aの中心が略一致した状態で固定される。
【0058】
これにより、外部から光送受信装置1cに入ってきた電気信号は、回路基板3に形成されたIC類や光集積チップ2の図示しない発光素子を介して光信号に変換され、発光部6から出射される送信光となる。送信光は光学部品12の第1の導波路12bを伝わって光ファイバ4のコア部4aに入射し、光送受信装置1cの外部へと出て行く。
【0059】
また、外部から光ファイバ4を介して入ってきた受信光は、光学部品12の第1の導波路12bと、光学部品12の外面とバイアホール5の内面との間に形成される第2の導波路13aの両方に入る。第2の導波路13aに入射した光は全反射膜12aと全反射膜13で反射しながら伝わり、光集積チップ2の受光部7に入射され、回路基板3を介して電気信号として出力される。ここで、発光部6のエリアは第1の導波路12bの断面積に比べて十分小さいため、第1の導波路12bと第2の導波路13aに入射した受信光のうち、第1の導波路12bを伝わる光のほとんどは不感帯8に落ち、送信信号、受信信号に影響を及ぼさない。このようにして、第3の実施の形態の光送受信装置1cでは送信光と受信光の経路が分離され、全二重による一芯双方向通信が実現される。
【0060】
次に、上述した第1〜第3の実施の形態の光送受信装置の具体的な使用例を説明する。図20は第1〜第3の実施の形態の光送受信装置の使用例を示す構成図である。
【0061】
第1〜第3の実施の形態の光送受信装置1a〜1cは、例えば、基板間の信号の伝送に用いられる。回路基板3としては、複数の光ファイバ4が取り付けられ、かつ各光ファイバ4に対応して光集積チップ2が取り付けられるものを用いる。この回路基板3が、映像処理用等のIC14a等で構成される基板14に立てた状態で取り付けられ、基板14間を複数の光ファイバ4で結ぶ。
【0062】
第1〜第3の実施の形態の光送受信装置1a〜1cは、回路基板3に設けたバイアホール5と光集積チップ2等で構成され、光路分離のためのビームスプリッタや、光ファイバ4を固定するためのコネクタ等が不要であるので、非常に小形のものとなる。よって、情報処理装置等の内部に設けた異なる基板間を、多芯の光ファイバ4で結ぶような形態を実現できる。かつ、それぞれの光ファイバ4では一芯双方向通信が可能である。これにより、基板間で大容量の情報を高速で伝送することが可能となる。例えば、光ファイバ4の1本当りの伝送レートが1Gbpsであると、32本の光ファイバ4で基板14間を結ぶこととすれば、32Gbpsの伝送レートを実現できる。
【0063】
したがって、処理能力を落とすことなく、基板14を小型化のために2枚に分割するような形態とすることが可能となる。また、図示しないが、1枚の基板内で、従来回路パターンによっていた伝送経路を、第1〜第3の実施の形態の光送受信装置1a〜1cを用いて光ファイバに置き換えることも考えられる。第1〜第3の実施の形態の光送受信装置1a〜1cは非常に小形のものとなるので、基板上での占有面積は少なくて済む。これに対して、回路パターンを無くせる分、基板を小型化できる。また、光ファイバの下に部品を配置することも可能であるので、実装密度を上げることができる。
【0064】
以上説明したように、第1〜第3の実施の形態の光送受信装置1a〜1cでは、発光素子と受光素子を1チップ上に集積しているため、それぞれを別々に実装する従来の方法に比べて、両素子間の位置精度を極めて高くすることができる。すなわち、従来は製造装置の実装精度で発光素子と受光素子の位置精度が決まっていたのに対して、各実施の形態で用いた光集積チップ2は、半導体製造プロセスによって極めて高い精度が得られている。このため、従来に比べて調芯工程を簡略化した低コストの光送受信装置を提供できる。
【0065】
また、発光素子と受光素子を1チップ上に集積することによって発光部6と受光部7との距離を従来の方法より短くできるため、一芯双方向通信を実現するにあたって、例えばビームスプリッタのような光路を分離するために必要な高価な光学部品が不要となり、結果として、低コストな光送受信装置を提供できる。
【0066】
さらに、光学部品11,12あるいは光ファイバ4の端面が発光部6と突き当たる状態で実装されるので、反射戻り光を低減でき、クロストークを抑えた光送受信装置を提供できる。
【0067】
また、回路基板3に形成されたバイアホール5に光ファイバ4のアライメント機能を持たせているため、従来のシリコン製またはガラス製、プラスチック製のアライメント用部品、例えば光ファイバを支持するV溝を持つ基板が不要となり、部品点数、組み立て工数の少ない低コストな光送受信装置を提供できる。
【0068】
