JP2003292307A - Ferrous phosphate hydrate crystal, production method therefor, and method for producing lithium/iron/ phosphorus-based complex oxide - Google Patents

Ferrous phosphate hydrate crystal, production method therefor, and method for producing lithium/iron/ phosphorus-based complex oxide

Info

Publication number
JP2003292307A
JP2003292307A JP2002379425A JP2002379425A JP2003292307A JP 2003292307 A JP2003292307 A JP 2003292307A JP 2002379425 A JP2002379425 A JP 2002379425A JP 2002379425 A JP2002379425 A JP 2002379425A JP 2003292307 A JP2003292307 A JP 2003292307A
Authority
JP
Japan
Prior art keywords
lithium
ferrous phosphate
ferrous
phosphate hydrate
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002379425A
Other languages
Japanese (ja)
Other versions
JP4180363B2 (en
Inventor
Masayuki Kinoshita
真之 木下
Yasuhiro Nakaoka
泰裕 仲岡
Nobuyuki Yamazaki
信幸 山崎
Katsuyuki Negishi
克幸 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2002379425A priority Critical patent/JP4180363B2/en
Priority to CNB031020941A priority patent/CN1299979C/en
Priority to KR1020030006177A priority patent/KR100898236B1/en
Publication of JP2003292307A publication Critical patent/JP2003292307A/en
Application granted granted Critical
Publication of JP4180363B2 publication Critical patent/JP4180363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To prepare a fine ferrous phosphate hydrate crystal excellent in processability and suitable as a raw material for producing a functional inorganic material, particularly that for LiFePO<SB>4</SB>or LiFeMePO<SB>4</SB>(Me is at least one metal element selected from Mn, Co, Ni and Al) to be used for the positive material of a lithium secondary battery, and to provide a method for industrially advantageously producing the above crystal in a high yield and a production method for a lithium/iron/phosphorus-based complex oxide using the crystal. <P>SOLUTION: The ferrous phosphate hydrate crystal is represented by the formula: Fe<SB>3</SB>(PO<SB>4</SB>)<SB>2</SB>/8H<SB>2</SB>O and has an average particle size of 5 μm or less. It is preferable that the crystal has a half value width of a diffraction peak in a lattice place (020 plane) obtained by an X-ray diffraction analysis of ≥0.20°. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、機能性無機材料の
製造原料の用途、特に、リチウム二次電池の正極活物質
で用いるLiFePO4又はLiFeMePO4(Me
は、Mn、Co、Ni、Alから選ばれる少なくとも1
種以上の金属元素を示す。)の製造原料として有用なリ
ン酸第一鉄含水塩結晶、その製造方法及びこれを用いた
リチウム鉄リン系複合酸化物の製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the use of a raw material for producing a functional inorganic material, particularly LiFePO 4 or LiFeMePO 4 (Me) used as a positive electrode active material of a lithium secondary battery.
Is at least 1 selected from Mn, Co, Ni and Al
Indicates a metal element of at least one species. 1) a ferrous phosphate hydrate salt crystal useful as a starting material, a method for producing the same, and a method for producing a lithium iron phosphorus-based composite oxide using the same.

【0002】[0002]

