JP2002231225A - Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery - Google Patents

Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery

Info

Publication number
JP2002231225A
JP2002231225A JP2001025426A JP2001025426A JP2002231225A JP 2002231225 A JP2002231225 A JP 2002231225A JP 2001025426 A JP2001025426 A JP 2001025426A JP 2001025426 A JP2001025426 A JP 2001025426A JP 2002231225 A JP2002231225 A JP 2002231225A
Authority
JP
Japan
Prior art keywords
composite
electrode material
electrode
ion secondary
composite electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001025426A
Other languages
Japanese (ja)
Inventor
Kiyoshi Suzuki
清志 鈴木
Koichi Takei
康一 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2001025426A priority Critical patent/JP2002231225A/en
Publication of JP2002231225A publication Critical patent/JP2002231225A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a composite electrode material having high discharge capacity and a superior cycle characteristic and to provide its manufacturing method. SOLUTION: This composite electrode material is formed by containing graphite grains, amorphous carbon, and silicone, the silicon content in terms of SiO2 is 40-80 wt.%, the true density is 1.8×103 kg/m3 or more, the tap density is 0.8×103 kg/m3 or more, and the specific surface is 8×103 kg/m2 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、放電容量、サイク
ル特性に優れたリチウムイオン二次電池の負極材として
好適に用いられる複合電極材料とその製造方法及びこれ
を用いたリチウムイオン二次電池用負極及びリチウムイ
オン二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite electrode material preferably used as a negative electrode material of a lithium ion secondary battery having excellent discharge capacity and cycle characteristics, a method for producing the same, and a lithium ion secondary battery using the same. The present invention relates to a negative electrode and a lithium ion secondary battery.

【0002】[0002]

【従来の技術】近年、ポータブル機器、電気自動車、電
力貯蔵用として小型、軽量で高エネルギー密度を有する
二次電池に対する要望が高まっている。このような要望
に対し、非水系電解液二次電池、特にリチウムイオン二
次電池はとりわけ高電圧、高エネルギー密度を有する電
池として注目を集めている。
2. Description of the Related Art In recent years, there has been an increasing demand for small, lightweight, and high energy density secondary batteries for portable equipment, electric vehicles, and power storage. In response to such demands, non-aqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, have attracted attention as batteries having high voltage and high energy density.

【0003】リチウムイオン二次電池の負極材料とし
て、金属リチウムは極めて大きな高い充放電容量を実現
可能であるが、その高い反応性のため充放電サイクルの
経過と共に電解液中の溶媒と反応し容量が低下する。ま
た、樹枝状の金属リチウムが生成し易く、正・負極間に
設けられるセパレータを貫通し、短絡を引き起こし易い
という問題点を有している。
[0003] As a negative electrode material of a lithium ion secondary battery, metallic lithium can realize an extremely large high charge / discharge capacity, but due to its high reactivity, it reacts with a solvent in an electrolytic solution with the progress of a charge / discharge cycle. Decrease. In addition, there is a problem in that dendritic metallic lithium is easily generated, penetrates a separator provided between the positive electrode and the negative electrode, and easily causes a short circuit.

【0004】このような問題を解決するため、現行のリ
チウムイオン二次電池の負極材としては低黒鉛化炭素質
材料、高黒鉛化炭素質材料が使用されている。低黒鉛化
炭素質材料は、電解液との反応性が低く、樹枝状金属リ
チウムが生成しづらく、また単位重量当りの放電容量と
して500Ah/kg以上の材料が得られているが、真
密度が低いため電極密度を上げられず、このため体積当
りの充放電容量が低くなるという難点を有している。高
黒鉛化炭素質材料は、低黒鉛化炭素質材料と比較して重
量当りの放電容量は350〜370Ah/kgと低い
が、真密度が高いため電極密度を高くでき、このため体
積当りの放電容量が大きい。また、金属リチウムと比較
して電解液との反応性が低く、樹枝状金属リチウムが生
成しづらく、放電電圧が高く且つ平坦であるという特徴
を有することから、近年、負極用材料として盛んに検討
が為されるようになってきている。
In order to solve such a problem, a low graphitized carbonaceous material and a highly graphitized carbonaceous material are used as a negative electrode material of a current lithium ion secondary battery. The low graphitized carbonaceous material has low reactivity with the electrolytic solution, hardly generates dendritic lithium, and has a material with a discharge capacity of 500 Ah / kg or more per unit weight, but the true density is low. The electrode density is too low to increase the electrode density, and the charge / discharge capacity per volume is low. The highly graphitized carbonaceous material has a low discharge capacity per weight of 350 to 370 Ah / kg as compared with the low graphitized carbonaceous material, but has a high true density and can increase the electrode density. Large capacity. In addition, it has low reactivity with electrolytes compared to metallic lithium, has the characteristics of hardly producing dendritic metallic lithium, has a high discharge voltage, and is flat. Is being done.

【0005】しかしながら、高黒鉛化炭素質材料の放電
容量はリチウムと形成する層間化合物(LiC)によ
って制限(372Ah/kg)されるという課題を有し
ている。この理論容量を超える容量を有する高黒鉛化炭
素質材料の開発が様々な部署で検討されているが、作業
性、サイクル特性を両立したものは未だ見出されていな
い。
However, there is a problem that the discharge capacity of the highly graphitized carbonaceous material is limited (372 Ah / kg) by the intercalation compound (LiC 6 ) formed with lithium. The development of highly graphitized carbonaceous materials having a capacity exceeding this theoretical capacity has been studied in various departments, but none of them has been found to achieve both workability and cycle characteristics.

【0006】低黒鉛化炭素質材料、高黒鉛化炭素質材料
以外の負極材としては珪素、アルミニウム、鉛等の金
属、錫含有酸化物、珪素酸化物などの金属酸化物が高い
放電容量を示すことが知られており、近年、盛んに検討
がなされるようになっている。これらの材料は真密度が
高いため、電極体積当りの放電容量を大きくできるが、
金属系の材料ではリチウムの吸蔵・放出過程での体積変
化が大きく、このため、充放電サイクル経過と伴に放電
容量が著しく低下するという課題を有する。
As the negative electrode material other than the low graphitized carbonaceous material and the highly graphitized carbonaceous material, metals such as silicon, aluminum and lead, and metal oxides such as tin-containing oxides and silicon oxides exhibit high discharge capacity. It is known that studies have been actively conducted in recent years. Because these materials have a high true density, the discharge capacity per electrode volume can be increased,
Metal-based materials have a large volume change during the process of inserting and extracting lithium, and therefore have a problem that the discharge capacity is significantly reduced as the charge / discharge cycle progresses.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、高い
放電容量を有し、サイクル特性に優れた複合電極材料と
その製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite electrode material having a high discharge capacity and excellent cycle characteristics, and a method for producing the same.

【0008】本発明の他の目的は、高い放電容量を有
し、サイクル特性に優れた複合電極材料を用いたリチウ
ムイオン二次電池用負極及びリチウムイオン二次電池を
提供することにある。
Another object of the present invention is to provide a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using a composite electrode material having a high discharge capacity and excellent cycle characteristics.

【0009】[0009]

【課題を解決するための手段】本発明は、黒鉛質粒子、
非晶質炭素及び珪素を含有してなり、SiO換算での
珪素含有量が40〜80重量%であり、真密度が1.8
×10kg/m以上、タップ密度が0.8×10
kg/m以上、比表面積が8×10/kg以下
であることを特徴とする複合電極材料に関する。
SUMMARY OF THE INVENTION The present invention provides a graphitic particle,
It contains amorphous carbon and silicon, has a silicon content of 40 to 80% by weight in terms of SiO 2 , and has a true density of 1.8.
× 10 3 kg / m 3 or more, tap density 0.8 × 10 3
The present invention relates to a composite electrode material characterized by having a specific surface area of at least 8 kg / m 3 and not more than 8 × 10 3 m 2 / kg.

【0010】本発明は、また、XPSのSi2Pスペク
トルにおいて、102.5〜107.5(eV)付近に
一つのピークを有する上記の複合電極材料に関する。
[0010] The present invention also relates to the above composite electrode material having one peak around 102.5 to 107.5 (eV) in a Si2P spectrum of XPS.

【0011】本発明は、また、黒鉛質粒子含有量が15
〜50重量%のとき、金属リチウムを対極として充放電
を行わせたときの放電容量が500Ah/kg以上、平
均放電電圧が0.6V(対金属リチウム)以下である上
記の複合電極材料に関する。
[0011] The present invention also relates to the present invention, wherein the content of graphite particles is 15
The present invention relates to the composite electrode material described above, which has a discharge capacity of 500 Ah / kg or more and an average discharge voltage of 0.6 V (vs. lithium metal) or less when charging and discharging are performed using metallic lithium as a counter electrode when the content is about 50% by weight.