さらに、第2および第3の実施の形態の光送受信装置1b,1cでは、光学部品11,12を用いることで、送信側の光路と受信側の光路が分離されているため、特に発光部6から受光部7への光の漏れこみの影響が低減でき、全二重双方向通信におけるクロストークを抑えた光送受信装置を提供できる。そして、光学部品11,12はファイバやガラス管を加工しただけのものなので、従来必要とされていた光アイソレータと比較して非常に低コストで実現でき、低コストでクロストークを抑えた光送受信装置を影響できる。
【0069】
【発明の効果】
以上説明したように、本発明は、電気信号を光信号に変換する発光素子と光信号を電気信号に変換する受光素子を備え、光ファイバを用いて一芯双方向通信を行う光送受信装置において、発光素子と受光素子が同一チップ上に形成され、発光素子の発光部と受光素子の受光部が近接して設けられた光集積チップと、光ファイバが挿入されるバイアホールが貫通して設けられる回路基板とを備え、バイアホールに発光部と受光部が収まる位置で、光集積チップが回路基板の一方の面に取り付けられ、回路基板の他方の面から、バイアホールに光ファイバが挿入されて固定されたものである。
【0070】
これにより、発光部から出射される送信光が光ファイバに入射するとともに、光ファイバからの受信光は受光部に入射する。したがって、単純な構造で、一芯双方向通信を実現することができる。
【0071】
また、本発明は、発光部からの光路と受光部への光路を分離する光学部品を備え、光集積チップと光ファイバとの間のバイアホール内にこの光学部品を取り付けて、発光部および受光部と光ファイバの端面との間に、送信光が通る第1の導波路と受信光が通る第2の導波路を形成したものである。
【0072】
これにより、発光部から出射される送信光は第1の導波路を通って光ファイバに入射するとともに、光ファイバからの受信光は第2の導波路を通って受光部に入射する。したがって、送信光と受信光が分離しているので、単純な構造でクロストークを抑えて、全二重の一芯双方向通信を実現することができる。
【図面の簡単な説明】
【図1】第1の実施の形態の光送受信装置の構成例を示す説明図である。
【図2】第1の実施の形態の光送受信装置の構成例を示す一部破断斜視図である。
【図3】光集積チップの構成例を示す斜視図である。
【図4】第1の実施の形態の光送受信装置における光集積チップの取付工程例を示す説明図である。
【図5】第1の実施の形態の光送受信装置における光集積チップの取付工程例を示す一部破断斜視図である。
【図6】第1の実施の形態の光送受信装置における光ファイバの取付工程例を示す説明図である。
【図7】第1の実施の形態の光送受信装置における光ファイバの取付工程例を示す一部破断斜視図である。
【図8】第2の実施の形態の光送受信装置の構成例を示す説明図である。
【図9】第2の実施の形態の光送受信装置の構成例を示す一部破断斜視図である。
【図10】第2の実施の形態の光送受信装置における光集積チップの取付工程例を示す説明図である。
【図11】第2の実施の形態の光送受信装置における光集積チップの取付工程例を示す一部破断斜視図である。
【図12】第2の実施の形態の光送受信装置における光ファイバの取付工程例を示す説明図である。
【図13】第2の実施の形態の光送受信装置における光ファイバの取付工程例を示す一部破断斜視図である。
【図14】第3の実施の形態の光送受信装置の構成例を示す説明図である。
【図15】第3の実施の形態の光送受信装置の構成例を示す一部破断斜視図である。
【図16】第3の実施の形態の光送受信装置における光集積チップの取付工程例を示す説明図である。
【図17】第3の実施の形態の光送受信装置における光集積チップの取付工程例を示す一部破断斜視図である。
【図18】第3の実施の形態の光送受信装置における光ファイバの取付工程例を示す説明図である。
【図19】第3の実施の形態の光送受信装置における光ファイバの取付工程例を示す一部破断斜視図である。
【図20】第1〜第3の実施の形態の光送受信装置の使用例を示す構成図である。
【図21】従来の光送受信装置の構成例を示す平面図である。
【符号の説明】
1a,1b,1c・・・光送受信装置、2・・・光集積チップ、3・・・回路基板、4・・・光ファイバ、4a・・・コア部、4b・・・クラッド部、5・・・バイアホール、6・・・発光部、7・・・受光部、8・・・不感帯、9・・・電極パッド、10・・・樹脂、11・・・光学部品、11a・・・第1の導波路、11b・・・第2の導波路、11c・・・全反射膜、12・・・光学部品、12a・・・全反射膜、12b・・・第1の導波路、13・・・全反射膜、13a・・・第2の導波路