【従来の技術】近年、家庭電器においてポータブル化、
コードレス化が急速に進むに従い、ラップトップ型パソ
コン、携帯電話、ビデオカメラ等の小型電子機器の電源
としてリチウムイオン二次電池が実用化されている。こ
のリチウムイオン二次電池については、1980年に水
島等によりコバルト酸リチウムがリチウムイオン二次電
池の正極活物質として有用であるとの報告(「マテリア
ル リサーチブレティン」vol15,P783-789(1980)〕がな
されて以来、コバルト酸リチウムに関する研究開発が活
発に進められており、これまで多くの提案がなされてい
る。しかしながら、Coは地球上に偏在し、希少な資源
であるため、コバルト酸リチウムに代わる新たな正極活
物質として、例えば、LiNiO2、LiMn24、L
iFeO2、LiFePO4等の開発が進められている。
2. Description of the Related Art In recent years, portable electric appliances have been made portable.
With the rapid progress of cordless technology, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium-ion secondary battery, it was reported by Mizushima et al. In 1980 that lithium cobalt oxide was useful as a positive electrode active material for the lithium-ion secondary battery (“Material Research Bulletin” vol 15, P783-789 (1980)). Since then, research and development on lithium cobalt oxide have been actively promoted, and many proposals have been made so far.However, since Co is unevenly distributed on the earth and is a scarce resource, As a new positive electrode active material to replace, for example, LiNiO 2 , LiMn 2 O 4 , L
Development of iFeO 2 , LiFePO 4, etc. is underway.

【0003】中でもLiFePO4は、体積密度が3.
6g/cm3と大きく、3.4Vの高電位を発生し、理
論容量も170mAh/gと大きいという特徴を持つ。
そして,Feは資源が豊富で安価であることに加え、L
iFePO4は、初期状態で、電気化学的に脱ドープ可
能なLiを、Fe原子1個当たりに1個含んでいるの
で、コバルト酸リチウムに代わる新たなリチウム二次電
池の正極活物質としての期待は大きい。
Among them, LiFePO 4 has a volume density of 3.
It is characterized by a large value of 6 g / cm 3 and a high potential of 3.4 V, and a large theoretical capacity of 170 mAh / g.
Fe is rich in resources and inexpensive, and L
In the initial state, iFePO 4 contains one electrochemically dedoped Li atom per Fe atom, and therefore is expected as a positive electrode active material for a new lithium secondary battery in place of lithium cobalt oxide. Is big.

【0004】LiFePO4又はこのFeの一部を他の
金属で置換したLiFePO4を正極活物質とするリチ
ウム二次電池が提案されている(例えば、特許文献1〜
6参照)。
[0004] LiFePO 4 or a lithium secondary battery using LiFePO 4 obtained by substituting a part of the Fe in the other metal as a positive electrode active material has been proposed (e.g., Patent Document 1
6).

【0005】一般的なLiFePO4の製造方法として
は、例えば、リン酸第一鉄含水塩を用いて、下記反応式
(1)
As a general method for producing LiFePO 4 , for example, a ferrous phosphate hydrate is used and the following reaction formula (1) is used.

【化1】 に従って製造する方法、シュウ酸鉄を用いて、下記反応
式(2)
[Chemical 1] According to the following reaction formula (2) using iron oxalate.

【化2】 に従って製造する方法、又は酢酸鉄を用いて、下記反応
式(3)
[Chemical 2] According to the following reaction formula (3)

【化3】 に従って製造する方法等が提案されている。この中、リ
ン酸第一鉄含水塩を用いる方法は、副生物が水のみであ
るため工業的に特に有利である。
[Chemical 3] A method of manufacturing according to the above has been proposed. Among these, the method using ferrous phosphate hydrate is industrially particularly advantageous because the only by-product is water.

【0006】このリン酸第一鉄含水塩は、2価の鉄イオ
ンを含む水溶液にリン酸水素アンモニウム、或いはリン
酸水素ナトリウムを添加して製造されている(非特許文
献1参照。)。しかしながら、この方法で得られるリン
酸第一鉄含水塩は、平均粒径が7μm〜数十μmで、ま
た、その粒子は結晶が発達し非常に硬いものである。こ
のため、反応性が悪く、また、粉砕等の加工がしにくい
と言う欠点がある。この結果、リチウム二次電池の正極
活物質で用いるLiFePO4を初めとする機能性無機
材料の製造原料への用途の展開を困難なものとしてい
る。
This ferrous phosphate hydrate is manufactured by adding ammonium hydrogenphosphate or sodium hydrogenphosphate to an aqueous solution containing divalent iron ions (see Non-Patent Document 1). However, the ferrous phosphate hydrate obtained by this method has an average particle size of 7 μm to several tens of μm, and the particles are very hard due to crystal growth. Therefore, there are drawbacks that reactivity is poor and processing such as crushing is difficult. As a result, it is difficult to expand the application to the production raw material of the functional inorganic material such as LiFePO 4 used as the positive electrode active material of the lithium secondary battery.