【0012】本発明は、また、金属リチウムを対極とし
て充放電を行わせたときの放電において、dX/dV
(X:放電容量、V:放電電圧)を放電電圧Vに対して
プロットしたグラフ中、0.5V付近にピークを有しな
い上記の複合電極材料に関する。
[0012] The present invention also provides a method for discharging dX / dV in charging and discharging using lithium metal as a counter electrode.
In the graph in which (X: discharge capacity, V: discharge voltage) is plotted against discharge voltage V, the present invention relates to the above composite electrode material having no peak near 0.5 V.

【0013】本発明は、また、平均粒子径10μm以下
の黒鉛質粒子と有機珪素化合物と炭素前駆体有機高分子
化合物とを混合し、非酸化性雰囲気中で加熱することを
特徴とする複合電極材料の製造方法に関する。
The present invention also provides a composite electrode comprising mixing graphite particles having an average particle diameter of 10 μm or less, an organic silicon compound and a carbon precursor organic polymer compound, and heating the mixture in a non-oxidizing atmosphere. The present invention relates to a method for manufacturing a material.

【0014】本発明は、また、上記の複合電極材料を含
む電極合材を成形してなり、電極合材のかさ密度が1.
2〜1.7×10kg/mであるリチウムイオン二
次電池用負極に関する。本発明は、また、上記の複合電
極材料を含む電極合材を負極集電体に塗布してなり、電
極合材のかさ密度が1.2〜1.7×10kg/m
であるリチウムイオン二次電池用負極に関する。
According to the present invention, an electrode mixture containing the above-mentioned composite electrode material is molded, and the bulk density of the electrode mixture is 1.
The present invention relates to a negative electrode for a lithium ion secondary battery having a density of 2 to 1.7 × 10 3 kg / m 3 . According to the present invention, an electrode mixture containing the above composite electrode material is applied to a negative electrode current collector, and the bulk density of the electrode mixture is 1.2 to 1.7 × 10 3 kg / m 3.
And a negative electrode for a lithium ion secondary battery.

【0015】本発明は、また、上記の負極を用いたリチ
ウムイオン二次電池に関する。
The present invention also relates to a lithium ion secondary battery using the above-mentioned negative electrode.

【0016】[0016]

【発明の実施の形態】本発明の複合電極材料は、複合電
極材料粒子中に、黒鉛質粒子、非晶質炭素及びSiO
換算で40〜80重量%の珪素を含有する。ここでいう
複合とは、黒鉛質粒子と非晶質炭素質粒子の混合物では
なく、複合電極材料粒子一個の中に黒鉛質粒子と非晶質
炭素とが一体化して含まれることを意味し、珪素はこの
複合材料粒子の中に含有される。他の構成、すなわち黒
鉛質粒子と非晶質炭素粒子と珪素の混合物、黒鉛質粒子
と珪素を含有する非晶質炭素粒子などの構成では本発明
のような高い放電容量とサイクル特性は実現されない。
BEST MODE FOR CARRYING OUT THE INVENTION The composite electrode material of the present invention contains graphite particles, amorphous carbon and SiO 2 in the composite electrode material particles.
Contains 40 to 80% by weight of silicon in conversion. The composite here means not a mixture of the graphite particles and the amorphous carbon particles, but that the graphite particles and the amorphous carbon are integrally contained in one composite electrode material particle, Silicon is contained in the composite particles. In other configurations, that is, a mixture of graphitic particles, amorphous carbon particles, and silicon, a configuration of graphite particles and amorphous carbon particles containing silicon, etc., the high discharge capacity and cycle characteristics as in the present invention are not realized. .

【0017】本発明の複合電極材料は、粒子状又は粉末
状(以下両者を粒子状ということがある。)のもので、
好ましくは200メッシュ以下の粒径の材料として好適
に用いられる。複合電極材料の粒子中に含有される黒鉛
質粒子の数については特に制限はしないが、複数の黒鉛
質粒子を含有させることがサイクル特性を向上させると
いう点が好ましい。
The composite electrode material of the present invention is in the form of particles or powder (both are sometimes referred to as particles).
Preferably, it is suitably used as a material having a particle size of 200 mesh or less. Although the number of the graphite particles contained in the particles of the composite electrode material is not particularly limited, it is preferable that the inclusion of a plurality of the graphite particles improves the cycle characteristics.

【0018】本発明の複合電極材料中に珪素が含有され
ることは、例えば、複合電極材料を蛍光X線分析によっ
て珪素が認められることによって確認できる。珪素の存
在状態について、本発明の複合電極材料の広角X線回折
図に珪素含有化合物に該当する明確な回折線が認められ
ないことから、非晶質化合物として存在しているものと
考えられる。
The fact that silicon is contained in the composite electrode material of the present invention can be confirmed, for example, by confirming silicon in the composite electrode material by X-ray fluorescence analysis. Regarding the existing state of silicon, since a clear diffraction line corresponding to the silicon-containing compound is not recognized in the wide-angle X-ray diffraction diagram of the composite electrode material of the present invention, it is considered that the compound exists as an amorphous compound.

【0019】本発明で用いる黒鉛質粒子としては、好ま
しくは平均粒子径20μm以下、より好ましくは平均粒
子径0.1〜10μmのものが用いられる。平均粒子径
が20μmを超える黒鉛質粒子を用いるとサイクル特
性、放電容量が低下する傾向がある。
The graphite particles used in the present invention preferably have an average particle size of 20 μm or less, and more preferably have an average particle size of 0.1 to 10 μm. When graphite particles having an average particle diameter of more than 20 μm are used, the cycle characteristics and discharge capacity tend to decrease.

【0020】本発明で用いる炭素前駆体有機高分子化合
物としては、石油系、石炭系及び合成ピッチ、タール
類、ポリ塩化ビニル、ポリ塩化ビニリデン、フェノール
樹脂、フラン樹脂、ポリアクリロニトリル、ポリ(α−
ハロゲン化アクリロニトリル)などのアクリル樹脂、ポ
リアミドイミド樹脂、ポリアミド樹脂、ポリイミド樹脂
などを用いることができる。使用量は黒鉛質粒子100
重量部に対して30〜90重量部とすることが好まし
い。
The carbon precursor organic high molecular compound used in the present invention includes petroleum, coal and synthetic pitches, tars, polyvinyl chloride, polyvinylidene chloride, phenol resin, furan resin, polyacrylonitrile, poly (α-
An acrylic resin such as halogenated acrylonitrile), a polyamideimide resin, a polyamide resin, a polyimide resin, or the like can be used. The amount used was 100 graphite particles.
It is preferably 30 to 90 parts by weight based on parts by weight.

【0021】本発明で用いる有機珪素化合物をしては、
シリコンアルコキシド及び/又はその部分縮重合物を用
いることができる。シリコンアルコキシドとしてはテト
ラメトキシシラン、テトラエトキシシラン、テトラプロ
ポキシシラン、トリメトキシメチルシラン、トリエトキ
シメチルシラン等を用いることができる。部分縮重合物
は一般に酸触媒存在下で上記のシリコンアルコキシドを
部分加水分解、縮重合させて作製されるものであり、例
えばテトラメトキシシラン、テトラエトキシシランの部
分縮重合物が容易に入手でき、使用できる。使用量は、
SiO換算での珪素含有量が複合電極材料中に40〜
80重量%となる量が用いられる。
As the organosilicon compound used in the present invention,
Silicon alkoxide and / or a partially condensed polymer thereof can be used. As the silicon alkoxide, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, trimethoxymethylsilane, triethoxymethylsilane, or the like can be used. The partially condensed polymer is generally prepared by partially hydrolyzing and condensing the above silicon alkoxide in the presence of an acid catalyst, for example, tetramethoxysilane, a partially condensed polymer of tetraethoxysilane can be easily obtained, Can be used. The amount used is
The silicon content in terms of SiO 2 is 40 to 40 in the composite electrode material.
An amount of 80% by weight is used.