Claims (12)

  1. 電気信号を光信号に変換する発光素子と光信号を電気信号に変換する受光素子を備え、光ファイバを用いて一芯双方向通信を行う光送受信装置において、
    前記発光素子と前記受光素子が同一チップ上に形成され、前記発光素子の発光部と前記受光素子の受光部が近接して設けられた光集積チップと、
    前記光ファイバが挿入されるバイアホールが貫通して設けられる回路基板とを備え、
    前記バイアホールに前記発光部と前記受光部が収まる位置で、前記光集積チップが前記回路基板の一方の面に取り付けられ、
    前記回路基板の他方の面から、前記バイアホールに前記光ファイバが挿入されて固定された
    ことを特徴とする光送受信装置。
  2. 前記回路基板の一方の面に、前記光集積チップと接続される電極パッドが設けられ、前記光集積チップは前記回路基板にフリップチップ実装された
    ことを特徴とする請求項1記載の光送受信装置。
  3. 前記バイアホールは、レーザ加工により開けられた
    ことを特徴とする請求項1記載の光送受信装置。
  4. 前記回路基板には、前記光集積チップを駆動する回路が少なくとも形成された
    ことを特徴とする請求項1記載の光送受信装置。
  5. 前記発光部と前記受光部は、それぞれの少なくとも一部分が前記光ファイバのコア部の直径に収まる距離に設けられた
    ことを特徴とする請求項1記載の光送受信装置。
  6. 電気信号を光信号に変換する発光素子と光信号を電気信号に変換する受光素子を備え、光ファイバを用いて一芯双方向通信を行う光送受信装置において、
    前記発光素子と前記受光素子が同一チップ上に形成され、前記発光素子の発光部と前記受光素子の受光部が近接して設けられた光集積チップと、
    前記光ファイバが挿入されるバイアホールが貫通して設けられる回路基板と、
    前記発光部からの光路と前記受光部への光路を分離する光学部品とを備え、
    前記バイアホールに前記発光部と前記受光部が収まる位置で、前記光集積チップが前記回路基板の一方の面に取り付けられ、
    前記回路基板の他方の面から、前記バイアホールに前記光ファイバが挿入されて固定され、
    前記光集積チップと前記光ファイバとの間の前記バイアホール内に前記光学部品が取り付けられ、前記発光部および前記受光部と前記光ファイバの端面との間に、送信光が通る第1の導波路と受信光が通る第2の導波路が形成された
    ことを特徴とする光送受信装置。
  7. 前記光学部品は、内層部の周囲が屈折率の異なる外層部で覆われ、この外層部が全反射膜で覆われたファイバで、
    前記内層部を前記発光部と対向させて前記第1の導波路が形成され、前記外層部を前記受光部と対向させて前記第2の導波路が形成された
    ことを特徴とする請求項6記載の光送受信装置。
  8. 前記光学部品は、全反射膜で覆われたファイバで、前記光学部品を前記発光部と対向させて前記第1の導波路が形成されるとともに、
    前記バイアホールの内面に全反射膜が設けられ、前記バイアホールと前記光学部品の間に前記第2の導波路が形成された
    ことを特徴とする請求項6記載の光送受信装置。
  9. 前記回路基板の一方の面に、前記光集積チップと接続される電極パッドが設けられ、前記光集積チップは前記回路基板にフリップチップ実装された
    ことを特徴とする請求項6記載の光送受信装置。
  10. 前記バイアホールは、レーザ加工により開けられた
    ことを特徴とする請求項6記載の光送受信装置。
  11. 前記回路基板には、前記光集積チップを駆動する回路が少なくとも形成された
    ことを特徴とする請求項6記載の光送受信装置。
  12. 前記発光部と前記受光部は、それぞれの少なくとも一部分が前記光ファイバのコア部の直径に収まる距離に設けられた
    ことを特徴とする請求項6記載の光送受信装置。
JP2002355413A 2002-12-06 2002-12-06 光送受信装置 Pending JP2004191396A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002355413A JP2004191396A (ja) 2002-12-06 2002-12-06 光送受信装置
TW092132430A TWI229509B (en) 2002-12-06 2003-11-19 Optical transceiver
CN200310118182.4A CN1507065B (zh) 2002-12-06 2003-11-25 光收发装置
US10/728,613 US7430375B2 (en) 2002-12-06 2003-12-05 Optical transceiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355413A JP2004191396A (ja) 2002-12-06 2002-12-06 光送受信装置