【0007】[0007]

【特許文献1】特開平9−134724号公報[Patent Document 1] JP-A-9-134724

【特許文献2】特開平9−134725号公報[Patent Document 2] JP-A-9-134725

【特許文献3】特開平11−261394号公報[Patent Document 3] Japanese Patent Laid-Open No. 11-261394

【特許文献4】特開2001−110414号公報[Patent Document 4] Japanese Patent Laid-Open No. 2001-110414

【特許文献5】特開2001−250555号公報[Patent Document 5] Japanese Patent Laid-Open No. 2001-250555

【特許文献6】特開2000−294238号公報[Patent Document 6] Japanese Patent Laid-Open No. 2000-294238

【非特許文献1】「化学大辞典 9」、共立出版、19
93年、p.809〜810,リン酸鉄の欄参照。
[Non-Patent Document 1] "Chemical Dictionary 9", Kyoritsu Shuppan, 19
1993, p. 809-810, see the column of iron phosphate.

【0008】[0008]

【発明が解決しようとする課題】従って、本発明の目的
は、機能性無機材料の製造原料の用途、特にリチウム二
次電池の正極活物質で用いるLiFePO4及びLiF
eMePO4(式中、MはMn、Co、Ni及びAlか
ら選ばれる少なくとも1種以上の金属元素を示す。)の
製造原料に適した微細で加工性に優れたリン酸第一鉄含
水塩結晶、該リン酸第一鉄含水塩結晶を高収率で製造す
る工業的に有利な方法及び該リン酸第一鉄含水塩結晶を
用いたリチウム鉄リン系複合酸化物の製造方法を提供す
ることにある。
SUMMARY OF THE INVENTION Accordingly, the object of the present invention is to use as a raw material for the production of functional inorganic materials, especially LiFePO 4 and LiF used as a positive electrode active material for lithium secondary batteries.
Fine and highly workable ferrous phosphate hydrate crystals suitable for a raw material for manufacturing eMePO 4 (wherein M represents at least one metal element selected from Mn, Co, Ni and Al) To provide an industrially advantageous method for producing the ferrous phosphate hydrate crystals in high yield and a method for producing a lithium iron phosphorus complex oxide using the ferrous phosphate hydrate crystals. It is in.

【0009】[0009]

【課題を解決するための手段】本発明は、かかる実情に
おいて鋭意研究を重ねた結果、2価の鉄塩とリン酸を含
む水溶液に、アルカリを添加して反応を行って得られる
リン酸第一鉄含水塩結晶は特定の粒径を有する微細な結
晶粒子であり、従来になく加工性及び反応性に優れたも
のとなることを見出し本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies conducted under such circumstances, the present invention provides a phosphoric acid compound obtained by carrying out a reaction by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid. The inventors have found that the ferrous hydrate salt crystals are fine crystal particles having a specific particle size, and have excellent workability and reactivity as never before, and have completed the present invention.

【0010】即ち、本発明の第1の発明は、一般式;F
3(PO42・8H2Oで示されるリン酸第一鉄含水塩
であって、平均粒径が5μm以下である物性を有するこ
とを特徴とするリン酸第一鉄含水塩結晶を提供するもの
である。かかるリン酸第一鉄含水塩結晶は、X線回折分
析から求められる格子面(020面)の回折ピークの半
値幅が0.20°以上であることが好ましく、更に不純
物としてのNaの含有量が1重量%以下であることが特
に好ましい。
That is, the first invention of the present invention is represented by the general formula: F
A e 3 (PO 4) phosphoric acid ferrous salt hydrate represented by 2 · 8H 2 O, phosphoric acid ferrous salt hydrate crystal which is characterized by having physical properties mean particle diameter of 5μm or less It is provided. In such a ferrous phosphate hydrate crystal, the half value width of the diffraction peak of the lattice plane (020 plane) determined by X-ray diffraction analysis is preferably 0.20 ° or more, and the content of Na as an impurity is further increased. Is particularly preferably 1% by weight or less.

