JPH103920A - Lithium secondary battery, and manufacture of the same - Google Patents

Lithium secondary battery, and manufacture of the same

Info

Publication number
JPH103920A
JPH103920A JP8155489A JP15548996A JPH103920A JP H103920 A JPH103920 A JP H103920A JP 8155489 A JP8155489 A JP 8155489A JP 15548996 A JP15548996 A JP 15548996A JP H103920 A JPH103920 A JP H103920A
Authority
JP
Japan
Prior art keywords
fine particles
active material
secondary battery
negative electrode
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8155489A
Other languages
Japanese (ja)
Inventor
Asako Satou
麻子 佐藤
Norio Takami
則雄 高見
Takahisa Osaki
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8155489A priority Critical patent/JPH103920A/en
Publication of JPH103920A publication Critical patent/JPH103920A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery, wherein both of the discharge capacity and the cycle life can be improved, and a manufacturing method for the lithium secondary battery. SOLUTION: This battery is equipped with a positive electrode 4, a negative electrode 6 containing active material for storing and releasing lithium ions, and a nonaqueous electrolyte, where the active material of the negative electrode 6 contains fine particles wherein a carbonaceous layer is formed on the surface. The fine particles are composed of at least one element M selected from among Mg, Al, Si, Ca, Sn, and Pb, their mean particle diameter is 1-500nm, and the atomic ratio of the fine particles in the active material is 15% or more.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
及びその製造方法に関し、特に炭素質物を含む負極を改
良したリチウム二次電池及びその製造方法に係わる。
The present invention relates to a lithium secondary battery and a method for manufacturing the same, and more particularly, to a lithium secondary battery having an improved negative electrode containing a carbonaceous material and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、負極活物質としてリチウムを用い
た非水電解質電池は高エネルギー密度電池として注目さ
れており、正極活物質に二酸化マンガン(MnO2 )、
フッ化炭素[(CF2n ]、塩化チオニル(SOCl
2 )等を用いた一次電池は、既に電卓、時計の電源やメ
モリのバックアップ電池として多用されている。
2. Description of the Related Art In recent years, non-aqueous electrolyte batteries using lithium as a negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO 2 ) has been used as a positive electrode active material.
Fluorocarbon [(CF 2 ) n ], thionyl chloride (SOCl
Primary batteries using 2 ) and the like are already widely used as power supplies for calculators, watches, and as backup batteries for memories.

【0003】さらに、近年、VTR、通信機器などの各
種の電子機器の小型、軽量化に伴いそれらの電源として
高エネルギー密度の二次電池の要求が高まり、リチウム
を負極活物質とするリチウム二次電池の研究が活発に行
われている。
Further, in recent years, with the reduction in size and weight of various electronic devices such as VTRs and communication devices, the demand for secondary batteries having a high energy density as a power source for these devices has increased, and lithium secondary batteries using lithium as a negative electrode active material have been required. Battery research is being actively conducted.

【0004】リチウム二次電池は、負極にリチウムを用
い、電解液として炭酸プロピレン(PC)、1,2−ジ
メトキシエタン(DME)、γ−ブチロラクトン(γ−
BL)、テトラヒドロフラン(THF)等の非水溶媒中
にLiClO4 、LiBF4、LiAsF6 等のリチウ
ム塩を溶解した非水電解液やリチウムイオン伝導性固体
電解質を用い、また正極活物質としては主にTiS2
MoS2 、V25 、V613、MnO2 等のリチウム
との間でトポケミカル反応する化合物を用いることが研
究されている。
A lithium secondary battery uses lithium as a negative electrode and propylene carbonate (PC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-
BL), a non-aqueous electrolyte in which a lithium salt such as LiClO 4 , LiBF 4 , or LiAsF 6 is dissolved in a non-aqueous solvent such as tetrahydrofuran (THF) or a lithium ion conductive solid electrolyte. TiS 2 ,
The use of compounds that undergo a topochemical reaction with lithium, such as MoS 2 , V 2 O 5 , V 6 O 13 , and MnO 2 , has been studied.

【0005】しかしながら、上述したリチウム二次電池
は実用化されていない。この主な理由は、充放電効率が
低く、しかも充放電が可能な回数(サイクル寿命)が短
いためである。この原因は、負極のリチウムと非水電解
液との反応によるリチウムの劣化によるところが大きい
と考えられている。すなわち、放電時にリチウムイオン
として非水電解液中に溶解したリチウムは、充電時に析
出する際に溶媒と反応し、その表面が一部不活性化され
る。このため、充放電を繰り返していくとデンドライド
状(樹枝状)や小球状にリチウムが析出し、さらにはリ
チウムが集電体より脱離するなどの現象が生じる。
[0005] However, the above-mentioned lithium secondary battery has not been put to practical use. The main reason for this is that the charge / discharge efficiency is low and the number of times that charge / discharge can be performed (cycle life) is short. It is considered that this is largely due to the deterioration of lithium due to the reaction between the lithium of the negative electrode and the non-aqueous electrolyte. That is, lithium dissolved in the non-aqueous electrolyte as lithium ions at the time of discharge reacts with the solvent at the time of deposition at the time of charging, and its surface is partially inactivated. Therefore, when charge and discharge are repeated, lithium precipitates in a dendritic (dendritic) or small spherical shape, and further, phenomena such as detachment of lithium from the current collector occur.

【0006】このようなことから、リチウム二次電池に
組み込まれる負極としてリチウムを吸蔵・放出する炭素
質物、例えば黒鉛、コークス、樹脂焼成体、炭素繊維、
熱分解気相炭素などを用いることによって、リチウムと
非水電解液との反応、さらにはデンドライド析出による
負極特性の劣化を改善することが提案され、現在実用さ
れている。しかしながら、このリチウム二次電池は、放
電容量が低いという問題点がある。
[0006] For these reasons, as a negative electrode incorporated in a lithium secondary battery, a carbonaceous material that absorbs and desorbs lithium, such as graphite, coke, a resin fired body, carbon fiber,
It has been proposed to improve the reaction between lithium and the non-aqueous electrolyte, and further to reduce the deterioration of the negative electrode characteristics due to dendritic deposition, by using pyrolytic gas phase carbon or the like, which is currently in practical use. However, this lithium secondary battery has a problem that the discharge capacity is low.

【0007】一方、リチウム二次電池の高容量化を図る
観点から、組成式がLiX A(AはAlなどの金属から
なる)で表されるリチウム合金を負極として用いること
が検討されている。この負極は単位体積当りのリチウム
イオンの吸蔵放出量が多く、高容量であるものの、リチ
ウムイオンが吸蔵放出される際に膨脹収縮するために充
放電サイクルの進行に伴って微粉化が進行する。このた
め、前記負極を備えたリチウム二次電池は、前記炭素質
物を含む負極を備えた二次電池と比較して放電容量は高
いが、充放電サイクル寿命が短いという問題点がある。
On the other hand, from the viewpoint of increasing the capacity of a lithium secondary battery, the use of a lithium alloy represented by a composition formula of Li X A (A is made of a metal such as Al) as a negative electrode has been studied. . Although this negative electrode has a large amount of lithium ions stored and released per unit volume, and has a high capacity, it expands and contracts when lithium ions are stored and released, so that pulverization proceeds with the progress of a charge and discharge cycle. For this reason, the lithium secondary battery provided with the negative electrode has a higher discharge capacity than the secondary battery provided with the negative electrode containing the carbonaceous material, but has a problem that the charge / discharge cycle life is short.

【0008】また、J.Electrochem.So
c.,142,326(1995)には、熱分解気相炭
素にSiを気相蒸着によって導入したものをリチウム二
次電池の負極に用いることにより黒鉛に対する理論容量
である372mAh/g以上の容量が得られることが開
示されている。
Further, J. J. Electrochem. So
c. , 142, 326 (1995) discloses that a capacity of 372 mAh / g or more, which is a theoretical capacity with respect to graphite, can be obtained by using, as a negative electrode of a lithium secondary battery, a substance obtained by introducing Si into pyrolytic gas phase carbon by vapor phase deposition. Is disclosed.

【0009】しかしながら、前記Siが導入された熱分
解気相炭素は、気相蒸着によって作製されるため、含有
Si量の調整及び大量合成が困難である。また、熱分解
気相炭素に導入できるSi量に限りがあり、重量比でせ
いぜい10%であるため、放電容量の向上を図ることは
困難である。更に、Siが導入される熱分解気相炭素が
難黒鉛性のものに限られるという問題点がある。
However, since the pyrolytic carbon into which Si has been introduced is produced by vapor deposition, it is difficult to adjust the amount of Si contained and to synthesize it in large quantities. In addition, the amount of Si that can be introduced into the pyrolytic carbon is limited, and the weight ratio is at most 10%. Therefore, it is difficult to improve the discharge capacity. Further, there is a problem that the pyrolytic carbon in which Si is introduced is limited to the non-graphitic one.

【0010】また、リチウムイオンを吸蔵放出する炭素
質物の粉末とアルミニウム粒子との混合物を負極に用い
ることが提案されているが、前記負極は充放電サイクル
の進行に伴うアルミニウム粒子の微粉化を抑制できない
ため、充放電サイクル寿命が短いという問題点がある。
It has also been proposed to use a mixture of a carbonaceous material powder that absorbs and releases lithium ions and aluminum particles for the negative electrode, but the negative electrode suppresses the pulverization of the aluminum particles as the charge-discharge cycle progresses. However, there is a problem that the charge / discharge cycle life is short.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、放電
容量およびサイクル寿命の双方が向上されたリチウム二
次電池及びその製造方法を提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a lithium secondary battery having improved discharge capacity and cycle life, and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】本発明に係わるリチウム
二次電池は、正極と、リチウムイオンを吸蔵放出する活
物質を含む負極と、非水電解液とを具備し、前記負極の
活物質は炭素質物層が表面に形成された微粒子を含み、
前記微粒子はMg、Al、Si、Ca、SnおよびPb
から選ばれる少なくとも一種の元素Mからなると共に平
均粒径が1nm〜500nmで、かつ前記活物質中の前
記微粒子の原子比率は15%以上であることを特徴とす
るリチウム二次電池である。
SUMMARY OF THE INVENTION A lithium secondary battery according to the present invention comprises a positive electrode, a negative electrode containing an active material for absorbing and releasing lithium ions, and a non-aqueous electrolyte. The carbonaceous material layer includes fine particles formed on the surface,
The fine particles are composed of Mg, Al, Si, Ca, Sn and Pb.
And a mean particle size of 1 to 500 nm, and an atomic ratio of the fine particles in the active material is 15% or more.