Publications (1)

Publication Number Publication Date
JP2004191396A true JP2004191396A (ja) 2004-07-08

Family

ID=32756123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355413A Pending JP2004191396A (ja) 2002-12-06 2002-12-06 光送受信装置

Country Status (4)

Country Link
US (1) US7430375B2 (ja)
JP (1) JP2004191396A (ja)
CN (1) CN1507065B (ja)
TW (1) TWI229509B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479217B (zh) * 2010-12-29 2015-04-01 Hon Hai Prec Ind Co Ltd 光纖集線器

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7773836B2 (en) * 2005-12-14 2010-08-10 Luxtera, Inc. Integrated transceiver with lightpipe coupler
US7606499B2 (en) * 2005-08-01 2009-10-20 Massachusetts Institute Of Technology Bidirectional transceiver assembly for POF application
US7806602B2 (en) * 2008-03-14 2010-10-05 Finisar Corporation Optical micro-connector
US7637672B1 (en) * 2008-11-02 2009-12-29 Broadway Networks, Ltd. Pluggable optical tranceiver module having effective thermal release function
CN103837945A (zh) * 2012-11-28 2014-06-04 浜松光子学株式会社 单芯光收发器
WO2014101141A1 (zh) * 2012-12-28 2014-07-03 华为技术有限公司 一种收发光组件及光模块
US9372407B2 (en) * 2013-04-18 2016-06-21 E I Du Pont De Nemours And Company Exposure apparatus and a method for exposing a photosensitive element and a method for preparing a printing form from the photosensitive element
CN104422987B (zh) * 2013-09-03 2018-06-22 中国科学院微电子研究所 互连结构
KR102240456B1 (ko) * 2014-07-30 2021-04-15 에스케이하이닉스 주식회사 광학적 관통 비아를 가지는 반도체 소자
KR102296435B1 (ko) 2014-12-30 2021-09-03 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
TWI588552B (zh) * 2015-04-08 2017-06-21 祥茂光電科技股份有限公司 光收發次組件及其製造方法
CN109786368A (zh) * 2019-01-24 2019-05-21 中国科学院微电子研究所 一种光电芯片协同封装结构及方法
CN110412700B (zh) * 2019-07-26 2022-05-17 西安微电子技术研究所 一种综合电子高速光互连模块集成结构及集成方法
CN111722237B (zh) * 2020-06-02 2023-07-25 上海交通大学 基于透镜和集成光束收发器的激光雷达探测装置
CN115657229B (zh) * 2022-12-29 2023-04-07 苏州熹联光芯微电子科技有限公司 一种光模块及共封装光学***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493113A (en) * 1982-09-10 1985-01-08 At&T Bell Laboratories Bidirectional fiber optic transmission systems and photodiodes for use in such systems
US6203212B1 (en) * 1998-08-24 2001-03-20 Agilent Technologies, Inc. Optical subassembly for use in fiber optic data transmission and reception