【0011】また、本発明の第2の発明は、2価の鉄塩
とリン酸を含む水溶液に、アルカリを添加して反応を行
うことを特徴とするリン酸第一鉄含水塩結晶の製造方法
を提供するものである。また、前記2価の鉄塩は、硫酸
第一鉄7水和物(FeSO4・7H2O)であることが好
ましい。
A second aspect of the present invention is the production of ferrous phosphate hydrate crystals, characterized by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid to carry out the reaction. It provides a method. Further, the divalent iron salt is preferably ferrous sulfate heptahydrate (FeSO 4 .7H 2 O).

【0012】また、本発明の第3の発明は、(A)前記
第1の発明のリン酸第一鉄含水塩結晶、リン酸リチウム
及び導電性炭素材料又は(B)前記第1の発明のリン酸
第一鉄含水塩結晶、リン酸リチウム、Mn、Co、Ni
及びAlから選ばれる金属元素を含有する少なくとも1
種以上の金属化合物及び導電性炭素材料とを混合し焼成
を行うことを特徴とするリチウム鉄リン系複合酸化物の
製造方法を提供するものである。かかるリチウム鉄リン
系複合酸化物の製造方法は、(A)前記第1の発明のリ
ン酸第一鉄含水塩結晶、リン酸リチウム及び導電性炭素
質材料又は(B)前記第1の発明のリン酸第一鉄含水塩
結晶、リン酸リチウム、Mn、Co、Ni及びAlから
選ばれる金属元素を含有する少なくとも1種以上の金属
化合物及び導電性炭素質材料とを混合する第一工程、次
いで、得られる混合物を乾式で粉砕処理して反応前駆体
を得る第二工程、次いで、該反応前駆体を焼成してリチ
ウム鉄リン系複合酸化物を得る第三工程を含むことが好
ましい。また、前記第二工程後、得られる反応前駆体を
加圧成形する工程を設けることが好ましい。また、生成
させるリチウム鉄リン系複合酸化物は平均粒径が0.5
μm以下であることが好ましい。
The third invention of the present invention is (A) the ferrous phosphate hydrate crystal of the first invention, lithium phosphate and a conductive carbon material, or (B) the first invention. Ferrous phosphate hydrate crystal, lithium phosphate, Mn, Co, Ni
And at least 1 containing a metal element selected from Al
Disclosed is a method for producing a lithium-iron-phosphorus-based composite oxide, which comprises mixing at least one metal compound and a conductive carbon material and firing the mixture. Such a method for producing a lithium iron phosphorus-based composite oxide is (A) the ferrous phosphate hydrate crystal of the first invention, lithium phosphate and a conductive carbonaceous material, or (B) the first invention. A first step of mixing ferrous phosphate hydrate crystals, at least one metal compound containing a metal element selected from lithium phosphate, Mn, Co, Ni and Al, and a conductive carbonaceous material, and It is preferable to include a second step of subjecting the resulting mixture to a dry pulverization treatment to obtain a reaction precursor, and then a third step of firing the reaction precursor to obtain a lithium iron phosphorus-based composite oxide. Further, it is preferable to provide a step of press-molding the obtained reaction precursor after the second step. Moreover, the average particle diameter of the lithium iron phosphorus complex oxide to be generated is 0.5.
It is preferably μm or less.