【0022】黒鉛質粒子と有機珪素化合物及び炭素前駆
体有機高分子化合物との混合方法については特に制限し
ないが、特性の優れる複合電極材料を作製するために
は、黒鉛質粒子の表面に、細孔を有する黒鉛質粒子にあ
っては細孔の内部にもこれらの化合物を均一に塗布、浸
透させることが好ましい。これを実現する方法として
は、例えば有機珪素化合物及び炭素前駆体有機高分子化
合物を溶媒を用いて溶液とし、この溶液に黒鉛質粒子を
分散、混合し、次いで溶媒を除去することによって黒鉛
質粒子と有機珪素化合物及び炭素前駆体有機高分子化合
物の均一な混合物を得ることができる。用いる溶媒は有
機珪素化合物及び炭素前駆体有機高分子化合物を共に溶
解できるものであれば特に制限なく使用できる。
The method of mixing the graphite particles with the organosilicon compound and the carbon precursor organic polymer compound is not particularly limited. However, in order to produce a composite electrode material having excellent characteristics, the surface of the graphite particles is coated with fine particles. In the case of graphite particles having pores, it is preferable to uniformly apply and penetrate these compounds even inside the pores. As a method of realizing this, for example, an organic silicon compound and a carbon precursor organic polymer compound are made into a solution using a solvent, and the graphite particles are dispersed and mixed in the solution, and then the graphite particles are removed by removing the solvent. And a homogeneous mixture of the organic silicon compound and the carbon precursor organic polymer compound. The solvent used is not particularly limited as long as it can dissolve both the organic silicon compound and the carbon precursor organic polymer compound.

【0023】得られた黒鉛質粒子と有機珪素化合物及び
炭素前駆体有機高分子化合物の混合物は、次の加熱工程
に先立って平均粒子径100μm以下まで粉砕すること
が好ましい。この粉砕には振動ミル、カッターミル、ピ
ンミル、ハンマーミル、ジェットミル等の公知の機械的
粉砕装置が使用できる。また、さらに風力式、機械式等
の分級機を用いて分級処理を行っても良い。
It is preferable that the obtained mixture of the graphitic particles, the organic silicon compound and the carbon precursor organic polymer compound is pulverized to an average particle diameter of 100 μm or less prior to the next heating step. For this pulverization, a known mechanical pulverizer such as a vibration mill, a cutter mill, a pin mill, a hammer mill, and a jet mill can be used. Classification may be further performed using a classifier such as a wind-type or mechanical classifier.

【0024】本発明の複合電極材料の特性として、真密
度が1.8×10kg/m以上、タップ密度が0.
8×10kg/m以上、比表面積が8×10
/kg以下であることが必要である。このような特性
は、珪素を含むことにより達成することができるが、黒
鉛と炭素の複合材に粉末及びバルクの珪素を混合しただ
けでは達成できない。すなわち、黒鉛質粒子に有機珪素
化合物及び炭素前駆体と混合し、加熱によって有機珪素
化合物、炭素前駆体をそれぞれ分解、炭素化することが
重要である。
As characteristics of the composite electrode material of the present invention, the true density is 1.8 × 10 3 kg / m 3 or more, and the tap density is 0.1 kg / m 3 .
8 × 10 3 kg / m 3 or more, specific surface area of 8 × 10 3 m 2
/ Kg or less. Such characteristics can be achieved by including silicon, but cannot be achieved only by mixing powder and bulk silicon with a composite material of graphite and carbon. That is, it is important to mix the graphitic particles with the organic silicon compound and the carbon precursor, and to decompose and carbonize the organic silicon compound and the carbon precursor, respectively, by heating.

【0025】また、X線光電子分光法(XPS)のSi
2Pスペクトルは、102.5〜107.5(eV)付
近に一つのピークを示す。このようなピークは、炭素と
黒鉛の複合体に珪素粉末を混合した場合では得られな
く、本発明の特長である。本発明の複合電極材料は、放
電容量が500Ah/kg以上、平均放電電圧が0.6
V(対金属リチウム)以下という充放電特性を示す。こ
のような特性は、黒鉛質粒子及び非晶質炭素からなり黒
鉛質粒子15〜50重量%を含む複合電極材料に珪素を
SiO換算で40〜80重量%含有させることにより
達成される。しかし、黒鉛質粒子含有量及び珪素含有量
がこの範囲外の試料では、平均放電電圧が0.6V(対
金属リチウム)以下になる可能性があるが、放電容量が
500Ah/kg以上の特性は実現されない。さらに上
記に示す有機珪素化合物と炭素前駆体を使用しない場
合、このような充放電特性が実現されない。また、本発
明の複合電極材料は、金属リチウムを対極として充放電
を行わせた時の放電において、dX/dV(X:放電容
量、V:放電電圧)を放電電圧Vに対してプロットした
グラフ中、0.5V付近にピークを有しない。この0.
5V付近のピークは、金属珪素あるいはSiOを含む黒
鉛−炭素複合材において観察されるもので、このような
複合材を負極材料として用いた場合、サイクルに伴う放
電容量の低下が大きくなる。
In addition, X-ray photoelectron spectroscopy (XPS)
The 2P spectrum shows one peak around 102.5 to 107.5 (eV). Such a peak cannot be obtained when silicon powder is mixed with a composite of carbon and graphite, and is a feature of the present invention. The composite electrode material of the present invention has a discharge capacity of 500 Ah / kg or more and an average discharge voltage of 0.6.
It shows charge / discharge characteristics of V (vs. metallic lithium) or less. Such properties are achieved by the silicon composite electrode material containing 15 to 50 wt% graphite particles consist graphite particles and amorphous carbon containing 40 to 80 wt% in terms of SiO 2. However, in a sample in which the content of graphite particles and the content of silicon are out of these ranges, the average discharge voltage may be 0.6 V (vs. lithium metal) or less. Not realized. Further, when the organic silicon compound and the carbon precursor shown above are not used, such charge / discharge characteristics cannot be realized. Further, the composite electrode material of the present invention is a graph in which dX / dV (X: discharge capacity, V: discharge voltage) is plotted with respect to discharge voltage V in discharge when charging and discharging are performed using metallic lithium as a counter electrode. Medium, no peak around 0.5V. This 0.
The peak around 5 V is observed in a graphite-carbon composite material containing metallic silicon or SiO. When such a composite material is used as a negative electrode material, the decrease in discharge capacity accompanying a cycle becomes large.

【0026】得られた黒鉛質粒子と有機珪素化合物及び
炭素前駆体有機高分子化合物の混合物を900〜140
0℃、非酸化性雰囲気中で加熱する。炭素化温度が90
0℃未満では不可逆容量が大きくなる傾向がある。一
方、炭素化温度が1500℃を超えると、有機珪素化合
物分解生成物と炭素及び/或いは黒鉛質粒子との反応が
激しく起こり、広角X線回折図には炭化珪素の回折線が
認められるようになり、電極材料として用いた場合、放
電容量が著しく低下する傾向がある。炭素化の際の非酸
化性雰囲気としては、窒素雰囲気、不活性雰囲気、真空
雰囲気等が使用できる。得られた複合電極材料を公知の
機械的粉砕装置を用いて解砕、更に分級することができ
る。得られた複合電極材料の平均粒子径は1〜60μm
の範囲とすることが好ましい。平均粒子径が60μmを
超えると電極表面に凸凹が発生し易くなり、好ましくな
く、一方平均粒子径が1μmを下回る場合、不可逆容量
が大きくなるため好ましくない。
A mixture of the obtained graphitic particles, an organic silicon compound and a carbon precursor organic high molecular compound was used in an amount of 900 to 140.
Heat at 0 ° C. in a non-oxidizing atmosphere. Carbonization temperature of 90
Below 0 ° C., the irreversible capacity tends to increase. On the other hand, when the carbonization temperature exceeds 1500 ° C., the reaction between the decomposition product of the organosilicon compound and the carbon and / or graphitic particles occurs violently, and the wide-angle X-ray diffraction diagram shows that the diffraction line of silicon carbide is recognized. When used as an electrode material, the discharge capacity tends to be significantly reduced. As the non-oxidizing atmosphere at the time of carbonization, a nitrogen atmosphere, an inert atmosphere, a vacuum atmosphere, or the like can be used. The obtained composite electrode material can be crushed and classified using a known mechanical crushing device. The average particle diameter of the obtained composite electrode material is 1 to 60 μm.
It is preferable to be within the range. If the average particle diameter exceeds 60 μm, irregularities are likely to be generated on the electrode surface, which is not preferable. On the other hand, if the average particle diameter is less than 1 μm, the irreversible capacity increases, which is not preferable.

【0027】本発明の複合電極材料は、例えば以下のよ
うにしてリチウムイオン二次電池用電極とすることがで
きる。
The composite electrode material of the present invention can be used as an electrode for a lithium ion secondary battery, for example, as follows.