US6721503B1 (en) * 1998-08-26 2004-04-13 Georgia Tech Research Corporation System and method for bi-directional optical communication using stacked emitters and detectors
WO2001045477A1 (fr) * 1999-12-15 2001-06-21 Matsushita Electric Industrial Co.,Ltd Carte de formation de circuit et procede de fabrication de carte de formation de circuit
US6527457B2 (en) * 2001-02-01 2003-03-04 International Business Machines Corporation Optical fiber guide module and a method for making the same
US7049570B2 (en) * 2002-09-16 2006-05-23 Avago Technologies, Ltd. Optical chip coupling system utilizing micromachine adjustable optical elements and a feedback circuit providing the micromachine with a feedback signal correlated to an optical signal parameter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI479217B (zh) * 2010-12-29 2015-04-01 Hon Hai Prec Ind Co Ltd 光纖集線器

Also Published As

Publication number Publication date
US20050019038A1 (en) 2005-01-27
CN1507065A (zh) 2004-06-23
TW200423570A (en) 2004-11-01
TWI229509B (en) 2005-03-11
US7430375B2 (en) 2008-09-30
CN1507065B (zh) 2010-05-05

Similar Documents

Publication Publication Date Title
US7488122B2 (en) Optical connector and optical module
TWI634357B (zh) 光電轉換模組
US6792171B2 (en) Receiver optical sub-assembly
JP3937911B2 (ja) 光送受信モジュール及びこれを用いた光通信システム
EP2581776A1 (en) Optical connector with alignment element, optical unit and assembly method
KR101074593B1 (ko) 광모듈
TW200540481A (en) Light transmitting and receiving module
JP2004191396A (ja) 光送受信装置
JP4060023B2 (ja) 光導波路送受信モジュール
JP7117133B2 (ja) 光サブアセンブリ及びその製造方法並びに光モジュール
JP2010122312A (ja) 送受信レンズブロック及びそれを用いた光モジュール
CN210401753U (zh) 光收发组件和光模块
KR100526505B1 (ko) 광도파로와 광학소자의 결합 구조 및 이를 이용한 광학정렬 방법
JP2004163722A (ja) 部品内蔵基板
JP2004233687A (ja) 光導波路基板および光モジュール
JP2008244364A (ja) 光モジュール
KR100398045B1 (ko) 광 송수신 모듈
TWI766444B (zh) 光通訊模組
JP2001141966A (ja) 光転轍装置および光送受信装置ならびにそれらの製造方法
WO2022190351A1 (ja) 光接続構造、パッケージ構造、光モジュールおよびパッケージ構造の製造方法
JP2004341260A (ja) 光学素子実装パッケージ、光電気複合実装配線基板
JP2005070162A (ja) 双方向光モジュール及びこれにより双方向光通信を行う装置並びに双方向光伝送システム
JP2004233606A (ja) 光送受信モジュールおよび光電子回路装置
JP2001291923A (ja) 光送受信モジュール
JP2004146621A (ja) 光電気プリント配線板及びその製造方法