【0013】本発明に係わるリチウム二次電池の製造方
法は、正極と、負極と、非水電解液とを具備するリチウ
ム二次電池の製造方法であって、前記負極は、原料炭素
質物または炭素前駆体と、前記原料炭素質物または前記
炭素前駆体に対する重量比が15%以上の微粒子を50
0℃〜2800℃に加熱する工程を具備する方法により
作製され、前記微粒子はMg、Al、Si、Ca、Sn
およびPbから選ばれる少なくとも一種の元素Mからな
ると共に平均粒径が1nm〜500nmであることを特
徴とするリチウム二次電池の製造方法である。
A method of manufacturing a lithium secondary battery according to the present invention is a method of manufacturing a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte. 50% of a precursor and fine particles having a weight ratio of 15% or more to the raw carbonaceous material or the carbon precursor
Produced by a method including a step of heating to 0 ° C. to 2800 ° C., wherein the fine particles are made of Mg, Al, Si, Ca, Sn
And at least one element M selected from Pb and Pb and having an average particle diameter of 1 nm to 500 nm.

【0014】[0014]

【発明の実施の形態】以下、本発明に係わるリチウム二
次電池(例えば円筒形リチウム二次電池)を図1を参照
して詳細に説明する。例えばステンレスからなる有底円
筒状の容器1は、底部に絶縁体2が配置されている。電
極群3は、前記容器 1内に収納されている。前記電極群
3は、正極4、セパレ―タ5及び負極6をこの順序で積
層した帯状物を前記負極6が外側に位置するように渦巻
き状に巻回した構造になっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a lithium secondary battery (for example, a cylindrical lithium secondary battery) according to the present invention will be described in detail with reference to FIG. For example, a cylindrical container 1 with a bottom made of stainless steel has an insulator 2 disposed at the bottom. The electrode group 3 is housed in the container 1. The electrode group 3 has a structure in which a strip formed by laminating a positive electrode 4, a separator 5 and a negative electrode 6 in this order is spirally wound so that the negative electrode 6 is located outside.

【0015】前記容器1内には、電解液が収容されてい
る。中央部が開口された絶縁紙7は、前記容器1内の前
記電極群3の上方に載置されている。絶縁封口板8は、
前記容器1の上部開口部に配置され、かつ前記上部開口
部付近を内側にかしめ加工することにより前記封口板8
は前記容器1に液密に固定されている。正極端子9は、
前記絶縁封口板8の中央には嵌合されている。正極リ―
ド10の一端は、前記正極4に、他端は前記正極端子9
にそれぞれ接続されている。前記負極6は、図示しない
負極リ―ドを介して負極端子である前記容器1に接続さ
れている。
The container 1 contains an electrolytic solution. The insulating paper 7 having a central portion opened is placed above the electrode group 3 in the container 1. The insulating sealing plate 8
The sealing plate 8 is disposed at the upper opening of the container 1 and caulked in the vicinity of the upper opening inward.
Is fixed to the container 1 in a liquid-tight manner. The positive terminal 9 is
The insulating sealing plate 8 is fitted at the center. Positive lead
One end of the cathode 10 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9.
Connected to each other. The negative electrode 6 is connected to the container 1 as a negative terminal via a negative lead (not shown).

【0016】次に、前記正極4、前記セパレータ5、前
記負極6および前記電解液について詳しく説明する。 1)正極4 正極4は、正極活物質に導電剤および結着剤を適当な溶
媒に懸濁し、この懸濁物を集電体に塗布、乾燥して薄板
状にすることにより作製される。
Next, the positive electrode 4, the separator 5, the negative electrode 6, and the electrolytic solution will be described in detail. 1) Positive Electrode 4 The positive electrode 4 is produced by suspending a conductive agent and a binder in a suitable solvent in a positive electrode active material, applying the suspension to a current collector, and drying to form a thin plate.

【0017】前記正極活物質としては、種々の酸化物、
例えば二酸化マンガン、リチウムマンガン複合酸化物、
リチウム含有ニッケル酸化物、リチウム含有コバルト化
合物、リチウム含有ニッケルコバルト酸化物、リチウム
含有鉄酸化物、リチウムを含むバナジウム酸化物や、二
硫化チタン、二硫化モリブデンなどのカルコゲン化合物
などを挙げることができる。中でも、リチウムコバルト
酸化物(LiCoO2)、リチウムニッケル酸化物(L
iNiO2 )、リチウムマンガン酸化物(LiMn2
4 またはLiMnO2 )を用いると、高電圧が得られる
ために好ましい。
As the positive electrode active material, various oxides,
For example, manganese dioxide, lithium manganese composite oxide,
Examples include lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel-cobalt oxide, lithium-containing iron oxide, lithium-containing vanadium oxide, and chalcogen compounds such as titanium disulfide and molybdenum disulfide. Among them, lithium cobalt oxide (LiCoO 2 ) and lithium nickel oxide (L
iNiO 2 ), lithium manganese oxide (LiMn 2 O)
4 or LiMnO 2 ) is preferable because a high voltage can be obtained.

【0018】前記導電剤としては、例えばアセチレンブ
ラック、カーボンブラック、黒鉛等を挙げることができ
る。前記結着剤としては、例えばポリテトラフルオロエ
チレン(PTFE)、ポリフッ化ビニリデン(PVD
E)、エチレン−プロピレン−ジエン共重合体(EPD
M)、スチレン−ブタジエンゴム(SBR)等を用いる
ことができる。
Examples of the conductive agent include acetylene black, carbon black, graphite and the like. Examples of the binder include polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVD).
E), ethylene-propylene-diene copolymer (EPD)
M), styrene-butadiene rubber (SBR) and the like can be used.

【0019】前記正極活物質、導電剤および結着剤の配
合割合は、正極活物質80〜95重量%、導電剤3〜2
0重量%、結着剤2〜7重量%の範囲にすることが好ま
しい。
The mixing ratio of the positive electrode active material, the conductive agent and the binder is 80 to 95% by weight of the positive electrode active material, 3 to 2% of the conductive agent.
It is preferable that the content be in the range of 0% by weight and 2 to 7% by weight of the binder.

【0020】前記集電体としては、例えばアルミニウム
箔、ステンレス箔、ニッケル箔等を用いることができ
る。 2)セパレータ5 前記セパレータ5としては、例えば合成樹脂製不織布、
ポリエチレン多孔質フィルム、ポリプロピレン多孔質フ
ィルム等を用いることができる。
As the current collector, for example, aluminum foil, stainless steel foil, nickel foil or the like can be used. 2) Separator 5 As the separator 5, for example, a synthetic resin nonwoven fabric,
A polyethylene porous film, a polypropylene porous film, or the like can be used.

【0021】3)負極6 前記負極6はリチウムイオンを吸蔵放出する活物質を含
む。前記活物質は、リチウムイオンを吸蔵放出する炭素
質物層が表面に形成された微粒子を含む。前記微粒子は
Mg、Al、Si、Ca、SnおよびPbから選ばれる
少なくとも一種の元素Mからなると共に平均粒径が1n
m〜500nmである。また、前記活物質中の前記微粒
子の原子比率は15%以上である。
3) Negative Electrode 6 The negative electrode 6 contains an active material that stores and releases lithium ions. The active material includes fine particles having a surface on which a carbonaceous material layer that stores and releases lithium ions is formed. The fine particles are made of at least one element M selected from Mg, Al, Si, Ca, Sn and Pb, and have an average particle size of 1n.
m to 500 nm. The atomic ratio of the fine particles in the active material is 15% or more.

【0022】前記活物質は、前記炭素質物層形成微粒子
のみから形成されても良いが、このような微粒子を形成
していない炭素質物を含んでいても良い。この微粒子未
形成の炭素質物としては、リチウムイオンを吸蔵放出す
る炭素質物が用いられる。
The active material may be formed only from the fine particles forming the carbonaceous material layer, or may include a carbonaceous material not forming such fine particles. As the carbonaceous material without the fine particles, a carbonaceous material that absorbs and releases lithium ions is used.

【0023】このような負極6は、例えば、前記活物質
及び結着剤を適当な溶媒に懸濁させ、この懸濁物を集電
体に塗布し、乾燥した後、プレスすることにより作製す
ることができる。
Such a negative electrode 6 is produced, for example, by suspending the active material and the binder in an appropriate solvent, applying the suspension to a current collector, drying and pressing the current collector. be able to.

【0024】前記微粒子の平均粒径を前記範囲に限定す
るのは次のような理由によるものである。前記平均粒径
が500nmを越えると、前記微粒子が充放電サイクル
の進行に伴って微粉化する恐れがある。前記平均粒径は
小さいほど良い。より好ましい平均粒径は250nm以
下であり、さらに好ましい平均粒径は200nm以下で
ある。また、前記平均粒径の下限値は1nmにすると良
い。
The reason why the average particle diameter of the fine particles is limited to the above range is as follows. If the average particle size exceeds 500 nm, the fine particles may be finely divided as the charge / discharge cycle progresses. The smaller the average particle size is, the better. A more preferred average particle size is 250 nm or less, and a still more preferred average particle size is 200 nm or less. The lower limit of the average particle size is preferably set to 1 nm.

【0025】前記活物質中の前記微粒子の原子比率を前
記範囲に限定するのは次のような理由によるものであ
る。前記原子比率を15%未満にすると、負極の容量の
向上を図ることが困難になる。しかしながら、前記原子
比率が60%を越えると、元素Mの微粒子が凝集して大
きくなり、充放電サイクルの進行に伴って微粉化する恐
れがある。このため、前記原子比率の上限値は60%に
すると良い。更に好ましい上限値は、50%である。
The reason for limiting the atomic ratio of the fine particles in the active material to the above range is as follows. If the atomic ratio is less than 15%, it is difficult to improve the capacity of the negative electrode. However, when the atomic ratio exceeds 60%, the fine particles of the element M aggregate and become large, and there is a possibility that the fine particles are formed into fine particles as the charge / discharge cycle proceeds. Therefore, the upper limit of the atomic ratio is preferably set to 60%. A more preferred upper limit is 50%.

【0026】表面に前記炭素質物層が形成された前記微
粒子は、例えば図2に示すように前記炭素質物層を構成
する黒鉛結晶子の六角網面層11と前記微粒子12表面
の接線lとのなす角αの平均が20゜〜90゜になる構
造を有することが好ましい。前記なす角αの平均を20
゜未満にすると、前記炭素質物層を構成する黒鉛結晶子
の配向が前記微粒子表面に対して平行になって前記負極
へのリチウムイオンの速やかな拡散を妨げる恐れがあ
る。前記なす角αの平均は、40゜〜90゜の範囲に設
定することがより好ましい。
The fine particles having the carbonaceous material layer formed on the surface thereof are, for example, as shown in FIG. 2, between a hexagonal mesh layer 11 of graphite crystallites constituting the carbonaceous material layer and a tangent 1 to the surface of the fine particles 12. It is preferable to have a structure in which the average of the angles α is 20 ° to 90 °. The average of the angle α is 20
If it is less than ゜, the orientation of graphite crystallites constituting the carbonaceous material layer may be parallel to the surface of the fine particles, which may hinder rapid diffusion of lithium ions to the negative electrode. The average of the angle α is more preferably set in the range of 40 ° to 90 °.

【0027】前記微粒子の表面に形成された前記炭素質
物層の厚さは、前記負極中に占める前記微粒子の量が不
足しないように薄い方が好ましいが、それと同時に前記
微粒子がリチウムイオンの吸蔵放出に伴う膨脹収縮によ
って微粉化するのを抑制する補強層として前記炭素質物
層が機能できるように設定する必要がある。
It is preferable that the thickness of the carbonaceous material layer formed on the surface of the fine particles is thin so that the amount of the fine particles occupying in the negative electrode does not become insufficient. It is necessary to set the carbonaceous material layer so that it can function as a reinforcing layer that suppresses pulverization due to expansion and contraction accompanying the above.

【0028】前記炭素質物層形成微粒子は、二次粒子を
形成していることが好ましい。前記二次粒子としては、
前記炭素質物層形成微粒子同士がこれら微粒子間の導通
を確保できるように結合した構造のものや、微粒子非形
成の炭素質物中に前記炭素質物層形成微粒子が分散され
た構造のものを挙げることができる。前記微粒子非形成
の炭素質物中には前記炭素質物層形成微粒子が均一に分
散されていることが好ましい。また、前記負極は、前記
二次粒子同士の隙間にリチウムイオンを吸蔵放出できる
微細構造が形成されているとなお良い。
The carbonaceous material layer-forming fine particles preferably form secondary particles. As the secondary particles,
Examples include those having a structure in which the carbonaceous material layer-forming fine particles are bonded so as to ensure conduction between the fine particles, and those having a structure in which the carbonaceous material layer-forming fine particles are dispersed in a carbonaceous material in which no fine particles are formed. it can. It is preferable that the carbonaceous material layer-forming fine particles are uniformly dispersed in the carbonaceous material without the fine particles. It is more preferable that the negative electrode has a fine structure capable of inserting and extracting lithium ions in gaps between the secondary particles.

【0029】前記活物質の真密度は、1.7g/cm3
以上にすることが好ましい。前記真密度を1.7g/c
3 未満にすると、前記負極の体積比容量が低下する恐
れがある。
The true density of the active material is 1.7 g / cm 3
It is preferable to make the above. The true density is 1.7 g / c
If it is less than m 3 , the volume specific capacity of the negative electrode may decrease.

【0030】前記活物質は、例えば、原料炭素質物また
は炭素前駆体と、前記原料炭素質物または前記炭素前駆
体に対する重量比が15%以上で、平均粒径が1nm〜
500nmの微粒子(但し、前記微粒子はMg、Al、
Si、Ca、SnおよびPbから選ばれる少なくとも一
種の元素Mからなる)を500℃〜2800℃に加熱す
ることによって作製することができる。
The active material has, for example, a weight ratio of the raw material carbonaceous material or carbon precursor to the raw material carbonaceous material or carbon precursor of 15% or more and an average particle size of 1 nm to 1 nm.
500 nm fine particles (where the fine particles are Mg, Al,
(At least one element M selected from Si, Ca, Sn, and Pb) is heated to 500 ° C. to 2800 ° C.

【0031】前記方法において、前記微粒子の前記原料
炭素質物または前記炭素前駆体に対する重量比を15%
未満にすると、前記活物質中の前記微粒子の原子比率が
15%を下回る恐れがある。しかしながら、前記重量比
が60%を越えると、原料混合物を加熱したときにおこ
る炭素質物の重量減少により加熱処理後の金属微粒子含
有率が60%を越える恐れがある。このため、前記重量
比の上限値は60%にすると良い。より好ましい重量比
は、15%〜50%の範囲である。
In the above method, the weight ratio of the fine particles to the raw carbonaceous material or the carbon precursor may be 15%.
If it is less than 10%, the atomic ratio of the fine particles in the active material may be lower than 15%. However, if the weight ratio exceeds 60%, the content of fine metal particles after the heat treatment may exceed 60% due to the decrease in the weight of the carbonaceous material that occurs when the raw material mixture is heated. Therefore, the upper limit of the weight ratio is preferably set to 60%. A more preferred weight ratio is in the range of 15% to 50%.

【0032】前記方法において、合成温度を前記範囲に
限定するのは次のような理由によるものである。前記合
成温度を500℃未満にすると、前記微粒子の表面に前
記炭素質物の層が形成されずに元素Mを主成分とする皮
膜が形成される恐れがある。また、炭素質物の炭化が不
十分になり、リチウムイオンの材料中へのトラップが生
じる恐れがある。一方、前記合成温度が2800℃を越
えると、前記微粒子の表面に形成された前記炭素質物層
の黒鉛化度が高くなり、前記炭素質物層を構成する黒鉛
結晶子の配向が前記粒子表面に平行な積層構造になる恐
れがある。前記合成温度は、より好ましくは800゜〜
2500゜、さらに好ましくは800゜〜2300゜の
範囲である。
In the above method, the reason why the synthesis temperature is limited to the above range is as follows. If the synthesis temperature is lower than 500 ° C., there is a possibility that a film mainly composed of the element M may be formed without forming the carbonaceous material layer on the surface of the fine particles. In addition, carbonization of the carbonaceous material becomes insufficient, and lithium ions may be trapped in the material. On the other hand, when the synthesis temperature exceeds 2800 ° C., the degree of graphitization of the carbonaceous material layer formed on the surface of the fine particles increases, and the orientation of graphite crystallites constituting the carbonaceous material layer is parallel to the particle surface. There is a possibility that a complicated laminated structure may be obtained. The synthesis temperature is more preferably 800 °-
2500 °, more preferably in the range of 800 ° to 2300 °.

【0033】前記原料炭素質物としては、例えば、アセ
チレンブラック、活性炭のような比表面積が大きい炭素
を挙げることができる。また、前記原料炭素質物は、前
記微粒子と均等に混ざるに十分な程微細な粒子の形態で
あると良い。
Examples of the raw carbonaceous material include carbon having a large specific surface area, such as acetylene black and activated carbon. Further, the raw material carbonaceous material is preferably in the form of fine particles sufficiently small to be uniformly mixed with the fine particles.

【0034】前記炭素前駆体としては、例えば、易黒鉛
化性の炭素前駆体(例えば石油ピッチ、石炭ピッチを原
料としたメソフェーズピッチ、コークスなど)、難黒鉛
化性の炭素前駆体(例えば等方性ピッチ、ポリアクリル
ニトリル、フルフリールアルコール、フラン樹脂、フェ
ノール系樹脂、セルロース、砂糖、ポリ塩化ビニリデン
など)、ゾル−ゲル法によって合成される炭素質物の前
駆体等を挙げることができる。中でも、易黒鉛化性の炭
素前駆体を用いると良い。前記易黒鉛化性の炭素前駆体
は、前記負極のリチウム拡散速度を高めることができる
ため、1C以上の急速充放電サイクルにおける放電容量
を改善することができる。
Examples of the carbon precursor include a graphitizable carbon precursor (eg, petroleum pitch, coal pitch as a raw material, mesophase pitch, coke, etc.), and a non-graphitizable carbon precursor (eg, isotropic). , Pitch, polyacrylonitrile, furfuryl alcohol, furan resin, phenolic resin, cellulose, sugar, polyvinylidene chloride, etc.), and precursors of carbonaceous materials synthesized by a sol-gel method. Among them, a graphitizable carbon precursor is preferably used. Since the graphitizable carbon precursor can increase the lithium diffusion rate of the negative electrode, the discharge capacity in a rapid charge / discharge cycle of 1 C or more can be improved.

【0035】前記結着剤としては、例えばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)、
カルボキシメチルセルロース(CMC)等を用いること
ができる。
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR),
Carboxymethyl cellulose (CMC) or the like can be used.

【0036】前記活物質および前記結着剤の配合割合
は、活物質を90〜98重量%、結着剤を2〜10重量
%の範囲にすることが好ましい。特に、前記活物質は負
極を作製した状態で5〜20mg/cm2 の範囲するこ
とが好ましい。
The mixing ratio of the active material and the binder is preferably in the range of 90 to 98% by weight of the active material and 2 to 10% by weight of the binder. In particular, it is preferable that the amount of the active material is in the range of 5 to 20 mg / cm 2 when the negative electrode is manufactured.

【0037】前記集電体としては、例えば銅箔、ステン
レス箔、ニッケル箔等を用いることができる。 4)電解液 前記非水電解液は、非水溶媒に電解質を溶解することに
より調製される。
As the current collector, for example, a copper foil, a stainless steel foil, a nickel foil or the like can be used. 4) Electrolyte The non-aqueous electrolyte is prepared by dissolving an electrolyte in a non-aqueous solvent.

【0038】前記非水溶媒としては、リチウム二次電池
の溶媒として公知の非水溶媒を用いることができ、特に
限定はされないが、エチレンカーボネート(EC)と前
記エチレンカーボネートより低融点であり且つドナー数
が18以下である1種以上の非水溶媒(以下第2溶媒と
称す)との混合溶媒を主体とする非水溶媒を用いること
が好ましい。このような非水溶媒は、前記負極を構成す
る黒鉛構造の発達した炭素質物に対して安定で、電解液
の還元分解または酸化分解が起き難く、さらに導電性が
高いという利点がある。
As the non-aqueous solvent, a known non-aqueous solvent as a solvent for a lithium secondary battery can be used, and is not particularly limited. Ethylene carbonate (EC) has a melting point lower than that of ethylene carbonate and a donor. It is preferable to use a non-aqueous solvent mainly composed of a mixed solvent with one or more non-aqueous solvents having a number of 18 or less (hereinafter, referred to as a second solvent). Such a non-aqueous solvent is advantageous in that it is stable with respect to the carbonaceous material having a graphite structure that constitutes the negative electrode, hardly causes reductive decomposition or oxidative decomposition of the electrolytic solution, and has high conductivity.

【0039】エチレンカーボネートを単独含む非水電解
液では、黒鉛化した炭素質物に対して還元分解されに難
い性質を持つ利点があるが、融点が高く(39℃〜40
℃)粘度が高いため、導電率が小さく常温作動の二次電
池では不向きである。エチレンカーボネートに混合する
第2の溶媒は混合溶媒を前記エチレンカーボネートより
も粘度を小さくして導電性を向上させる。また、ドナー
数が18以下の第2の溶媒(ただし、エチレンカーボネ
ートのドナー数は16.4)を用いることにより前記エ
チレンカーボネートがリチウムイオンに選択的に溶媒和
し易くなくなり、黒鉛構造の発達した炭素質物に対して
前記第2の溶媒の還元反応が抑制されることが考えられ
る。また、前記第2の溶媒のドナー数を18以下にする
ことによって、酸化分解電位がリチウム電極に対して4
V以上となり易く、高電圧なリチウム二次電池を実現で
きる利点も有している。
The non-aqueous electrolyte containing ethylene carbonate alone has the advantage of being hardly reductively decomposed to the graphitized carbonaceous material, but has a high melting point (39 ° C. to 40 ° C.).
℃) Because of high viscosity, the conductivity is small and not suitable for a secondary battery operated at room temperature. The second solvent mixed with ethylene carbonate has a lower viscosity than the ethylene carbonate in the mixed solvent to improve conductivity. Further, by using the second solvent having a donor number of 18 or less (provided that the number of donors of ethylene carbonate is 16.4), the ethylene carbonate is not easily solvated selectively with lithium ions, and the graphite structure is developed. It is considered that the reduction reaction of the second solvent with respect to the carbonaceous material is suppressed. Further, by setting the number of donors of the second solvent to 18 or less, the oxidative decomposition potential becomes 4 with respect to the lithium electrode.
V or more, and has an advantage that a high-voltage lithium secondary battery can be realized.

【0040】前記第2種の溶媒としては、例えば鎖状カ
ーボンが好ましく、中でもジメチルカーボネート(DM
C)、メチルエチルカーボネート(MEC)、ジエチル
カーボネート(DEC)、プロピオン酸エチル、プロピ
オン酸メチル、またはプロピレンカーボネート(P
C)、γ−ブチロラクトン(γ−BL)、アセトニトリ
ル(AN)、酢酸エチル(EA)、トルエン、キシレン
または、酢酸メチル(MA)などが挙げられる。これら
の第2の溶媒は、単独または2種以上の混合物の形態で
用いることができる。特に、前記第2種の溶媒はドナー
数が16.5以下であることがより好ましい。
As the second type of solvent, for example, chain carbon is preferable, and among them, dimethyl carbonate (DM
C), methyl ethyl carbonate (MEC), diethyl carbonate (DEC), ethyl propionate, methyl propionate, or propylene carbonate (P
C), γ-butyrolactone (γ-BL), acetonitrile (AN), ethyl acetate (EA), toluene, xylene or methyl acetate (MA). These second solvents can be used alone or in the form of a mixture of two or more. In particular, the second type solvent more preferably has a donor number of 16.5 or less.

【0041】前記第2溶媒の粘度は、25℃において2
8mp以下であることが好ましい。前記混合溶媒中の前
記エチレンカーボネートの配合量は、体積比率で10〜
80%であることが好ましい。この範囲を逸脱すると、
導電性の低下あるいは溶媒の分解がおき、充放電効率が
低下する恐れがある。より好ましい前記エチレンカーボ
ネートの配合量は体積比率で20〜75%である。非水
溶媒中のエチレンカーボネートの配合量を20体積%以
上に高めることによりエチレンカーボネートのリチウム
イオンへの溶媒和が容易になるため、溶媒の分解抑制効
果を向上することが可能になる。
The viscosity of the second solvent is 2 at 25 ° C.
It is preferably 8 mp or less. The blending amount of the ethylene carbonate in the mixed solvent is 10 to 10 by volume.
Preferably it is 80%. If you deviate from this range,
There is a possibility that charge and discharge efficiency may decrease due to a decrease in conductivity or decomposition of the solvent. A more preferable blending amount of the ethylene carbonate is 20 to 75% by volume ratio. By increasing the amount of ethylene carbonate in the non-aqueous solvent to 20% by volume or more, solvation of ethylene carbonate with lithium ions is facilitated, so that the effect of suppressing the decomposition of the solvent can be improved.

【0042】前記混合溶媒のより好ましい組成は、EC
とMEC、ECとPCとMEC、ECとMECとDE
C、ECとMECとDMC、ECとMECとPCとDE
Cの混合溶媒で、MECの体積比率は30〜80%とす
ることが好ましい。このようにMECの体積比率を30
〜80%、より好ましくは40〜70%にすることによ
り、導電率を向上できる。一方、溶媒の還元分解反応を
抑える観点から、炭酸ガス(CO2 )を溶解した電解液
を用いると、容量とサイクル寿命の向上に効果的であ
る。
A more preferred composition of the mixed solvent is EC
And MEC, EC and PC and MEC, EC and MEC and DE
C, EC, MEC, DMC, EC, MEC, PC, DE
In the mixed solvent of C, the volume ratio of MEC is preferably 30 to 80%. Thus, the volume ratio of MEC is set to 30.
By setting the content to 80%, more preferably 40% to 70%, the conductivity can be improved. On the other hand, from the viewpoint of suppressing the reductive decomposition reaction of the solvent, using an electrolytic solution in which carbon dioxide (CO 2 ) is dissolved is effective in improving the capacity and cycle life.

【0043】前記混合溶媒(非水溶媒)中に存在する主
な不純物としては、水分と、有機過酸化物(例えばグリ
コール類、アルコール類、カルボン酸類)などが挙げら
れる。前記各不純物は、黒鉛化物の表面に絶縁性の被膜
を形成し、電極の界面抵抗を増大させるものと考えられ
る。したがって、サイクル寿命や容量の低下に影響を与
える恐れがある。また高温(60℃以上)貯蔵時の自己
放電も増大する恐れがある。このようなことから、非水
溶媒を含む電解液においては前記不純物はできるだけ低
減されることが好ましい。具体的には、水分は50pp
m以下、有機過酸化物は1000ppm以下であること
が好ましい。
The main impurities present in the mixed solvent (non-aqueous solvent) include water and organic peroxides (eg, glycols, alcohols, carboxylic acids). It is considered that each of the impurities forms an insulating film on the surface of the graphitized material and increases the interfacial resistance of the electrode. Therefore, there is a possibility that the cycle life and capacity may be reduced. In addition, self-discharge during high-temperature (60 ° C. or higher) storage may increase. For this reason, it is preferable that the impurities be reduced as much as possible in the electrolytic solution containing the non-aqueous solvent. Specifically, the water content is 50 pp
m or less, and the amount of the organic peroxide is preferably 1000 ppm or less.

【0044】前記非水電解液に含まれる電解質として
は、例えば過塩素酸リチウム(LiClO4 )、六フッ
化リン酸リチウム(LiPF6 )、ホウフッ化リチウム
(LiBF4 )、六フッ化砒素リチウム(LiAsF
6 )、トリフルオロメタスルホン酸リチウム(LiCF
3 SO3 )、ビストリフルオロメチルスルホニルイミド
リチウム[LiN(CF3 SO22 ]などのリチウム
塩(電解質)が挙げられる。中でもLiPF6 、LiB
4 、LiN(CF3 SO22 を用いるのが好まし
い。
Examples of the electrolyte contained in the nonaqueous electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and lithium arsenide hexafluoride (LiBF 4 ). LiAsF
6 ), lithium trifluorometasulfonate (LiCF
3 SO 3 ) and lithium bis (trifluoromethylsulfonylimide) [LiN (CF 3 SO 2 ) 2 ]. Among them, LiPF 6 , LiB
It is preferable to use F 4 and LiN (CF 3 SO 2 ) 2 .

【0045】前記電解質の前記非水溶媒に対する溶解量
は、0.5〜2.0モル/1とすることが望ましい。本
発明に係るリチウム二次電池は、正極と、リチウムイオ
ンを吸蔵放出する活物質を含む負極と、非水電解液とを
具備し、前記負極の活物質は炭素質物層が表面に形成さ
れた微粒子を含み、前記微粒子はMg、Al、Si、C
a、SnおよびPbから選ばれる少なくとも一種の元素
Mからなると共に平均粒径が1nm〜500nmで、か
つ前記活物質中の前記微粒子の原子比率は15%以上で
ある。前述した特定の平均粒径を持つ前記微粒子は、リ
チウムイオンの吸蔵放出に伴う膨脹収縮によって微粉化
するのを抑制することができる。また、前記微粒子表面
に形成された前記炭素質物層は、前記微粒子を補強する
ことができる。従って、前記炭素質物層形成微粒子を含
む負極は、充放電サイクルの進行に伴う前記微粒子の微
粉化を回避することができるため、二次電池の充放電サ
イクル寿命を向上することができる。
The amount of the electrolyte dissolved in the non-aqueous solvent is desirably 0.5 to 2.0 mol / 1. A lithium secondary battery according to the present invention includes a positive electrode, a negative electrode including an active material that stores and releases lithium ions, and a nonaqueous electrolyte. The active material of the negative electrode has a carbonaceous material layer formed on a surface. Microparticles, wherein the microparticles are Mg, Al, Si, C
It is made of at least one element M selected from a, Sn and Pb, has an average particle diameter of 1 nm to 500 nm, and has an atomic ratio of the fine particles in the active material of 15% or more. The fine particles having the above-mentioned specific average particle diameter can be suppressed from being pulverized due to expansion and contraction caused by insertion and extraction of lithium ions. The carbonaceous material layer formed on the surface of the fine particles can reinforce the fine particles. Therefore, the negative electrode including the carbonaceous material layer-forming fine particles can avoid the fine particles of the fine particles accompanying the progress of the charge / discharge cycle, thereby improving the charge / discharge cycle life of the secondary battery.

【0046】また、前記微粒子は、前記元素Mから形成
されているため、単位体積当りのリチウムイオン吸蔵放
出量が多い。前記負極は、このような微粒子が原子比率
で15%以上含有された活物質を含むため、容量を向上
することができ、二次電池の放電容量を改善することが
できる。
Further, since the fine particles are formed from the element M, the amount of lithium ion occlusion / release per unit volume is large. Since the negative electrode contains an active material containing 15% or more of such fine particles in an atomic ratio, the capacity can be improved, and the discharge capacity of a secondary battery can be improved.

【0047】このような二次電池の負極において、前記
炭素質物層形成微粒子が二次粒子を形成していると、活
物質の真密度を向上することができるため、単位体積当
りの容量を向上することができる。その結果、前記負極
を備えた二次電池は、放電容量を飛躍的に改善すること
ができる。
In such a negative electrode of a secondary battery, when the carbonaceous material layer-forming fine particles form secondary particles, the true density of the active material can be improved, so that the capacity per unit volume can be improved. can do. As a result, the secondary battery including the negative electrode can dramatically improve the discharge capacity.

【0048】また、前記炭素質物層が表面に形成された
微粒子において、前記炭素質物層をこれを構成する黒鉛
結晶子の六角網面層と前記微粒子表面の接線とのなす角
の平均が20゜〜90゜である構造にすることによっ
て、前記六角網面層の層間が前記負極の表面を向くた
め、前記負極は多量のリチウムイオンを速やかに吸蔵放
出することができる。従って、前記負極を備えた二次電
池は、急速充放電の際の放電容量を改善することができ
る。
In the fine particles having the carbonaceous material layer formed on the surface thereof, the average angle between the hexagonal mesh layer of graphite crystallites constituting the carbonaceous material layer and the tangent to the surface of the fine particles is 20 °. With a structure of up to 90 °, the layers of the hexagonal mesh layer face the surface of the negative electrode, so that the negative electrode can quickly occlude and release a large amount of lithium ions. Therefore, the secondary battery including the negative electrode can improve the discharge capacity at the time of rapid charging and discharging.

【0049】本発明に係るリチウム二次電池の製造方法
によれば、原料炭素質物または炭素前駆体と、前記原料
炭素質物または前記炭素前駆体に対する重量比が15%
以上で、平均粒径が1nm〜500nmの微粒子(前記
微粒子はMg、Al、Si、Ca、SnおよびPbから
選ばれる少なくとも一種の元素Mからなる)を500℃
〜2800℃に加熱する工程を具備する方法により負極
を作製する。このような方法によると、表面に炭素質物
層が形成された前記微粒子を含む活物質を備え、前記活
物質中の前記微粒子の原子比率が15%以上である負極
を作製することができるため、放電容量及び充放電サイ
クル寿命の双方が改善されたリチウム二次電池を製造す
ることができる。
According to the method of manufacturing a lithium secondary battery according to the present invention, the weight ratio of the raw material carbonaceous material or carbon precursor to the raw material carbonaceous material or carbon precursor is 15%.
As described above, fine particles having an average particle diameter of 1 nm to 500 nm (the fine particles are made of at least one element M selected from Mg, Al, Si, Ca, Sn and Pb) are heated to 500 ° C.
A negative electrode is manufactured by a method including a step of heating to about 2800 ° C. According to such a method, an active material including the fine particles having a carbonaceous material layer formed on a surface thereof is provided, and a negative electrode in which the atomic ratio of the fine particles in the active material is 15% or more can be manufactured. A lithium secondary battery having improved discharge capacity and charge / discharge cycle life can be manufactured.

【0050】[0050]

【実施例】以下、本発明の実施例を前述した図1を参照
して詳細に説明する。 実施例1 まず、リチウムコバルト酸化物(Lix CoO2 (0.
8≦x≦1))粉末91重量%をアセチレンブラック
3.5重量%、グラファイト3.5重量%及びエチレン
プロピレンジエンモノマー粉末2重量%とトルエンを加
えて共に混合し、アルミニウム箔(30μm)集電体に
塗布した後、プレスすることにより正極を作製した。
An embodiment of the present invention will be described below in detail with reference to FIG. Example 1 First, lithium cobalt oxide (Li x CoO 2 (0.
8 ≦ x ≦ 1)) 91% by weight of powder was added to 3.5% by weight of acetylene black, 3.5% by weight of graphite, and 2% by weight of ethylene propylene diene monomer powder and mixed together, and aluminum foil (30 μm) was collected. After coating on the electric body, pressing was performed to produce a positive electrode.

【0051】また、石油ピッチから得られたメソフェー
ズピッチに、気相合成法で得られた平均粒径が100n
mのAl微粒子を重量比でメソフェーズピッチに対して
15%添加し、ライカイ機で24時間以上攪拌して均一
に分散させた後、不活性ガス雰囲気下、800℃で5時
間加熱することによりリチウムイオンを吸蔵放出する活
物質を得た。
Further, the mesophase pitch obtained from petroleum pitch is added with an average particle diameter obtained by a gas phase synthesis method of 100 n.
After adding 15% by weight of Al fine particles with respect to the mesophase pitch in a weight ratio and stirring uniformly with a raikai machine for at least 24 hours, the mixture is heated at 800 ° C. for 5 hours in an inert gas atmosphere to obtain lithium. An active material capable of inserting and extracting ions was obtained.

【0052】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたAl微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子の六角網面層と前記微粒子表面の接線と
のなす角を求めたところ、なす角の平均は45゜であっ
た。前記活物質は原子比率でAlを30%含有してお
り、真密度は、2.0g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Al fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . The angle between the hexagonal mesh layer of graphite crystallites constituting the carbon layer and the tangent to the surface of the fine particles was determined from the observation of the cross section of the fine particles by the TEM, and the average angle was 45 °. The active material contained Al in an atomic ratio of 30%, and the true density was 2.0 g / cm 3 .

【0053】次いで、前記活物質96.7重量%をスチ
レンブタジエンゴム2.2重量%とカルボキシメチルセ
ルロース1.1重量%と共に混合し、これを集電体とし
ての銅箔に塗布し、乾燥し、プレスすることにより負極
を作製した。得られた負極の充填密度は、1.45g/
cm3 であった。
Next, 96.7% by weight of the active material was mixed with 2.2% by weight of styrene-butadiene rubber and 1.1% by weight of carboxymethylcellulose, applied to a copper foil as a current collector, and dried. A negative electrode was produced by pressing. The packing density of the obtained negative electrode was 1.45 g /
cm 3 .

【0054】前記正極、ポリエチレン製多孔質フィルム
からなるセパレ―タおよび前記負極をそれぞれこの順序
で積層した後、前記負極が外側に位置するように渦巻き
状に巻回して電極群を作製した。
The positive electrode, the separator made of a porous film made of polyethylene, and the negative electrode were laminated in this order, and then spirally wound so that the negative electrode was located outside, thereby producing an electrode group.

【0055】さらに、六フッ化リン酸リチウム(LiP
6 )をエチレンカーボネート(EC)とメチルエチル
カーボネート(MEC)の混合溶媒(混合体積比率1:
1)に1モル/1溶解して非水電解液を調製した。
Further, lithium hexafluorophosphate (LiP)
F 6 ) in a mixed solvent of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) (mixing volume ratio 1:
A non-aqueous electrolytic solution was prepared by dissolving 1 mol / l in 1).

【0056】前記電極群及び前記電解液をステンレス製
の有底円筒状容器内にそれぞれ収納して前述した図1に
示す円筒形リチウム二次電池を組み立てた。 実施例2 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
The electrode group and the electrolytic solution were respectively housed in a stainless steel bottomed cylindrical container to assemble the above-described cylindrical lithium secondary battery shown in FIG. Example 2 A cylindrical lithium secondary battery similar to that of Example 1 was assembled except that the active material described below was used.

【0057】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに、気相合成法で得られた平均粒径が
100μmのAl微粒子を重量比でメソフェーズピッチ
に対して10%添加し、ライカイ機で24時間以上攪拌
して均一に分散させた後、不活性ガス雰囲気下、800
℃で5時間加熱することにより作製された。
The active material was added to a mesophase pitch obtained from a petroleum pitch by adding 10% by weight of Al fine particles having an average particle diameter of 100 μm obtained by a gas phase synthesis method to the mesophase pitch. , And uniformly dispersed by stirring for 24 hours or more under an inert gas atmosphere.
Produced by heating at 5 ° C. for 5 hours.

【0058】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたAl微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子の六角網面層と前記微粒子表面の接線と
のなす角を求めたところ、なす角の平均は45゜であっ
た。前記活物質は原子比率でAlを15%含有してお
り、真密度は、1.95g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Al fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . The angle between the hexagonal mesh layer of graphite crystallites constituting the carbon layer and the tangent to the surface of the fine particles was determined from the observation of the cross section of the fine particles by the TEM, and the average angle was 45 °. The active material contained Al in an atomic ratio of 15%, and the true density was 1.95 g / cm 3 .

【0059】実施例3 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Example 3 A cylindrical lithium secondary battery similar to that of Example 1 was assembled except that the active material described below was used.

【0060】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに、気相合成法で得られた平均粒径が
100nmのAl微粒子を重量比でメソフェーズピッチ
に対して15%添加し、ライカイ機で24時間以上攪拌
して均一に分散させた後、不活性ガス雰囲気下、150
0℃で1時間加熱することにより作製された。
The active material is prepared by adding 15% by weight of Al fine particles having an average particle diameter of 100 nm obtained by a gas phase synthesis method to a mesophase pitch obtained from a petroleum pitch by weight with respect to the mesophase pitch. , And uniformly dispersed by stirring for 24 hours or more under an inert gas atmosphere for 150 hours.
Produced by heating at 0 ° C. for 1 hour.

【0061】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたAl微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子の六角網面層と前記微粒子表面の接線の
なす角を求めたところ、なす角の平均は30゜であっ
た。前記活物質は原子比率でAlを30%含有してお
り、真密度は、2.20g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Al fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . The angle between the hexagonal mesh layer of the graphite crystallites constituting the carbon layer and the tangent to the surface of the fine particle was determined from the observation of the cross section of the fine particle by the TEM, and the average of the formed angle was 30 °. The active material contained Al in an atomic ratio of 30%, and the true density was 2.20 g / cm 3 .

【0062】実施例4 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Example 4 A cylindrical lithium secondary battery similar to that of Example 1 was assembled except that the active material described below was used.

【0063】前記活物質は、カーボンブラックに気相合
成法で得られた平均粒径が150nmのMg微粒子を重
量比でカーボンブラックに対して25%添加し、ライカ
イ機で24時間混合して均一に分散させた後、不活性ガ
ス雰囲気下、900℃で1時間加熱することにより作製
された。
The active material is prepared by adding 25% by weight of Mg fine particles having an average particle diameter of 150 nm obtained by a gas phase synthesis method to carbon black with respect to the carbon black, and mixing with a raikai machine for 24 hours to obtain a uniform. And then heated at 900 ° C. for 1 hour in an inert gas atmosphere.

【0064】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、カーボンブラッ
ク層が表面に形成されたMg微粒子が微粒子非形成のカ
ーボンブラックマトリックスに分散された構造の二次粒
子からなることがわかった。また、前記TEMによる微
粒子断面の観察から前記カーボンブラック層を構成する
黒鉛結晶子の六角網面層と前記微粒子表面の接線のなす
角を求めたところ、なす角の平均は45゜であった。前
記活物質は原子比率でMgを50%含有しており、真密
度は、1.9g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Mg fine particles having a carbon black layer formed on the surface were dispersed in a carbon black matrix having no fine particles formed thereon. The angle between the hexagonal mesh layer of the graphite crystallites constituting the carbon black layer and the tangent to the surface of the fine particles was determined by observing the cross section of the fine particles by the TEM, and the average angle was 45 °. The active material contained 50% of Mg in atomic ratio, and the true density was 1.9 g / cm 3 .

【0065】実施例5 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Example 5 A cylindrical lithium secondary battery similar to that of Example 1 was assembled except that the active material described below was used.

【0066】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに気相合成法で得られた平均粒径が2
00nmのSn微粒子を重量比でメソフェーズピッチに
対して30%添加し、ライカイ機で24時間以上混合し
て均一に分散させた後、不活性ガス雰囲気下、2000
℃で1時間加熱することにより作製された。
The active material has a mesophase pitch obtained from petroleum pitch having an average particle size obtained by a gas phase synthesis method of 2%.
After adding 30% by weight of Sn fine particles of 00 nm to the mesophase pitch in a weight ratio, mixing and uniformly dispersing the mixture for at least 24 hours with a raikai machine, and then 2,000 under an inert gas atmosphere.
Produced by heating at 1 ° C. for 1 hour.

【0067】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェエーズ
ピッチ系炭素層が表面に形成されたSn微粒子が微粒子
非形成のメソフェエーズピッチ系炭素マトリックスに分
散された構造の二次粒子からなることがわかった。ま
た、前記TEMによる微粒子断面の観察から前記炭素層
を構成する黒鉛結晶子の六角網面層と前記微粒子表面の
接線のなす角を求めたところ、なす角の平均は40゜で
あった。前記活物質は原子比率でSnを50%含有して
おり、真密度は、4.0g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observed in M), the active material is composed of secondary particles having a structure in which Sn fine particles having a mesophase pitch-based carbon layer formed on the surface are dispersed in a non-fine-particle-formed mesophase pitch-based carbon matrix. I understand. The angle between the tangent line between the hexagonal mesh layer of the graphite crystallites constituting the carbon layer and the surface of the fine particle was determined from the observation of the cross section of the fine particle by the TEM, and the average of the formed angle was 40 °. The active material contained Sn in an atomic ratio of 50%, and the true density was 4.0 g / cm 3 .