【0028】本発明の複合電極材料は、有機高分子結着
剤と混合し、次いで電極の形状に成形される。有機高分
子結着剤としては、ポリエチレン、ポリプロピレン、ポ
リエチレンテレフタレート、芳香族ポリアミド、芳香族
ポリイミド、セルロース、ポリ弗化ビニリデン、ポリテ
トラフルオロエチレン、テトラフルオロエチレンを含む
共重合フッ素ポリマーなどの樹枝状高分子材料、スチレ
ン・ブタジエンゴム、イソプレンゴム、ブタジエンゴ
ム、エチレン・プロピレンゴム等のゴム状高分子材料、
エチレン・酢酸ビニル共重合体、プロピレン・α−オレ
フィン共重合体等の軟質樹枝状高分子材料、ポリエチレ
ンオキサイド、ポリプロピレンオキサイド、ポリエピク
ロロヒドリン、ポリファゼン、ポリ弗化ビニリデン、ポ
リアクリロニトリル等の有機高分子材料にリチウム塩又
はリチウムを主体とするアルカリ金属塩を複合化した系
等のイオン導電性高分子材料を用いることができる。こ
れらの有機高分子結着剤の他に、粘度調整剤としてカル
ボキシメチルセルロース、ポリアクリル酸ソーダ、その
他のアクリル系ポリマー等を添加しても良い。これらの
有機高分子結着剤と本発明の複合電極材料との混合割合
は、複合電極材料100重量部に対して結着剤が0.1
〜30重量部、より好ましくは0.5〜20重量部、さ
らに好ましくは1〜15重量部である。
The composite electrode material of the present invention is mixed with an organic polymer binder and then formed into an electrode shape. Organic polymer binders include dendritic polymers such as polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, aromatic polyimide, cellulose, polyvinylidene fluoride, polytetrafluoroethylene, and copolymerized fluoropolymers including tetrafluoroethylene. Molecular materials, styrene-butadiene rubber, isoprene rubber, butadiene rubber, rubber-like polymer materials such as ethylene-propylene rubber,
Soft dendritic polymer materials such as ethylene / vinyl acetate copolymer and propylene / α-olefin copolymer, and organic high-density materials such as polyethylene oxide, polypropylene oxide, polyepichlorohydrin, polyphazene, polyvinylidene fluoride, and polyacrylonitrile. An ion conductive polymer material such as a system in which a lithium salt or a lithium-based alkali metal salt is complexed with a molecular material can be used. In addition to these organic polymer binders, carboxymethyl cellulose, sodium polyacrylate, other acrylic polymers and the like may be added as a viscosity modifier. The mixing ratio of the organic polymer binder and the composite electrode material of the present invention was such that the binder was 0.1 parts by weight with respect to 100 parts by weight of the composite electrode material.
The amount is from 30 to 30 parts by weight, more preferably from 0.5 to 20 parts by weight, even more preferably from 1 to 15 parts by weight.

【0029】本発明の複合電極材料粉末を上記の有機高
分子結着剤と混合し、そのままロール成形、圧縮成形な
どの方法で電極の形状に成形して、電極成形体を作製す
ることができる。電極成形体における電極合材のかさ密
度は、1.2〜1.7×10 kg/mであることが
好ましい。かさ密度が1.2×10kg/m未満の
場合は充放電サイクル経過に伴う放電容量の低下が大き
くなる傾向が見られる。一方、かさ密度が1.7×10
kg/mを超える場合には、電極合材中の電解液の
浸透に長時間を要する、成形時に集電体に切れが発生し
やすくなる等の問題が生じ好ましくない。また、本発明
の複合電極材料粉末と上記の有機高分子結着剤の混合物
を溶媒中に分散させ、スラリーとし、これを金属製の集
電体等に塗布しても良い。集電体金属としては、圧延銅
箔、電解銅箔、パンチング銅箔、ニッケル箔等が用いら
れる。電極成形体の形状は、シート状、ペレット状等、
任意に設定できる。このようにして得られた電極成形体
を用いて電池を組み立てるが、これに先立って或いは組
み立ての際に活物質であるリチウム金属を電極成形体に
担持させることができる。これにより初回充電時の不可
逆容量が大幅に低減できる。この担持方法としては化学
的方法、物理的方法、電気科学的方法があり、例えばリ
チウムイオン含有電解液に電極成形体を浸漬し、対極に
金属リチウムを用いて電気含浸する方法、電極成形体作
製時に金属リチウム粉末を混合する方法、金属リチウム
と電極成形体を電気的に接触させる方法等がある。
The composite electrode material powder of the present invention is prepared using the above organic high
Mix with molecular binder, roll forming, compression molding
What method is used to form the electrode
Can be Density of electrode mixture in electrode compact
The degree is 1.2-1.7 × 10 3kg / m3That it is
preferable. Bulk density is 1.2 × 103kg / m3Less than
In this case, the discharge capacity greatly decreases with the progress
There is a tendency to be. On the other hand, the bulk density is 1.7 × 10
3kg / m3Exceeds the electrolyte solution in the electrode mixture.
It takes a long time to penetrate.
This is not preferred because of problems such as increased ease of use. In addition, the present invention
Of the composite electrode material powder and the organic polymer binder described above
Is dispersed in a solvent to form a slurry.
It may be applied to an electric body or the like. Rolled copper as the current collector metal
Foil, electrolytic copper foil, punched copper foil, nickel foil, etc.
It is. The shape of the electrode molded body is a sheet shape, a pellet shape, etc.
Can be set arbitrarily. Electrode molded body thus obtained
Assemble the battery using
At the time of vertical setting, lithium metal, which is the active material, is
It can be carried. This makes it impossible at the time of first charging
The reverse capacity can be greatly reduced. This loading method is chemical
Methods, physical methods, and electrochemical methods.
Immerse the electrode compact in an electrolyte containing t
Method of electro-impregnation using lithium metal, electrode molding
Method of mixing metallic lithium powder during production, metallic lithium
And an electrode molded body are electrically contacted.

【0030】以上のようにして作製された電極成形体
は、セパレータを介して正極と対向して配置され、リチ
ウム二次電池を構成する。
The electrode formed body manufactured as described above is disposed so as to face the positive electrode with the separator interposed therebetween, and forms a lithium secondary battery.

【0031】正極材料としては、特に限定しないが、例
えばバナジウム酸化物、バナジウム硫化物、モリブデン
酸化物、モリブデン硫化物、マンガン酸化物、マンガン
硫化物、クロム酸化物、チタン酸化物、チタン硫化物、
これらの複合酸化物、複合硫化物等の金属カルコゲン化
合物、リチウムコバルト酸化物(LiCoO)、リチ
ウムニッケル酸化物(LiNiO)、リチウムマンガ
ン酸化物(LiMn、LiMnO)、リチウム
ニッケルコバルト酸化物{LiNiCo 1−y)
}等の複合酸化物、これらに他の金属元素(Al、
Fe、Mn、Mg、Co等)を添加した複合酸化物等を
用いることができる。また、ポリアニリン、ポリピロー
ル等の導電性ポリマーを用いることもできる。
The material of the positive electrode is not particularly limited. For example, vanadium oxide, vanadium sulfide, molybdenum oxide, molybdenum sulfide, manganese oxide, manganese sulfide, chromium oxide, titanium oxide, titanium sulfide,
Metal chalcogen compounds such as composite oxides and composite sulfides, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganese oxide (LiMn 2 O 4 , LiMnO 3 ), lithium nickel cobalt Oxide @Li x Ni y Co ( 1-y)
Composite oxides such as O 2 、, and other metal elements (Al,
A composite oxide or the like to which Fe, Mn, Mg, Co, or the like is added can be used. Further, a conductive polymer such as polyaniline or polypyrrole can also be used.

【0032】電解液としては、非水系溶媒に電解質とな
るリチウム塩を溶解したものを用いる。電解質として
は、LiClO、LiPF、LiAsF、LiB
、LiSOCF、LiN(SOCF
のリチウム金属塩、テトラアルキルアンモニウム塩等を
用いることができる。リチウム塩の濃度は0.2〜2m
ol/lが好ましく、より好ましくは0.3〜1.9m
ol/lである。非水系溶媒としては、プロピレンカー
ボネート、エチレンカーボネート、ブチレンカーボネー
ト、ビニレンカーボネート、γ−ブチロラクトン等の環
状エステル類、ジエチルカーボネート等の鎖状エステル
類、メチルエチルケトン等のケトン類、1,2−ジメト
キシエタン、ジオキソラン、テトラヒドロフラン、1,
2−ジメチルテトラヒドロフラン、クラウンエーテル等
のエーテル類を用いることができる。また、上記塩類を
ポリエチレンオキサイド、ポリホスファゼン、ポリアジ
リジン、ポリアクリロニトリル、ポリエチレンスルフィ
ド等やこれらの誘導体、混合物、複合体等に混合された
固体電解質を用いこと事もできる。この場合、固体電解
質はセパレータも兼ねることができ、セパレータは不要
となる、
As the electrolytic solution, a solution in which a lithium salt serving as an electrolyte is dissolved in a non-aqueous solvent is used. As the electrolyte, LiClO 4, LiPF 6, LiAsF 6, LiB
A lithium metal salt such as F 4 , LiSO 3 CF 3 , and LiN (SO 2 CF 3 ) 2 , a tetraalkylammonium salt, and the like can be used. The concentration of lithium salt is 0.2-2m
ol / l is preferable, and more preferably 0.3 to 1.9 m
ol / l. Non-aqueous solvents include propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, cyclic esters such as γ-butyrolactone, chain esters such as diethyl carbonate, ketones such as methyl ethyl ketone, 1,2-dimethoxyethane, dioxolane , Tetrahydrofuran, 1,
Ethers such as 2-dimethyltetrahydrofuran and crown ether can be used. Further, a solid electrolyte in which the above salts are mixed with polyethylene oxide, polyphosphazene, polyaziridine, polyacrylonitrile, polyethylene sulfide or the like, or a derivative, mixture, or composite thereof can also be used. In this case, the solid electrolyte can also serve as a separator, and the separator is not required.

【0033】負極と正極を分離し、電解液を保持するセ
パレータとしては、ポリエチレン、ポリプロピレン、ポ
リプロピレン/ポリプロピレン複合系、ポリプロピレン
/フッ素樹脂複合系等の微多孔質膜、不織布等を使用す
ることができる。
As the separator for separating the negative electrode and the positive electrode and holding the electrolyte, a microporous membrane such as polyethylene, polypropylene, a polypropylene / polypropylene composite system, a polypropylene / fluororesin composite system, a nonwoven fabric, or the like can be used. .

【0034】[0034]

【実施例】以下、実施例を用いて本発明を更に説明する
が、本発明はこれに限定されるものではない。
EXAMPLES The present invention will be further described below with reference to examples, but the present invention is not limited to these examples.

【0035】実施例1 フラン樹脂(VF303 日立化成工業(株)製、液
状)1.2kgとテトラメトキシシラン部分縮重合物
(M−シリケート51 多摩化学工業(株)製、液状)
2.4kgを混合した。次いで、混合器に黒鉛質粒子
(平均粒子径:約5.7μm、性状:凸凹状の楕円形、
平均粒径(50%径):約0.7μm KS6TIME
X製)0.6kgを入れた後、上記の混合物を加えて、
一時間おきに50℃、60℃、70℃、80℃、100
℃、120℃と温度を上げながら混合した。得られた複
合体粉末を空気中、3℃/minの速度で250℃まで
昇温し、1時間保持した。次いで、窒素気流中、20℃
/時間の速度で900℃まで昇温し、1時間保持して炭
素前駆体(フラン樹脂)、有機珪素化合物(テトラメト
キシシラン部分縮重合物)を炭素化、分解して、黒鉛質
粒子、非晶質炭素及び珪素を含有する複合体を得た。さ
らに、窒素雰囲気で1300℃、1時間焼成した。これ
をカッターミルで解砕し、200mesh以下の複合体
粉末とした。得られた複合体粉末(複合電極材料)につ
いて、蛍光X線分析により珪素含有量を測定したとこ
ろ、52重量%であった。また、黒鉛含有量は26重量
%であった。複合体粉末の物性は、かさ密度0.87×
10kg/m、タップ密度1.31×10kg/
、真密度1.96×10kg/m、比表面積
3.5×10/kgであった。
Example 1 1.2 kg of a furan resin (VF303, manufactured by Hitachi Chemical Co., Ltd., liquid) and a partially condensed polymer of tetramethoxysilane (M-silicate 51, manufactured by Tama Chemical Industry Co., Ltd., liquid)
2.4 kg were mixed. Next, the graphite particles (average particle diameter: about 5.7 μm, properties: uneven ellipsoid,
Average particle size (50% diameter): about 0.7 μm KS6TIME
X)), and after adding 0.6 kg, the above mixture was added.
50 ° C, 60 ° C, 70 ° C, 80 ° C, 100
C. and 120.degree. C. while increasing the temperature. The obtained composite powder was heated in the air to 250 ° C. at a rate of 3 ° C./min and kept for 1 hour. Then, at 20 ° C in a nitrogen stream.
The temperature was raised to 900 ° C. at a rate of / hour, and the temperature was maintained for 1 hour to carbonize and decompose the carbon precursor (furan resin) and the organosilicon compound (tetramethoxysilane partially condensed polymerized product). A composite containing crystalline carbon and silicon was obtained. Further, firing was performed at 1300 ° C. for 1 hour in a nitrogen atmosphere. This was crushed by a cutter mill to obtain a composite powder of 200 mesh or less. When the silicon content of the obtained composite powder (composite electrode material) was measured by fluorescent X-ray analysis, it was 52% by weight. The graphite content was 26% by weight. The physical properties of the composite powder are bulk density 0.87x
10 3 kg / m 3 , tap density 1.31 × 10 3 kg /
m 3 , true density 1.96 × 10 3 kg / m 3 , specific surface area 3.5 × 10 3 m 2 / kg.

【0036】実施例2 フラン樹脂0.8kg、テトラメトキシシラン部分縮重
合物2.4kg、黒鉛質粒子0.4kgを実施例1と同
様にして複合体粉末を作製した。得られた複合体粉末の
珪素含有量は61重量%、黒鉛含有量は21重量%であ
った。複合体粉末の物性は、かさ密度0.58×10
kg/m、タップ密度1.18×10kg/m
真密度2.02×10kg/m、比表面積4.4×
10/kgであった。
Example 2 A composite powder was prepared in the same manner as in Example 1 except that 0.8 kg of a furan resin, 2.4 kg of a partially condensed polymer of tetramethoxysilane, and 0.4 kg of graphite particles were used. The obtained composite powder had a silicon content of 61% by weight and a graphite content of 21% by weight. The physical properties of the composite powder are as follows: bulk density 0.58 × 10 3
kg / m 3 , tap density 1.18 × 10 3 kg / m 3 ,
True density 2.02 × 10 3 kg / m 3 , specific surface area 4.4 ×
It was 10 3 m 2 / kg.

【0037】実施例3 フラン樹脂0.4kg、テトラメトキシシラン部分縮重
合物2.4kg、黒鉛質粒子0.2kgを実施例1と同
様にして複合体粉末を作製した。得られた複合体粉末の
珪素含有量は76重量%、黒鉛含有量は13重量%であ
った。複合体粉末の物性は、かさ密度0.66×10
kg/m、タップ密度1.23×10kg/m
真密度2.16×10kg/m、比表面積4.2×
10/kgであった。
Example 3 A composite powder was prepared in the same manner as in Example 1 except that 0.4 kg of a furan resin, 2.4 kg of a partially condensed polymer of tetramethoxysilane, and 0.2 kg of graphite particles were used. The obtained composite powder had a silicon content of 76% by weight and a graphite content of 13% by weight. The physical properties of the composite powder are as follows: bulk density: 0.66 × 10 3
kg / m 3 , tap density 1.23 × 10 3 kg / m 3 ,
True density 2.16 × 10 3 kg / m 3 , specific surface area 4.2 ×
It was 10 3 m 2 / kg.

【0038】実施例4 フラン樹脂1.2kg、テトラメトキシシラン部分縮重
合物2.1kg、黒鉛質粒子0.6kgを実施例1と同
様にして複合体粉末を作製した。得られた複合体粉末の
珪素含有量は70重量%、黒鉛含有量は28重量%であ
った。複合体粉末の物性は、かさ密度0.48×10
kg/m、タップ密度0.94×10kg/m
真密度1.82×10kg/m、比表面積3.7×
10/kgであった。
Example 4 A composite powder was prepared in the same manner as in Example 1 except that 1.2 kg of a furan resin, 2.1 kg of a partially condensed tetramethoxysilane polymer, and 0.6 kg of graphite particles were used. The obtained composite powder had a silicon content of 70% by weight and a graphite content of 28% by weight. The physical properties of the composite powder are as follows: bulk density 0.48 × 10 3
kg / m 3 , tap density 0.94 × 10 3 kg / m 3 ,
True density 1.82 × 10 3 kg / m 3 , specific surface area 3.7 ×
It was 10 3 m 2 / kg.

【0039】比較例1 珪素化合物であるテトラメトキシシラン部分縮重合物を
用いずにフラン樹脂1.96kgと黒鉛質粒子0.98
kgで実施例1と同様にして複合体粉末を作製した。得
られた複合体粉末の珪素含有量は、珪素化合物を含まな
いので0重量%である。黒鉛含有量は56重量%であ
る。複合体粉末の物性は、かさ密度0.30×10
g/m、タップ密度0.92×10kg/m、真
密度1.51×10kg/m、比表面積5.2×1
/kgであった。
Comparative Example 1 1.96 kg of a furan resin and 0.98 of graphitic particles were used without using a tetramethoxysilane partial condensation polymer as a silicon compound.
A composite powder was produced in the same manner as in Example 1 with kg. The silicon content of the obtained composite powder is 0% by weight because no silicon compound is contained. The graphite content is 56% by weight. The physical properties of the composite powder are as follows: bulk density: 0.30 × 10 3 k
g / m 3 , tap density 0.92 × 10 3 kg / m 3 , true density 1.51 × 10 3 kg / m 3 , specific surface area 5.2 × 1
0 was 3 m 2 / kg.

【0040】比較例2 フラン樹脂1.0kg、テトラメトキシシラン部分縮重
合物0.2g、黒鉛質粒子1.0kgを実施例1と同様
にして複合体粉末を作製した。得られた複合体粉末の珪
素含有量は25重量%、黒鉛含有量は65重量%であっ
た。複合体粉末の物性は、かさ密度0.52×10
g/m、タップ密度1.02×10kg/m、真
密度1.72×10kg/m、比表面積8.2×1
/kgであった。
Comparative Example 2 A composite powder was prepared in the same manner as in Example 1 except that 1.0 kg of a furan resin, 0.2 g of a partially condensed polymer of tetramethoxysilane, and 1.0 kg of graphite particles were used. The silicon content of the obtained composite powder was 25% by weight, and the graphite content was 65% by weight. The physical properties of the composite powder are as follows: bulk density 0.52 × 10 3 k
g / m 3 , tap density 1.02 × 10 3 kg / m 3 , true density 1.72 × 10 3 kg / m 3 , specific surface area 8.2 × 1
0 was 3 m 2 / kg.

【0041】比較例3 フラン樹脂1.5kg、テトラメトキシシラン部分縮重
合物1.5kgを実施例1と同様にして複合体粉末を作
製した。得られた複合体粉末の珪素含有量は56重量
%、黒鉛含有量は0重量%であった。複合体粉末の物性
は、かさ密度0.74×10kg/m、タップ密度
1.15×10kg/m、真密度1.93×10
kg/m、比表面積3.2×10/kgであっ
た。
Comparative Example 3 A composite powder was prepared in the same manner as in Example 1 except that 1.5 kg of a furan resin and 1.5 kg of a partially condensed polymer of tetramethoxysilane were used. The obtained composite powder had a silicon content of 56% by weight and a graphite content of 0% by weight. The physical properties of the composite powder were as follows: bulk density 0.74 × 10 3 kg / m 3 , tap density 1.15 × 10 3 kg / m 3 , and true density 1.93 × 10 3
kg / m 3 and a specific surface area of 3.2 × 10 3 m 2 / kg.

【0042】実施例1〜4と比較例1〜3で示した複合
体粉末の充放電試験を行った。電極作製方法は、充放電
試験の方法は、得られた複合体粉末90重量%に、N−
メチル−2−ピロリドンに溶解したポリ弗化ビニリデン
を固形分で10重量%添加、混練しスラリーを作製し
た。このスラリーを厚さ10μmの圧延銅箔に塗布し、
更に乾燥した後、19.6MPa(200×10kg
f/m2)の圧力でプレスし負極とした。充放電試験方
法は、対極、参照極を金属Li、電解液を1MのLiP
を溶解した、エチレンカーボネート/ジメチルカ
ーボネート(3/7)溶液、セパレータをポリエチレン
微多孔質膜、充放電電流を0.2mA、充電をCC/C
V充電、放電をCC放電、カットオフ電圧を1.5V
(対金属Li)で行った。充放電試験の設定は、CC/
CV充電:0.2mAで0.2V(対金属Li)まで充
電後、0.2Vで電流値が0.01mAまで充電する、
CC放電:0.2mAで1.5Vまで放電する。表1に
上記に示した実施例1〜4、比較例1〜3の電極かさ密
度、1サイクル目の放電容量と充放電効率、50サイク
ル後での放電容量、平均放電電圧を示す。このように黒
鉛質粒子、有機珪素化合物、炭素前駆体の3つを複合化
し、さらに珪素含有量が40〜80重量%でないと、サ
イクル性が向上しない。また、電極かさ密度を1.5〜
1.6g/cmに上げても、高い放電容量を有し、サ
イクル性も維持できる。しかし、黒鉛質粒子、有機珪素
化合物、炭素前駆体のいずれか1つか不足する場合、又
は珪素含有量が40〜80重量%でない場合、電極かさ
蜜度、放電容量、サイクル性に問題が生じる。
The composite powders shown in Examples 1 to 4 and Comparative Examples 1 to 3 were subjected to charge / discharge tests. The electrode was prepared by a charge / discharge test method in which 90% by weight of the obtained composite powder was added to N-
Polyvinylidene fluoride dissolved in methyl-2-pyrrolidone was added at 10% by weight in solid content and kneaded to prepare a slurry. This slurry is applied to a 10 μm-thick rolled copper foil,
After further drying, 19.6 MPa (200 × 10 4 kg
f / m 2) Press to obtain a negative electrode. The charge / discharge test method is such that the counter electrode and the reference electrode are metallic Li, and the electrolytic solution is 1M LiP.
Was dissolved F 6, ethylene carbonate / dimethyl carbonate (3/7) solution, a microporous polyethylene membrane separator, charging and discharging current 0.2 mA, a charge CC / C
V charge, discharge CC discharge, cutoff voltage 1.5V
(With respect to metal Li). The charge / discharge test setting is CC /
CV charging: After charging at 0.2 mA to 0.2 V (to metal Li), charging at 0.2 V to a current value of 0.01 mA.
CC discharge: Discharge to 1.5 V at 0.2 mA. Table 1 shows the electrode bulk densities of Examples 1 to 4 and Comparative Examples 1 to 3 described above, the discharge capacity and charge / discharge efficiency in the first cycle, the discharge capacity after 50 cycles, and the average discharge voltage. As described above, unless the graphite particles, the organosilicon compound, and the carbon precursor are combined and the silicon content is not 40 to 80% by weight, the cycleability is not improved. In addition, the electrode bulk density is 1.5 to
Even when the pressure is increased to 1.6 g / cm 3 , it has a high discharge capacity and can maintain cycleability. However, if any one of the graphite particles, the organic silicon compound, and the carbon precursor is insufficient, or if the silicon content is not 40 to 80% by weight, problems occur in the electrode bulkiness, discharge capacity, and cycleability.

【0043】[0043]

【表1】 [Table 1]

【0044】実施例5、6、7 実施例1〜4の他に黒鉛質量、炭素量と珪素含有量を変
えて充放電試験を行った。複合体作製条件、充放電試験
条件は実施例1と同様である。珪素含有量に対する放電
容量の関係を図1、黒鉛含有量に対する放電容量の関係
を図2、黒鉛含有量に対する平均放電電圧の関係を図3
に示す。
Examples 5, 6, and 7 In addition to Examples 1 to 4, a charge / discharge test was conducted by changing the mass of graphite, the amount of carbon and the content of silicon. The conditions for preparing the composite and the conditions for the charge / discharge test are the same as in Example 1. FIG. 1 shows the relationship of the discharge capacity to the silicon content, FIG. 2 shows the relationship of the discharge capacity to the graphite content, and FIG. 3 shows the relationship of the average discharge voltage to the graphite content.
Shown in

【0045】放電機構解析 図4に実施例1で用いた複合体の金属Liを対極として
充放電を行わせたときの放電におけるdX/dV(X:
放電容量、V:放電電圧)を放電電圧Vに対してプロッ
トしたグラフを示す。ピークは放電電圧0.1Vと0.
3付近で得られた。また同様に図5〜7に炭素、SiO
/黒鉛/炭素複合体、金属Si/黒鉛/炭素複合体のグ
ラフをそれぞれ示す。炭素の場合、実施例1で見られた
放電電圧0.1V付近でピークを示した。しかし、Si
O又は金属Siを含んだ黒鉛炭素複合体で見られた放電
電圧0.5V付近のピークは、実施例1のグラフでは観
察されなかった。
Discharge Mechanism Analysis FIG. 4 shows dX / dV (X: X: dX) in discharge when charge / discharge was performed using metal Li of the composite used in Example 1 as a counter electrode.
4 is a graph in which discharge capacity (V: discharge voltage) is plotted against discharge voltage V. The peaks are 0.1V and 0.1V.
3 was obtained. Similarly, FIGS.
2 shows graphs of a graphite / graphite / carbon composite and a metal Si / graphite / carbon composite, respectively. In the case of carbon, it showed a peak near the discharge voltage of 0.1 V observed in Example 1. However, Si
The peak near the discharge voltage of 0.5 V observed in the graphite-carbon composite containing O or metal Si was not observed in the graph of Example 1.

【0046】XPS測定 実施例1の複合電極材料についてXPS分析を行った。
装置ならびに測定条件は、μ−XPS(島津−Krat
os製 AXIS−165) Al−Kα 30〜150
W(15kV−2〜10mA) 0.3×0.7mm 定
性スペクトルPE=160eV 定量スペクトルPE=
10ev 検出角度:90度である。このXPSのSi
2Pスペクトルを図8に示す。102.5〜107.5
(eV)付近に1つのピークを有している。
XPS Measurement The composite electrode material of Example 1 was subjected to XPS analysis.
The apparatus and measurement conditions are as follows: μ-XPS (Shimadzu-Krat)
OS AXIS-165) Al-Kα 30 to 150
W (15 kV-2 to 10 mA) 0.3 × 0.7 mm Qualitative spectrum PE = 160 eV Quantitative spectrum PE =
10ev Detection angle: 90 degrees. This XPS Si
The 2P spectrum is shown in FIG. 102.5-107.5
It has one peak near (eV).

【0047】[0047]

【発明の効果】本発明の複合電極材料は、これを電極成
形体に成形してリチウム二次電池用の電極として用いる
と、500Ah/kg以上の高い放電容量、真密度、タ
ップ密度などの特性が優れた電極となる。
According to the composite electrode material of the present invention, when the composite electrode material is formed into a molded electrode and used as an electrode for a lithium secondary battery, characteristics such as a high discharge capacity of 500 Ah / kg or more, a true density, a tap density and the like are obtained. Is an excellent electrode.

【図面の簡単な説明】[Brief description of the drawings]

【図1】珪素含有量に対する放電容量の関係を示すグラ
フ。
FIG. 1 is a graph showing a relationship between a discharge capacity and a silicon content.

【図2】黒鉛含有量に対する放電容量の関係を示すグラ
フ。
FIG. 2 is a graph showing a relationship between a graphite content and a discharge capacity.

【図3】黒鉛含有量に対する平均放電電圧の関係を示す
グラフ。
FIG. 3 is a graph showing the relationship between the graphite content and the average discharge voltage.

【図4】実施例1で用いた複合体の金属Liを対極とし
て充放電を行わせたときの放電におけるdX/dVをV
に対してプロットしたグラフ。
FIG. 4 is a graph showing that dX / dV in discharge when charging / discharging is performed using metal Li of the composite used in Example 1 as a counter electrode is V
Graph plotted against.

【図5】炭素の金属Liを対極として充放電を行わせた
ときの放電におけるdX/dVをVに対してプロットし
たグラフ。
FIG. 5 is a graph plotting dX / dV with respect to V in discharging when charging and discharging are performed using carbon metal Li as a counter electrode.

【図6】SiO/黒鉛/炭素複合体の金属Liを対極と
して充放電を行わせたときの放電におけるdX/dVを
Vに対してプロットしたグラフ。
FIG. 6 is a graph plotting dX / dV with respect to V in discharging when charging / discharging is performed using metal Li of the SiO / graphite / carbon composite as a counter electrode.

【図7】金属Si/黒鉛/炭素複合体の金属Liを対極
として充放電を行わせたときの放電におけるdX/dV
をVに対してプロットしたグラフ。
FIG. 7 shows dX / dV in discharge when charge / discharge is performed using metal Li of metal Si / graphite / carbon composite as a counter electrode.
Is a graph plotted against V.

【図8】実施例1で用いた複合体のXPSのSi2Pス
ペクトル。
FIG. 8 is an XPS Si2P spectrum of the composite used in Example 1.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AK05 AK16 AL06 AL07 AL08 AL11 AL12 AM02 AM03 AM04 AM06 AM07 CJ02 CJ08 CJ22 CJ28 DJ07 DJ18 HJ00 HJ01 HJ05 HJ07 HJ08 HJ18 HJ19 5H050 AA07 AA08 BA17 CA02 CA05 CA07 CA08 CA09 CA11 CA22 CB07 CB08 CB09 CB11 CB12 DA04 FA19 GA02 GA10 GA22 GA27 HA00 HA01 HA05 HA07 HA08 HA18 HA19  ──────────────────────────────────────────────────続 き Continued on the front page F-term (reference) 5H029 AJ03 AJ05 AK03 AK05 AK16 AL06 AL07 AL08 AL11 AL12 AM02 AM03 AM04 AM06 AM07 CJ02 CJ08 CJ22 CJ28 DJ07 DJ18 HJ00 HJ01 HJ05 HJ07 HJ08 HJ18 HJ19 CA05A07 CA08 CA11 CA22 CB07 CB08 CB09 CB11 CB12 DA04 FA19 GA02 GA10 GA22 GA27 HA00 HA01 HA05 HA07 HA08 HA18 HA19

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛質粒子、非晶質炭素及び珪素を含有
してなり、SiO換算での珪素含有量が40〜80重
量%であり、真密度が1.8×10kg/m以上、
タップ密度が0.8×10kg/m以上、比表面積
が8×10/kg以下であることを特徴とする複
合電極材料。
1. The composition contains graphite particles, amorphous carbon and silicon, has a silicon content of 40 to 80% by weight in terms of SiO 2 , and has a true density of 1.8 × 10 3 kg / m. 3 or more,
A composite electrode material having a tap density of 0.8 × 10 3 kg / m 3 or more and a specific surface area of 8 × 10 3 m 2 / kg or less.
【請求項2】 XPSのSi2Pスペクトルにおいて、
102.5〜107.5(eV)付近に一つのピークを
有する請求項1記載の複合電極材料。
2. In the Si2P spectrum of XPS,
The composite electrode material according to claim 1, which has one peak around 102.5 to 107.5 (eV).
【請求項3】 黒鉛質粒子含有量が15〜50重量%の
とき、金属リチウムを対極として充放電を行わせたとき
の放電容量が500Ah/kg以上、平均放電電圧が
0.6V(対金属リチウム)以下である請求項1記載の
複合電極材料。
3. When the content of graphite particles is 15 to 50% by weight, the discharge capacity is 500 Ah / kg or more and the average discharge voltage is 0.6 V (for metal) when charging / discharging is performed using metallic lithium as a counter electrode. 2. The composite electrode material according to claim 1, which is lithium or less.
【請求項4】 金属リチウムを対極として充放電を行わ
せたときの放電において、dX/dV(X:放電容量、
V:放電電圧)を放電電圧Vに対してプロットしたグラ
フ中、0.5V付近にピークを有しない請求項1記載の
複合電極材料。
4. In discharging when charging / discharging is performed using metallic lithium as a counter electrode, dX / dV (X: discharge capacity,
2. The composite electrode material according to claim 1, wherein the composite electrode material does not have a peak around 0.5 V in a graph in which (V: discharge voltage) is plotted against the discharge voltage V.
【請求項5】 平均粒子径10μm以下の黒鉛質粒子と
有機珪素化合物と炭素前駆体有機高分子化合物とを混合
し、非酸化性雰囲気中で加熱することを特徴とする複合
電極材料の製造方法。
5. A method for producing a composite electrode material, comprising mixing graphite particles having an average particle diameter of 10 μm or less, an organosilicon compound and a carbon precursor organic polymer compound, and heating in a non-oxidizing atmosphere. .
【請求項6】 請求項1〜4何れか記載の複合電極材料
を含む電極合材を成形してなり、電極合材のかさ密度が
1.2〜1.7×10kg/mであるリチウムイオ
ン二次電池用負極。
6. An electrode mixture containing the composite electrode material according to claim 1, wherein the electrode mixture has a bulk density of 1.2 to 1.7 × 10 3 kg / m 3 . A negative electrode for a lithium ion secondary battery.
【請求項7】 請求項1〜4何れか記載の複合電極材料
を含む電極合材を負極集電体に塗布してなり、電極合材
のかさ密度が1.2〜1.7×10kg/mである
リチウムイオン二次電池用負極。
7. An electrode mixture comprising the composite electrode material according to claim 1 applied to a negative electrode current collector, wherein the electrode mixture has a bulk density of 1.2 to 1.7 × 10 3. kg / m 3 of a negative electrode for a lithium ion secondary battery.
【請求項8】 請求項6又は7記載の負極を用いたリチ
ウムイオン二次電池。
8. A lithium ion secondary battery using the negative electrode according to claim 6.
JP2001025426A 2001-02-01 2001-02-01 Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery Pending JP2002231225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001025426A JP2002231225A (en) 2001-02-01 2001-02-01 Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001025426A JP2002231225A (en) 2001-02-01 2001-02-01 Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2002231225A true JP2002231225A (en) 2002-08-16

Family

ID=18890418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001025426A Pending JP2002231225A (en) 2001-02-01 2001-02-01 Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2002231225A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048706A (en) * 2001-08-02 2003-02-21 Sumitomo Bakelite Co Ltd Raw material for carbon material and carbon material obtained by using the same
JP2003089511A (en) * 2001-09-12 2003-03-28 Sumitomo Bakelite Co Ltd Method for producing carbon material
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005123175A (en) * 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2005135925A (en) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
JP2005235589A (en) * 2004-02-19 2005-09-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006269110A (en) * 2005-03-22 2006-10-05 Jfe Chemical Corp Metal-graphite composite particle, cathode material for lithium ion secondary battery, cathode, and the lithium ion secondary battery
JP2007220411A (en) * 2006-02-15 2007-08-30 Kuraray Co Ltd Complex and its manufacturing method, as well as electrode material for power storage device
CN100414743C (en) * 2002-05-08 2008-08-27 株式会社杰士汤浅 Nonaqueous electrolyte secondary cell
WO2012120574A1 (en) 2011-03-08 2012-09-13 株式会社豊田自動織機 Negative-electrode mixture and negative electrode for use in secondary battery, and secondary battery
CN104425796A (en) * 2013-08-19 2015-03-18 Jsr株式会社 Production process for electrode material, electrode and electric storage device
WO2015159935A1 (en) * 2014-04-16 2015-10-22 昭和電工株式会社 Negative electrode material for lithium-ion battery, and use therefor
KR20160088942A (en) 2012-07-03 2016-07-26 제이에프이 케미칼 가부시키가이샤 Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries using same, and lithium ion secondary battery
WO2019031597A1 (en) 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
WO2020017378A1 (en) * 2018-07-19 2020-01-23 株式会社Adeka Nonaqueous electrolyte secondary battery
JP2021008372A (en) * 2019-06-28 2021-01-28 三菱鉛筆株式会社 Glassy carbon molded product
US11450853B2 (en) 2013-11-27 2022-09-20 Mitsubishi Chemical Corporation Carbon material for negative electrode of non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US11515537B2 (en) 2017-11-22 2022-11-29 Gs Yuasa International Ltd. Energy storage device and energy storage apparatus

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003048706A (en) * 2001-08-02 2003-02-21 Sumitomo Bakelite Co Ltd Raw material for carbon material and carbon material obtained by using the same
JP2003089511A (en) * 2001-09-12 2003-03-28 Sumitomo Bakelite Co Ltd Method for producing carbon material
JP2005135925A (en) * 2002-02-07 2005-05-26 Hitachi Maxell Ltd Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
US10038186B2 (en) 2002-05-08 2018-07-31 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
CN100414743C (en) * 2002-05-08 2008-08-27 株式会社杰士汤浅 Nonaqueous electrolyte secondary cell
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005123175A (en) * 2003-09-26 2005-05-12 Jfe Chemical Corp Composite particle, manufacturing method of the same, negative electrode material and negative electrode for lithium-ion secondary battery, and the lithium-ion secondary battery
JP2005235589A (en) * 2004-02-19 2005-09-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006269110A (en) * 2005-03-22 2006-10-05 Jfe Chemical Corp Metal-graphite composite particle, cathode material for lithium ion secondary battery, cathode, and the lithium ion secondary battery
JP2007220411A (en) * 2006-02-15 2007-08-30 Kuraray Co Ltd Complex and its manufacturing method, as well as electrode material for power storage device
WO2012120574A1 (en) 2011-03-08 2012-09-13 株式会社豊田自動織機 Negative-electrode mixture and negative electrode for use in secondary battery, and secondary battery
KR20160088942A (en) 2012-07-03 2016-07-26 제이에프이 케미칼 가부시키가이샤 Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries using same, and lithium ion secondary battery
US9543079B2 (en) 2013-08-19 2017-01-10 Jsr Corporation Production process for electrode material, electrode and electric storage device
CN104425796A (en) * 2013-08-19 2015-03-18 Jsr株式会社 Production process for electrode material, electrode and electric storage device
US11450853B2 (en) 2013-11-27 2022-09-20 Mitsubishi Chemical Corporation Carbon material for negative electrode of non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP5956690B2 (en) * 2014-04-16 2016-07-27 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
JPWO2015159935A1 (en) * 2014-04-16 2017-04-13 昭和電工株式会社 Negative electrode material for lithium ion battery and its use
KR20160126017A (en) 2014-04-16 2016-11-01 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium-ion battery, and use therefor
US10164257B2 (en) 2014-04-16 2018-12-25 Showa Denko K.K. Negative electrode material for lithium-ion battery, and use therefor
WO2015159935A1 (en) * 2014-04-16 2015-10-22 昭和電工株式会社 Negative electrode material for lithium-ion battery, and use therefor
WO2019031597A1 (en) 2017-08-10 2019-02-14 昭和電工株式会社 Lithium ion secondary battery negative electrode material and lithium ion secondary battery
KR20190132545A (en) 2017-08-10 2019-11-27 쇼와 덴코 가부시키가이샤 Negative electrode material and lithium ion secondary battery for lithium ion secondary battery
US11515537B2 (en) 2017-11-22 2022-11-29 Gs Yuasa International Ltd. Energy storage device and energy storage apparatus
WO2020017378A1 (en) * 2018-07-19 2020-01-23 株式会社Adeka Nonaqueous electrolyte secondary battery
JP2021008372A (en) * 2019-06-28 2021-01-28 三菱鉛筆株式会社 Glassy carbon molded product

Similar Documents

Publication Publication Date Title
JP4450192B2 (en) Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery
WO2007000982A1 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
JP2002231225A (en) Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP6961948B2 (en) Composite active material for silicon-based lithium secondary batteries and its manufacturing method
KR101572364B1 (en) Carbon-silicon composite and negative electrode for lithium secondary battery and lithium secondary battery using the same
JP2006312578A (en) Graphite material and its manufacturing method, negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell and lithium ion secondary cell
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
JP2000203818A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP6961980B2 (en) Composite active material for lithium secondary battery and its manufacturing method
TW202105807A (en) Silicon nanoparticles, active material used for negative electrode of non-aqueous secondary battery and using the same, and secondary battery characterized in that the silicon nanoparticles can greatly contribute to the performance improvement of negative electrode active material
JP2013225471A (en) Cathode active material for secondary battery and method for producing the same
WO2021157459A1 (en) Secondary-battery negative-electrode active material, negative electrode, and secondary battery
JP2018006270A (en) Graphite carbon material for lithium ion secondary battery negative electrode, method for manufacturing the same, and negative electrode or battery arranged by use thereof
JP2017134937A (en) Composite active material for lithium secondary battery and method of producing the same
JP2019175851A (en) Negative electrode active material for lithium ion secondary batteries and manufacturing method therefor
TW201935748A (en) Composite active material for lithium secondary cell and method for manufacturing same
JP2001345100A (en) Carbonaceous particles for negative electrode of lithium secondary cell, preparation process thereof, negative electrode for lithium secondary cell and lithium secondary cell
JP4542352B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2007173156A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6739142B2 (en) Negative electrode active material for lithium ion secondary battery and method for producing the same
JP5551883B2 (en) Method for producing mesophase microspheres and carbon material, and lithium ion secondary battery
JP2017050204A (en) Positive electrode material for nonaqueous electrolyte secondary batteries, method for manufacturing the same and nonaqueous electrolyte secondary battery
JP2018170247A (en) Composite active material for lithium secondary battery and manufacturing method thereof
WO2020110942A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery