JP2004335195A - Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor - Google Patents

Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor Download PDF

Info

Publication number
JP2004335195A
JP2004335195A JP2003127085A JP2003127085A JP2004335195A JP 2004335195 A JP2004335195 A JP 2004335195A JP 2003127085 A JP2003127085 A JP 2003127085A JP 2003127085 A JP2003127085 A JP 2003127085A JP 2004335195 A JP2004335195 A JP 2004335195A
Authority
JP
Japan
Prior art keywords
negative electrode
sio
secondary battery
electrolyte secondary
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003127085A
Other languages
Japanese (ja)
Inventor
Katsushi Nishie
勝志 西江
Atsushi Funabiki
厚志 船引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2003127085A priority Critical patent/JP2004335195A/en
Publication of JP2004335195A publication Critical patent/JP2004335195A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having a high energy density, a small irreversible capacity and excellent safety. <P>SOLUTION: The nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode containing a negative electrode active substance which can occlude and discharge lithium ion, and a nonaqueous electrolyte. The negative electrode active substance is obtained by coating a carbon material on the surfaces of composite particles obtained by disproportionating SiO particles to silicon Si and silicon oxide SiO<SB>X</SB>(0<X≤2). The battery is characterised in that the BET (Brunauer, Emmett and Teller) specific surface area of the composite particles is 30 m<SP>2</SP>/g or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池に関する。
【0002】
【従来の技術】
従来、非水電解質二次電池においては、リチウムのデンドライト析出を防止できることから負極活物質として炭素材料が広く用いられてきた。しかし、負極活物質として炭素材料を用いた場合、その放電容量を理論容量(372mAh/g)以上に増大させることはできないため、電池としての放電容量を10%以上増大させることは困難であるという問題点があった。
【0003】
そこで、放電容量を増大させ、電池の高エネルギー密度化を図るために、リチウムと合金化しうる金属を活物質として用いる試みがなされている。このような金属としては、ケイ素が挙げられる(例えば、特許文献1参照。)。
【0004】
ケイ素は各原子に4個の原子が配位して形成された四面体が連なったダイヤモンド型の結晶構造を有し、極めて多量のリチウムイオンを吸蔵できる。
【0005】
しかしながら、ケイ素は電解液との反応性が高いため、電解液が負極活物質上で分解反応を起こすことがある。すると、充電電気量が電解液の分解に消費されてしまうため、充電時に加えた電気量と比して放電容量が低下し、不可逆容量が増大するという問題がある。また、反応性が高いため発熱反応が起こりやすく、十分な安全性を確保することが難しいという問題がある。
【0006】
【特許文献1】
特開平7−29602号公報
【0007】
【発明が解決しようとする課題】
本発明は上記のような事情に基づいて完成されたものであって、高いエネルギー密度を有し、不可逆容量が小さく、安全性に優れた非水電解質二次電池を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記の目的を達成するための手段として、請求項1の発明は、正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池において、前記負極活物質が、SiO粒子を、ケイ素Siとケイ素酸化物SiO(0<X≦2)とに不均化して得られた複合粒子に炭素材料を被覆することにより得られたものであり、前記複合粒子のBET比表面積が30m/g以下であることを特徴とする。
【0009】
ここで「不均化」とは、化学辞典(東京化学同人、1994年10月発行)によれば、「不均斉化、不均等化などと呼ばれる。同一種類の物質から異なる2種類の物質に変化すること」と定義される。本願発明において「不均化」とは、SiO粒子を、熱処理等により、ケイ素Siとケイ素酸化物SiOとの2種類に変化させることを意味する。
【0010】
請求項2の発明は、正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池の負極の製造方法において、SiO粒子をアルゴンイオンエッチングすることによりBET比表面積を30m/g以下とするエッチング工程と、前記SiO粒子を、ケイ素Siとケイ素酸化物SiO(0<X≦2)とに不均化して得られた複合粒子の表面に炭素材料を付着させる炭素被覆工程と、前記負極活物質とバインダとを混合してペースト状にしたものを負極集電体に塗布する塗布工程とからなることを特徴とする。
【0011】
【発明の作用及び効果】
<請求項1、2の発明>
請求項1の発明によれば、負極活物質が、多量のリチウムを吸蔵放出しうるケイ素Siを含むので、高いエネルギー密度を備えた非水電解質二次電池を得ることができる。
【0012】
また、負極活物質として、SiO粒子を、ケイ素Siとケイ素酸化物SiO(0<X≦2)とに不均化したものを用いることにより、放電容量が大きく、不可逆容量が小さい非水電解質二次電池を得ることができる。これは、以下の理由によると考えられる。ケイ素Siはケイ素酸化物SiOに比べて放電容量が大きいので、SiO粒子を単独で負極活物質とする場合よりも放電容量を大きくすることができる。また、ケイ素酸化物SiOはケイ素Siと比べて電解液との反応性が低いから、ケイ素Si粒子を単独で負極活物質とした場合よりも不可逆容量を小さい非水電解質二次電池を得ることができると考えられる。
【0013】
SiO粒子を、ケイ素Siとケイ素酸化物SiO(0<X≦2)とに不均化して得られた複合粒子に炭素材料を被覆した負極活物質において、複合粒子のBET比表面積が0.1m/gより小さいものを合成することは困難であるので、複合粒子のBET比表面積は0.1m/g以上が好ましい。また、複合粒子のBET比表面積が0.1m/g以下の場合には、粒径が大きすぎるため、この複合粒子に炭素材料を被覆してなる負極活物質を集電体に塗布し、電極を作製することが困難となる。このため、複合粒子のBET比表面積は0.1m/g以上が好ましい。
【0014】
一方、複合粒子のBET比表面積が30m/gを超える場合も、不可逆容量が大きくなるから好ましくない。これは以下の理由によると考えられる。炭素材料の被覆量を一定とした場合、複合粒子の比表面積が増大するにつれて、複合粒子に被覆される炭素材料の厚みは薄くなる。複合粒子のBET比表面積が30m/gを超えると炭素材料の被膜が薄くなりすぎるため、充電時に複合粒子がリチウムイオンを吸収して膨張したときに炭素材料に亀裂が生じる。この結果、部分的にケイ素Si、又はケイ素酸化物SiOが露出した部分が生じる。このような部分において充電時に電解液の分解反応が進行するため、不可逆容量が大きくなるから好ましくない。この点について、炭素材料の添加量を増加させることにより、複合粒子に被覆される炭素材料の厚みを厚くすることが考えられる。しかし、炭素材料を過度に添加すると、エネルギー密度が低下するので好ましくない。
【0015】
また、複合粒子のBET比表面積が30m/gを超えると、反応面積が増加するため、電池反応に伴う発熱も増大する。この結果、安全性が低下するので好ましくない。
【0016】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
図1は、本発明の一実施形態である角形非水電解質二次電池の概略断面図である。この角形非水電解質二次電池1は、アルミニウム箔からなる正極集電体に正極合剤を塗布してなる正極3と、銅箔からなる負極集電体に負極合剤を塗布してなる負極4とがセパレータ5を介して巻回された扁平巻状電極群2と、非水電解液とを電池ケース6に収納してなる。
【0017】
電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極端子9は負極リード11を介して負極4と接続され、正極3は正極リード10を介して電池蓋7と接続されている。
【0018】
正極活物質としては、リチウムイオンが可逆的に挿入・脱離することができる化合物を使用することができる。このような化合物の例としては以下の物質が挙げられる。無機化合物としては、組成式LiMO(Mは1種又は2種以上の遷移金属、0≦X≦1)、または組成式Li(Mは1種又は2種以上の遷移金属、0≦Y≦2)で表されるリチウム遷移金属複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物等を用いることができる。これらの具体例としては、LiCoO、LiNiO、LiMn、LiMn、MnO、FeO、V、V13、TiO、TiS等が挙げられる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマーなどが挙げられる。更に、無機化合物、有機化合物を問わず、上記各種正極活物質を混合して用いても良い。
【0019】
上記の正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤を金属箔からなる正極集電体に塗工することにより正極板を製造することができる。
【0020】