【0068】実施例6 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Example 6 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the active material described below was used.

【0069】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに気相合成法で得られた平均粒径が2
50nmのCa微粒子を重量比でメソフェーズピッチに
対して30%添加し、ライカイ機で24時間以上混合し
て均一に分散させた後、不活性ガス雰囲気下、1000
℃で1時間加熱することにより作製された。
The active material has a mesophase pitch obtained from petroleum pitch and an average particle diameter obtained by a gas phase synthesis method is 2%.
After adding 50% of Ca fine particles at a weight ratio of 30% with respect to the mesophase pitch, mixing them for at least 24 hours with a raikai machine and uniformly dispersing them, under an inert gas atmosphere, 1000
Produced by heating at 1 ° C. for 1 hour.

【0070】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたCa微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子の六角網面層と前記微粒子表面の接線の
なす角を求めたところ、なす角の平均は40゜であっ
た。前記活物質は原子比率でCaを50%含有してお
り、真密度は、1.8g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Ca fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . The angle between the tangent line between the hexagonal mesh layer of the graphite crystallites constituting the carbon layer and the surface of the fine particle was determined from the observation of the cross section of the fine particle by the TEM, and the average of the formed angle was 40 °. The active material contained 50% of Ca in atomic ratio, and the true density was 1.8 g / cm 3 .

【0071】実施例7 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Example 7 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the active material described below was used.

【0072】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに気相合成法で得られた平均粒径が2
00nmのPb微粒子を重量比でメソフェーズピッチに
対して30%添加し、ライカイ機で24時間以上混合し
て均一に分散させた後、不活性ガス雰囲気下、1500
℃で1時間加熱することにより作製された。
The active material has a mesophase pitch obtained from a petroleum pitch having an average particle diameter of 2 obtained by a gas phase synthesis method.
After adding 30% by weight of Pb fine particles of 00 nm to the mesophase pitch in a weight ratio and mixing and dispersing them uniformly for at least 24 hours with a raikai machine, under an inert gas atmosphere, 1500
Produced by heating at 1 ° C. for 1 hour.

【0073】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたPb微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子の六角網面層と前記微粒子表面の接線の
なす角を求めたところ、なす角の平均は40゜であっ
た。前記活物質は原子比率でPbを40%含有してお
り、真密度は、5.7g/cm3 であった。
The obtained active material was subjected to transmission electron microscopy (TE
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Pb fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . The angle between the tangent line between the hexagonal mesh layer of the graphite crystallites constituting the carbon layer and the surface of the fine particle was determined from the observation of the cross section of the fine particle by the TEM, and the average of the formed angle was 40 °. The active material contained 40% of Pb in atomic ratio, and the true density was 5.7 g / cm 3 .

【0074】実施例8 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Example 8 A cylindrical lithium secondary battery similar to that of Example 1 was assembled except that the active material described below was used.

【0075】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに気相合成法で得られた平均粒径が2
00nmのSi微粒子を重量比でメソフェーズピッチに
対して35%添加し、ライカイ機で24時間以上混合し
て均一に分散させた後、不活性ガス雰囲気下、2000
℃で1時間加熱することにより作製された。
The active material has a mean particle size obtained by a gas phase synthesis method in a mesophase pitch obtained from a petroleum pitch.
After adding 35% by weight of Si fine particles of 00 nm with respect to the mesophase pitch in a weight ratio, mixing them for 24 hours or more with a raikai machine to uniformly disperse them, and then 2,000 under an inert gas atmosphere.
Produced by heating at 1 ° C. for 1 hour.

【0076】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたSi微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子の六角網面層と前記微粒子表面の接線の
なす角を求めたところ、なす角の平均は40゜であっ
た。前記活物質は原子比率でSiを50%含有してお
り、真密度は、2.2g/cm3 であった。
The obtained active material was examined with a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Si fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . The angle between the tangent line between the hexagonal mesh layer of the graphite crystallites constituting the carbon layer and the surface of the fine particle was determined from the observation of the cross section of the fine particle by the TEM, and the average of the formed angle was 40 °. The active material contained 50% of Si in atomic ratio, and the true density was 2.2 g / cm 3 .

【0077】比較例1 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Comparative Example 1 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the active material described below was used.

【0078】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに、気相合成法で得られた平均粒径が
100μmのAl微粒子を重量比でメソフェーズピッチ
に対して15%添加し、ライカイ機で24時間以上攪拌
して均一に分散させた後、不活性ガス雰囲気下、800
℃で5時間加熱することにより作製された。
The active material was added to a mesophase pitch obtained from a petroleum pitch by adding 15% by weight of Al fine particles having an average particle diameter of 100 μm obtained by a gas phase synthesis method to the mesophase pitch. , And uniformly dispersed by stirring for 24 hours or more under an inert gas atmosphere.
Produced by heating at 5 ° C. for 5 hours.

【0079】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたAl微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子の六角網面層と前記微粒子表面の接線の
なす角を求めたところ、なす角の平均は45゜であっ
た。前記活物質は原子比率でAlを30%含有してお
り、真密度は、2.0g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Al fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . The angle between the hexagonal mesh layer of the graphite crystallites constituting the carbon layer and the tangent to the surface of the fine particles was determined from the observation of the cross section of the fine particles by the TEM, and the average of the formed angles was 45 °. The active material contained Al in an atomic ratio of 30%, and the true density was 2.0 g / cm 3 .

【0080】比較例2 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Comparative Example 2 A cylindrical lithium secondary battery was assembled in the same manner as in Example 1 except that the active material described below was used.

【0081】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに、気相合成法で得られた平均粒径が
100nmのAl微粒子を重量比でメソフェーズピッチ
に対して5%添加し、ライカイ機で24時間以上攪拌し
て均一に分散させた後、不活性ガス雰囲気下、800℃
で5時間加熱することにより作製された。
The active material was added to a mesophase pitch obtained from a petroleum pitch by adding 5% by weight of Al fine particles having an average particle diameter of 100 nm obtained by a gas phase synthesis method to the mesophase pitch. , And uniformly dispersed by stirring for more than 24 hours at 800 ° C. in an inert gas atmosphere.
For 5 hours.

【0082】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたAl微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子の六角網面層と前記微粒子表面の接線の
なす角を求めたところ、なす角の平均は45゜であっ
た。前記活物質は原子比率でAlを10%含有してお
り、真密度は、1.9g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Al fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . The angle between the hexagonal mesh layer of the graphite crystallites constituting the carbon layer and the tangent to the surface of the fine particles was determined from the observation of the cross section of the fine particles by the TEM, and the average of the formed angles was 45 °. The active material contained Al in an atomic ratio of 10%, and the true density was 1.9 g / cm 3 .

【0083】比較例3 石油ピッチから得られたメソフェーズピッチを不活性ガ
ス雰囲気下、800℃で5時間加熱することにより得ら
れた真密度が1.7g/cm3 の炭素質物を活物質とし
て用いること以外は、実施例1と同様な円筒形リチウム
二次電池を組み立てた。
Comparative Example 3 A carbonaceous material having a true density of 1.7 g / cm 3 obtained by heating a mesophase pitch obtained from a petroleum pitch at 800 ° C. for 5 hours in an inert gas atmosphere is used as an active material. Except for this, a cylindrical lithium secondary battery similar to that of Example 1 was assembled.

【0084】比較例4 以下に説明する活物質を用いること以外は、実施例1と
同様な円筒形リチウム二次電池を組み立てた。
Comparative Example 4 A cylindrical lithium secondary battery similar to that of Example 1 was assembled except that the active material described below was used.

【0085】前記活物質は、石油ピッチから得られたメ
ソフェーズピッチに、気相合成法で得られた平均粒径が
100nmのAl微粒子を重量比でメソフェーズピッチ
に対して15%添加し、ライカイ機で24時間以上攪拌
して均一に分散させた後、不活性ガス雰囲気下、450
℃で5時間加熱することにより作製された。
The active material was added to a mesophase pitch obtained from petroleum pitch by adding 15% by weight of Al fine particles having an average particle diameter of 100 nm obtained by a gas phase synthesis method to the mesophase pitch. , And uniformly dispersed by stirring for 24 hours or more, and then 450 under an inert gas atmosphere.
Produced by heating at 5 ° C. for 5 hours.

【0086】得られた活物質を透過形電子顕微鏡(TE
M)で観察したところ、前記活物質は、メソフェーズピ
ッチ系炭素層が表面に形成されたAl微粒子が微粒子非
形成のメソフェーズピッチ系炭素マトリックスに分散さ
れた構造の二次粒子からなることがわかった。また、前
記TEMによる微粒子断面の観察から前記炭素層を構成
する黒鉛結晶子は、前記微粒子表面に対して配向を持た
なかった。前記活物質は原子比率でAlを25%含有し
ており、真密度は、1.6g/cm3 であった。
The obtained active material was subjected to a transmission electron microscope (TE).
Observation in M) revealed that the active material consisted of secondary particles having a structure in which Al fine particles having a mesophase pitch-based carbon layer formed on the surface were dispersed in a mesophase pitch-based carbon matrix in which no fine particles were formed. . From the observation of the cross section of the fine particles by the TEM, the graphite crystallites constituting the carbon layer did not have an orientation with respect to the surface of the fine particles. The active material contained Al in an atomic ratio of 25%, and the true density was 1.6 g / cm 3 .

【0087】比較例5 リチウムアルミニウム(Lix Al)からなるリチウム
合金から形成された負極を用いること以外は、実施例1
と同様な円筒形リチウム二次電池を組み立てた。
Comparative Example 5 Example 1 was repeated except that a negative electrode formed of a lithium alloy composed of lithium aluminum (Li x Al) was used.
A cylindrical lithium secondary battery similar to the above was assembled.

【0088】比較例6 石油ピッチから得られたメソフェーズピッチを焼成して
得られる炭素質物に、気相合成法で得られた平均粒径が
100nmのAl微粒子を重量比で炭素質物に対して3
0%添加し、ライカイ機で24時間以上攪拌して均一に
分散させることにより得られる活物質を負極に用いるこ
と以外は、実施例1と同様な円筒形リチウム二次電池を
組み立てた。
Comparative Example 6 A carbonaceous material obtained by calcining a mesophase pitch obtained from petroleum pitch was mixed with Al fine particles having an average particle diameter of 100 nm obtained by a gas phase synthesis method in a weight ratio of 3 to the carbonaceous material.
A cylindrical lithium secondary battery was assembled in the same manner as in Example 1, except that the active material obtained by adding 0% and uniformly dispersing the mixture by stirring with a raikai machine for 24 hours or more was used as the negative electrode.

【0089】比較例7 平均粒径が2nmのSi微粒子を原子比率で10%含有
した気相成長炭素体を活物質として用いること以外は、
実施例1と同様な円筒形リチウム二次電池を組み立て
た。
Comparative Example 7 Except for using a vapor-grown carbon body containing 10% by atomic ratio of Si fine particles having an average particle size of 2 nm as an active material,
A cylindrical lithium secondary battery similar to that of Example 1 was assembled.

【0090】得られた実施例1〜8及び比較例1〜7の
二次電池について、充電電流1.5Aで4.2Vまで2
時間充電した後、2.7Vまで1.5Aで放電する充放
電サイクル試験を施し、1サイクル目の放電容量と、3
00サイクル目における容量維持率(1サイクル目の放
電容量に対する)を求め、その結果を下記表1に示す。
With respect to the obtained secondary batteries of Examples 1 to 8 and Comparative Examples 1 to 7, the charging current was 1.5 A and the voltage was increased to 4.2 V.
After charging for 1.5 hours, a charge-discharge cycle test was performed in which the battery was discharged at 1.5 A to 2.7 V.
The capacity retention ratio at the 00th cycle (relative to the discharge capacity at the first cycle) was determined, and the results are shown in Table 1 below.

【0091】[0091]

【表1】 [Table 1]

【0092】表1から明らかなように、平均粒径が1n
m〜500nmの元素M微粒子の表面に炭素質物層が形
成されたものを含む活物質を有し、前記活物質中の前記
微粒子の原子比率は15%以上である負極を備えた実施
例1〜8の二次電池は、放電容量が高く、かつ300サ
イクル時の容量維持率が高いことがわかる。
As is evident from Table 1, the average particle size was 1n.
Examples 1 to 5 having an active material including an element M fine particle of m to 500 nm having an active material including a carbonaceous material layer formed on the surface thereof, wherein the atomic ratio of the fine particle in the active material is 15% or more. It can be seen that the secondary battery of No. 8 has a high discharge capacity and a high capacity retention rate at 300 cycles.

【0093】これに対し、前記微粒子の平均粒径が50
0nmを越える比較例1の二次電池は、放電容量が高い
ものの、容量維持率が低いことがわかる。前記活物質中
の前記微粒子の原子比率が15%未満である比較例2及
び前記微粒子を含まない比較例3の二次電池は、放電容
量が著しく低いことがわかる。また、比較例4の二次電
池は、放電容量がとれなかったことがわかる。これは、
合成温度が500℃よりも低かったために炭素前駆体が
完全に炭化せず、それにより活物質の導電率が著しく低
下したためである。一方、リチウム合金からなる負極を
備えた比較例5の二次電池は、放電容量は高いものの、
容量維持率が著しく低いことがわかる。炭素質物粉末と
金属微粒子を混合したものを活物質として含む負極を備
えた比較例6の二次電池は、放電容量は高いものの、容
量維持率が著しく低いことがわかる。これは、前記金属
微粒子が前記炭素質物によって構造的に保持されていな
いためである。また、平均粒径が2nmのSi微粒子を
原子比率で10%含有した気相成長炭素体を含む負極を
備えた比較例7の二次電池は、放電容量が著しく低いこ
とがわかる。
On the other hand, the average particle diameter of the fine particles is 50
It can be seen that the secondary battery of Comparative Example 1 exceeding 0 nm has a high discharge capacity but a low capacity retention rate. It can be seen that the secondary batteries of Comparative Example 2 in which the atomic ratio of the fine particles in the active material is less than 15% and Comparative Example 3 not including the fine particles have a significantly low discharge capacity. Further, it can be seen that the secondary battery of Comparative Example 4 did not have sufficient discharge capacity. this is,
This is because the carbon precursor was not completely carbonized because the synthesis temperature was lower than 500 ° C., thereby significantly lowering the conductivity of the active material. On the other hand, the secondary battery of Comparative Example 5 including the negative electrode made of a lithium alloy has a high discharge capacity,
It can be seen that the capacity retention rate is extremely low. It can be seen that the secondary battery of Comparative Example 6 including the negative electrode containing, as an active material, a mixture of the carbonaceous material powder and the metal fine particles has a high discharge capacity but a remarkably low capacity retention rate. This is because the metal fine particles are not structurally held by the carbonaceous material. Also, it can be seen that the discharge capacity of the secondary battery of Comparative Example 7 including the negative electrode including the vapor-grown carbon body containing 10% of Si particles having an average particle diameter of 2 nm in an atomic ratio of 10% was extremely low.

【0094】なお、前記実施例では円筒形リチウム二次
電池に適用した例を説明したが、角形リチウム二次電池
にも同様に適用できる。また、前記電池の容器内に収納
される電極群は渦巻形に限らず、正極、セパレータおよ
び負極をこの順序で複数積層した形態にしてもよい。
In the above embodiment, an example in which the present invention is applied to a cylindrical lithium secondary battery is described. However, the present invention can be similarly applied to a prismatic lithium secondary battery. Further, the electrode group housed in the battery container is not limited to the spiral shape, but may be a form in which a plurality of positive electrodes, separators, and negative electrodes are stacked in this order.

【0095】[0095]

【発明の効果】以上詳述したように、本発明によれば高
容量で、かつサイクル寿命に優れたリチウム二次電池及
びその製造方法を提供することができる。
As described above in detail, according to the present invention, it is possible to provide a lithium secondary battery having a high capacity and an excellent cycle life, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる円筒形リチウム二次電池を示す
部分断面図。
FIG. 1 is a partial sectional view showing a cylindrical lithium secondary battery according to the present invention.

【図2】図1の二次電池の負極に含まれる表面に炭素質
物層が形成された微粒子の断面を示す模式図。
FIG. 2 is a schematic diagram showing a cross section of fine particles having a carbonaceous material layer formed on a surface included in a negative electrode of the secondary battery of FIG.

【符号の説明】[Explanation of symbols]

1…容器、3…電極群、4…正極、6…負極、8…封口
板。
DESCRIPTION OF SYMBOLS 1 ... container, 3 ... electrode group, 4 ... positive electrode, 6 ... negative electrode, 8 ... sealing plate.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 正極と、リチウムイオンを吸蔵放出する
活物質を含む負極と、非水電解液とを具備し、 前記負極の活物質は炭素質物層が表面に形成された微粒
子を含み、前記微粒子はMg、Al、Si、Ca、Sn
およびPbから選ばれる少なくとも一種の元素Mからな
ると共に平均粒径が1nm〜500nmで、かつ前記活
物質中の前記微粒子の原子比率は15%以上であること
を特徴とするリチウム二次電池。
1. A positive electrode, a negative electrode containing an active material that stores and releases lithium ions, and a non-aqueous electrolyte. The active material of the negative electrode contains fine particles having a carbonaceous material layer formed on the surface thereof, Fine particles are Mg, Al, Si, Ca, Sn
A lithium secondary battery comprising at least one element M selected from Pb and Pb, having an average particle diameter of 1 nm to 500 nm, and an atomic ratio of the fine particles in the active material of 15% or more.
【請求項2】 前記炭素質物層形成微粒子は、二次粒子
を形成していることを特徴とする請求項1記載のリチウ
ム二次電池。
2. The lithium secondary battery according to claim 1, wherein the carbonaceous material layer forming fine particles form secondary particles.
【請求項3】 前記炭素質物層を構成する黒鉛結晶子の
六角網面層と前記微粒子表面の接線とのなす角の平均
は、20゜〜90゜であることを特徴とする請求項1記
載のリチウム二次電池。
3. An average angle between a hexagonal reticular layer of graphite crystallites constituting the carbonaceous material layer and a tangent to the surface of the fine particles is 20 ° to 90 °. Lithium secondary battery.
【請求項4】 正極と、負極と、非水電解液とを具備す
るリチウム二次電池の製造方法であって、 前記負極は、原料炭素質物または炭素前駆体と、前記原
料炭素質物または前記炭素前駆体に対する重量比が15
%以上の微粒子を500℃〜2800℃に加熱する工程
を具備する方法により作製され、 前記微粒子はMg、Al、Si、Ca、SnおよびPb
から選ばれる少なくとも一種の元素Mからなると共に平
均粒径が1nm〜500nmであることを特徴とするリ
チウム二次電池の製造方法。
4. A method for producing a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the negative electrode comprises: a raw material carbonaceous material or a carbon precursor; Weight ratio to precursor of 15
% Of fine particles at a temperature of 500 ° C. to 2800 ° C., wherein the fine particles are made of Mg, Al, Si, Ca, Sn and Pb.
A method for producing a lithium secondary battery, comprising at least one element M selected from the group consisting of: and an average particle diameter of 1 nm to 500 nm.
JP8155489A 1996-06-17 1996-06-17 Lithium secondary battery, and manufacture of the same Pending JPH103920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8155489A JPH103920A (en) 1996-06-17 1996-06-17 Lithium secondary battery, and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8155489A JPH103920A (en) 1996-06-17 1996-06-17 Lithium secondary battery, and manufacture of the same

Publications (1)

Publication Number Publication Date
JPH103920A true JPH103920A (en) 1998-01-06

Family

ID=15607172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8155489A Pending JPH103920A (en) 1996-06-17 1996-06-17 Lithium secondary battery, and manufacture of the same

Country Status (1)

Country Link
JP (1) JPH103920A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185744A (en) * 1997-12-25 1999-07-09 Yuasa Corp Nonaqueous electrolyte battery
JPH11260367A (en) * 1998-03-13 1999-09-24 Mitsubishi Chemical Corp Active material for secondary battery negative electrode and manufacture thereof
WO2000003444A1 (en) * 1998-07-10 2000-01-20 Minnesota Mining And Manufacturing Company Electrode material and compositions including same
JP2000331672A (en) * 1999-04-15 2000-11-30 Mitsubishi Chemicals Corp Electrode for battery comprising carbon particles containing nano-size mixed substances and battery, and manufacture and electrolysis thereof
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
US6428933B1 (en) 1999-04-01 2002-08-06 3M Innovative Properties Company Lithium ion batteries with improved resistance to sustained self-heating
JP2002270157A (en) * 2001-03-09 2002-09-20 Hitachi Maxell Ltd Negative electrode for electrochemical element and electrochemical element using the same
FR2823013A1 (en) * 2001-03-27 2002-10-04 Nec Corp Anode for a secondary cell comprises a first layer consisting of carbon and a second thin layer comprising a material that absorbs and liberates lithium
US6524749B1 (en) 1999-01-14 2003-02-25 Hitachi, Ltd. Lithium secondary battery, and process for producing the same
WO2002103822A3 (en) * 2001-06-18 2004-04-01 3M Innovative Properties Co Electrode compositions having improved cycling behavior
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006228640A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
JP2007273484A (en) * 2007-06-14 2007-10-18 Ube Ind Ltd Nonaqueous secondary battery
CN100349311C (en) * 2003-01-06 2007-11-14 三星Sdi株式会社 Cathode active material of rechargeable lithium battery and rechargeable lithium battery
JP2007305569A (en) * 2006-05-09 2007-11-22 Samsung Sdi Co Ltd Negative electrode material containing metal nanocrystal composite, method of manufacturing the same, and anode and lithium battery containing the negative electrode active material
JP2007534118A (en) * 2004-04-01 2007-11-22 デグサ ゲーエムベーハー Nanoscale silicon particles in negative electrode materials for use in lithium ion batteries
KR100814618B1 (en) 2005-10-27 2008-03-18 주식회사 엘지화학 Electrode active material for secondary battery
KR100814617B1 (en) 2005-10-27 2008-03-18 주식회사 엘지화학 Electrode active material for secondary battery
JP2009187676A (en) * 2008-02-01 2009-08-20 Toyota Motor Corp Negative electrode active material, lithium secondary battery, and manufacturing method of negative electrode active material
JP2010108944A (en) * 2010-01-15 2010-05-13 Ube Ind Ltd Nonaqueous secondary battery
JP2010161076A (en) * 2009-01-07 2010-07-22 Qinghua Univ Anode material for lithium ion secondary battery, and fabricating method thereof
JP2010245050A (en) * 2010-06-30 2010-10-28 Panasonic Corp Negative electrode for lithium ion secondary battery, and method of manufacturing the same, and lithium ion secondary battery using the same
CN102208634A (en) * 2011-05-06 2011-10-05 北京科技大学 Porous silicon/carbon composite material and preparation method thereof
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
US8182939B2 (en) 2003-06-25 2012-05-22 Lg Chem, Ltd. Anode material for lithium secondary cell with high capacity
US8263265B2 (en) 2007-07-27 2012-09-11 Samsung Sdi Co., Ltd. Si/C composite, anode active materials, and lithium battery including the same
US8283070B2 (en) 2005-12-01 2012-10-09 Samsung Sdi Co., Ltd. Anode active material and lithium battery using the same
JP2012212561A (en) * 2011-03-31 2012-11-01 Kuraray Co Ltd Negative electrode material for lithium ion secondary battery
US8309254B2 (en) 2009-05-07 2012-11-13 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
US8697280B2 (en) 2011-04-08 2014-04-15 Samsung Electronics Co., Ltd. Electrode active material, method of preparing electrode active material, electrode including electrode active material, and lithium secondary battery including electrode
WO2015019993A1 (en) * 2013-08-05 2015-02-12 昭和電工株式会社 Method for producing composite, and lithium ion battery negative electrode material
WO2015088252A1 (en) * 2013-12-10 2015-06-18 삼성정밀화학 주식회사 Anode active material for lithium ion secondary battery, and manufacturing method therefor
WO2015129266A1 (en) * 2014-02-25 2015-09-03 新日鐵住金株式会社 Composite particle, negative electrode, and cell
EP3282504A4 (en) * 2015-08-25 2018-08-22 LG Chem, Ltd. Negative electrode for secondary battery, and secondary battery comprising same
WO2018186555A1 (en) 2017-04-07 2018-10-11 일진머티리얼즈 주식회사 Anode for secondary battery, manufacturing method therefor, and lithium secondary battery manufactured using same

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185744A (en) * 1997-12-25 1999-07-09 Yuasa Corp Nonaqueous electrolyte battery
JPH11260367A (en) * 1998-03-13 1999-09-24 Mitsubishi Chemical Corp Active material for secondary battery negative electrode and manufacture thereof
US6203944B1 (en) 1998-03-26 2001-03-20 3M Innovative Properties Company Electrode for a lithium battery
US6436578B2 (en) 1998-03-26 2002-08-20 3M Innovative Properties Company Electrode compositions with high coulombic efficiencies
WO2000003444A1 (en) * 1998-07-10 2000-01-20 Minnesota Mining And Manufacturing Company Electrode material and compositions including same
US6255017B1 (en) 1998-07-10 2001-07-03 3M Innovative Properties Co. Electrode material and compositions including same
US6524749B1 (en) 1999-01-14 2003-02-25 Hitachi, Ltd. Lithium secondary battery, and process for producing the same
US7416814B2 (en) 1999-01-14 2008-08-26 Hitachi, Ltd. Lithium secondary battery, and process for producing the same
US6428933B1 (en) 1999-04-01 2002-08-06 3M Innovative Properties Company Lithium ion batteries with improved resistance to sustained self-heating
JP2000331672A (en) * 1999-04-15 2000-11-30 Mitsubishi Chemicals Corp Electrode for battery comprising carbon particles containing nano-size mixed substances and battery, and manufacture and electrolysis thereof
JP2002270157A (en) * 2001-03-09 2002-09-20 Hitachi Maxell Ltd Negative electrode for electrochemical element and electrochemical element using the same
FR2823013A1 (en) * 2001-03-27 2002-10-04 Nec Corp Anode for a secondary cell comprises a first layer consisting of carbon and a second thin layer comprising a material that absorbs and liberates lithium
US6890685B2 (en) 2001-03-27 2005-05-10 Nec Corporation Anode for secondary battery and secondary battery therewith
WO2002103822A3 (en) * 2001-06-18 2004-04-01 3M Innovative Properties Co Electrode compositions having improved cycling behavior
CN1310356C (en) * 2001-06-18 2007-04-11 3M创新有限公司 Electrode composition having improved cycling behavior
US10038186B2 (en) 2002-05-08 2018-07-31 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
CN100349311C (en) * 2003-01-06 2007-11-14 三星Sdi株式会社 Cathode active material of rechargeable lithium battery and rechargeable lithium battery
US8048568B2 (en) 2003-01-06 2011-11-01 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery
US8182939B2 (en) 2003-06-25 2012-05-22 Lg Chem, Ltd. Anode material for lithium secondary cell with high capacity
JP2007534118A (en) * 2004-04-01 2007-11-22 デグサ ゲーエムベーハー Nanoscale silicon particles in negative electrode materials for use in lithium ion batteries
JP2006228640A (en) * 2005-02-21 2006-08-31 Nippon Carbon Co Ltd Silicon-added graphite cathode material for lithium-ion secondary battery, and manufacturing method
KR100814617B1 (en) 2005-10-27 2008-03-18 주식회사 엘지화학 Electrode active material for secondary battery
KR100814618B1 (en) 2005-10-27 2008-03-18 주식회사 엘지화학 Electrode active material for secondary battery
US7976985B2 (en) 2005-10-27 2011-07-12 Lg Chem, Ltd. Electrode active material for secondary battery
US8283070B2 (en) 2005-12-01 2012-10-09 Samsung Sdi Co., Ltd. Anode active material and lithium battery using the same
KR101483123B1 (en) * 2006-05-09 2015-01-16 삼성에스디아이 주식회사 Anode active material comprising metal nanocrystal composite, method of preparing the same, and anode and lithium battery having the material
JP2007305569A (en) * 2006-05-09 2007-11-22 Samsung Sdi Co Ltd Negative electrode material containing metal nanocrystal composite, method of manufacturing the same, and anode and lithium battery containing the negative electrode active material
JP2007273484A (en) * 2007-06-14 2007-10-18 Ube Ind Ltd Nonaqueous secondary battery
US8617746B2 (en) 2007-07-27 2013-12-31 Samsung Sdi Co., Ltd. Si/C composite, anode active materials, and lithium battery including the same
US8263265B2 (en) 2007-07-27 2012-09-11 Samsung Sdi Co., Ltd. Si/C composite, anode active materials, and lithium battery including the same
US8354194B2 (en) 2008-02-01 2013-01-15 Toyota Jidosha Kabushiki Kaisha Negative electrode active material, lithium secondary battery using the same, and method of manufacturing negative electrode active material
JP2009187676A (en) * 2008-02-01 2009-08-20 Toyota Motor Corp Negative electrode active material, lithium secondary battery, and manufacturing method of negative electrode active material
JP2010161076A (en) * 2009-01-07 2010-07-22 Qinghua Univ Anode material for lithium ion secondary battery, and fabricating method thereof
US8906555B2 (en) 2009-05-07 2014-12-09 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
US8309254B2 (en) 2009-05-07 2012-11-13 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery comprising same
JP2010108944A (en) * 2010-01-15 2010-05-13 Ube Ind Ltd Nonaqueous secondary battery
JP2010245050A (en) * 2010-06-30 2010-10-28 Panasonic Corp Negative electrode for lithium ion secondary battery, and method of manufacturing the same, and lithium ion secondary battery using the same
JP2012212561A (en) * 2011-03-31 2012-11-01 Kuraray Co Ltd Negative electrode material for lithium ion secondary battery
US8697280B2 (en) 2011-04-08 2014-04-15 Samsung Electronics Co., Ltd. Electrode active material, method of preparing electrode active material, electrode including electrode active material, and lithium secondary battery including electrode
CN102208634A (en) * 2011-05-06 2011-10-05 北京科技大学 Porous silicon/carbon composite material and preparation method thereof
WO2015019993A1 (en) * 2013-08-05 2015-02-12 昭和電工株式会社 Method for producing composite, and lithium ion battery negative electrode material
JPWO2015019993A1 (en) * 2013-08-05 2017-03-02 昭和電工株式会社 Composite manufacturing method and negative electrode material for lithium ion battery
US10693135B2 (en) 2013-08-05 2020-06-23 Showa Denko K.K. Method for producing composite, and negative electrode material for lithium ion battery
WO2015088252A1 (en) * 2013-12-10 2015-06-18 삼성정밀화학 주식회사 Anode active material for lithium ion secondary battery, and manufacturing method therefor
WO2015129266A1 (en) * 2014-02-25 2015-09-03 新日鐵住金株式会社 Composite particle, negative electrode, and cell
US10270087B2 (en) 2014-02-25 2019-04-23 Nippon Steel & Sumitomo Metal Corporation Composite particle, negative electrode and battery
JPWO2015129266A1 (en) * 2014-02-25 2017-03-30 新日鐵住金株式会社 Composite particles, negative electrode and battery
EP3282504A4 (en) * 2015-08-25 2018-08-22 LG Chem, Ltd. Negative electrode for secondary battery, and secondary battery comprising same
US10497929B2 (en) 2015-08-25 2019-12-03 Lg Chem, Ltd. Anode for secondary battery and secondary battery including the same
WO2018186555A1 (en) 2017-04-07 2018-10-11 일진머티리얼즈 주식회사 Anode for secondary battery, manufacturing method therefor, and lithium secondary battery manufactured using same

Similar Documents

Publication Publication Date Title
JPH103920A (en) Lithium secondary battery, and manufacture of the same
US5612155A (en) Lithium ion secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
US5474861A (en) Electrode for non-aqueous electrolyte secondary battery
JP3509050B2 (en) Lithium secondary battery and method of manufacturing the same
JP3965567B2 (en) battery
JPH10270018A (en) Non-aqueous electrolytic battery
JPH06318459A (en) Lithium secondary battery
KR20040106225A (en) Battery
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP2003157900A (en) Battery
JP2965450B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP2005197175A (en) Positive electrode, negative electrode, electrolyte and battery
JP4656710B2 (en) Non-aqueous electrolyte secondary battery
JP3406843B2 (en) Lithium secondary battery
JP3720959B2 (en) Secondary battery electrode material
JPH08339824A (en) Nonaqueous electrolyte secondary battery
JP3863514B2 (en) Lithium secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JPH11250910A (en) Lithium secondary battery
JP2002313320A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees