JP2000281323A - Production of carbon nanotube containing boron - Google Patents

Production of carbon nanotube containing boron

Info

Publication number
JP2000281323A
JP2000281323A JP11087754A JP8775499A JP2000281323A JP 2000281323 A JP2000281323 A JP 2000281323A JP 11087754 A JP11087754 A JP 11087754A JP 8775499 A JP8775499 A JP 8775499A JP 2000281323 A JP2000281323 A JP 2000281323A
Authority
JP
Japan
Prior art keywords
boron
carbon nanotube
crucible
carbon nanotubes
boron oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11087754A
Other languages
Japanese (ja)
Inventor
Yoshio Bando
義雄 板東
Han Weichin
ハン ウェイチン
Tadao Sato
忠夫 佐藤
Keiji Kurashima
敬次 倉嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP11087754A priority Critical patent/JP2000281323A/en
Publication of JP2000281323A publication Critical patent/JP2000281323A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To incorporate boron into a carbon nanotube by effecting the chemical reaction of a carbon nanotube with boron oxide at high temp. SOLUTION: B2O3 (B) is put on the bottom of a graphite crucible 6 in a high-frequency induction heating furnace 1, and carbon nanotubes (C) are stacked in layers thereon. The graphite crucible 6 is housed in a cylindrical graphite heat generator 4. While an inert gas such as Ar gas is introduced through an N2 inlet 8 to flow in the graphite heat generator 4, the crucible is heated by a work coil 5, for example at 1,000 deg.C for 4 hours, and then naturally cooled. Thus, the carbon nanotube (C) expressed by the formula of BxC1-x (x<0.1) containing partially dissolved boron in the carbon nanotube (C) is obtd. and the obtd. material is useful for a semiconductor material, or the like. As for B2O3 (B), boric acid, boron oxide or substances which produce B2O3 (B) at high temp. are preferably used, and the reaction temp. is preferably 800 to 1,600 deg.C. The crucible is preferably the graphite crucible having reducing property or a BN crucible having excellent corrosion resistance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ホウ素を含んだカ
ーボンナノチューブの合成方法に関する。さらに詳しく
は、本発明は、半導体材料、エミッター材料、耐熱性充
填材料、高強度材料、触媒等として使用できるホウ素を
含んだカーボンナノチューブを大量に製造する方法に関
する。
[0001] The present invention relates to a method for synthesizing carbon nanotubes containing boron. More specifically, the present invention relates to a method for mass-producing boron-containing carbon nanotubes that can be used as semiconductor materials, emitter materials, heat-resistant filling materials, high-strength materials, catalysts, and the like.

【0002】[0002]

【従来の技術とその課題】カーボンのナノチューブ、す
なわち炭素原子が筒状に並んだナノメータの大きさのチ
ューブ状炭素物質は、1991年に飯島澄男博士により
発見された。このナノチューブは、アーク放電法、レー
ザー加熱法、CVD法等により合成されている。
2. Description of the Related Art Carbon nanotubes, ie, tubular carbonaceous materials having a nanometer size in which carbon atoms are arranged in a cylinder, were discovered in 1991 by Dr. Sumio Iijima. This nanotube is synthesized by an arc discharge method, a laser heating method, a CVD method, or the like.

【0003】近年、アーク放電法によりB−C−N組成
のナノチューブの合成の副産物として、ホウ素を含んだ
カーボンナノチューブが少量合成できることが見い出さ
れているが、B−C組成のみからなるホウ素を含んだカ
ーボンナノチューブを大量に合成することはできなかっ
た。
In recent years, it has been discovered that a small amount of carbon nanotubes containing boron can be synthesized as a by-product of the synthesis of nanotubes having a B--C--N composition by an arc discharge method. However, it was not possible to synthesize large amounts of carbon nanotubes.

【0004】[0004]

【発明が解決しようとする課題】グラファイト(カーボ
ン)にホウ素を添加すると、半導体材料、エミッター材
料、耐熱性充填材料、高強度材料、触媒等の分野におい
て、従来にない特性を有する材料として利用されること
が期待されているが、これまで、ホウ素を含んだカーボ
ンナノチューブの合成方法が確立されていなかった。
When boron is added to graphite (carbon), it is used as a material having unprecedented characteristics in the fields of semiconductor materials, emitter materials, heat-resistant filling materials, high-strength materials, and catalysts. However, a method for synthesizing carbon nanotubes containing boron has not been established so far.

【0005】本発明は、カーボンナノチューブ、ホウ素
酸化物を出発原料としているもので、化学反応によりカ
ーボンナノチューブの形態を残しながらホウ素を添加
し、ホウ素を含んだカーボンナノチューブを大量に製造
することを目的としている。
The present invention uses carbon nanotubes and boron oxide as starting materials, and aims to produce boron-containing carbon nanotubes in large quantities by adding boron while leaving the form of carbon nanotubes by a chemical reaction. And

【0006】[0006]

【課題を解決するための手段】本発明は、上記の課題を
解決するものとして、カーボンナノチューブを出発原料
とし、これにホウ素酸化物を高温下で化学反応させるこ
とにより、カーボンナノチューブの元の形態を残したま
までホウ素を含んだB−C組成のナノチューブを製造す
る方法を提供するものである。
The present invention solves the above-mentioned problems by using a carbon nanotube as a starting material and chemically reacting boron oxide with the carbon nanotube at a high temperature to obtain the original form of the carbon nanotube. To provide a method for producing a nanotube having a boron-containing BC composition while leaving carbon nanotubes.

【0007】上記ホウ素酸化物としてホウ酸、酸化ホウ
素(B2 3 )、または高温下でホウ素酸化物を発生す
る物質を用いることができ、高温下で化学反応させるた
めの加熱手段としては高周波加熱炉を用いることが好ま
しい。反応温度は、800℃から1600℃が好適であ
り、特に900℃から1200℃がより好ましい。反応
雰囲気はアルゴンまたはその他の不活性ガスまたは真空
中であればよい。上記の方法によりカーボンナノチュー
ブ中にホウ素が一部固溶した式Bx 1-x (x<0.
1)で示されるカーボンナノチューブが得られる。
As the boron oxide, boric acid, boron oxide (B 2 O 3 ), or a substance that generates boron oxide at a high temperature can be used. It is preferable to use a heating furnace. The reaction temperature is preferably from 800 ° C to 1600 ° C, particularly preferably from 900 ° C to 1200 ° C. The reaction atmosphere may be argon or other inert gas or vacuum. Formula B boron in the carbon nanotube by the above method was dissolved partially x C 1-x (x < 0.
The carbon nanotube shown in 1) is obtained.

【0008】[0008]

【発明の実施の形態】図1は、この発明の方法を黒鉛る
つぼを使用して実施するために用いる高周波誘導加熱炉
の模式図である。
FIG. 1 is a schematic view of a high-frequency induction heating furnace used to carry out the method of the present invention using a graphite crucible.

【0009】まず、本発明の方法を説明する。高周波誘
導加熱炉1の断熱材2を被覆した石英外筒3の内部中央
に設置した筒状の黒鉛発熱体4をワークコイル5で加熱
する。黒鉛るつぼ6にB2 3 (B)とカーボンナノチ
ューブ(C)とを重ねて入れ、筒状の黒鉛発熱体4の内
部の黒鉛スペーサ7上に配置する。筒状の黒鉛発熱体4
の下部には、高周波加熱炉1の外部よりチッ素ガスを導
入する入口8を接続し、石英外筒3の下部にはチッ素ガ
スの排出用出口9を設ける。石英外筒3の上部にもアル
ゴンガスを導入する入口10を設けてもよい。反応部の
温度は、筒状の黒鉛発熱体4の開口部を通る光をガラス
プリズム11で屈折させて光温度計12を用いて測定す
る。
First, the method of the present invention will be described. A cylindrical graphite heating element 4 installed at the center of the inside of a quartz outer cylinder 3 covered with a heat insulating material 2 of a high-frequency induction heating furnace 1 is heated by a work coil 5. B 2 O 3 (B) and carbon nanotubes (C) are placed in a graphite crucible 6 in an overlapping manner and placed on a graphite spacer 7 inside a tubular graphite heating element 4. Cylindrical graphite heating element 4
An inlet 8 for introducing nitrogen gas from the outside of the high-frequency heating furnace 1 is connected to a lower portion of the quartz tube 1, and an outlet 9 for discharging nitrogen gas is provided at a lower portion of the quartz outer cylinder 3. An inlet 10 for introducing an argon gas may also be provided above the quartz outer cylinder 3. The temperature of the reaction part is measured using a light thermometer 12 after refracting the light passing through the opening of the tubular graphite heating element 4 with a glass prism 11.

【0010】原料のB2 3 とカーボンナノチューブの
配置は、図1では、簡便な方法としてB2 3 (B)上
にカーボンナノチューブ(C)を層状に重ねているが、
ホウ素酸化物(B2 3 、B2 2 等)が拡散または輸
送により、カーボンナノチューブ(C)上に到達する構
造であればどのような配置でもよい。
In the arrangement of the raw material B 2 O 3 and the carbon nanotubes, the carbon nanotubes (C) are layered on the B 2 O 3 (B) as a simple method in FIG.
Any arrangement may be used as long as the structure allows the boron oxide (B 2 O 3 , B 2 O 2, etc.) to reach the carbon nanotube (C) by diffusion or transport.

【0011】上記のB2 3 としては、加熱によりホウ
素酸化物を生成する物質であれば他の物質でもよい。例
えば、ホウ酸、メラニンボレート等の有機ホウ酸化合
物、ホウ酸と有機物の混合物等の固体、液体、さらには
ホウ酸、酸素を含む気体でもよい。これらの物質は、る
つぼ内に固定状に保持せずに、カーボンナノチューブと
接触して流れながら通過するようにしてもよい。
As the above B 2 O 3 , any other substance may be used as long as it generates a boron oxide by heating. For example, an organic boric acid compound such as boric acid and melanin borate, a solid such as a mixture of boric acid and an organic substance, a liquid, and a gas containing boric acid and oxygen may be used. These substances may be allowed to pass while flowing in contact with the carbon nanotubes without being held in the crucible in a fixed state.

【0012】用いるるつぼは、原料と反応して障害にな
らないものならよく、安価で加工性がよくまた還元性を
有することから黒鉛るつぼが好ましい。BNるつぼも加
工性や耐食性の点で優れている。
The crucible to be used is not particularly limited as long as it does not react with the raw materials, and is preferably a graphite crucible because it is inexpensive, has good workability and has reducibility. The BN crucible is also excellent in workability and corrosion resistance.

【0013】上記に説明したような装置を用いて、例え
ば、アルゴン気流中で1000℃で4時間加熱すると、
2 3 は、加熱により、ホウ素酸化物(B2 3 ,B
2 2 等)として気化または表面拡散によりカーボンナ
ノチューブに到達し、化学反応を起こして、カーボンナ
ノチューブ中にホウ素が一部固溶して、ホウ素を含んだ
カーボンナノチューブが生成する。
Using the apparatus as described above, for example,
For example, when heated at 1000 ° C. for 4 hours in an argon stream,
BTwoOThreeIs heated to produce boron oxide (BTwoOThree, B
TwoO TwoEtc.) by carbonization by vaporization or surface diffusion.
Tube, causing a chemical reaction,
Boron contained solid solution in the tube and contained boron
Carbon nanotubes are formed.

【0014】本発明の方法において、ホウ素を含んだカ
ーボンナノチューブの生成には600℃以上が必要であ
り、好ましくは800℃以上である。また、ホウ素酸化
物の発生は、原料の種類、原料の表面積、および装置の
構造に依存するが、800℃以上が実用的であり、好ま
しくは900℃以上である。
In the method of the present invention, the formation of carbon nanotubes containing boron requires 600 ° C. or higher, preferably 800 ° C. or higher. The generation of boron oxide depends on the type of the raw material, the surface area of the raw material, and the structure of the apparatus, but is practically 800 ° C. or higher, preferably 900 ° C. or higher.

【0015】酸化ホウ素をカーボンナノチューブと接触
させて用いる場合は、高温ではホウ素酸化物の蒸発速度
および反応速度が速すぎてカーボンナノチューブが飛散
するので、1500℃程度に設定するのが最も好まし
い。また、1600℃以上の高温ではカーボンナノチュ
ーブはその形態を保持できないので、1200℃以下が
望ましい。
When boron oxide is used in contact with carbon nanotubes, the evaporation rate and reaction rate of boron oxide are too high at a high temperature and the carbon nanotubes are scattered, so that the temperature is most preferably set to about 1500 ° C. Further, at a high temperature of 1600 ° C. or higher, the shape of the carbon nanotube cannot be maintained, so that the temperature is preferably 1200 ° C. or lower.

【0016】本発明の方法で得られるホウ素を含んだカ
ーボンナノチューブの太さ(実施例の場合、平均で10
nm程度)は、出発物質のカーボンナノチューブの平均
太さ(実施例の場合、平均で10nm程度)とほぼ一致
し、太さの分布も同程度である。
The thickness of the boron-containing carbon nanotubes obtained by the method of the present invention (average of 10
(about nm) almost coincides with the average thickness of the carbon nanotubes as the starting material (in the case of the examples, about 10 nm on average), and the distribution of the thickness is almost the same.

【0017】[0017]

【実施例】以下、実施例を示して、さらに詳しくホウ素
を含んだカーボンナノチューブの製造方法について説明
する。
[Examples] Hereinafter, a method for producing a carbon nanotube containing boron will be described in more detail with reference to examples.

【0018】実施例1 図1に示す高周波加熱炉1を用い、平均直径約10nm
のカーボンナノチューブ(C)を出発原料に用いた。内
径2cm、深さ2cmの黒鉛るつぼ6の底に酸化ホウ素
(B)0.5g、その上にカーボンナノチューブ(C)
15mgを層状に重ねて置いた。これを筒状の黒鉛発熱
体4に入れ、ガス入り口8からアルゴンガスを0.5リ
ットル/minで導入し、筒状の黒鉛発熱体4の内部に
流し、ワークコイル5にて1000℃、4時間加熱した
後、自然冷却した。温度の測定は黒鉛発熱体4の蓋にあ
けた開口部を通してカーボンナノチューブ(C)上を光
温度計12で行った。
Example 1 Using the high-frequency heating furnace 1 shown in FIG.
Was used as a starting material. 0.5 g of boron oxide (B) on the bottom of a graphite crucible 6 having an inner diameter of 2 cm and a depth of 2 cm, and carbon nanotubes (C) on the bottom
15 mg were placed in layers. This is put into a tubular graphite heating element 4, argon gas is introduced at a rate of 0.5 liter / min from a gas inlet 8, and flows into the tubular graphite heating element 4. After heating for an hour, the mixture was naturally cooled. The temperature was measured with the optical thermometer 12 on the carbon nanotube (C) through the opening formed in the lid of the graphite heating element 4.

【0019】出発原料のカーボンナノチューブの電子顕
微鏡写真を図2に示す。回収した試料を観察すると、カ
ーボンナノチューブの位置に当たる物質は外観は元の形
態(同じ径や同じ長さ)を保ちながら組成が変化してい
た。図3に示す電子エネルギー損失スペクトル分析によ
れば、カーボンナノチューブ中のホウ素の含有量は最大
で10%(モル比)であった(B/Cの割合は0.
1)。
FIG. 2 shows an electron micrograph of the starting material carbon nanotubes. Observation of the collected sample showed that the composition of the substance corresponding to the position of the carbon nanotube changed while maintaining the original form (the same diameter and the same length). According to the electron energy loss spectrum analysis shown in FIG. 3, the content of boron in the carbon nanotube was 10% (molar ratio) at the maximum (the ratio of B / C was 0.1%).
1).

【0020】[0020]

【発明の効果】ホウ素を含んだカーボンナノチューブ
は、半導体材料、エミッター材料、耐熱性充填材料、高
強度材料、触媒等の分野において、従来に無い特性を有
する新材料としての応用が期待されているが、本発明に
より、カーボンナノチューブを出発原料として、安価な
簡単な方法でホウ素を含んだカーボンナノチューブを製
造することができる。カーボンナノチューブは、既に大
量生産法が確立されているので、これを出発物質として
用いれば、ホウ素を含んだカーボンナノチューブを大量
に製造することができる。
The carbon nanotubes containing boron are expected to be applied as new materials having unprecedented properties in the fields of semiconductor materials, emitter materials, heat-resistant filling materials, high-strength materials, and catalysts. However, according to the present invention, a carbon nanotube containing boron can be manufactured by a simple and inexpensive method using the carbon nanotube as a starting material. Since a mass production method has already been established for carbon nanotubes, if this is used as a starting material, carbon nanotubes containing boron can be produced in large quantities.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法の実施例に用いた高周波誘導
加熱炉(黒鉛るつぼ使用)の模式図である。
FIG. 1 is a schematic view of a high-frequency induction heating furnace (using a graphite crucible) used in an embodiment of the manufacturing method of the present invention.

【図2】本発明の製造方法の実施例に用いた出発原料で
あるカーボンナノチューブの電子顕微鏡写真である。
FIG. 2 is an electron micrograph of a carbon nanotube as a starting material used in an example of the production method of the present invention.

【図3】実施例1によって合成したホウ素を含んだカー
ボンナノチューブの電子顕微鏡写真である。
3 is an electron micrograph of a carbon nanotube containing boron synthesized according to Example 1. FIG.

【図4】実施例1によって合成したホウ素を含んだカー
ボンナノチューブの電子エネルギー損失スペクトルであ
る。
FIG. 4 is an electron energy loss spectrum of a carbon nanotube containing boron synthesized according to Example 1.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 倉嶋 敬次 茨城県つくば市並木1丁目1番 科学技術 庁無機材質研究所内 Fターム(参考) 4G046 AB01  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Keiji Kurashima 1-1-1 Namiki, Tsukuba, Ibaraki Pref.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カーボンナノチューブを原料とし、これ
にホウ素酸化物を不活性ガス中で800℃以上から16
00℃以下で反応させて式Bx 1-x (x<0.1)で
示されるホウ素を含んだカーボンナノチューブを生成さ
せることを特徴とするホウ素を含んだカーボンナノチュ
ーブの製造方法。
1. A method comprising the steps of: using a carbon nanotube as a raw material;
A method for producing boron-containing carbon nanotubes, which comprises reacting at a temperature of 00 ° C. or lower to produce boron-containing carbon nanotubes represented by the formula B x C 1-x (x <0.1).
【請求項2】 反応に用いるホウ素酸化物は、酸化ホウ
素(B2 3 )、ホウ酸(H3 BO3 )、または高温で
ホウ素酸化物を生成する物質とし、反応に用いるガス
は、不活性ガスとすることを特徴とする請求項1記載の
ホウ素を含んだカーボンナノチューブの製造方法。
2. The boron oxide used for the reaction is boron oxide (B 2 O 3 ), boric acid (H 3 BO 3 ), or a substance that generates boron oxide at a high temperature. The method for producing carbon nanotubes containing boron according to claim 1, wherein the method is an active gas.
【請求項3】 酸化ホウ素粉末とカーボンナノチューブ
とをるつぼの中に入れて、高周波誘導加熱炉の中に置
き、アルゴンガス中で加熱することを特徴とする請求項
1記載のホウ素を含んだカーボンナノチューブの製造方
法。
3. The boron-containing carbon according to claim 1, wherein the boron oxide powder and the carbon nanotubes are placed in a crucible, placed in a high-frequency induction heating furnace, and heated in argon gas. A method for producing nanotubes.
JP11087754A 1999-03-30 1999-03-30 Production of carbon nanotube containing boron Pending JP2000281323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11087754A JP2000281323A (en) 1999-03-30 1999-03-30 Production of carbon nanotube containing boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11087754A JP2000281323A (en) 1999-03-30 1999-03-30 Production of carbon nanotube containing boron

Publications (1)

Publication Number Publication Date
JP2000281323A true JP2000281323A (en) 2000-10-10

Family

ID=13923743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11087754A Pending JP2000281323A (en) 1999-03-30 1999-03-30 Production of carbon nanotube containing boron

Country Status (1)

Country Link
JP (1) JP2000281323A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282408A (en) * 2005-03-31 2006-10-19 Shinshu Univ Boron-doped double wall carbon nanotube, and method for manufacturing the same
JP2009007237A (en) * 2007-06-26 2009-01-15 Viko System Co Ltd Mass synthesis apparatus of carbon nanotube utilizing high frequency heating oven
JP2012121792A (en) * 2010-11-16 2012-06-28 Alps Electric Co Ltd Method for producing boron-containing carbon material and boron-containing carbon material
CN103626173A (en) * 2013-11-28 2014-03-12 天津大学 Preparation method of low-defect graphene-boron oxide nanocrystal composite material
CN111018531A (en) * 2019-12-18 2020-04-17 赛福纳米科技(徐州)有限公司 Preparation method of carbon nano tube toughened boron carbide ceramic
CN111285354A (en) * 2020-02-19 2020-06-16 东华大学 Boron-doped carbon nanotube and preparation and application thereof
WO2021201002A1 (en) 2020-04-03 2021-10-07 東洋インキScホールディングス株式会社 Boron-doped carbon material, conductive composition, conductive film, and electric storage device
CN113860287A (en) * 2021-09-22 2021-12-31 江西铜业技术研究院有限公司 System and method for preparing single-walled carbon nanotube by plasma arc method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282408A (en) * 2005-03-31 2006-10-19 Shinshu Univ Boron-doped double wall carbon nanotube, and method for manufacturing the same
JP4724828B2 (en) * 2005-03-31 2011-07-13 国立大学法人信州大学 Boron-doped double-walled carbon nanotubes, linked double-walled carbon nanotubes, and method for producing the same
JP2009007237A (en) * 2007-06-26 2009-01-15 Viko System Co Ltd Mass synthesis apparatus of carbon nanotube utilizing high frequency heating oven
JP2012121792A (en) * 2010-11-16 2012-06-28 Alps Electric Co Ltd Method for producing boron-containing carbon material and boron-containing carbon material
CN103626173A (en) * 2013-11-28 2014-03-12 天津大学 Preparation method of low-defect graphene-boron oxide nanocrystal composite material
CN103626173B (en) * 2013-11-28 2015-07-15 天津大学 Preparation method of low-defect graphene-boron oxide nanocrystal composite material
CN111018531A (en) * 2019-12-18 2020-04-17 赛福纳米科技(徐州)有限公司 Preparation method of carbon nano tube toughened boron carbide ceramic
CN111285354A (en) * 2020-02-19 2020-06-16 东华大学 Boron-doped carbon nanotube and preparation and application thereof
WO2021201002A1 (en) 2020-04-03 2021-10-07 東洋インキScホールディングス株式会社 Boron-doped carbon material, conductive composition, conductive film, and electric storage device
KR20220163402A (en) 2020-04-03 2022-12-09 토요잉크Sc홀딩스주식회사 Boron-doped carbon material, conductive composition, conductive film, and electrical storage device
CN113860287A (en) * 2021-09-22 2021-12-31 江西铜业技术研究院有限公司 System and method for preparing single-walled carbon nanotube by plasma arc method

Similar Documents

Publication Publication Date Title
JP2972882B1 (en) Method for producing boron nitride nanotubes
Terrones et al. Carbon nitride nanocomposites: formation of aligned CxNy nanofibers
Han et al. Synthesis of aligned BxCyNz nanotubes by a substitution-reaction route
Zhong et al. Large-scale fabrication of boron nitride nanotubes via a facile chemical vapor reaction route and their cathodoluminescence properties
US7682658B2 (en) Method for making carbon nanotube array
US20060269669A1 (en) Apparatus and method for making carbon nanotube array
JP5059589B2 (en) Boron nitride nanofiber and method for producing the same
JP4817103B2 (en) Method for producing boron nitride nanotubes
Tang et al. Effective growth of boron nitride nanotubes
Luo et al. Synthesis of long indium nitride nanowires with uniform diameters in large quantities
JP2000281323A (en) Production of carbon nanotube containing boron
CN111268656A (en) Preparation method of boron nitride nanotube
Wang et al. Synthesis of ultrafine silicon carbide nanoparticles using nonthermal arc plasma at atmospheric pressure
Wang et al. Multiwalled boron nitride nanotubes: growth, properties, and applications
Han et al. Pyrolytically grown arrays of highly aligned B x C y N z nanotubes
Li et al. Synthesis and properties of aligned ZnO microtube arrays
Han Anisotropic Hexagonal Boron Nitride Nanomaterials-Synthesis and Applications
Moriyoshi et al. B C N nanotubes prepared by a plasma evaporation method
JP5448067B2 (en) Method for producing boron nitride nanotubes
JP3496050B2 (en) Method for producing hollow particles of fullerene-like boron nitride
JP2004161561A (en) Manufacturing process of boron nitride nanotube
JP2004182571A (en) Method of manufacturing boron nitride nanotube using gallium oxide as catalyst
JP2005279624A (en) Catalyst, method and apparatus for producing carbon nanotube
JP2004231455A (en) Manufacturing method of boron nitride nanotube
JP2002097004A (en) Method for manufacturing boron nitride nanotube by using oxide catalyst