導電剤の種類は特に制限されず、金属であっても非金属であってもよい。金属の導電剤としては、CuやNiなどの金属元素から構成される材料を挙げることができる。また、非金属の導電剤としては、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラックなどの炭素材料を挙げることができる。
【0021】
結着剤は、電極製造時に使用する溶媒や電解液に対して安定な材料であれば特にその種類は制限されない。具体的には、セルロース、カルボキシメチルセルロース、スチレン−ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム、シンジオタクチック1,2−ポリブタジエン、エチレン−酢酸ビニル共重合体、プロピレン−α−オレフィン(炭素数2〜12)共重合体、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリテトラフルオロエチレン−エチレン共重合体などを用いることができる。
【0022】
正極集電体には、例えば、Al、Ta、Nb、Ti、Hf、Zr、Zn、W、Bi、およびこれらの金属を含む合金などを例示することができる。これらの金属は、電解液中での陽極酸化によって表面に不動態皮膜を形成するため、正極集電体と電解液との接触部分において非水電解質が酸化分解するのを有効に防止することができる。その結果、非水系二次電池のサイクル特性を有効に高めることができる。
【0023】
本発明に係る負極活物質としては、SiO粒子を、例えば熱処理することによりケイ素Siとケイ素酸化物SiO(0<X≦2)とに不均化して得られた複合粒子に炭素材料を被覆したものを用いることができる。
【0024】
本発明に係るSiO粒子については、アルゴンイオンエッチングにおけるエッチング時間を適宜変更することにより所望のBET比表面積を持つSiO粒子を調製できる。
【0025】
また、各種のミルを用いてミリングすることによっても所望のBET比表面積を持つSiO粒子を得ることができる。このとき、大気中でもよいが、アルゴンや窒素などの不活性雰囲気下でミリングするのが好ましい。ミルの種類としては、ボールミル、振動ミル、衛生ボールミル、チューブミル、ジェットミル、ロッドミル、ハンマーミル、ローラーミル、ディスクミル、アトライタミル、遊星ボールミル、インパクトミルなどが挙げられる。
【0026】
本発明に係るSiO粒子の比表面積は、例えば島津製作所製、マイクロメリテックス、ジェニミ2370を使用し、液体窒素を用い、圧力測定範囲0〜126.6KPaとする動的定圧法による定温ガス吸着法によって行い、BET法で解析できる。また、データ処理ソフトウェアとしてはGEMINI−PC1を使用できる。
【0027】
本発明に係るSiO粒子を熱処理した複合粒子が、ケイ素Siと、ケイ素酸化物SiO(0<X≦2)とに不均化しているか否かは、X線回折により確認できる。例えば、理学電機製、X−Ray Diffractometer、RINT2000を使用し、CuKα線を用いて測定できる。Siについては、回折角2θが28.5°付近のピーク、47.4°付近のピーク、55.9°付近のピークにより同定できる。また、SiOについては、回折角2θが21.5°付近のピークにより同定できる。
【0028】
また、複合粒子をTEM観察することによっても複合粒子がケイ素Siと、ケイ素酸化物SiO(0<X≦2)とに不均化していることを確認できる。TEM観察は、HITACHI社製HF−2200を用い、加速電圧200kV、計測時間80secで行うことができる。
【0029】
上記の複合粒子の表面に炭素材料を被覆させるには、複合粒子の表面にピッチ、タール、又は熱可塑性樹脂(例えばフルフリルアルコールなど)を被覆した後に焼成する方法、粒子と炭素材料との間に機械的エネルギーを作用させて複合体を形成するメカノケミカル反応を用いた方法、化学気相析出(CVD)法などを用いることができる。なかでも、均一に炭素材料を被覆できることから、CVD法が好ましい。
【0030】
CVD法においては、反応ガスとしては、メタン、アセチレン、ベンゼン、トルエン、キシレン等の有機化合物を用いることができる。反応温度は、700℃〜1300℃の範囲で、反応時間は30秒〜72時間の範囲で行うことができる。CVD法によると、上述した、ピッチ、タール、又は熱可塑性樹脂を複合粒子に被覆した後に焼成する方法に比べて、低い反応温度で炭素材料を被覆できる。このため、Siの融点以下で被覆処理を行えるので好ましい。
【0031】
炭素材料が複合粒子の表面に被覆されているか否かは、ラマン分光分析を行うことにより確認できる。ラマン分光分析は試料の表面部分の分析を行うから、複合粒子表面に炭素材料が全体に被覆されている場合には、表面に被覆された炭素材料の結晶性を示すR値(強度比1580cm−1のピーク強度に対する1360cm−1のピーク強度)が、負極活物質粒子のどこで測定しても一定の値を示すことになる。このラマン分光分析には例えば、JOBIN,YVON製 T64000を使用することができる。
【0032】
熱処理によるSiO粒子の不均化反応は、予めSiO粒子を焼成することにより行ってもよい。また、SiO粒子をアルゴンイオンエッチングする際に、アルゴンイオンエッチングと不均化反応とを同時に行ってもよい。また、SiO粒子にCVD法により炭素材料を被覆する際に、炭素被覆と不均化反応とを同時に行ってもよい。SiO粒子としては、フッ酸、硫酸などの酸で洗浄されたものや、水素で還元されたものなども使用できる。
【0033】
負極集電体の材質は、銅、ニッケル、ステンレス等の金属であるのが好ましく、これらの中では薄膜に加工しやすく安価であることから銅箔を使用するのが好ましい。
【0034】
負極板の製造方法は特に制限されず、上記の正極の製造方法と同様の方法により製造することができる。
【0035】
非水電解液の非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、酢酸メチル、プロピオン酸メチル、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、ジメトキシエタン、ジメトキシメタン、リン酸エチレンメチル、リン酸エチルエチレン、リン酸トリメチル、リン酸トリエチルなどを使用することができる。これらの有機溶媒は、一種類だけを選択して使用してもよいし、二種類以上を組み合わせて用いてもよい。
【0036】
非水電解液の溶質としては、LiClO、LiPF、LiBF等の無機リチウム塩や、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSOおよびLiC(CFSO等の含フッ素有機リチウム塩等を挙げることができる。これらの溶質は、一種類だけを選択して使用してもよいし、二種類以上を組み合わせて用いてもよい。
【0037】
電解質としては、上記電解液以外にも固体状またはゲル状の電解質を用いることができる。このような電解質としては、無機固体電解質のほか、ポリエチレンオキサイド、ポリプロピレンオキサイドまたはこれらの誘導体などが例示できる。
【0038】
セパレータとしては、絶縁性のポリエチレン微多孔膜、ポリプロピレン微多孔膜、ポリエチレン不織布、ポリプロピレン不織布などに電解液を含浸したものが使用できる。
【0039】
以下、本発明を実施例に基づき詳細に説明する。なお、本発明は下記実施例により何ら限定されるものではない。
<実施例1>
正極活物質として組成式LiCoOで表されるリチウムコバルト複合酸化物91重量部と、結着剤としてポリフッ化ビニリデン6重量部と、導電剤としてアセチレンブラック3重量部とを混合した。これにN−メチルピロリドンを適宜加えてペースト状に調製した後、このペーストをアルミニウム箔からなる集電体の両面に塗布した。これを150℃で乾燥した後、加圧し、電池内に収納される正極活物質が5.3gとなるように正極板を作製した。
【0040】
負極活物質は、以下のように調製した。SiO粉末に対して、反応温度25℃、反応時間0.1時間、で、ArプラズマによりArイオンエッチングを行い、BET比表面積1m/gのSiO粒子を得た。BET比表面積測定は上述の方法により行った。
【0041】
上記のようにして得られたSiO粒子に、メタンを900℃で熱分解する方法(CVD)によって、SiOからSiとSiOへの不均化反応を生じさせるとともに、その表面に炭素材料を被覆し、ケイ素Siと、ケイ素酸化物SiOX(0<X≦2)とからなる複合粒子に炭素材料の被覆された負極活物質を得た。
【0042】
上記のようにして得られた負極活物質について、上述の方法によりX線回折を行った。得られたX線回折チャートを図2に示す。回折角2θが28.5°付近のピーク、47.4°付近のピーク、55.9°付近のピークの存在によりSiの存在を確認できた。また、回折角2θが21.5°付近のピークによりSiOについても確認できた。このように、SiOを熱処理することにより、SiOがSiとSiOとに不均化したことが確認できた。
【0043】
更に、負極活物質についてTEM観察を行った。図3にTEM観察による写真を示す。黒い点がSiであり、白い部分が、SiO、SiOなどである。このように、TEM観察によっても、SiOを熱処理することにより、SiOがSiとSiOとに不均化したことが確認できた。
【0044】
上記のようにして得られた負極活物質5重量部と、黒鉛材料87重量部と、結着剤としてポリフッ化ビニリデン8重量部とを混合し、これにN−メチルピロリドンを適宜加えてペースト状に調製した。このようにして得られたペーストを銅箔からなる集電体の両面に塗布した。これを150℃で乾燥した後、加圧し、電池内に収納される負極活物質が2gとなるように負極板を作製した。
【0045】
セパレータには厚さ25μm、幅30mmのポリエチレン微多孔膜を用いた。
【0046】
上記のようにして得られた正極板と、セパレータと、負極板と、セパレータとを順に重ね合わせ、ポリエチレンよりなる長方形状の平板を巻芯としてその長辺が発電要素の巻回中心軸と平行になるように巻芯の周囲に長円渦状に巻回することにより、巻回型発電要素を作製した。この発電要素を高さ48mm、幅30mm、厚さ4.2mmの容器内に挿入した後、この電池の内部に非水電解液を注入することによって、角形非水電解質二次電池を作製した。
【0047】
上記のように作製した非水電解質二次電池を、25℃において、1CmAの電流で4.2Vまで充電し、続いて4.2Vの定電圧で2時間充電した後、1CmAの電流で2.0Vまで放電し、放電容量を測定した。充電時の電気量から放電容量を引いたものを不可逆容量とした。
【0048】
実施例1で得られた非水電解質二次電池について、オーブン試験を行った。実施例1を満充電し、これをオーブンにセットした。オーブンを5℃/minの昇温速度で160℃まで加熱した。その後、160℃で100分間加熱した後の電池の状態を観察した。
【0049】
<実施例2ないし4、及び比較例1>
Arイオンエッチング時間を表1のように変えることにより、種々のBET比表面積を有するSiO粒子を得た。このようにして調製したSiO粒子を用いた以外は、実施例1と同様にして実施例2ないし4、及び比較例1の非水電解質二次電池を作製し、不可逆容量測定、及びオーブン試験を行った。これらの結果を表1にまとめて示す。
【0050】
【表1】

Figure 2004335195
【0051】
<結果>
(不可逆容量)
BET比表面積が30m/g以下である実施例1ないし4では、不可逆容量は90mAh以下であったが、40m/gである比較例1では140mAhであった。
【0052】
(オーブン試験)
オーブン試験の結果、BET比表面積が30m/g以下である実施例1ないし4の非水電解質二次電池は、オーブン試験後も異常が見られなかった。これに対して、40m/gである比較例1では、安全弁が作動した。
【0053】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
【0054】
上記した実施形態では、角形非水電解質二次電池1として説明したが、電池構造は特に限定されず、円筒形、袋状、リチウムポリマー電池等としてもよいことは勿論である。
【0055】
【発明の効果】
本発明によれば、高いエネルギー密度を有し、不可逆容量が小さく、安全性に優れた非水電解質二次電池を得ることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態の角形非水電解質二次電池の縦断面図
【図2】本発明に係る負極活物質のX線回折チャート
【図3】本発明に係る負極活物質のTEM写真
【符号の説明】
1…角形非水電解質二次電池
2…電極群
3…正極
4…負極
5…セパレータ
6…電池ケース
7…電池蓋
8…安全弁
9…負極端子
10…正極リード
11…負極リード[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
Conventionally, in a nonaqueous electrolyte secondary battery, a carbon material has been widely used as a negative electrode active material because it can prevent dendrite precipitation of lithium. However, when a carbon material is used as the negative electrode active material, the discharge capacity cannot be increased to a theoretical capacity (372 mAh / g) or more, so that it is difficult to increase the discharge capacity as a battery by 10% or more. There was a problem.
[0003]
Therefore, in order to increase the discharge capacity and increase the energy density of the battery, attempts have been made to use a metal that can be alloyed with lithium as an active material. Examples of such a metal include silicon (for example, see Patent Document 1).
[0004]
Silicon has a diamond-type crystal structure in which tetrahedrons formed by coordinating four atoms to each atom can store an extremely large amount of lithium ions.
[0005]
However, since silicon has high reactivity with the electrolyte, the electrolyte may cause a decomposition reaction on the negative electrode active material. Then, since the charged amount of electricity is consumed for the decomposition of the electrolytic solution, there is a problem that the discharge capacity is reduced and the irreversible capacity is increased as compared with the amount of electricity added during charging. In addition, since the reactivity is high, an exothermic reaction is likely to occur, and it is difficult to secure sufficient safety.
[0006]
[Patent Document 1]
JP-A-7-29602 [0007]
[Problems to be solved by the invention]
The present invention has been completed based on the above circumstances, and has an object to provide a nonaqueous electrolyte secondary battery having high energy density, small irreversible capacity, and excellent safety. .
[0008]
[Means for Solving the Problems]
As means for achieving the above object, the invention of claim 1 is a positive electrode, a negative electrode containing a negative electrode active material capable of inserting and extracting lithium ions, and a nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte, The negative electrode active material is obtained by coating a composite material obtained by disproportionating SiO particles into silicon Si and silicon oxide SiO x (0 <X ≦ 2) with a carbon material. The composite particles have a BET specific surface area of 30 m 2 / g or less.
[0009]
According to the Chemical Dictionary (Tokyo Kagaku Dojin, published in October 1994), "disproportionation" is called "disproportionation, disproportionation, etc." To change. " In the present invention, "disproportionation" means that SiO particles are changed into two types of silicon Si and silicon oxide SiO X by heat treatment or the like.
[0010]
The invention according to claim 2 is a method for manufacturing a negative electrode of a non-aqueous electrolyte secondary battery comprising a positive electrode, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, wherein the SiO particles are subjected to argon ion etching. And an etching step of setting the BET specific surface area to 30 m 2 / g or less, and dissolving the SiO particles into silicon Si and silicon oxide SiO X (0 <X ≦ 2). It is characterized by comprising a carbon coating step of attaching a carbon material to the surface, and a coating step of applying a paste obtained by mixing the negative electrode active material and a binder to a negative electrode current collector.
[0011]
Function and effect of the present invention
<Inventions of Claims 1 and 2>
According to the first aspect of the present invention, since the negative electrode active material contains silicon Si capable of inserting and extracting a large amount of lithium, a non-aqueous electrolyte secondary battery having a high energy density can be obtained.
[0012]
In addition, as a negative electrode active material, a non-aqueous electrolyte having a large discharge capacity and a small irreversible capacity is obtained by disproportionating SiO particles into silicon Si and silicon oxide SiO x (0 <X ≦ 2). A secondary battery can be obtained. This is considered for the following reason. Since silicon Si has a larger discharge capacity than silicon oxide SiO X , the discharge capacity can be increased as compared with the case where SiO particles are used alone as the negative electrode active material. In addition, since silicon oxide SiO X has lower reactivity with an electrolytic solution than silicon Si, a non-aqueous electrolyte secondary battery having a smaller irreversible capacity than a case where silicon Si particles are used alone as a negative electrode active material is obtained. It is thought that it is possible.
[0013]
In a negative electrode active material in which a carbon material is coated on composite particles obtained by disproportionation of SiO particles into silicon Si and silicon oxide SiO x (0 <X ≦ 2), the BET specific surface area of the composite particles is 0.1%. Since it is difficult to synthesize a particle having a particle diameter smaller than 1 m 2 / g, the BET specific surface area of the composite particles is preferably 0.1 m 2 / g or more. Further, when the BET specific surface area of the composite particles is 0.1 m 2 / g or less, since the particle size is too large, a negative electrode active material obtained by coating the composite particles with a carbon material is applied to a current collector, It becomes difficult to produce an electrode. Therefore, the BET specific surface area of the composite particles is preferably 0.1 m 2 / g or more.
[0014]
On the other hand, when the BET specific surface area of the composite particles exceeds 30 m 2 / g, the irreversible capacity increases, which is not preferable. This is considered for the following reasons. When the coating amount of the carbon material is constant, the thickness of the carbon material coated on the composite particles decreases as the specific surface area of the composite particles increases. If the BET specific surface area of the composite particles exceeds 30 m 2 / g, the coating of the carbon material becomes too thin, and the carbon material cracks when the composite particles expand by absorbing lithium ions during charging. As a result, there is a portion where silicon Si or silicon oxide SiO X is partially exposed. In such a portion, the decomposition reaction of the electrolytic solution proceeds during charging, and the irreversible capacity increases, which is not preferable. In this regard, it is conceivable to increase the thickness of the carbon material coated on the composite particles by increasing the amount of the carbon material added. However, an excessive addition of the carbon material is not preferable because the energy density decreases.
[0015]
Further, when the BET specific surface area of the composite particles exceeds 30 m 2 / g, the reaction area increases, so that the heat generation accompanying the battery reaction also increases. As a result, safety is undesirably reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a schematic sectional view of a prismatic nonaqueous electrolyte secondary battery according to one embodiment of the present invention. The prismatic nonaqueous electrolyte secondary battery 1 has a positive electrode 3 formed by applying a positive electrode mixture to a positive electrode current collector formed of aluminum foil, and a negative electrode formed by applying a negative electrode mixture to a negative electrode current collector formed of copper foil. And a non-aqueous electrolyte solution are housed in a battery case 6.
[0017]
A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, a negative electrode terminal 9 is connected to the negative electrode 4 via a negative electrode lead 11, and the positive electrode 3 is connected to the battery lid 7 via a positive electrode lead 10. It is connected.
[0018]
As the positive electrode active material, a compound capable of reversibly inserting and removing lithium ions can be used. Examples of such compounds include the following: As the inorganic compound, a composition formula Li X MO 2 (M is one or more transition metals, 0 ≦ X ≦ 1), or a composition formula Li Y M 2 O 4 (M is one or more kinds of transition metals) A transition metal, a lithium transition metal composite oxide represented by 0 ≦ Y ≦ 2), an oxide having tunnel-like vacancies, a metal chalcogenide having a layered structure, or the like can be used. Specific examples of these include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 4 , MnO 2 , FeO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , TiS 2 and the like. . Examples of the organic compound include a conductive polymer such as polyaniline. Furthermore, regardless of the inorganic compound or the organic compound, the above-mentioned various positive electrode active materials may be mixed and used.
[0019]
The positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is applied to a positive electrode current collector made of a metal foil to produce a positive electrode plate. be able to.
[0020]
The type of the conductive agent is not particularly limited, and may be metal or nonmetal. Examples of the metal conductive agent include materials composed of metal elements such as Cu and Ni. Examples of the non-metallic conductive agent include carbon materials such as graphite, carbon black, acetylene black, and Ketjen black.
[0021]
The type of the binder is not particularly limited as long as it is a material that is stable with respect to a solvent or an electrolytic solution used in manufacturing an electrode. Specifically, cellulose, carboxymethyl cellulose, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber, syndiotactic 1,2-polybutadiene, ethylene-vinyl acetate copolymer, propylene-α-olefin (carbon (Formulas 2 to 12) Copolymers, polyvinylidene fluoride, polytetrafluoroethylene, polytetrafluoroethylene-ethylene copolymer, and the like can be used.
[0022]
Examples of the positive electrode current collector include Al, Ta, Nb, Ti, Hf, Zr, Zn, W, Bi, and alloys containing these metals. Since these metals form a passive film on the surface by anodic oxidation in the electrolyte, it is possible to effectively prevent the non-aqueous electrolyte from being oxidized and decomposed at the contact portion between the positive electrode current collector and the electrolyte. it can. As a result, the cycle characteristics of the non-aqueous secondary battery can be effectively improved.
[0023]
As the negative electrode active material according to the present invention, a carbon material is coated on composite particles obtained by disproportionating SiO particles to silicon Si and silicon oxide SiO x (0 <X ≦ 2) by, for example, heat treatment. Can be used.
[0024]
With respect to the SiO particles according to the present invention, SiO particles having a desired BET specific surface area can be prepared by appropriately changing the etching time in argon ion etching.
[0025]
Further, SiO particles having a desired BET specific surface area can also be obtained by milling using various kinds of mills. At this time, milling may be performed in the atmosphere, but preferably in an inert atmosphere such as argon or nitrogen. Examples of the type of the mill include a ball mill, a vibration mill, a sanitary ball mill, a tube mill, a jet mill, a rod mill, a hammer mill, a roller mill, a disk mill, an attritor mill, a planetary ball mill, and an impact mill.
[0026]
The specific surface area of the SiO particles according to the present invention is, for example, a constant temperature gas adsorption method by a dynamic constant pressure method using a liquid nitrogen and a pressure measurement range of 0 to 126.6 KPa using Micromeritex, Genimi 2370 manufactured by Shimadzu Corporation. And can be analyzed by the BET method. GEMINI-PC1 can be used as data processing software.
[0027]
Whether or not the composite particles obtained by heat-treating the SiO particles according to the present invention are disproportionated into silicon Si and silicon oxide SiO X (0 <X ≦ 2) can be confirmed by X-ray diffraction. For example, the measurement can be performed using CuKα radiation using an X-Ray Diffractometer, RINT2000, manufactured by Rigaku Denki. Si can be identified by a peak having a diffraction angle 2θ of about 28.5 °, a peak of about 47.4 °, and a peak of about 55.9 °. Further, SiO 2 can be identified by a peak at a diffraction angle 2θ of around 21.5 °.
[0028]
The TEM observation of the composite particles also confirms that the composite particles are disproportionated to silicon Si and silicon oxide SiO x (0 <X ≦ 2). TEM observation can be performed using HF-2200 manufactured by HITACHI, at an acceleration voltage of 200 kV and a measurement time of 80 sec.
[0029]
In order to coat the surface of the composite particle with a carbon material, a method of coating the surface of the composite particle with pitch, tar, or a thermoplastic resin (for example, furfuryl alcohol or the like) and then sintering the same is used. A method using a mechanochemical reaction in which a complex is formed by applying mechanical energy to the material, a chemical vapor deposition (CVD) method, or the like can be used. Among them, the CVD method is preferable because the carbon material can be uniformly coated.
[0030]
In the CVD method, an organic compound such as methane, acetylene, benzene, toluene, or xylene can be used as a reaction gas. The reaction can be performed at a reaction temperature in the range of 700 ° C. to 1300 ° C. and a reaction time in the range of 30 seconds to 72 hours. According to the CVD method, the carbon material can be coated at a lower reaction temperature than the above-described method in which the pitch, tar, or thermoplastic resin is coated on the composite particles and then fired. Therefore, the coating can be performed at a temperature lower than the melting point of Si, which is preferable.
[0031]
Whether or not the surface of the composite particles is coated with the carbon material can be confirmed by performing Raman spectroscopy. Since Raman spectroscopy analyzes the surface portion of the sample, when the carbon material is entirely coated on the surface of the composite particles, the R value (intensity ratio of 1580 cm −) indicating the crystallinity of the carbon material coated on the surface is obtained. 1 peak intensity of 1360 cm -1 with respect to the peak intensity of 1 ) shows a constant value no matter where the negative electrode active material particles are measured. For this Raman spectroscopic analysis, for example, T64000 manufactured by JOBIN, YVON can be used.
[0032]
The disproportionation reaction of the SiO particles by the heat treatment may be performed by firing the SiO particles in advance. Further, when the SiO particles are subjected to argon ion etching, the argon ion etching and the disproportionation reaction may be performed simultaneously. When the SiO particles are coated with the carbon material by the CVD method, the carbon coating and the disproportionation reaction may be performed simultaneously. As the SiO particles, those washed with an acid such as hydrofluoric acid or sulfuric acid, or those reduced with hydrogen can be used.
[0033]
The material of the negative electrode current collector is preferably a metal such as copper, nickel, and stainless steel. Among these, it is preferable to use a copper foil because it can be easily formed into a thin film and is inexpensive.
[0034]
The method for manufacturing the negative electrode plate is not particularly limited, and the negative electrode plate can be manufactured by the same method as the above-described method for manufacturing the positive electrode.
[0035]
As the non-aqueous solvent of the non-aqueous electrolyte, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, γ-valerolactone, methyl acetate, methyl propionate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, dimethoxyethane, dimethoxymethane, ethylene methyl phosphate, ethyl ethylene phosphate, trimethyl phosphate, triethyl phosphate, and the like can be used. One of these organic solvents may be selected and used, or two or more thereof may be used in combination.
[0036]
Examples of the solute of the non-aqueous electrolyte include inorganic lithium salts such as LiClO 4 , LiPF 6 , and LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (CF 3 CF 2 SO 2 ) 2 , and LiN. Fluorinated organic lithium salts such as (CF 3 SO 2 ) 2 and LiC (CF 3 SO 2 ) 3 can be mentioned. One of these solutes may be selected and used, or two or more may be used in combination.
[0037]
As the electrolyte, a solid or gel electrolyte can be used in addition to the above-mentioned electrolyte. Examples of such an electrolyte include an inorganic solid electrolyte, polyethylene oxide, polypropylene oxide, and derivatives thereof.
[0038]
As the separator, an insulating microporous polyethylene film, a polypropylene microporous film, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, or the like impregnated with an electrolytic solution can be used.
[0039]
Hereinafter, the present invention will be described in detail based on examples. The present invention is not limited by the following examples.
<Example 1>
91 parts by weight of a lithium-cobalt composite oxide represented by the composition formula LiCoO 2 as a positive electrode active material, 6 parts by weight of polyvinylidene fluoride as a binder, and 3 parts by weight of acetylene black as a conductive agent were mixed. N-methylpyrrolidone was appropriately added to this to prepare a paste, and this paste was applied to both surfaces of a current collector made of aluminum foil. This was dried at 150 ° C. and then pressurized to produce a positive electrode plate so that the amount of the positive electrode active material contained in the battery was 5.3 g.
[0040]
The negative electrode active material was prepared as follows. The SiO powder was subjected to Ar ion etching with Ar plasma at a reaction temperature of 25 ° C. and a reaction time of 0.1 hour to obtain SiO particles having a BET specific surface area of 1 m 2 / g. The BET specific surface area was measured by the method described above.
[0041]
The disproportionation reaction from SiO to Si and SiO X is caused on the SiO particles obtained as described above by a method of thermally decomposing methane at 900 ° C. (CVD), and the surface is coated with a carbon material. Then, a negative electrode active material in which composite particles composed of silicon Si and silicon oxide SiOX (0 <X ≦ 2) were coated with a carbon material was obtained.
[0042]
The negative electrode active material obtained as described above was subjected to X-ray diffraction by the above method. FIG. 2 shows the obtained X-ray diffraction chart. The presence of Si was confirmed by the presence of a peak at a diffraction angle 2θ of about 28.5 °, a peak of about 47.4 °, and a peak of about 55.9 °. In addition, the peak at a diffraction angle 2θ of about 21.5 ° confirmed SiO 2 . As described above, it was confirmed that the heat treatment of SiO disproportionately transformed SiO into Si and SiO 2 .
[0043]
Further, TEM observation was performed on the negative electrode active material. FIG. 3 shows a photograph by TEM observation. The black dots are Si, and the white portions are SiO, SiO 2 and the like. Thus, it was also confirmed by TEM observation that the SiO was disproportionated into Si and SiO 2 by heat treatment of the SiO.
[0044]
5 parts by weight of the negative electrode active material obtained as described above, 87 parts by weight of a graphite material, and 8 parts by weight of polyvinylidene fluoride as a binder were mixed, and N-methylpyrrolidone was appropriately added thereto to form a paste. Was prepared. The paste thus obtained was applied to both sides of a current collector made of copper foil. This was dried at 150 ° C., and then pressurized to produce a negative electrode plate such that the amount of the negative electrode active material contained in the battery became 2 g.
[0045]
As the separator, a polyethylene microporous membrane having a thickness of 25 μm and a width of 30 mm was used.
[0046]
The positive electrode plate, the separator, the negative electrode plate, and the separator obtained as described above are sequentially stacked, and a rectangular flat plate made of polyethylene is used as a core, and its long side is parallel to the winding center axis of the power generation element. Thus, a wound power generation element was manufactured by winding in an elliptical shape around the core. After inserting this power generating element into a container having a height of 48 mm, a width of 30 mm, and a thickness of 4.2 mm, a non-aqueous electrolyte was injected into the inside of the battery to produce a prismatic non-aqueous electrolyte secondary battery.
[0047]
The non-aqueous electrolyte secondary battery produced as described above was charged at 25 ° C. to 4.2 V at a current of 1 CmA, and subsequently charged at a constant voltage of 4.2 V for 2 hours. The battery was discharged to 0 V, and the discharge capacity was measured. The irreversible capacity was obtained by subtracting the discharge capacity from the quantity of electricity at the time of charging.
[0048]
An oven test was performed on the non-aqueous electrolyte secondary battery obtained in Example 1. Example 1 was fully charged and set in an oven. The oven was heated to 160 ° C. at a rate of 5 ° C./min. Thereafter, the state of the battery after heating at 160 ° C. for 100 minutes was observed.
[0049]
<Examples 2 to 4 and Comparative Example 1>
By changing the Ar ion etching time as shown in Table 1, SiO particles having various BET specific surface areas were obtained. Except for using the SiO particles thus prepared, non-aqueous electrolyte secondary batteries of Examples 2 to 4 and Comparative Example 1 were prepared in the same manner as in Example 1, and irreversible capacity measurement and oven test were performed. went. These results are summarized in Table 1.
[0050]
[Table 1]
Figure 2004335195
[0051]
<Result>
(Irreversible capacity)
In Examples 1 to 4 in which the BET specific surface area was 30 m 2 / g or less, the irreversible capacity was 90 mAh or less, while in Comparative Example 1 in which the BET specific surface area was 40 m 2 / g, it was 140 mAh.
[0052]
(Oven test)
As a result of the oven test, the non-aqueous electrolyte secondary batteries of Examples 1 to 4 having a BET specific surface area of 30 m 2 / g or less showed no abnormality even after the oven test. On the other hand, in Comparative Example 1, which was 40 m 2 / g, the safety valve was activated.
[0053]
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and furthermore, besides the following, within the scope not departing from the gist. Can be implemented with various modifications.
[0054]
In the above-described embodiment, the prismatic nonaqueous electrolyte secondary battery 1 has been described. However, the battery structure is not particularly limited, and may be a cylindrical shape, a bag shape, a lithium polymer battery, or the like.
[0055]
【The invention's effect】
According to the present invention, a non-aqueous electrolyte secondary battery having high energy density, small irreversible capacity, and excellent safety can be obtained.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a prismatic nonaqueous electrolyte secondary battery according to one embodiment of the present invention. FIG. 2 is an X-ray diffraction chart of a negative electrode active material according to the present invention. FIG. TEM photograph [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Square nonaqueous electrolyte secondary battery 2 ... Electrode group 3 ... Positive electrode 4 ... Negative electrode 5 ... Separator 6 ... Battery case 7 ... Battery cover 8 ... Safety valve 9 ... Negative electrode terminal 10 ... Positive electrode lead 11 ... Negative electrode lead

Claims (2)

正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池において、
前記負極活物質が、SiO粒子を、ケイ素Siとケイ素酸化物SiO(0<X≦2)とに不均化して得られた複合粒子に炭素材料を被覆することにより得られたものであり、
前記複合粒子のBET比表面積が30m/g以下であることを特徴とする非水電解質二次電池。
In a nonaqueous electrolyte secondary battery including a positive electrode, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and a nonaqueous electrolyte,
The negative electrode active material is obtained by coating a composite material obtained by disproportionating SiO particles into silicon Si and silicon oxide SiO x (0 <X ≦ 2) with a carbon material. ,
A nonaqueous electrolyte secondary battery, wherein the BET specific surface area of the composite particles is 30 m 2 / g or less.
正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池の負極の製造方法において、
SiO粒子をアルゴンイオンエッチングすることによりBET比表面積を30m/g以下とするエッチング工程と、前記SiO粒子を、ケイ素Siとケイ素酸化物SiO(0<X≦2)とに不均化して得られた複合粒子の表面に炭素材料を付着させる炭素被覆工程と、前記負極活物質とバインダとを混合してペースト状にしたものを負極集電体に塗布する塗布工程とからなることを特徴とする非水電解質二次電池用負極の製造方法。
A positive electrode, a negative electrode containing a negative electrode active material capable of inserting and extracting lithium ions, and a method for producing a negative electrode of a non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte,
An etching step of reducing the BET specific surface area to 30 m 2 / g or less by argon ion etching of SiO particles, and disproportionating the SiO particles to silicon Si and silicon oxide SiO X (0 <X ≦ 2). A carbon coating step of attaching a carbon material to the surface of the obtained composite particles, and a coating step of applying a paste obtained by mixing the negative electrode active material and a binder to a negative electrode current collector, A method for producing a negative electrode for a non-aqueous electrolyte secondary battery.
JP2003127085A 2003-05-02 2003-05-02 Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor Pending JP2004335195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127085A JP2004335195A (en) 2003-05-02 2003-05-02 Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127085A JP2004335195A (en) 2003-05-02 2003-05-02 Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor

Publications (1)

Publication Number Publication Date
JP2004335195A true JP2004335195A (en) 2004-11-25

Family

ID=33503767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127085A Pending JP2004335195A (en) 2003-05-02 2003-05-02 Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor

Country Status (1)

Country Link
JP (1) JP2004335195A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259697A (en) * 2004-03-08 2005-09-22 Samsung Sdi Co Ltd Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
JP2007294423A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2007305381A (en) * 2006-05-10 2007-11-22 Mitsubishi Chemicals Corp Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2008153117A (en) * 2006-12-19 2008-07-03 Nec Tokin Corp Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2009009727A (en) * 2007-06-26 2009-01-15 Nec Tokin Corp Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
JP2009110846A (en) * 2007-10-31 2009-05-21 Sony Corp Negative electrode active material, negative electrode, and battery
JP2009123695A (en) * 2007-10-24 2009-06-04 Panasonic Corp Electrode for electrochemical device, and electrochemical device using the electrode
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP2009301935A (en) * 2008-06-16 2009-12-24 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, lithium ion secondary battery and electrochemical capacitor
JP2010092817A (en) * 2008-10-10 2010-04-22 Toyama Prefecture Cathode for lithium cell
JP2010092819A (en) * 2008-10-10 2010-04-22 Toyama Prefecture Cathode for lithium cell
JP2011090869A (en) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012011247A1 (en) * 2010-07-20 2012-01-26 株式会社大阪チタニウムテクノロジーズ Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP2012033311A (en) * 2010-07-29 2012-02-16 Toyota Industries Corp Negative active material for nonaqueous secondary battery and method of manufacturing the same
JP2012094369A (en) * 2010-10-27 2012-05-17 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery
JP2012156055A (en) * 2011-01-27 2012-08-16 Toyota Industries Corp Lithium ion secondary battery
JP2012164624A (en) * 2011-01-20 2012-08-30 Toyota Industries Corp Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
KR20130018498A (en) * 2011-08-15 2013-02-25 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, rechargeable lithium battery including the same, and method of preparing negative electrode for rechargeable lithium battery including the same
WO2013038939A1 (en) * 2011-09-13 2013-03-21 日立マクセルエナジー株式会社 Lithium secondary-battery pack, electronic device using same, charging system, and charging method
US20130280614A1 (en) * 2012-04-19 2013-10-24 Unist Academy-Industry Research Corporation Silicon-Based Anode Active Material And Secondary Battery Comprising The Same
CN103579592A (en) * 2012-08-03 2014-02-12 信越化学工业株式会社 Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery using the same, nonaqueous electrolyte secondary battery, and method of manufacturing silicon-containing particles
KR101512573B1 (en) 2010-06-21 2015-04-15 도요타지도샤가부시키가이샤 Lithium ion secondary battery
US9196896B2 (en) 2012-07-24 2015-11-24 Lg Chem, Ltd. Porous silicon-based electrode active material and secondary battery comprising the same
JP2015229605A (en) * 2014-06-04 2015-12-21 国立大学法人 名古屋工業大学 PRODUCTION METHOD OF SiO-BASED MATERIAL WITH SiO2 AND POLYMER AS RAW MATERIALS AND COMPOSITE MATERIAL OF SiO-BASED MATERIAL AND CARBON MATERIAL
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
EP3171432A4 (en) * 2014-07-15 2017-12-27 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
US9879344B2 (en) 2012-07-26 2018-01-30 Lg Chem, Ltd. Electrode active material for secondary battery
JP2019016536A (en) * 2017-07-07 2019-01-31 トヨタ自動車株式会社 All solid lithium ion battery
US10826107B2 (en) 2011-09-21 2020-11-03 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
JP2021131991A (en) * 2020-02-20 2021-09-09 山陽特殊製鋼株式会社 Negative electrode material for power storage device
CN114784253A (en) * 2022-05-20 2022-07-22 电子科技大学 Silicon-carbon oxide composite negative electrode material for secondary battery and preparation and application thereof

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259697A (en) * 2004-03-08 2005-09-22 Samsung Sdi Co Ltd Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
JP2007294423A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2007305381A (en) * 2006-05-10 2007-11-22 Mitsubishi Chemicals Corp Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same
JP2008153117A (en) * 2006-12-19 2008-07-03 Nec Tokin Corp Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2009009727A (en) * 2007-06-26 2009-01-15 Nec Tokin Corp Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
JP2009123695A (en) * 2007-10-24 2009-06-04 Panasonic Corp Electrode for electrochemical device, and electrochemical device using the electrode
JP2009110846A (en) * 2007-10-31 2009-05-21 Sony Corp Negative electrode active material, negative electrode, and battery
US8852802B2 (en) 2007-10-31 2014-10-07 Sony Corporation Anode active material, anode, and battery
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP2009301935A (en) * 2008-06-16 2009-12-24 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, lithium ion secondary battery and electrochemical capacitor
JP2010092817A (en) * 2008-10-10 2010-04-22 Toyama Prefecture Cathode for lithium cell
JP2010092819A (en) * 2008-10-10 2010-04-22 Toyama Prefecture Cathode for lithium cell
JP2011090869A (en) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101512573B1 (en) 2010-06-21 2015-04-15 도요타지도샤가부시키가이샤 Lithium ion secondary battery
WO2012011247A1 (en) * 2010-07-20 2012-01-26 株式会社大阪チタニウムテクノロジーズ Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
KR101495451B1 (en) 2010-07-20 2015-02-24 오사카 티타늄 테크놀로지스 캄파니 리미티드 Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
US8900749B2 (en) 2010-07-20 2014-12-02 Osaka Titanium Technologies Co., Ltd. Negative electrode material powder for lithium ion secondary battery, negative electrode for lithium ion secondary battery, negative electrode for capacitor, lithium ion secondary battery, and capacitor
CN103003986A (en) * 2010-07-20 2013-03-27 株式会社大阪钛技术 Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode and capacitor negative electrode, and lithium ion secondary battery and capacitor
JP2012033311A (en) * 2010-07-29 2012-02-16 Toyota Industries Corp Negative active material for nonaqueous secondary battery and method of manufacturing the same
JP2012094369A (en) * 2010-10-27 2012-05-17 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery
JP2012164624A (en) * 2011-01-20 2012-08-30 Toyota Industries Corp Negative electrode active material for lithium ion secondary battery, and lithium ion secondary battery comprising the negative electrode active material
JP2012156055A (en) * 2011-01-27 2012-08-16 Toyota Industries Corp Lithium ion secondary battery
CN102956877A (en) * 2011-08-15 2013-03-06 三星Sdi株式会社 Negative electrode active material for rechargeable lithium battery, negative electrode including the same and method of preparing the same, and rechargeable lithium battery including the same
KR20130018498A (en) * 2011-08-15 2013-02-25 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, rechargeable lithium battery including the same, and method of preparing negative electrode for rechargeable lithium battery including the same
KR101711985B1 (en) * 2011-08-15 2017-03-06 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, rechargeable lithium battery including the same, and method of preparing negative electrode for rechargeable lithium battery including the same
JP5341280B2 (en) * 2011-09-13 2013-11-13 日立マクセル株式会社 Lithium secondary battery pack, electronic device using the same, charging system and charging method
WO2013038939A1 (en) * 2011-09-13 2013-03-21 日立マクセルエナジー株式会社 Lithium secondary-battery pack, electronic device using same, charging system, and charging method
JPWO2013038939A1 (en) * 2011-09-13 2015-03-26 日立マクセル株式会社 Lithium secondary battery pack, electronic device using the same, charging system and charging method
US11502326B2 (en) 2011-09-21 2022-11-15 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US10826107B2 (en) 2011-09-21 2020-11-03 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US11830972B2 (en) 2011-09-21 2023-11-28 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US9831500B2 (en) 2012-04-19 2017-11-28 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US9780357B2 (en) * 2012-04-19 2017-10-03 Lg Chem, Ltd. Silicon-based anode active material and secondary battery comprising the same
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US20130280614A1 (en) * 2012-04-19 2013-10-24 Unist Academy-Industry Research Corporation Silicon-Based Anode Active Material And Secondary Battery Comprising The Same
US9196896B2 (en) 2012-07-24 2015-11-24 Lg Chem, Ltd. Porous silicon-based electrode active material and secondary battery comprising the same
US9879344B2 (en) 2012-07-26 2018-01-30 Lg Chem, Ltd. Electrode active material for secondary battery
CN103579592A (en) * 2012-08-03 2014-02-12 信越化学工业株式会社 Silicon-containing particles, negative electrode material for nonaqueous electrolyte secondary battery using the same, nonaqueous electrolyte secondary battery, and method of manufacturing silicon-containing particles
JP2014032880A (en) * 2012-08-03 2014-02-20 Shin Etsu Chem Co Ltd Silicon-containing particle, negative electrode material for nonaqueous electrolyte secondary battery using the same, nonaqueous electrolyte secondary battery, and method for producing silicon-containing particle
JP2015229605A (en) * 2014-06-04 2015-12-21 国立大学法人 名古屋工業大学 PRODUCTION METHOD OF SiO-BASED MATERIAL WITH SiO2 AND POLYMER AS RAW MATERIALS AND COMPOSITE MATERIAL OF SiO-BASED MATERIAL AND CARBON MATERIAL
EP3171432A4 (en) * 2014-07-15 2017-12-27 Shin-Etsu Chemical Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery and method for producing negative electrode active material particle
US10529984B2 (en) 2014-07-15 2020-01-07 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method of producing negative electrode active material particles
JP2019016536A (en) * 2017-07-07 2019-01-31 トヨタ自動車株式会社 All solid lithium ion battery
JP2021131991A (en) * 2020-02-20 2021-09-09 山陽特殊製鋼株式会社 Negative electrode material for power storage device
JP7514630B2 (en) 2020-02-20 2024-07-11 山陽特殊製鋼株式会社 Negative electrode materials for power storage devices
CN114784253A (en) * 2022-05-20 2022-07-22 电子科技大学 Silicon-carbon oxide composite negative electrode material for secondary battery and preparation and application thereof
CN114784253B (en) * 2022-05-20 2024-05-10 电子科技大学 Silicon-carbon oxide composite negative electrode material for secondary battery, preparation and application

Similar Documents

Publication Publication Date Title
JP2004335195A (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
JP5060010B2 (en) Nonaqueous electrolyte secondary battery
JP5601536B2 (en) Nonaqueous electrolyte secondary battery
CN107710466B (en) Negative electrode active material, secondary battery, and method for producing negative electrode material
JP7265668B2 (en) Lithium-ion secondary batteries, mobile terminals, automobiles and power storage systems
EP2618406B1 (en) Nonaqueous secondary cell
JP5341837B2 (en) Positive electrode, non-aqueous electrolyte battery and battery pack
JP6636758B2 (en) Active materials for batteries, electrodes, non-aqueous electrolyte batteries, battery packs and vehicles
WO2017061073A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, method for producing negative electrode material for non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
KR101971498B1 (en) Negative electrode active material for lithium secondary battery and method of preparing for the same
KR20180114061A (en) Negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery and method for manufacturing negative electrode material for non-aqueous electrolyte secondary battery
CN108292746B (en) Negative electrode active material, mixed negative electrode active material, negative electrode, and secondary battery
KR20170023832A (en) Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles
CN108463910B (en) Negative electrode active material and method for producing same, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery and method for producing same
WO2017085911A1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP7019284B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP6096985B1 (en) Nonaqueous electrolyte battery and battery pack
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JP2016143642A (en) Nonaqueous electrolyte secondary battery
JP2013095613A (en) CARBON-COATED LiVP2O7 PARTICLE, METHOD FOR PRODUCING THE SAME, AND LITHIUM ION SECONDARY BATTERY
CN108463909B (en) Negative electrode material for Li-ion secondary battery, method for producing same, negative electrode for Li-ion secondary battery, and Li-ion secondary battery
WO2017145654A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
JP5282966B2 (en) Lithium ion secondary battery
JP2004200003A (en) Nonaqueous electrolyte secondary battery
JP5646661B2 (en) Positive electrode, non-aqueous electrolyte battery and battery pack

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112