JP2009114547A - Silver particle powder and dispersion liquid - Google Patents

Silver particle powder and dispersion liquid Download PDF

Info

Publication number
JP2009114547A
JP2009114547A JP2009032228A JP2009032228A JP2009114547A JP 2009114547 A JP2009114547 A JP 2009114547A JP 2009032228 A JP2009032228 A JP 2009032228A JP 2009032228 A JP2009032228 A JP 2009032228A JP 2009114547 A JP2009114547 A JP 2009114547A
Authority
JP
Japan
Prior art keywords
silver
less
dtem
dispersion
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009032228A
Other languages
Japanese (ja)
Other versions
JP5064423B2 (en
Inventor
Kimitaka Sato
王高 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2009032228A priority Critical patent/JP5064423B2/en
Publication of JP2009114547A publication Critical patent/JP2009114547A/en
Application granted granted Critical
Publication of JP5064423B2 publication Critical patent/JP5064423B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a silver nanoparticle powder suitable as a wiring-forming material for forming a fine circuit pattern, particularly a material for forming wiring by an inkjet method. <P>SOLUTION: The silver nanoparticle powder has an average particle size determined by TEM observation (DTEM) of ≤30 nm, an aspect ratio of <1.5, an X-ray crystal grain diameter (Dx) of ≤30 nm, a single crystallization degree [(DTEM)/(Dx)] of ≤5.0, preferably ≤1.0, and a CV value [=100× standard deviation (σ)/average particle size (DTEM)] of <40%, wherein the particle surfaces are coated with an organic protective agent having a molecular weight of 100-400. The nanoparticle powder can be obtained by reducing a silver salt at 85-150°C in an alcohol with a boiling point of 85-150°C in the presence of the organic protective agent. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は,銀の粒子粉末に係り,詳しくは,微細な回路パターンを形成するための配線形成用材料,特にインクジェット法による配線形成用材料として好適な銀のナノ粒子粉末に関する。本発明の銀の粒子粉末は,LSI基板の配線やFPD(フラットパネルディスプレイ)の電極と配線形成,さらには微細なトレンチ,ビアホール,コンタクトホールの埋め込みなど等の配線形成材料としても好適であり,さらに車の塗装などの色材としても適用でき,また不純物が少なく毒性が低いので医療・診断・バイオテクノロジー分野において生化学物質等を吸着させるキャリヤーにも適用できる。   The present invention relates to a silver particle powder, and more particularly to a silver nanoparticle powder suitable as a wiring forming material for forming a fine circuit pattern, particularly as a wiring forming material by an ink jet method. The silver particle powder of the present invention is also suitable as a wiring forming material for wiring of LSI substrates, FPD (flat panel display) electrodes and wiring, and further embedding fine trenches, via holes, contact holes, etc. Furthermore, it can be applied as a coloring material for car paints, and since it has few impurities and low toxicity, it can also be applied to carriers that adsorb biochemicals in the medical, diagnostic, and biotechnology fields.

固体物質の大きさがナノメートルオーダーの超微粒子(以下,ナノ粒子とよぶ)になると比表面積が非常に大きくなるために,固体でありながら気体や液体の界面が極端に大きくなる。したがって,その表面の特性が固体物質の性質を大きく左右する。   When the size of the solid material becomes nanometer order ultrafine particles (hereinafter referred to as “nanoparticles”), the specific surface area becomes very large, so that the interface between gas and liquid becomes extremely large even though it is solid. Therefore, the properties of the surface greatly affect the properties of the solid material.

金属ナノ粒子の場合は,融点がバルク状態のものに比べ劇的に低下することが知られている。そのため,従来のミクロンオーダーの粒子に比べ,微細な配線が描画できるという特徴以外にも,低温焼結できるなどの特徴を有する。金属ナノ粒子の中でも,銀のナノ粒子は低抵抗でかつ高い耐候性をもち,その価格も他の貴金属と比較すると安価であることから,微細な配線幅をもつ次世代の配線材料として特に期待されている。   In the case of metal nanoparticles, it is known that the melting point decreases dramatically compared to that in the bulk state. Therefore, compared to conventional micron order particles, in addition to the feature that fine wiring can be drawn, it has features such as low temperature sintering. Among metal nanoparticles, silver nanoparticles are particularly promising as next-generation wiring materials with fine wiring width because they have low resistance and high weather resistance, and their price is also cheap compared to other noble metals. Has been.

ナノメートルオーダーの銀のナノ粒子の製造方法としては大別して気相法と液相法が知られている。気相法ではガス中での蒸着法が普通であり,特許文献1にはヘリウム等の不活性ガス雰囲気でかつ0.5Torr程度の低圧中で銀を蒸発させる方法が記載されている。液相法に関しては,特許文献2では,水相で銀イオンをアミンで還元し,得られた銀の析出相を有機溶媒相(高分子量の分散剤)に移動して銀のコロイドを得る方法を開示した。特許文献3には,溶媒中でハロゲン化銀を還元剤(アルカリ金属水素化ホウ酸塩またはアンモニウム水素化ホウ酸塩)を用いてチオール系の保護剤の存在下で還元する方法が記載されている。   As a method for producing nanometer-order silver nanoparticles, a gas phase method and a liquid phase method are known. In the vapor phase method, vapor deposition in gas is common, and Patent Document 1 describes a method of evaporating silver in an inert gas atmosphere such as helium and at a low pressure of about 0.5 Torr. Regarding the liquid phase method, Patent Document 2 discloses a method in which silver ions are reduced with an amine in an aqueous phase and the resulting silver precipitation phase is transferred to an organic solvent phase (high molecular weight dispersant) to obtain a silver colloid. Disclosed. Patent Document 3 describes a method of reducing silver halide in a solvent using a reducing agent (alkali metal hydride borate or ammonium borohydride) in the presence of a thiol-based protective agent. Yes.

