WO2014101141A1 - 一种收发光组件及光模块 - Google Patents

一种收发光组件及光模块 Download PDF

Info

Publication number
WO2014101141A1
WO2014101141A1 PCT/CN2012/087915 CN2012087915W WO2014101141A1 WO 2014101141 A1 WO2014101141 A1 WO 2014101141A1 CN 2012087915 W CN2012087915 W CN 2012087915W WO 2014101141 A1 WO2014101141 A1 WO 2014101141A1
Authority
WO
WIPO (PCT)
Prior art keywords
receiving
receiving device
transmitting
chip
filter
Prior art date
Application number
PCT/CN2012/087915
Other languages
English (en)
French (fr)
Inventor
周小平
董英华
程宁
凌魏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/087915 priority Critical patent/WO2014101141A1/zh
Priority to CN201280002169.XA priority patent/CN103229434B/zh
Publication of WO2014101141A1 publication Critical patent/WO2014101141A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device

Definitions

  • the present invention relates to the field of electronics, and in particular, to a light-receiving component and an optical module. Background technique
  • a commonly used active optical component is a light-receiving component, which mainly comprises: a transmitting device, a receiving device, and a filter component.
  • the transmitting device emits an optical signal, and the optical signal is transmitted out of the outside through the filter device, and the external device is received on the other hand.
  • the transmitted optical signal is reflected by the filter device into the receiving device, and the transmitting and receiving are independent of each other.
  • a general active optical component a laser (DFB: Distributed Feedback Laser) and a monitor detector (mPD: monitor photodetector) constitute a transmitting device, and a detector (PD: Photodetector) constitutes a receiving device, and a wavelength division multiplexer (WDM: Wavelength division multiplexer) constitutes a filter component, and then interfaces with an external fiber.
  • the transmitting device and the receiving device respectively combine and split by WDM to receive and transmit different optical signals.
  • the transmitting direction of the transmitting device can be set, but the emitted optical signal is scattered and reflected in different directions inside the chip, and it is easy to enter nearby.
  • this part of the optical signal forms a kind of noise, which causes crosstalk to the receiving device, thereby affecting the receiving performance of the receiving device for other optical signals.
  • the embodiment of the present invention provides a light receiving component and an optical module.
  • the technical solution is as follows:
  • a light-receiving component comprising: a transmitting device, a receiving device and a filter component, wherein the transmitting device and the filter component are integrated inside a same chip, and the receiving device is fixed At the outer surface of the chip;
  • the transmitting device emits an optical signal and transmits the optical signal to the outside through the filter device; and the optical signal transmitted from the outside is reflected by the filter device into the receiving device.
  • the receiving device is fixed to the outer surface above the chip by dressing or flipping.
  • an edge of the chip under the receiving device is disposed as a beveled edge, and the beveled edge is used to reflect an optical signal To the receiving device.
  • the receiving and receiving component further includes a filter, and the filtering A chip is disposed between the receiving device and the chip, and the filter is configured to filter an optical signal entering the receiving device.
  • the filter is integrated with the receiving device.
  • the filter is independent of the receiving device.
  • an optical module is provided, and the optical module is provided with a light receiving component.
  • a light-receiving assembly comprising: a transmitting device, a receiving device and a filter device, the transmitting device comprising a transmitter and a monitoring detector, the transmitter and the filter device Integrated in the same chip, the monitoring detector and the receiving device are fixed at an outer surface of the chip;
  • the transmitting device emits an optical signal and transmits the optical signal to the outside through the filter device; and the optical signal transmitted from the outside is reflected by the filter device into the receiving device.
  • the receiving device is fixed to the outer surface above the chip by dressing or flipping.
  • an edge of the chip under the receiving device is disposed as a beveled edge, and the beveled edge is used to reflect an optical signal To the receiving device.
  • the receiving and receiving component further includes a filter, the filtering A chip is disposed between the receiving device and the chip, and the filter is configured to filter an optical signal entering the receiving device.
  • the filter is integrated with the receiving device.
  • the filter is independent of the receiving device.
  • an optical module is provided, and the optical module is provided with a light receiving component.
  • the receiving device is externally disposed on the outer surface of the chip, and the transmitting device is integrated in the chip.
  • the optical signal emitted by the transmitting device changes the direction of the optical signal through channels such as scattering and reflection, and the optical signal passes through the chip.
  • the internal access to the receiving device at the outer surface of the chip at an accurate angle is much more difficult than the background art, and the optical signal that can enter the receiving device can only be at a specific angle and is extremely weak, thereby making the The possibility that the optical signal generates crosstalk to the receiving device is greatly reduced, thereby reducing or even eliminating the influence of the receiving device on the receiving performance of other optical signals.
  • the structure of the embodiment of the present invention is more compact and the chip size is reduced. The cost is greatly reduced, which is of great significance in practical applications.
  • FIG. 1 is a front elevational view of a light-receiving assembly according to Embodiment 1 of the present invention
  • Figure 2 is a plan view of the light-emitting assembly of Figure 1;
  • Embodiment 3 is a top plan view of a light-receiving assembly provided by Embodiment 2 of the present invention.
  • Figure 4 is a cross-sectional view taken along line A-A of Figure 3;
  • Figure 5 is a cross-sectional view taken along line B-B of Figure 3 .
  • a light-receiving assembly provided by an embodiment of the present invention includes: a transmitting device 1, a receiving device 2, and a filter device, wherein the transmitting device 1 and the filter device are integrated in the same Inside a chip 6, the receiving device 2 is fixed at an outer surface of the chip 6;
  • the transmitting device 1 emits an optical signal and transmits the optical signal to the outside through the filter device; on the other hand, receives an optical signal transmitted from the outside, and reflects the optical signal through the filter device. Entering the receiving device 2.
  • the chip 6 generally uses an indium phosphide InP chip 6, which is composed of a laser 11 (DFB: Distributed Feedback Laser) and a monitor 12 (mPD: monitor photodetector).
  • the device constitutes the receiving device 2
  • the filter device is constituted by a wavelength division multiplexer (WDM), and then interfaces with the external optical fiber, and the transmitting device 1 and the receiving device 2 respectively perform multiplexing and division by WDM.
  • WDM wavelength division multiplexer
  • Waves, for receiving and transmitting different optical signals, the general laser 11, the monitor detector 12 and the wavelength division multiplexer are all formed on the InP wafer by epitaxial growth on the InP chip.
  • the receiving device 2 is externally disposed on the outer surface of the chip 6, and the transmitting device 1 is integrated inside the chip 6.
  • the optical signal emitted by the transmitting device 1 changes the direction of the optical signal through channels such as scattering and reflection, and
  • the light signal enters the receiving device 2 at the outer surface of the chip 6 through the inside of the chip 6 at an accurate angle. This process is much more difficult than the background art, and the optical signal that can enter the receiving device 2 can only be at a specific angle.
  • the structure of the embodiment of the present invention is further
  • a three-layer structure is required on the bottom of the chip, and the first layer is a passive waveguide layer, which is generally composed of an InGaAsP phosphorus indium arsenide material having a relatively high refractive index and a short absorption peak.
  • the waveguide layer is mainly used for fabricating a wavelength division multiplexer and other passive waveguide structures, and the second layer is an active layer, which is generally mainly composed of a lower refractive index and absorption.
  • the InGaAsP phosphorus indium gallium arsenide material has a long peak, but is not limited thereto.
  • the active layer is mainly used for fabricating lasers and monitoring detectors; the third layer is mainly used for fabricating receiving devices, ie detectors, layers.
  • the space is separated by InP material, and the present invention only needs two layers of structure, that is, only the first layer and the second layer are needed, and the receiving device 2 can be directly fixed on the outer surface of the chip 6, thereby eliminating the need to specifically set the third.
  • the layer structure is used to fabricate the receiving device 2, thereby enabling the structure of the embodiment of the present invention to be reduced, greatly reducing the difficulty of design and device epitaxial integration, reducing the complexity of device epitaxial integration and fabrication, improving the excellent yield of the device, and receiving the device. 2 directly attached to the outer surface of the chip 6, without the need for spatial alignment, focusing and passive coupling, etc., to enable the package of the present invention to be tubular; since the receiving device 2 is externally disposed at the outer surface of the chip 6, The length of the waveguide of the receiving device 2 can be shortened, so that the length of the entire chip 6 can be shortened, and more devices can be accommodated on the same chip 6, and the manufacturing cost is greatly reduced, which is significant in practical applications.
  • the receiving device 2 is fixed to the outer surface above the chip 6 by dressing or flipping.
  • the receiving device 2 can be fixed at the outer surface of the chip 6 in any other way as long as the receiving device 2 is fixed at the outer surface of the chip 6 by any means.
  • the direction of the light signal emitted by the light emitting device may be inconsistent.
  • the edge of the chip 6 under the receiving device 2 is provided as a beveled edge 4 for reflecting an optical signal to the receiving device 2.
  • the optical signal enters from the left end of the chip 6, and is transmitted to the right in the passive waveguide layer. Due to the presence of the right beveled edge 4, the optical signal reaching the right side will be reflected, causing the optical signal to change direction and enter upward.
  • Receive device 2 detector By setting the angle of the beveled edge 4, the optical signal is accurately deflected into the detector to complete normal reception.
  • the detector may be a diode PIN or an avalanche photodiode APD.
  • the semiconductor is a crystal material having a crystal orientation
  • the crystal has directionality
  • the crystal properties are different along different directions of the crystal lattice, for example, along a specific crystal orientation
  • the semiconductor device can be easily dissociated to form a clean and smooth
  • the fracture surface in the same way, in some specific crystal directions, the corrosion rate of the chemical etching liquid to the crystal is completely different.
  • the ⁇ material after the wet etching by the chemical etching solution, naturally forms a symmetrical step. , the slope of the hypotenuse is the same.
  • the oblique side is the oblique edge 4, and the slope directly affects the direction of the optical signal entering the detector, which ultimately affects the receiving performance of the detector, so how to make the flatness
  • the beveled edge 4 becomes a key point of the process. Due to the different materials of the core layer and the cover layer in the passive waveguide layer, the etching tends to form an uneven surface. The more the number of core layers, the coarser the reflective surface. In order to solve the above problems, different solutions may be first etched to form a chamfered surface, and then a solution having a low selectivity such as Br 2 may be used to smooth the difference between the different levels.
  • the light-receiving component further includes a filter 5, the filter 5 is disposed between the receiving device 2 and the chip 6, and the filter 5 is used for accessing The optical signal of the receiving device 2 is filtered.
  • the filter 5 is mainly used to block the optical signal transmitted from the transmitting device 1 into the receiving device 2, and may also block other undesired signals according to actual needs.
  • the filter is integrated with the receiving device. As shown in FIG. 1, preferably, the filter 5 and the receiving device 2 are independent of each other.
  • the filter 5 can also cause the optical signal from the laser 11 of the transmitting device 1 to be blocked outside the receiving device 2 and not enter the receiving device 2 to become noise; the filter 5 can be a discrete device or can pass The coating method is integrated with the receiving device 2.
  • the filter device 3 is constituted by a wavelength division multiplexer, and the selection of the receiving device (see FIG. 1) in the embodiment of the present invention is independent of the platform for integration (see FIG. 1), and may be different according to different The scenario, flexible selection of PIN and APD with different sensitivity, ie diode and avalanche photodiode; in the embodiment of the invention, GPON, EPON (new generation fiber access technology) can also be selected by selecting receiving devices with different parameters (see FIG. 1) Upgrade to 10G GPON and 10G EPON for integrated chips (see Figure 1) The other components in the platform can be basically moved, so that the tube can be easily upgraded.
  • An optical module is provided with the light-receiving component of the first embodiment.
  • the structures of the light-receiving components in the first embodiment are the same, and are not described herein again.
  • the light-receiving component in the embodiment of the invention greatly reduces the possibility that the optical signal emitted by the transmitting device generates crosstalk to the receiving device, thereby reducing or even eliminating the influence of the receiving device on the receiving performance of other optical signals;
  • the structure of the embodiment is more simple, and the chip size is reduced, and the manufacturing cost is greatly reduced, which is significant in practical applications.
  • Embodiment 2 Embodiment 2
  • FIG. 3 a top view of a light-receiving assembly provided by an embodiment of the present invention is shown.
  • an embodiment of the present invention provides a light-receiving assembly, comprising: a transmitting device 1, a receiving device (see FIG. 3), and a filter device (see FIG. 3), the transmitting device 1
  • the laser 11 and the monitoring detector 12 are included, and the laser 11 and the filter device (see FIG. 3) are both integrated inside the same chip 6, and the monitoring detector 12 and the receiving device (see FIG. 3) are fixed to At the outer surface of the chip 6;
  • the transmitting device 1 emits an optical signal and transmits the optical signal to the outside through the filter device (see FIG. 3); on the other hand, receives an optical signal transmitted from the outside, and passes through the filter device. (See Fig. 3) The light signal is reflected into the receiving device (see Figure 3).
  • the chip 6 generally uses an InP (indium phosphide) chip 6, and the laser 11 (DFB: Distributed Feedback Laser) and the monitor detector 12 (mPD: monitor photodetector) constitute the transmitting device 1 and the laser 11 That is, the transmitter, the detector (PD: Photodetector) constitutes the receiving device (see Figure 3), by the wavelength division multiplexer (WDM: Wavelength)
  • the division multiplexer constitutes a filter device (see FIG. 3 ), and the transmitting device 1 and the receiving device (see FIG. 3 ) respectively perform multiplexing and splitting by WDM to receive and transmit different optical signals, and this embodiment is in the embodiment.
  • the monitoring detector 12 in the transmitting device 1 is externally placed on the outer surface of the chip 6 in the same manner as the receiving device (see FIG. 3), so that the length of the entire chip 6 can be made shorter.
  • the entire chip 6 is smaller than the first embodiment.
  • the laser 11 and the wavelength division multiplexer are both formed directly on the InP wafer by epitaxial growth on the InP chip 6.
  • the receiving device (see FIG. 3) is externally disposed at the outer surface of the chip 6, and the transmitting device 1 is integrated inside the chip 6.
  • the optical signal emitted by the transmitting device 1 changes the optical signal through channels such as scattering and reflection.
  • the direction, and the light signal enters the receiving device at the outer surface of the chip 6 at an accurate angle through the inside of the chip 6 (see Figure 3). This process is much more difficult than the background art, and can enter the receiving device (see figure). 3)
  • the optical signal can only be at a certain angle and is extremely weak, so that the possibility of crosstalk of the optical signal to the receiving device (see Figure 3) is greatly reduced, thereby reducing or even eliminating the receiving device (see figure).
  • the structure of the embodiment of the present invention is more simple.
  • a three-layer structure is required on the bottom of the chip 6, and the first layer is a passive waveguide layer. It is mainly composed of InGaAsP phosphorus indium gallium arsenide material with lower refractive index and shorter absorption peak, but is not limited thereto.
  • the waveguide layer is mainly used for fabricating a wavelength division multiplexer.
  • the second layer is an active layer, generally composed of an InGaAsP phosphorus indium gallium arsenide material having a relatively high refractive index and a long absorption peak, but is not limited thereto, and the active layer is mainly used for fabricating a laser.
  • the third layer is mainly used to make the receiving device (see Figure 3), that is, the detector, the layers are separated by InP material, and the invention only needs two layers, that is, only need
  • the first layer and the second layer, the receiving device can be directly fixed on the outer surface of the chip 6, thereby eliminating the need to specifically set the third layer structure to fabricate the receiving device (see FIG. 3), thereby enabling the implementation of the present invention.
  • the structure of the example is reduced, which greatly reduces the difficulty of design and device epitaxial integration, reduces the complexity of device epitaxial integration and fabrication, improves the excellent production rate, and the receiving device (see Figure 3) is directly attached to the outer surface of the chip 6.
  • the package of the present invention is barreled without the need for spatial alignment, focusing, and passive coupling; the receiving device (see FIG. 3) is externally disposed at the outer surface of the chip 6.
  • Receiving device can be shortened (see FIG. 3) of the waveguide length, thereby shortening the length of the entire chip 6, but may be of the same chip 6 more receiving devices, the production cost is greatly reduced, significant in practical applications.
  • the receiving device 2 is fixed to the outer surface above the chip 6 by a formal or inverted manner.
  • the receiving device 2 by any means, as long as the receiving device 2 is fixed at the outer surface of the chip 6, the receiving device 2 can also be fixed at the outer surface of the chip 6 in other directions, as long as the direction of the optical signal emitted by the light emitting device is inconsistent. .
  • the edge of the chip 6 under the receiving device 2 is provided as a beveled edge 4 for reflecting an optical signal to the receiving device 2.
  • the monitoring detector 12 see FIG. 4
  • the receiving device 2 are externally disposed on the outer surface of the chip 6, the purpose of the beveled edge 4 is to: first, reflect the incoming external light signal into the receiving Device 2; Second, the optical signal of laser 11 (see Figure 4) is reflected to monitor detector 12 (see Figure 4).
  • the optical signal enters from the left end of the chip 6, and is transmitted to the right in the passive waveguide layer. Due to the presence of the right beveled edge 4, the optical signal reaching the right side will be reflected, causing the optical signal to change direction and enter upward.
  • Receive device 2 detector By setting the angle of the beveled edge 4, the optical signal is accurately deflected into the detector to complete the normal reception.
  • the detector can be a PIN, that is, a diode, or an APD, that is, an avalanche photodiode.
  • the semiconductor is a crystal material having a crystal orientation
  • the crystal has directionality
  • the crystal properties are different along different directions of the crystal lattice, for example, along a specific crystal orientation
  • the semiconductor device can be easily dissociated to form a clean and smooth fracture.
  • the etching rate of the chemical etching liquid to the crystal is completely different.
  • the InP material naturally forms a symmetrical stepped step after the wet etching of the chemical etching solution.
  • the slope of the hypotenuse is the same.
  • the oblique side is extremely oblique edge 4, and the slope directly affects the direction of the optical signal entering the detector, which ultimately affects the receiving performance of the detector, so how to make a flat
  • the beveled edge 4 is a key point of the process. Due to the different materials of the core layer and the cover layer in the passive waveguide layer, the etching tends to form an uneven surface. The more the number of core layers, the coarser the reflection surface, in order to To solve the above problems, different solutions can be used to etch different layers to form a beveled surface, and then use a low selectivity solution such as Br 2 to smooth the difference between the different levels.
  • the light-receiving component further includes a filter 5, the filter 5 is disposed between the receiving device 2 and the chip 6, and the filter 5 is used for accessing The optical signal of the receiving device 2 is filtered.
  • the filter 5 is mainly used to block the optical signal transmitted from the transmitting device (see FIG. 4) into the receiving device 2, and may also block other undesired signals according to actual needs.
  • the filter is integrated with the receiving device.
  • the filter 5 and the receiving device 2 are independent of each other.
  • the filter 5 can also make the light from the emitting device (see FIG. 4) laser (see FIG. 4)
  • the signal which is blocked outside the receiving device 2, does not enter the receiving device 2 to become a noise;
  • the filter 5 can be a discrete device or can be integrated with the receiving device 2 by a coating method.
  • the selection of the receiving device 2 is independent of the platform for integration, and the PIN and APD, which are different in sensitivity, can be flexibly selected according to different scenarios, that is, the diode and the avalanche photodiode; GPON (Gigabit Passive Optical Network) and EPON (Ethernet Passive Optical Network) can be upgraded to 10G GPON and 10G EPON for other components in the integrated chip 6 platform by selecting the receiving device 2 with different parameters. Do not move, so as to achieve the purpose of easy upgrade.
  • An optical module is provided with the light-receiving component of the second embodiment.
  • the structures of the light-receiving components in the second embodiment are the same, and are not described herein again.
  • the light-receiving component in the embodiment of the invention greatly reduces the possibility that the optical signal emitted by the transmitting device generates crosstalk to the receiving device, thereby reducing or even eliminating the influence of the receiving device on the receiving performance of other optical signals;
  • the structure of the embodiment is more simple, and the chip size is reduced, and the manufacturing cost is greatly reduced, which is significant in practical applications.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种收发光组件及光模块,所述收发光组件包括:发射器件、接收器件和滤波器件,所述发射器件和所述滤波器件均集成于同一个芯片内部,所述接收器件固定于所述芯片的外表面处;一方面,所述发射器件发射光信号,并经过所述滤波器件将该光信号传送到外界;另一方面,接收由外界传入的光信号,并通过所述滤波器件将该光信号反射进入所述接收器件。一种光模块,所述光模块上设置有收发光组件。本发明通过将接收器件外置于芯片的外表面处,而发射器件则集成于芯片内部,从而使光信号对接收器件产生串扰的可能性大大降低,进而减小甚至免去接收器件对其他光信号的接收性能的影响;另外,本发明结构简单,芯片尺寸减小,成本降低。

Description

一种收发光组件及光模块 技术领域
本发明涉及电子领域, 特别涉及一种收发光组件及光模块。 背景技术
无源光网络 PON ( passive optical network )技术凭借其点到多点的网络架 构及无源等诸多优势, 成为光纤接入 FTTx ( Fiber To The X )领域最受运营商 青睐的解决方案。 但 PON技术的大规模部署, 直接受制于有源光组件的成本。 常用的有源光组件是一种收发光组件, 主要包括: 发射器件, 接收器件, 滤波 器件, 一方面发射器件发射光信号, 并经过滤波器件将该光信号传出外界, 另 一方面接收外界传来的光信号, 并通过滤波器件将该光信号反射进入接收器 件, 收发两方面相互独立。
一般的有源光组件, 由激光器(DFB: Distributed feedback laser )和监控 探测器 (mPD: monitor photodetector ) 构成了发射器件, 由探测器 (PD: Photodetector )构成了接收器件, 由波分复用器( WDM: Wavelength division multiplexer )构成滤波器件, 然后和外部光纤对接, 发射器件和接收器件分别 通过 WDM进行合波、 分波, 以对不同的光信号进行接收和发射。
在收发一体的有源光组件中, 发射器件向外界发射光信号时, 发射器件的 发射方向可以设定, 但发出的光信号在芯片内部会向不同方向散射、 反射等, 极容易进入附近的接收器件, 这部分光信号会形成一种噪音, 对接收器件产生 串扰, 从而影响接收器件对其他光信号的接收性能。 发明内容
为了解决现有技术发射器件发出的光信号对接收器件产生串扰的问题, 本 发明实施例提供了一种收发光组件及光模块。 所述技术方案如下:
第一方面, 提供了一种收发光组件, 所述收发光组件包括: 发射器件、 接 收器件和滤波器件, 所述发射器件和所述滤波器件均集成于同一个芯片内部, 所述接收器件固定于所述芯片的外表面处; 所述发射器件发射光信号, 并经过所述滤波器件将该光信号传送到外界; 并且, 由外界传入的光信号通过所述滤波器件反射进入所述接收器件。
在第一方面的第一种可能的实现方式中, 所述接收器件通过正装或者倒贴 的方式固定于所述芯片上方的外表面处。
结合第一方面的第一种可能实现方式, 在第二种可能的实现方式中, 所述 接收器件下方的所述芯片的边缘设置为斜角边缘, 所述斜角边缘用于将光信号 反射到所述接收器件。
结合第一方面、第一方面的第一种可能实现方式或第一方面的第二种可能 实现方式, 在第三种可能的实现方式中, 所述收发光组件还包括滤波片, 所述 滤波片设置在所述接收器件和所述芯片之间, 所述滤波片用于对进入所述接收 器件的光信号进行过滤。
结合第一方面的第三种可能实现方式, 可选的, 在第一方面的第四种可能 的实现方式中, 所述滤波片与所述接收器件集成为一体。
结合第一方面的第三种可能实现方式, 可选的, 在第一方面的第五种可能 的实现方式中, 所述滤波片与所述接收器件相互独立。
第二方面, 提供了一种光模块, 所述光模块上设置有收发光组件。
第三方面, 提供了一种收发光组件, 所述收发光组件包括: 发射器件、 接 收器件和滤波器件, 所述发射器件包括发射器和监控探测器, 所述发射器和所 述滤波器件均集成于同一个芯片内部, 所述监控探测器和所述接收器件固定于 所述芯片的外表面处;
所述发射器件发射光信号, 并经过所述滤波器件将该光信号传送到外界; 并且, 由外界传入的光信号通过所述滤波器件反射进入所述接收器件。
在第三方面的第一种可能的实现方式中, 所述接收器件通过正装或者倒贴 的方式固定于所述芯片上方的外表面处。
结合第三方面的第一种可能实现方式, 在第二种可能的实现方式中, 所述 接收器件下方的所述芯片的边缘设置为斜角边缘, 所述斜角边缘用于将光信号 反射到所述接收器件。
结合第三方面、第三方面的第一种可能实现方式或第三方面的第二种可能 实现方式, 在第三种可能的实现方式中, 所述收发光组件还包括滤波片, 所述 滤波片设置在所述接收器件和所述芯片之间, 所述滤波片用于对进入所述接收 器件的光信号进行过滤。 结合第三方面的第三种可能实现方式,在第三方面的第四种可能的实现方 式中, 所述滤波片与所述接收器件集成为一体。
结合第三方面的第三种可能实现方式,在第三方面的第五种可能的实现方 式中, 所述滤波片与所述接收器件相互独立。
第四方面, 提供了一种光模块, 所述光模块上设置有收发光组件。
本发明实施例提供的技术方案带来的有益效果是:
本发明实施例通过将接收器件外置于芯片的外表面处, 而发射器件则集成 于芯片内部,发射器件发射的光信号通过散射、反射等渠道改变光信号的方向, 且光信号穿过芯片内部以准确的角度进入芯片外表面处的接收器件, 这一过程 相比背景技术要困难的多, 而且能够进入接收器件的光信号也只能是特定角度 的, 且极其微弱的, 从而使该光信号对接收器件产生串扰的可能性大大降低, 进而减小甚至免去接收器件对其他光信号的接收性能的影响; 另外, 本发明实 施例结构更为筒单, 且芯片尺寸减小, 制作成本大大降低, 在实际应用中意义 重大。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所 需要使用的附图作筒单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明 的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例一提供的收发光组件的正视图;
图 2是图 1中收发光组件的俯视图;
图 3是本发明实施例二提供的收发光组件的俯视图;
图 4是图 3的 A-A剖视图;
图 5是图 3的 B-B剖视图。
其中: 1发射器件, 11激光器, 12监控探测器, 2接收器件, 3滤波器件, 4斜角边缘, 5滤波片, 6芯片。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明 实施方式作进一步地详细描述。 如图 1所示,本发明实施例提供的一种收发光组件,所述收发光组件包括: 发射器件 1、 接收器件 2和滤波器件, 所述发射器件 1和所述滤波器件均集成 于同一个芯片 6内部, 所述接收器件 2固定于所述芯片 6的外表面处;
一方面, 所述发射器件 1发射光信号, 并经过所述滤波器件将该光信号传 送到外界; 另一方面, 接收由外界传入的光信号, 并通过所述滤波器件将该光 信号反射进入所述接收器件 2。
其中,本实施例中,芯片 6—般采用磷化铟 InP芯片 6,由激光器 11 ( DFB: Distributed feedback laser )和监控探;则器 12 ( mPD: monitor photodetector )构 成了发射器件 1 , 由探测器(PD: Photodetector )构成了接收器件 2, 由波分 复用器(WDM: Wavelength division multiplexer )构成滤波器件, 然后和外界 光纤对接, 发射器件 1和接收器件 2分别通过 WDM进行合波、 分波, 以对不 同的光信号进行接收和发射, 一般激光器 11、 监控探测器 12和波分复用器都 是在 InP芯片 6上通过外延生长的方式, 直接在 InP晶圓上制作成的。
本发明实施例通过将接收器件 2外置于芯片 6的外表面处, 而发射器件 1 则集成于芯片 6内部, 发射器件 1发射的光信号通过散射、 反射等渠道改变光 信号的方向,且光信号穿过芯片 6内部以准确的角度进入芯片 6外表面处的接 收器件 2, 这一过程相比背景技术要困难的多, 而且能够进入接收器件 2的光 信号也只能是特定角度的, 且极其微弱的, 从而是该光信号对接收器件 2产生 串扰的可能性大大降低, 进而减小甚至免去接收器件 2对其他光信号的接收性 能的影响; 另外, 本发明实施例结构更为筒单, 现有技术中, 芯片村底上需要 设置三层结构, 第一层为无源波导层, 一般主要由折射率较高、 吸收峰较短的 InGaAsP磷砷化铟镓材料构成, 但不限于此, 该波导层主要用于制作波分复用 器和其他无源波导结构, 第二层为有源层, 一般主要由折射率较低、 吸收峰较 长的 InGaAsP磷砷化铟镓材料构成,但不限于此, 该有源层主要用于制作激光 器和监控探测器; 第三层则主要用于制作接收器件, 即探测器, 各层结构之间 由 InP材料间隔, 而本发明则只需要两层结构, 即只需要第一层和第二层, 接 收器件 2可直接固定在芯片 6外表面处即可,从而免去专门设置第三层结构制 作接收器件 2, 进而使本发明实施例的结构得以筒化, 极大降低了设计和器件 外延集成的难度, 降低器件外延集成和制作的复杂度, 提高生产的优良率, 而 且接收器件 2直接贴在芯片 6外表面, 无需进行空间对准、 聚焦及无源耦合等 操作, 使本发明的封装得以筒化; 由于接收器件 2外置在芯片 6的外表面处, 可以缩短接收器件 2的波导长度, 从而可以缩短整个芯片 6的长度, 而且也可 以使同一芯片 6上容纳更多的器件, 制作成本大大降低, 在实际应用中意义重 大。
如图 1所示, 具体地, 作为优选, 所述接收器件 2通过正装或者倒贴的方 式固定于所述芯片 6上方的外表面处。 当然, 本领域技术人员可知, 接收器件 2不论通过何种方式, 只要保证接收器件 2固定于芯片 6外表面处即可, 接收 器件 2也可以固定于芯片 6其它方向的外表面处, 只要和发光器件发射的光信 号方向不一致即可。
如图 1所示, 进一步地, 所述接收器件 2下方的所述芯片 6的边缘设置为 斜角边缘 4, 所述斜角边缘 4用于将光信号反射到所述接收器件 2。
在工作时, 光信号从芯片 6的左端进入, 在无源波导层中传输进入右边, 由于右边斜角边缘 4的存在, 到达右边的光信号会发生反射, 使光信号改变方 向, 向上进入到接收器件 2探测器。 通过设置斜角边缘 4的角度, 使得光信号 准确折向进入到探测器, 完成正常的接收, 在该实施例中, 探测器可以是二极 管 PIN, 也可以是雪崩光电二极管 APD。 其中, 半导体是有晶向的晶体材料, 晶体具有方向性, 并且沿晶格的不同方向晶体性质不同, 比如沿着某个特定的 晶向, 半导体器件可以^艮容易解离形成一个干净光滑的断裂面, 同样的, 在某 些特定的晶向上, 化学腐蚀液对晶体的腐蚀速率也完全不同, 如 ΙηΡ材料, 在 经过化学腐蚀液湿法刻蚀后, 自然形成了一个左右对称的倒台阶, 斜边的斜率 相同。 而在本发明实施例中芯片 6的无源波导层中,这个斜边即为斜角边缘 4, 其斜率直接影响进入探测器的光信号方向, 最终影响探测器的接收性能, 因此 如何制作平整的斜角边缘 4, 就成为工艺的一个关键点, 由于无源波导层中, 芯层和覆盖层的材料不同, 刻蚀容易形成不平整的表面, 芯层数越多, 反射面 越粗糙, 为了解决上述问题, 可以先用不同溶液, 刻蚀不同的层, 形成倒斜面, 再利用选择性低的溶液, 比如 Br2, 抹平不同层级之间的差异。
如图 1所示, 作为优选, 所述收发光组件还包括滤波片 5, 所述滤波片 5 设置在所述接收器件 2和所述芯片 6之间, 所述滤波片 5用于对进入所述接收 器件 2的光信号进行过滤。 本实施例中, 滤波片 5主要用于阻挡由发射器件 1 发射进入接收器件 2的光信号, 也可以根据实际需要, 对其他不需要的信号进 行阻挡。
具体地, 作为优选, 所述滤波片与所述接收器件集成为一体。 如图 1所示, 作为优选, 所述滤波片 5与所述接收器件 2相互独立。
其中, 滤波片 5也可以使得来自发射器件 1激光器 11的光信号, 被阻挡 在接收器件 2之外, 不会进入接收器件 2成为噪音; 该滤波片 5可以是一个分 立的器件, 也可以通过镀膜的方法, 与接收器件 2集成在一起。
另外, 如图 2所示, 由波分复用器构成滤波器件 3, 本发明实施例中接收 器件 (参见图 1 ) 的选择与用于集成的芯片 (参见图 1 )平台无关, 可以根据 不同的场景, 灵活选择的灵敏度不同的 PIN和 APD, 即二极管和雪崩光电二 极管; 本发明实施例还可以通过选择不同参数的接收器件 (参见图 1 ), 把 GPON、 EPON (新一代光纤接入技术)升级到 10G GPON和 10G EPON用于 集成的芯片 (参见图 1 )平台中的其它部件, 基本可以不动, 从而达到筒易升 级的目的。
一种光模块, 所述光模块上设置有实施例一所述的收发光组件。 以上实施 例一中的收发光组件的结构均相同, 在此不再赘述。 本发明实施例中的收发光 组件, 使发射器件发射的光信号对接收器件产生串扰的可能性大大降低, 进而 减小甚至免去接收器件对其他光信号的接收性能的影响; 另外, 本发明实施例 结构更为筒单,且芯片尺寸减小,制作成本大大降低,在实际应用中意义重大。 实施例二
如图 3所示, 本发明实施例提供的一种收发光组件的俯视图。
如图 4所示,本发明实施例提供的一种收发光组件,所述收发光组件包括: 发射器件 1、 接收器件(参见图 3 )和滤波器件 (参见图 3 ), 所述发射器件 1 包括激光器 11和监控探测器 12, 所述激光器 11和所述滤波器件 (参见图 3 ) 均集成于同一个芯片 6内部, 所述监控探测器 12和所述接收器件(参见图 3 ) 固定于所述芯片 6的外表面处;
一方面, 所述发射器件 1发射光信号, 并经过所述滤波器件(参见图 3 ) 将该光信号传送到外界; 另一方面, 接收由外界传入的光信号, 并通过所述滤 波器件(参见图 3 )将该光信号反射进入所述接收器件(参见图 3 )。
其中, 本实施例中, 芯片 6—般采用 InP (磷化铟) 芯片 6, 由激光器 11 ( DFB: Distributed feedback laser ) 和监控探测器 12 ( mPD: monitor photodetector )构成了发射器件 1 , 激光器 11 即为发射器, 由探测器(PD: Photodetector )构成了接收器件(参见图 3 ), 由波分复用器( WDM: Wavelength division multiplexer )构成滤波器件(参见图 3 ), 发射器件 1和接收器件 (参 见图 3 )分别通过 WDM进行合波、 分波, 以对不同的光信号进行接收和发射, 本实施例在实施例一的基础上, 将发射器件 1 中的监控探测器 12采用与接收 器件 (参见图 3 ) 同样的方式, 外置于芯片 6的外表面处, 如此设置可以使整 个芯片 6的长度更短, 整个芯片 6比实施例一更为小巧。 一般激光器 11、 和波 分复用器都是在 InP芯片 6上通过外延生长的方式, 直接在 InP晶圓上制作成 的。
本发明实施例通过将接收器件 (参见图 3 )外置于芯片 6的外表面处, 而 发射器件 1则集成于芯片 6内部, 发射器件 1发射的光信号通过散射、 反射等 渠道改变光信号的方向, 且光信号穿过芯片 6内部以准确的角度进入芯片 6外 表面处的接收器件(参见图 3 ), 这一过程相比背景技术要困难的多, 而且能够 进入接收器件(参见图 3 ) 的光信号也只能是特定角度的, 且极其微弱的, 从 而是该光信号对接收器件(参见图 3 )产生串扰的可能性大大降低, 进而减小 甚至免去接收器件 (参见图 3 )对其他光信号的接收性能的影响; 另外, 本发 明实施例结构更为筒单, 现有技术中, 芯片 6村底上需要设置三层结构, 第一 层为无源波导层, 一般主要由折射率较低、吸收峰较短的 InGaAsP磷砷化铟镓 材料构成, 但不限于此, 该波导层主要用于制作波分复用器和其他无源波导结 构, 第二层为有源层, 一般主要由折射率较高、 吸收峰较长的 InGaAsP磷砷化 铟镓材料构成, 但不限于此, 该有源层主要用于制作激光器 11 和监控探测器 12; 第三层则主要用于制作接收器件(参见图 3 ), 即探测器, 各层结构之间由 InP材料间隔, 而本发明则只需要两层结构, 即只需要第一层和第二层, 接收 器件 (参见图 3 )可直接固定在芯片 6外表面处即可, 从而免去专门设置第三 层结构制作接收器件(参见图 3 ), 进而使本发明实施例的结构得以筒化, 极大 降低了设计和器件外延集成的难度, 降低器件外延集成和制作的复杂度, 提高 生产的优良率, 而且接收器件(参见图 3 )直接贴在芯片 6外表面, 无需进行 空间对准、 聚焦及无源耦合等操作, 使本发明的封装得以筒化; 由于接收器件 (参见图 3 )外置在芯片 6的外表面处, 可以缩短接收器件(参见图 3 ) 的波 导长度, 从而可以缩短整个芯片 6的长度, 而且也可以使同一芯片 6上容纳更 多的器件, 制作成本大大降低, 在实际应用中意义重大。
如图 5所示, 具体地, 作为优选, 所述接收器件 2通过正装或者倒贴的方 式固定于所述芯片 6上方的外表面处。 当然, 本领域技术人员可知, 接收器件 2不论通过何种方式, 只要保证接收器件 2固定于芯片 6外表面处即可, 接收 器件 2也可以固定于芯片 6其它方向的外表面处, 只要和发光器件发射的光信 号方向不一致即可。
如图 5所示, 进一步地, 所述接收器件 2下方的所述芯片 6的边缘设置为 斜角边缘 4, 所述斜角边缘 4用于将光信号反射到所述接收器件 2。 本实施例 中, 由于监控探测器 12(参见图 4)和接收器件 2均外置在芯片 6外表面, 所以 斜角边缘 4的目的在于: 第一, 将外界传入的光信号反射进入接收器件 2; 第 二, 将激光器 11(参见图 4)的光信号反射到监控探测器 12(参见图 4)。
在工作时, 光信号从芯片 6的左端进入, 在无源波导层中传输进入右边, 由于右边斜角边缘 4的存在, 到达右边的光信号会发生反射, 使光信号改变方 向, 向上进入到接收器件 2探测器。 通过设置斜角边缘 4的角度, 使得光信号 准确折向进入到探测器, 完成正常的接收, 在该实施例中,探测器可以是 PIN, 即二极管, 也可以是 APD, 即雪崩光电二极管。 其中, 半导体是有晶向的晶体 材料, 晶体具有方向性, 并且沿晶格的不同方向晶体性质不同, 比如沿着某个 特定的晶向,半导体器件可以很容易解离形成一个干净光滑的断裂面,同样的, 在某些特定的晶向上,化学腐蚀液对晶体的腐蚀速率也完全不同,如 InP材料, 在经过化学腐蚀液湿法刻蚀后, 自然形成了一个左右对称的倒台阶, 斜边的斜 率相同。 而在本发明实施例中芯片 6的无源波导层中, 这个斜边极为斜角边缘 4, 其斜率直接影响进入探测器的光信号方向, 最终影响探测器的接收性能, 因此如何制作平整的斜角边缘 4, 就成为工艺的一个关键点, 由于无源波导层 中, 芯层和覆盖层的材料不同, 刻蚀容易形成不平整的表面, 芯层数越多, 反 射面越粗糙, 为了解决上述问题, 可以先用不同溶液, 刻蚀不同的层, 形成倒 斜面, 再利用选择性低的溶液, 比如 Br2, 抹平不同层级之间的差异。
如图 5所示, 作为优选, 所述收发光组件还包括滤波片 5, 所述滤波片 5 设置在所述接收器件 2和所述芯片 6之间, 所述滤波片 5用于对进入所述接收 器件 2的光信号进行过滤。本实施例中,滤波片 5主要用于阻挡由发射器件 (参 见图 4)发射进入接收器件 2的光信号, 也可以根据实际需要, 对其他不需要的 信号进行阻挡。
具体地, 作为优选, 所述滤波片与所述接收器件集成为一体。
如图 5所示, 作为优选, 所述滤波片 5与所述接收器件 2相互独立。
其中, 滤波片 5也可以使得来自发射器件 (参见图 4)激光器 (参见图 4)的光 信号, 被阻挡在接收器件 2之外, 不会进入接收器件 2成为噪音; 该滤波片 5 可以是一个分立的器件, 也可以通过镀膜的方法, 与接收器件 2集成在一起。
另外, 本发明实施例中接收器件 2的选择与用于集成的芯片 6平台无关, 可以根据不同的场景, 灵活选择的灵敏度不同的 PIN和 APD, 即二极管和雪 崩光电二极管;本发明实施例还可以通过选择不同参数的接收器件 2,把 GPON (吉比特无源光网络)和 EPON (以太无源光网络)升级到 10G GPON和 10G EPON用于集成的芯片 6平台中的其它部件, 基本可以不动, 从而达到筒易升 级的目的。
一种光模块, 所述光模块上设置有实施例二所述的收发光组件。 以上实施 例二中的收发光组件的结构均相同, 在此不再赘述。 本发明实施例中的收发光 组件, 使发射器件发射的光信号对接收器件产生串扰的可能性大大降低, 进而 减小甚至免去接收器件对其他光信号的接收性能的影响; 另外, 本发明实施例 结构更为筒单,且芯片尺寸减小,制作成本大大降低,在实际应用中意义重大。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。
以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的 精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的 保护范围之内。

Claims

权 利 要 求 书
1、 一种收发光组件, 其特征在于, 所述收发光组件包括: 发射器件、 接收 器件和滤波器件, 所述发射器件和所述滤波器件均集成于同一个芯片内部, 所 述接收器件固定于所述芯片的外表面处;
所述发射器件发射光信号, 并经过所述滤波器件将该光信号传送到外界; 并且, 由外界传入的光信号通过所述滤波器件反射进入所述接收器件。
2、 根据权利要求 1所述的收发光组件, 其特征在于, 所述接收器件通过正 装或者倒贴的方式固定于所述芯片上方的外表面处。
3、 根据权利要求 2所述的收发光组件, 其特征在于, 所述接收器件下方的 所述芯片的边缘设置为斜角边缘, 所述斜角边缘用于将光信号反射到所述接收 器件。
4、 根据权利要求 1-3任意一项所述的收发光组件, 其特征在于, 所述收发 光组件还包括滤波片, 所述滤波片设置在所述接收器件和所述芯片之间, 所述 滤波片用于对进入所述接收器件的光信号进行过滤。
5、 根据权利要求 4所述的收发光组件, 其特征在于, 所述滤波片与所述接 收器件集成为一体。
6、 根据权利要求 4所述的收发光组件, 其特征在于, 所述滤波片与所述接 收器件相互独立。
7、 一种光模块, 其特征在于, 所述光模块上设置有权利要求 1-6任意一项 所述的收发光组件。
8、 一种收发光组件, 其特征在于, 所述收发光组件包括: 发射器件、 接收 器件和滤波器件, 所述发射器件包括发射器和监控探测器, 所述发射器件和所 述滤波器件均集成于同一个芯片内部, 所述监控探测器和所述接收器件固定于 所述芯片的外表面处;
所述发射器件发射光信号, 并经过所述滤波器件将该光信号传送到外界; 并且, 由外界传入的光信号通过所述滤波器件反射进入所述接收器件。
9、 根据权利要求 8所述的收发光组件, 其特征在于, 所述接收器件通过正 装或者倒贴的方式固定于所述芯片上方的外表面处。
10、 根据权利要求 9所述的收发光组件, 其特征在于, 所述接收器件下方 的所述芯片的边缘设置为斜角边缘, 所述斜角边缘用于将光信号反射到所述接 收器件。
11、 根据权利要求 8-10任意一项所述的收发光组件, 其特征在于, 所述收 发光组件还包括滤波片, 所述滤波片设置在所述接收器件和所述芯片之间, 所 述滤波片用于对进入所述接收器件的光信号进行过滤。
12、 根据权利要求 11所述的收发光组件, 其特征在于, 所述滤波片与所述 接收器件集成为一体。
13、 根据权利要求 11所述的收发光组件, 其特征在于, 所述滤波片与所述 接收器件相互独立。
14、 一种光模块, 其特征在于, 所述光模块上设置有权利要求 8-13任意一 项所述的收发光组件。
PCT/CN2012/087915 2012-12-28 2012-12-28 一种收发光组件及光模块 WO2014101141A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/087915 WO2014101141A1 (zh) 2012-12-28 2012-12-28 一种收发光组件及光模块
CN201280002169.XA CN103229434B (zh) 2012-12-28 2012-12-28 一种收发光组件及光模块

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/087915 WO2014101141A1 (zh) 2012-12-28 2012-12-28 一种收发光组件及光模块

Publications (1)

Publication Number Publication Date
WO2014101141A1 true WO2014101141A1 (zh) 2014-07-03

Family

ID=48838338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087915 WO2014101141A1 (zh) 2012-12-28 2012-12-28 一种收发光组件及光模块

Country Status (2)

Country Link
CN (1) CN103229434B (zh)
WO (1) WO2014101141A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746748B (zh) * 2013-10-31 2017-02-01 华为技术有限公司 一种光网络终端及数字式集成光组件
CN104092500A (zh) * 2014-07-13 2014-10-08 潘国新 一体式光收发组件
CN110289555A (zh) * 2019-06-21 2019-09-27 中国科学院半导体研究所 半导体激光光源

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1743886A (zh) * 2004-08-31 2006-03-08 安捷伦科技有限公司 小型光学收发器模组
CN102141660A (zh) * 2010-09-15 2011-08-03 华为技术有限公司 光收发一体装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191396A (ja) * 2002-12-06 2004-07-08 Sony Corp 光送受信装置
JP2007534154A (ja) * 2003-10-20 2007-11-22 ビノプティクス・コーポレイション 表面放射入射光子デバイス
US7598527B2 (en) * 2004-01-20 2009-10-06 Binoptics Corporation Monitoring photodetector for integrated photonic devices
CN101876732B (zh) * 2010-06-11 2012-05-23 中央大学 具有光波导结构的发射端模块和接收端模块

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1743886A (zh) * 2004-08-31 2006-03-08 安捷伦科技有限公司 小型光学收发器模组
CN102141660A (zh) * 2010-09-15 2011-08-03 华为技术有限公司 光收发一体装置

Also Published As

Publication number Publication date
CN103229434A (zh) 2013-07-31
CN103229434B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
US6694074B2 (en) Transmission and reception configuration for bi-directional optical data transmission
KR102355831B1 (ko) 자가-테스트 기능성을 가진 수직 입사 광검출기
CN102346284B (zh) 一种利用自立式平行板分束器的激光二极管封装体结构
KR100871011B1 (ko) 파장 잠금 기능을 갖는 티오형 레이저 다이오드 패키지 및 그 패키지에 구비된 경사필터의 제작 방법
US9709759B2 (en) NxN parallel optical transceiver
US20140183344A1 (en) Hybrid optical coupling module and manufacturing method thereof
US20060124829A1 (en) Surface emitting laser device including optical sensor and optical waveguide device employing the same
JP2008181025A (ja) 一芯双方向光モジュール
GB2545766A (en) Optical components for wavelength division multiplexing with high-density optical interconnect modules
WO2014101141A1 (zh) 一种收发光组件及光模块
KR100975052B1 (ko) 광모듈 및 그 제조방법
US20050276546A1 (en) Bidirectional emitting and receiving module
JP2007079267A (ja) 光送受信素子、及びこの光送受信素子を備える光送受信素子並びに光センサー
US20220173259A1 (en) Photoreceiver and Optical Receiver
KR100317130B1 (ko) 광가입자망을 위한 양방향 송수신모듈과 그 제작방법
KR100865127B1 (ko) 광모듈 및 그 제조방법
KR101478996B1 (ko) 양방향 송수신 소자
KR100871017B1 (ko) 한 개의 빔 스플리터/필터가 구비된 양방향 통신용트리플렉서 광모듈 패키지 및 이 빔 스플리터/필터의 제작방법
KR100858217B1 (ko) 양방향 통신용 광모듈 패키지
KR101435589B1 (ko) 양방향 통신용 광모듈 패키지 구조
US8095016B2 (en) Bidirectional, optical transmitting/receiving module, optical transmitting/receiving device, and bidirectional optical transmitting/receiving module manufacturing method
KR100960745B1 (ko) 쐐기형 서브마운트를 가지는 양방향 통신용 광모듈 패키지
SE534300C2 (sv) Integrerat chip innefattande laser och filter
KR100750506B1 (ko) 광감지기를 구비한 표면방출레이저소자 및 이를 적용한광도파로 소자
KR20100039839A (ko) 광모듈 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891206

Country of ref document: EP

Kind code of ref document: A1