特開2001−35255号公報JP 2001-35255 A 特開平11−319538号公報JP 11-319538 A 特開2003−253311号公報JP 2003253331 A

特許文献1の気相法で得られる銀粒子は,粒径が10nm以下で溶媒中での分散性が良好である。しかし,この技術は特別な装置が必要である。このため産業用の銀ナノ粒子を大量に合成するには難がある。これに対して液相法は,基本的に大量合成に適した方法であるが,液中では金属ナノ粒子は極めて凝集性が高いので単分散したナノ粒子粉末を得難いという問題がある。一般に,金属ナノ粒子を製造するためには分散剤としてクエン酸を用いる例が多く,また液中の金属イオン濃度も10mmol/L(=0.01mol/L)以下と極めて低いのが通常であり,このため,産業上の応用面でのネックとなっている。   Silver particles obtained by the vapor phase method of Patent Document 1 have a particle size of 10 nm or less and good dispersibility in a solvent. However, this technology requires special equipment. For this reason, it is difficult to synthesize industrial silver nanoparticles in large quantities. On the other hand, the liquid phase method is basically a method suitable for large-scale synthesis, but there is a problem that it is difficult to obtain monodispersed nanoparticle powder because metal nanoparticles are extremely cohesive in the liquid. In general, in order to produce metal nanoparticles, there are many examples of using citric acid as a dispersant, and the metal ion concentration in the liquid is usually very low as 10 mmol / L (= 0.01 mol / L) or less. Therefore, this is a bottleneck in industrial applications.

特許文献2は,前記した方法で0.1mol/L以上の高い金属イオン濃度と,高い原料仕込み濃度で安定して分散した銀ナノ粒子を合成しているが,凝集を抑制するために数平均分子量が数万の高分子量の分散剤を用いている。高分子量の分散剤を用いたものでは,当該銀ナノ粒子を着色剤として用いる場合は問題ないが,回路形成用途に用いる場合には,高分子の沸点以上の焼成温度が必要となること,さらには焼成後も配線にポアが発生しやすいこと等から高抵抗や断線の問題が生じるので,微細な配線用途に好適とは言えない。   Patent Document 2 synthesizes silver nanoparticles stably dispersed at a high metal ion concentration of 0.1 mol / L or higher and a high raw material feed concentration by the above-described method. A high molecular weight dispersant having a molecular weight of tens of thousands is used. In the case of using a high molecular weight dispersant, there is no problem when the silver nanoparticles are used as a colorant, but when used for circuit formation, a firing temperature higher than the boiling point of the polymer is required. However, since pores are likely to be generated in the wiring even after firing, problems such as high resistance and disconnection occur.

特許文献3は,前記した方法で仕込み濃度も0.1mol/L以上の比較的高い濃度で反応させ,得られた10nm以下の銀粒子を分散剤で分散させている。特許文献3では好適な分散剤としてチオール系の分散剤が提案されており,このものは分子量が200程度と低いことから,配線形成時に低温焼成で容易に揮発させることができる。しかし,チオール系界面活性剤には,硫黄(S)が含まれており,この硫黄分は,配線やその他電子部品を腐食させる原因となるため,配線形成用途には,不適な元素である。したがって配線形成用途には好ましくはない。   In Patent Document 3, the above-described method is used to cause a reaction at a relatively high concentration of 0.1 mol / L or more, and the obtained silver particles of 10 nm or less are dispersed with a dispersant. Patent Document 3 proposes a thiol-based dispersant as a suitable dispersant. Since this has a low molecular weight of about 200, it can be easily volatilized by low-temperature firing during wiring formation. However, sulfur (S) is contained in the thiol-based surfactant, and this sulfur content corrodes the wiring and other electronic components, so that it is an unsuitable element for wiring formation applications. Therefore, it is not preferable for wiring formation applications.

したがって,本発明はこのような問題を解決し,微細な配線形成用途に適した銀のナノ粒子粉末とその分散液を安価にかつ大量に得ることを課題としたものである。また,粒径の揃った球形の銀のナノ粒子が良好に単分散しているのが好ましいことから,このような銀粒子の分散液を得ることを課題としたものである。   Accordingly, an object of the present invention is to solve such problems and to obtain a silver nanoparticle powder and a dispersion thereof suitable for fine wiring formation at low cost and in large quantities. Moreover, since it is preferable that the spherical silver nanoparticles having a uniform particle size are well monodispersed, it is an object to obtain a dispersion of such silver particles.

前記課題の解決を目的とした本発明によれば,TEM観察により測定される平均粒径(DTEM) が30nm以下,アスペクト比が1.5未満,X線結晶粒子径(Dx)が30nm以下,単結晶化度〔(DTEM) /(Dx)〕が5.0以下好ましくは1.0以下,CV値〔=100×標準偏差(σ)/個数平均粒径(DTEM)〕が40%未満の銀の粒子粉末であって,粒子表面に分子量100〜400の有機保護剤(代表的にはアミノ化合物,特に第一級アミン)が被着している銀の粒子粉末を提供する。さらに本発明によれば,この銀の粒子粉末を有機溶媒に分散させた銀粒子の分散液であって,動的光散乱法による平均粒径(D50)が100nm以下および分散度=(D50)/(DTEM) が5.0以下である銀粒子の分散液を提供する。   According to the present invention for solving the above problems, the average particle diameter (DTEM) measured by TEM observation is 30 nm or less, the aspect ratio is less than 1.5, the X-ray crystal particle diameter (Dx) is 30 nm or less, Single crystallinity [(DTEM) / (Dx)] is 5.0 or less, preferably 1.0 or less, and CV value [= 100 × standard deviation (σ) / number average particle diameter (DTEM)] is less than 40% A silver particle powder, which is a silver particle powder having an organic protective agent (typically an amino compound, particularly a primary amine) having a molecular weight of 100 to 400 deposited on the particle surface. Further, according to the present invention, a dispersion of silver particles in which the silver particle powder is dispersed in an organic solvent, wherein the average particle size (D50) by a dynamic light scattering method is 100 nm or less and the degree of dispersion = (D50) A dispersion of silver particles having a / (DTEM) of 5.0 or less is provided.

本発明の銀粒子は,図1の写真に見られるように粒径が揃った球状であり,その分散液中では各粒子は一定の間隔を開けて単分散した状態にある。この銀のナノ粒子粉末は前記の有機保護剤が表面に被着した状態にあり,分散剤に良好に分散させることができるので,微細な回路パターンを形成するための配線形成用材料,特にインクジェット法による配線形成用材料として好適な材料である。   The silver particles of the present invention have a spherical shape with a uniform particle diameter as seen in the photograph of FIG. 1, and each particle is in a monodispersed state with a certain interval in the dispersion. This silver nanoparticle powder has the above-mentioned organic protective agent coated on the surface and can be well dispersed in the dispersing agent. Therefore, it is a wiring forming material for forming a fine circuit pattern, particularly an inkjet. It is a material suitable as a wiring forming material by the method.

本発明の銀のナノ粒子粉末の電子顕微鏡(TEM)写真である。It is an electron microscope (TEM) photograph of the silver nanoparticle powder of the present invention. 図1のものとは倍率が異なる本発明の銀のナノ粒子粉末の電子顕微鏡(TEM)写真である。It is an electron microscope (TEM) photograph of the silver nanoparticle powder of this invention in which magnification differs from the thing of FIG.

本発明の銀粒子粉末の特徴的事項を以下に個別に説明する。   The characteristic matters of the silver particle powder of the present invention will be individually described below.

〔TEM粒径(DTEM) 〕
本発明に従う銀粒子は,TEM(透過電子顕微鏡)観察により測定される平均粒径(DTEM) が30nm以下である。TEM観察では60万倍に拡大した画像から重なっていない独立した粒子300個の径を測定して平均値を求める。アスペクト比とCV値も同様の観察結果から求める。
[TEM particle size (DTEM)]
The silver particles according to the present invention have an average particle diameter (DTEM) of 30 nm or less as measured by TEM (transmission electron microscope) observation. In TEM observation, the average value is obtained by measuring the diameter of 300 independent particles that are not overlapped from an image magnified 600,000 times. The aspect ratio and CV value are obtained from the same observation results.

〔アスペクト比〕
本発明の銀粒子粉末のアスペクト比(長径/短径の比)は1.5未満,好ましくは1.2以下,さらに好ましくは1.1以下である。図1の写真のものはほぼ球形であり,そのアスペクト比(平均)は1.05以下である。このため配線形成用途に好適である。アスペクト比が1.5を超える場合には,その粒子の分散液を基板に塗布して乾燥したときに粒子の充填性が悪くなり,焼成時にポアが発生して抵抗が高くなり,場合によっては断線が起きることがある。
〔aspect ratio〕
The aspect ratio (major axis / minor axis ratio) of the silver particle powder of the present invention is less than 1.5, preferably 1.2 or less, more preferably 1.1 or less. The photograph in FIG. 1 is almost spherical, and its aspect ratio (average) is 1.05 or less. For this reason, it is suitable for a wiring formation use. If the aspect ratio exceeds 1.5, the particle dispersion becomes poor when the particle dispersion is applied to the substrate and dried, and pores are generated during firing, resulting in high resistance. Disconnection may occur.

〔CV値〕
CV値は粒径のバラツキを示す指標であり,CV値が小さいほど粒径が揃っていることを示す。CV値=100×標準偏差σ/個数平均粒径で表される。本発明の銀粒子粉末のCV値は40%未満,好ましくは25%未満,さらに好ましくは15%未満である。CV値が40%未満の銀ナノ粒子粉末は配線用途に好適である。CV値が40%以上では前記と同様に粒子の充填性が悪く焼成時のポアの発生による高抵抗化や断線が起きる可能性がある。
[CV value]
The CV value is an index indicating the variation in particle size, and the smaller the CV value, the more uniform the particle size. CV value = 100 × standard deviation σ / number average particle diameter. The CV value of the silver particle powder of the present invention is less than 40%, preferably less than 25%, more preferably less than 15%. Silver nanoparticle powder having a CV value of less than 40% is suitable for wiring applications. When the CV value is 40% or more, the packing property of the particles is poor as described above, and there is a possibility that a high resistance or disconnection may occur due to the generation of pores during firing.

〔X線結晶粒径(Dx)〕
本発明の銀ナノ粒子は結晶粒子径が30nm以下である。銀粒子粉末の結晶粒子径はX線回折結果からScherrerの式を用いて求めることができる。このため,結晶粒子径は本明細書ではX線結晶粒径(Dx)と呼ぶ。その求め方は,次のとおりである。
Scherrerの式は,次の一般式で表現される。
D=K・λ/βcosθ
式中,K:Scherrer定数,D:結晶粒子径,λ:測定X線波長,β:X線回折で得られたピークの半価幅,θ:回折線のブラッグ角をそれぞれ表す。
Kは0.94の値を採用し,X線の管球はCuを用いると,前式は下式のように書き換えられる。
D=0.94×1.5405/βcosθ
[X-ray crystal grain size (Dx)]
The silver nanoparticles of the present invention have a crystal particle size of 30 nm or less. The crystal particle diameter of the silver particle powder can be determined from the X-ray diffraction result using the Scherrer equation. For this reason, the crystal grain size is referred to herein as X-ray crystal grain size (Dx). How to find it is as follows.
The Scherrer formula is expressed by the following general formula.
D = K · λ / βcos θ
In the formula, K: Scherrer constant, D: crystal particle diameter, λ: measured X-ray wavelength, β: half-width of peak obtained by X-ray diffraction, θ: Bragg angle of diffraction line.
If K adopts a value of 0.94 and the X-ray tube uses Cu, the previous equation can be rewritten as the following equation.
D = 0.94 × 1.5405 / βcos θ

〔単結晶化度〕
単結晶化度はTEM粒径/X線結晶粒径の比(DTEM) /(Dx)で表される。単結晶化度は1個の粒子中に存在する結晶の数に概略相当する。単結晶化度が大きいほど多結晶からなる粒子であると言える。本発明の銀粒子の単結晶化度は5.0以下,好ましくは,3.0以下,さらに好ましくは1.0以下である。このため,粒子中の結晶粒界が少ない。結晶粒界が多くなるほど電気抵抗が高くなるが,本発明の銀粒子粉末は単結晶化度が低いので抵抗が低く,導電部材に用いる場合に好適である。
[Single crystallinity]
The single crystallinity is expressed by the ratio of TEM grain size / X-ray crystal grain size (DTEM) / (Dx). The single crystallinity roughly corresponds to the number of crystals present in one particle. It can be said that the larger the single crystallinity, the more the particles are made of polycrystals. The single crystallinity of the silver particles of the present invention is 5.0 or less, preferably 3.0 or less, and more preferably 1.0 or less. For this reason, there are few crystal grain boundaries in a grain. Although the electrical resistance increases as the crystal grain boundary increases, the silver particle powder of the present invention has a low resistance because it has a low degree of single crystallinity and is suitable for use in a conductive member.

〔動的光散乱法による平均粒径〕
銀粒子粉末と有機溶媒を混合して得られた本発明の分散液は,動的光散乱法による平均粒径(D50)が60nm以下であり,分散度=(D50)/(DTEM) が5.0以下である。
[Average particle diameter by dynamic light scattering method]
The dispersion of the present invention obtained by mixing silver particle powder and an organic solvent has an average particle diameter (D50) of 60 nm or less by dynamic light scattering method, and the degree of dispersion = (D50) / (DTEM) is 5. 0.0 or less.

本発明の銀粒子は容易に有機溶媒(分散媒)中に分散し,かつその分散媒中において安定な分散状態をとり得る。分散媒中での銀粒子の分散状態は動的散乱法によって評価でき,平均粒径も算出できる。その原理は次のとおりである。一般に粒径が約1nm〜5μmの範囲にある粒子は液中で並進・回転等のブラウン運動によってその位置と方位を時々刻々と変えているが,これらの粒子にレーザー光を照射し,出てくる散乱光を検出すると,ブラウン運動に依存した散乱光強度の揺らぎが観測される。この散乱光強度の時間の揺らぎを観測することで,粒子のブラウン運動の速度(拡散係数)が得られ,さらには粒子の大きさを知ることができる。この原理を用いて,分散媒中での平均粒径を測定し,その測定値がTEM観察で得られた平均粒径に近い場合には,液中の粒子が個々に単分散していること(粒子同士が接合したり凝集したりしていないこと)を意味する。すなわち,分散媒中において各粒子は互いに間隔をあけて分散しており,個々単独に独立して動くことができる状態にある。   The silver particles of the present invention can be easily dispersed in an organic solvent (dispersion medium) and can take a stable dispersion state in the dispersion medium. The dispersion state of silver particles in the dispersion medium can be evaluated by the dynamic scattering method, and the average particle diameter can also be calculated. The principle is as follows. In general, particles with a particle size in the range of about 1 nm to 5 μm change their position and orientation from moment to moment by Brownian motion such as translation and rotation in the liquid. When the scattered light is detected, the fluctuation of the scattered light intensity depending on the Brownian motion is observed. By observing the fluctuation of the scattered light intensity over time, the speed (diffusion coefficient) of the Brownian motion of the particles can be obtained, and the size of the particles can be determined. Using this principle, the average particle size in the dispersion medium is measured. If the measured value is close to the average particle size obtained by TEM observation, the particles in the liquid are monodispersed individually. (The particles are not joined or agglomerated). That is, each particle is dispersed with a space in the dispersion medium, and each particle can move independently.

本発明に従う分散液中の銀のナノ粒子粉末に対して行った動的光散乱法による平均粒径はTEM観察による平均粒径に対してそれほど違わないレベルを示す。すなわち,本発明に従う分散液について測定した動的光散乱法による平均粒径は60nm以下,好ましくは30nm以下,さらに好ましくは20nm以下であり,TEM観察の平均粒径とは大きくは異ならない。したがって,単分散した状態が実現しており,本発明によれば銀のナノ粒子粉末が独立分散した分散液を提供する。   The average particle size by the dynamic light scattering method performed on the silver nanoparticle powder in the dispersion according to the present invention shows a level not so different from the average particle size by TEM observation. That is, the average particle diameter measured by the dynamic light scattering method measured for the dispersion according to the present invention is 60 nm or less, preferably 30 nm or less, and more preferably 20 nm or less, which is not greatly different from the average particle diameter of TEM observation. Therefore, a monodispersed state is realized, and according to the present invention, a dispersion in which silver nanoparticle powder is independently dispersed is provided.

なお、分散媒中において粒子が完全に単分散していても測定誤差等により、TEM観察の平均粒径とは違いが生ずる場合がある。例えば測定時の溶液の濃度は測定装置の性能・散乱光検出方式に適していることが必要であり、光の透過量が十分に確保される濃度で行わないと誤差が発生する。またナノオーダーの粒子の測定の場合には得られる信号強度が微弱なため、ゴミや埃の影響が強く出て誤差の原因となるので、サンプルの前処理や測定環境の清浄度に気を付ける必要がある。ナノオーダーの粒子測定には、散乱光強度を稼ぐためにレーザー光源は発信出力が100mW以上のものが適する。さらに、粒子に分散媒が吸着している場合には、その分散媒の吸着層の影響もでるため、完全に分散していても粒径が大きくなることが知られている。特に粒径が10nmをきったあたりから特に影響が顕著になる。そのため、分散した粒子でもTEM観察で得られた値とは全く同じにならないが、分散度=(D50)/(DTEM) が5.0以下,好ましくは3.0以下であれば良好な分散が維持されていると見てよい。   Even if the particles are completely monodispersed in the dispersion medium, there may be a difference from the average particle diameter of TEM observation due to measurement error or the like. For example, the concentration of the solution at the time of measurement needs to be suitable for the performance of the measuring apparatus and the scattered light detection method, and an error occurs if the concentration is not sufficient to ensure a sufficient amount of light transmission. Also, when measuring nano-order particles, the signal intensity obtained is weak, so the effects of dust and dust are strong and cause errors, so pay attention to sample pretreatment and cleanliness of the measurement environment. There is a need. For nano-order particle measurement, a laser light source with an output power of 100 mW or more is suitable for increasing scattered light intensity. Further, when the dispersion medium is adsorbed on the particles, it is known that the particle size is increased even if the dispersion medium is completely dispersed because of the influence of the adsorption layer of the dispersion medium. In particular, the influence is particularly noticeable when the particle diameter reaches about 10 nm. Therefore, even if the dispersed particles are not exactly the same as the values obtained by TEM observation, good dispersion is obtained when the degree of dispersion = (D50) / (DTEM) is 5.0 or less, preferably 3.0 or less. You can see that it is maintained.

〔製造法〕
本発明の銀粒子粉末は,沸点が85〜150℃のアルコール中で銀塩を有機保護剤の共存下で85〜150℃の温度で還元処理することによって製造することができる。
[Production method]
The silver particle powder of the present invention can be produced by reducing a silver salt in an alcohol having a boiling point of 85 to 150 ° C. at a temperature of 85 to 150 ° C. in the presence of an organic protective agent.

本発明で使用する溶媒兼還元剤としてのアルコールは沸点が85℃〜150℃のものであれば特に制限はない。沸点が85℃未満のものはオートクレーブのような特殊な反応機でないかぎり,反応温度を85℃以上にすることが困難である。好ましいアルコールとしてイソブタノール,n−ブタノール,s−ブタノール,t−ブタノールのいずれか1種または2種以上の混合物を挙げることができる。銀塩としては,アルコールに溶解する銀塩を使用する。安価でかつ供給の安定している硝酸銀が実用的見地から好ましい。   The alcohol as the solvent and reducing agent used in the present invention is not particularly limited as long as it has a boiling point of 85 ° C to 150 ° C. If the boiling point is less than 85 ° C, it is difficult to set the reaction temperature to 85 ° C or higher unless it is a special reactor such as an autoclave. As a preferred alcohol, one or a mixture of two or more of isobutanol, n-butanol, s-butanol and t-butanol can be mentioned. Silver salt that dissolves in alcohol is used as the silver salt. Silver nitrate, which is inexpensive and has a stable supply, is preferred from a practical standpoint.

有機保護剤としては,銀に配位性の性質をもつ分子量が100〜400の金属配位性化合物を用いることが好ましい。銀に配位性のない又は配位性の低い化合物を使用すると,30nm以下の銀ナノ粒子を作成するのに大量の保護剤が必要となり実用的見地から好ましくない。金属配位性化合物の有機保護剤としてアミノ化合物が好適である。一般に,金属配位性化合物にはイソニトリル化合物,イオウ化合物,アミノ化合物,カルボキシル基をもつ脂肪酸などがあるが,イオウ化合物はイオウを含むため腐食の原因となり電子部品にとっては信頼性を下げる原因になる。脂肪酸などは硝酸銀が原料の場合,脂肪酸銀を生成してしまい,イソニトリル化合物は有毒である等の問題をもつ。本発明では分子量100〜400のアミノ化合物を有機保護剤として使用する。アミノ化合物の中でも第1級アミンが好ましい。第2級アミンまたは第3級アミンは,それ自体還元剤として働くため,既にアルコールを還元剤として用いる場合は,還元剤が2種類となり還元速度等の制御が困難になるという不都合がある。分子量が100未満のアミノ化合物では粒子の凝集抑制効果が低く,他方,分子量が400を超えるものは凝集抑制力は高いものの沸点も高いので,これが粒子表面に被着した銀ナノ粒子粉末を配線形成用材料として使用した場合に,焼成時に焼結抑制剤として働き,配線の抵抗が高くなってしまい,場合によっては,導電性を阻害するので好ましくないので,分子量100〜400のアミノ化合物を使用するのがよい。   As the organic protective agent, it is preferable to use a metal coordinating compound having a molecular weight of 100 to 400 and having a coordinating property to silver. When a compound having no coordination property or low coordination property is used for silver, a large amount of a protective agent is required for producing silver nanoparticles of 30 nm or less, which is not preferable from a practical viewpoint. Amino compounds are suitable as organic protective agents for metal coordination compounds. In general, metal coordination compounds include isonitrile compounds, sulfur compounds, amino compounds, and fatty acids with carboxyl groups, but sulfur compounds contain sulfur and cause corrosion and reduce reliability for electronic components. . Fatty acids such as fatty acid silver are produced when silver nitrate is used as a raw material, and isonitrile compounds are toxic. In the present invention, an amino compound having a molecular weight of 100 to 400 is used as an organic protective agent. Of the amino compounds, primary amines are preferred. Since the secondary amine or the tertiary amine itself functions as a reducing agent, when alcohol is already used as the reducing agent, there are inconveniences that it becomes difficult to control the reduction rate and the like because there are two types of reducing agents. Amino compounds with a molecular weight of less than 100 have a low particle aggregation suppression effect, while those with a molecular weight of more than 400 have a high aggregation suppression force but a high boiling point, which forms a wiring of silver nanoparticle powder deposited on the particle surface. When used as a material, it acts as a sintering inhibitor during firing, which increases the resistance of the wiring, and in some cases is undesirable because it impedes conductivity, so an amino compound having a molecular weight of 100 to 400 is used. It is good.

反応温度が85℃未満では銀のナノ粒子粉末の収率が極端に低くなり,他方150℃より高くしても収率の改善が観察されず,銀ナノ粒子の焼結による粗大化が顕著になってくるので好ましくない。したがって,85〜150℃の温度に維持してアルコールによる銀イオンの還元反応を行わせるが,この反応は還流器の付いた装置を用いて蒸発したアルコールを液相に戻しながら実施するのがよい。銀塩の仕込濃度は50mmol/L以上とするのがよく,これ以下の濃度ではコストがかかり産業的には好適ではない。   If the reaction temperature is less than 85 ° C, the yield of the silver nanoparticle powder is extremely low. On the other hand, if the reaction temperature is higher than 150 ° C, no improvement in the yield is observed, and coarsening due to sintering of the silver nanoparticles is remarkable. This is not preferable. Accordingly, the reduction reaction of silver ions by alcohol is carried out while maintaining the temperature at 85 to 150 ° C. This reaction should be carried out while returning the evaporated alcohol to the liquid phase using an apparatus equipped with a reflux device. . The feed concentration of the silver salt is preferably 50 mmol / L or more, and a concentration below this is costly and not industrially suitable.

反応終了後は,得られたスラリーを遠心分離機にかけて固液分離し,その殿物に分散媒例えばエタノールを加えて超音波分散機にかけて分散させる。得られた分散液を再度遠心分離し,再びエタノールを加えて超音波分散機で分散させる。このような固液分離→分散の操作を合計3回繰り返したあと,上澄み液を廃棄し,沈殿物を乾燥して本発明の銀ナノ粒子粉末を得る。本発明の銀ナノ粒子粉末を分散させる分散媒(有機溶媒)としては,ヘキサンをはじめ,トルエン,ケロシン,デカン,ドデカン,テトラデカン等の一般的な非極性溶媒もしくは極性が小さい溶媒が使用できる。得られた分散液は,その後,粗粒子や凝集粒子を除去する目的で遠心分離機にかける。その後,上澄みのみを回収し,この上澄みをサンプルとして,TEM,X線,粒度分布等の各種測定を実施する。   After completion of the reaction, the resulting slurry is subjected to solid-liquid separation using a centrifuge, and a dispersion medium such as ethanol is added to the residue and dispersed using an ultrasonic disperser. The obtained dispersion is centrifuged again, ethanol is added again, and the mixture is dispersed with an ultrasonic disperser. After such a solid-liquid separation → dispersion operation is repeated three times in total, the supernatant is discarded, and the precipitate is dried to obtain the silver nanoparticle powder of the present invention. As a dispersion medium (organic solvent) for dispersing the silver nanoparticle powder of the present invention, general nonpolar solvents such as hexane, toluene, kerosene, decane, dodecane, and tetradecane, or solvents with low polarity can be used. The resulting dispersion is then centrifuged for the purpose of removing coarse and agglomerated particles. Thereafter, only the supernatant is collected, and various measurements such as TEM, X-ray, and particle size distribution are carried out using the supernatant as a sample.

得られたナノ粒子粉末は,これを真空乾燥機で乾燥(例えば200℃で12時間乾燥)し,乾燥品について重量法(硝酸溶解後,HClを添加して塩化銀沈殿物を作成し,その重量を測定)を適用して銀の純度を求めることができる。本発明に従う銀ナノ粒子粉末の純度は95%以上である。   The obtained nanoparticle powder is dried with a vacuum dryer (for example, dried at 200 ° C. for 12 hours), and the dried product is weighed (after dissolving nitric acid, HCl is added to form a silver chloride precipitate, The purity of silver can be determined by applying (measure weight). The purity of the silver nanoparticle powder according to the present invention is 95% or more.

〔実施例1〕
溶媒兼還元剤としてのイソブタノール(和光純薬工業株式会社製の特級)200mLに,オレイルアミン(和光純薬工業株式会社製)132.74mLと硝酸銀結晶13.727gを添加し,マグネットスターラーにより攪拌して室温で溶解した。この溶液を還流器のついた容器に移してオイルバスに載せ,容器内に不活性ガスとして窒素ガスを400mL/minの流量で吹込みながら,該溶液をマグネットスターラーにより200rpmの回転速度で撹拌しつつ加熱し,100℃の温度で5時間の還流を行って,反応を終了した。100℃に至るまでの昇温速度は2℃/minである。
[Example 1]
To 200 mL of isobutanol (special grade manufactured by Wako Pure Chemical Industries, Ltd.) as a solvent and reducing agent, 132.74 mL of oleylamine (manufactured by Wako Pure Chemical Industries, Ltd.) and 13.727 g of silver nitrate crystals are added and stirred with a magnetic stirrer. And dissolved at room temperature. This solution is transferred to a container equipped with a refluxer and placed in an oil bath. The nitrogen gas is blown into the container as an inert gas at a flow rate of 400 mL / min, and the solution is stirred at a rotation speed of 200 rpm by a magnetic stirrer. The mixture was heated and refluxed at 100 ° C. for 5 hours to complete the reaction. The rate of temperature increase up to 100 ° C. is 2 ° C./min.

反応終了後のスラリーを以下の手順で固液分離と洗浄を実施した。
1.反応後のスラリーを日立工機(株)製の遠心分離器CF7D2を用いて5000rpmで60分固液分離し,上澄みは廃棄する。
2.沈殿物にエタノールを加え,超音波分散機にかけて分散させる。
3.前記の1→2の工程を3回繰り返す。
4.前記の1を実施し,上澄みを廃棄して沈殿物を得る。
The slurry after the reaction was subjected to solid-liquid separation and washing by the following procedure.
1. The slurry after the reaction is subjected to solid-liquid separation at 5000 rpm for 60 minutes using a centrifugal separator CF7D2 manufactured by Hitachi Koki Co., Ltd., and the supernatant is discarded.
2. Add ethanol to the precipitate and disperse with an ultrasonic disperser.
3. The above process 1 → 2 is repeated three times.
4). Perform 1 above and discard the supernatant to obtain a precipitate.

前記4で得られたペースト状の沈殿物を次のようにして測定に供した。
イ.TEM観察および動的光散乱による粒度分布の測定には,該沈殿物にケロシンを添加して分散液とし,その分散液を,遠心分離機にかけ,粗粒子・凝集粒子を沈殿後,沈殿物を取り除いた分散液を得た。その分散液について評価を行った。
ロ.X線回折並びに結晶粒子径の測定には,イで作成した粗粒子・凝集体を除去した分散液を濃縮し,ペースト状にしたものを無反射板に塗布してX線回折装置で測定した。
ハ.Ag純度と収率を求める場合には,該沈殿物を真空乾燥機で200℃で12時間乾燥し,その乾燥品の重量を測定して求めた。より具体的には,その乾燥品を重量法(硝酸溶解後,HClを添加して塩化銀沈殿物を作成し,その重量で純度を測定する方法)でAg純度を測定した。収率に関しては,1バッチ分の(反応後に実際に得られた乾燥品/添加した硝酸銀から計算により得られる収量)×100(%)により求めた。
The paste-like precipitate obtained in 4 above was subjected to measurement as follows.
I. To measure the particle size distribution by TEM observation and dynamic light scattering, kerosene is added to the precipitate to form a dispersion, which is then centrifuged to precipitate coarse particles and aggregated particles. A removed dispersion was obtained. The dispersion was evaluated.
B. For the measurement of X-ray diffraction and crystal particle diameter, the dispersion prepared by removing the coarse particles / aggregates prepared in (a) was concentrated, and the paste was applied to a non-reflective plate and measured with an X-ray diffractometer. .
C. When obtaining the Ag purity and yield, the precipitate was dried at 200 ° C. for 12 hours in a vacuum dryer, and the weight of the dried product was measured. More specifically, Ag purity of the dried product was measured by a gravimetric method (a method in which after dissolving nitric acid, HCl was added to form a silver chloride precipitate, and the purity was measured by its weight). Yield was determined by 1 batch (yield actually obtained after reaction / yield obtained by calculation from added silver nitrate) × 100 (%).

これらの測定の結果,TEM平均粒径はDTEM=6.6nm,アスペクト比=1.1,CV値=10.5%,結晶粒子径(Dx)=8.7nm,単結晶化度=(DTEM) /(Dx)=0.76であった。X線回折結果では銀に由来するピークしか観察されなかった。動的光散乱法(マイクロトラックUPA)で測定したD50=26.6nm,D50/DTEM=4.0であった。銀の純度は96.8%,銀の収率は93.1%であった。   As a result of these measurements, the TEM average particle diameter was DTEM = 6.6 nm, aspect ratio = 1.1, CV value = 10.5%, crystal particle diameter (Dx) = 8.7 nm, single crystallinity = (DTEM ) / (Dx) = 0.76. In the X-ray diffraction results, only peaks derived from silver were observed. D50 = 26.6 nm and D50 / DTEM = 4.0 measured by a dynamic light scattering method (Microtrac UPA). The purity of silver was 96.8% and the yield of silver was 93.1%.

図1および図2は本例の銀ナノ粒子粉末のTEM写真(TEM平均粒径などを求めたときの写真)である。これらの写真に見られるように,球形の銀ナノ粒子が所定の間隔をあけて良好に分散していることが観察される。ごく一部に重なった粒子が観察されるが,平均粒径(DTEM) ,アスペクト比,CV値の測定時は,完全に分散している粒子について測定した。   FIG. 1 and FIG. 2 are TEM photographs (photos when the TEM average particle diameter and the like are determined) of the silver nanoparticle powder of this example. As can be seen in these photographs, it is observed that the spherical silver nanoparticles are well dispersed at a predetermined interval. Although only a part of the particles were observed, the average particle size (DTEM), aspect ratio, and CV value were measured for completely dispersed particles.

〔比較例1〕
溶媒兼還元剤としてプロパノールを使用し,反応温度を80℃とした以外は実施例1を繰り返した。その結果,銀の収率は1.1%と極めて低く,その沈殿物のX線回折では銀に由来するピークしか観察されなかったが,Dx=15.9nmであった。X線回折測定以外の測定は,サンプル量が少ないために実施できなかった。
[Comparative Example 1]
Example 1 was repeated except that propanol was used as the solvent and reducing agent and the reaction temperature was 80 ° C. As a result, the yield of silver was as extremely low as 1.1%, and only a peak derived from silver was observed by X-ray diffraction of the precipitate, but Dx = 15.9 nm. Measurements other than X-ray diffraction measurement could not be performed due to the small amount of sample.

〔比較例2〕
溶媒兼還元剤としてエタノールを使用し,反応温度を75℃にした以外は実施例1を繰り返した。その結果は,銀の収率は0.9%と極めて低く,その沈殿物のX線回折では銀に由来するピークしか観察されなかったが,Dx=25.4nmであった。X線回折測定以外の測定は,サンプル量が少ないために実施できなかった。
[Comparative Example 2]
Example 1 was repeated except that ethanol was used as the solvent and reducing agent and the reaction temperature was 75 ° C. As a result, the yield of silver was as low as 0.9%, and only a peak derived from silver was observed by X-ray diffraction of the precipitate, but Dx = 25.4 nm. Measurements other than X-ray diffraction measurement could not be performed due to the small amount of sample.

これらの比較例に見られるように,沸点が85℃以下のアルコールを使用しても,また反応温度が80℃未満でも,極端に銀の収率が低く生産性がよくない。   As seen in these comparative examples, even if an alcohol having a boiling point of 85 ° C. or lower is used or the reaction temperature is lower than 80 ° C., the yield of silver is extremely low and the productivity is not good.

Claims (4)

TEM観察により測定される平均粒径(DTEM) が30nm以下,アスペクト比が1.5未満,X線結晶粒子径(Dx)が30nm以下,単結晶化度〔(DTEM) /(Dx)〕が5.0以下,およびCV値〔=100×標準偏差(σ)/個数平均粒径(DTEM)〕が40%未満の銀の粒子粉末であって,粒子表面に分子量100〜400の有機保護剤が被着している銀の粒子粉末。   Average particle diameter (DTEM) measured by TEM observation is 30 nm or less, aspect ratio is less than 1.5, X-ray crystal particle diameter (Dx) is 30 nm or less, single crystallinity [(DTEM) / (Dx)] An organic protective agent having a molecular weight of 100 to 400 on the surface of a silver particle powder having a particle size of less than 5.0 and a CV value [= 100 × standard deviation (σ) / number average particle diameter (DTEM)] of less than 40% The silver particle powder that is deposited. 有機保護剤は,アミノ化合物である請求項1に記載の銀の粒子粉末。   The silver particle powder according to claim 1, wherein the organic protective agent is an amino compound. 単結晶化度〔(DTEM) /(Dx)〕が1.0以下である請求項1または2に記載の銀の粒子粉末。   3. The silver particle powder according to claim 1, wherein the single crystallinity [(DTEM) / (Dx)] is 1.0 or less. 請求項1〜3のいずれかに記載の銀の粒子粉末を有機溶媒に分散させてなる銀粒子の分散液であって,動的光散乱法による平均粒径(D50)が100nm以下および分散度=(D50)/(DTEM) が5.0以下である銀粒子の分散液。   A dispersion of silver particles obtained by dispersing the silver particle powder according to any one of claims 1 to 3 in an organic solvent, wherein the average particle diameter (D50) by a dynamic light scattering method is 100 nm or less and the degree of dispersion = (D50) / (DTEM) is a dispersion of silver particles having a value of 5.0 or less.
JP2009032228A 2009-02-16 2009-02-16 Silver particle powder and dispersion Active JP5064423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009032228A JP5064423B2 (en) 2009-02-16 2009-02-16 Silver particle powder and dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009032228A JP5064423B2 (en) 2009-02-16 2009-02-16 Silver particle powder and dispersion

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005026805A Division JP4284283B2 (en) 2005-02-02 2005-02-02 Silver particle powder manufacturing method

Publications (2)

Publication Number Publication Date
JP2009114547A true JP2009114547A (en) 2009-05-28
JP5064423B2 JP5064423B2 (en) 2012-10-31

Family

ID=40782002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009032228A Active JP5064423B2 (en) 2009-02-16 2009-02-16 Silver particle powder and dispersion

Country Status (1)

Country Link
JP (1) JP5064423B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133488A (en) * 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc Metal nanoparticle and method for producing the same
JP2017050339A (en) * 2015-08-31 2017-03-09 東京エレクトロン株式会社 Halogen removal method and manufacturing method of semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6920029B2 (en) 2016-04-04 2021-08-18 日亜化学工業株式会社 Metal powder sintered paste and its manufacturing method, conductive material manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183009A (en) * 2002-11-29 2004-07-02 Mitsuboshi Belting Ltd Method of producing metal fine particle

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004183009A (en) * 2002-11-29 2004-07-02 Mitsuboshi Belting Ltd Method of producing metal fine particle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013133488A (en) * 2011-12-26 2013-07-08 Toyota Central R&D Labs Inc Metal nanoparticle and method for producing the same
JP2017050339A (en) * 2015-08-31 2017-03-09 東京エレクトロン株式会社 Halogen removal method and manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP5064423B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4284283B2 (en) Silver particle powder manufacturing method
JP5108502B2 (en) Silver particle powder and method for producing the same
JP4660780B2 (en) Method for producing silver particle powder
JP4674375B2 (en) Method for producing silver particle powder
US8293142B2 (en) Composition containing fine silver particles, production method thereof, method for producing fine silver particles, and paste having fine silver particles
KR101371269B1 (en) Process for producing silver powder
JP2006348345A (en) Method for manufacturing ultrafine silver particle, silver powder, and ultrafine silver particle-dispersion liquid
JP5176060B2 (en) Method for producing silver particle dispersion
JP5064423B2 (en) Silver particle powder and dispersion
JP4674376B2 (en) Method for producing silver particle powder
JP5232016B2 (en) Wiring forming material
Zhang et al. Size control and its mechanism of SnAg nanoparticles
JP2014029017A (en) Method for producing metal fine particle composition
Togashi et al. Silver Nano-and Microplates Grew on a Specific Face of Coordination Polymer Crystals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250