【0013】[0013]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明に係るリン酸第一鉄含水塩結晶は、一般式;Fe
3(PO42・8H2Oで示されるものであり、レーザー
回折法により求められる平均粒径が5μm以下、好まし
くは1〜5μmであることに特徴づけられる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The ferrous phosphate hydrate crystal according to the present invention has the general formula: Fe
3 (PO 4 ) 2 .8H 2 O, characterized by having an average particle size of 5 μm or less, preferably 1 to 5 μm, as determined by a laser diffraction method.

【0014】また、本発明のリン酸第一鉄含水塩結晶
は、上記粒度特性に加え、線源としてCuKα線を用い
て該結晶をX線回折分析したときに2θ=13.1近傍
の回折ピーク(020面)の半値幅が0.20°以上、
好ましくは0.2〜0.4°であることが好ましい。本
発明のリン酸第一鉄含水塩結晶は、格子面(020面)
の半値幅が0.20°以上という特性を有することによ
り従来のものと比べ、結晶性が低く、柔らかい結晶であ
り、更なる粉砕による微細化や、他の化合物との反応性
に優れたものとなる。
Further, the ferrous phosphate hydrate crystal of the present invention has, in addition to the above-mentioned particle size characteristics, a diffraction around 2θ = 13.1 when the crystal is analyzed by X-ray diffraction using CuKα ray. The half width of the peak (020 surface) is 0.20 ° or more,
It is preferably 0.2 to 0.4 °. The ferrous phosphate hydrate salt crystal of the present invention has a lattice plane (020 plane)
Since it has a half width of 0.20 ° or more, it has a lower crystallinity and a softer crystal than the conventional ones, and has excellent fineness by further pulverization and excellent reactivity with other compounds. Becomes

【0015】また、本発明に係るリン酸第一鉄含水塩結
晶は、リチウム二次電池の正極活物質のLiFePO4
やLiFeMePO4(Meは、Mn、Co、Ni、A
lから選ばれる少なくとも1種以上の金属元素を示
す。)の製造原料として用いる場合には、不純物として
Na含有量が少なければ少ないほど好ましいが、後述す
るリン酸第一鉄含水塩結晶の製造方法において、アルカ
リ源として水酸化ナトリウム等のNa分を含有する化合
物を用いた場合には、例えば、該リン酸第一鉄含水結晶
とリン酸リチウムとを焼成してLiFePO4を製造す
る際に、このNaは、リン酸ナトリウムとなって電池性
能を低下させる一つ原因となることから、本発明のリン
酸第一鉄含水塩結晶は、この不純物としてのNa含有量
が1重量%以下、好ましくは0.8重量%以下であるこ
とが好ましい。
Further, the ferrous phosphate hydrate crystal according to the present invention is used as a positive electrode active material for a lithium secondary battery, LiFePO 4
Or LiFeMePO 4 (Me is Mn, Co, Ni, A
At least one metal element selected from 1 is shown. When it is used as a production raw material of (1), the smaller the Na content is, the more preferable it is. However, in the method for producing ferrous phosphate hydrate crystals described later, Na content such as sodium hydroxide is contained as an alkali source. In the case of using the compound described above, for example, when LiFePO 4 is produced by firing the ferrous phosphate hydrous crystal and lithium phosphate, the Na becomes sodium phosphate and deteriorates the battery performance. It is preferable that the ferrous phosphate hydrate salt crystal of the present invention has a Na content as an impurity of 1% by weight or less, preferably 0.8% by weight or less.

【0016】更に、本発明に係るリン酸第一鉄含水塩結
晶は、上記Na含有量に加えて、Ti、Mn、Zn、C
r、Ni、Cu、Coから選ばれる金属の含有量の総量
が1重量%以下、好ましくは0.8重量%以下で、更に
K、Ca、Mg、Al、Si、SO4、Cl、NO3等の
不純物の含有量が1重量%以下、好ましくは0.8重量
%以下であると、特に高純度が要求される機能性無機材
料の製造原料として好適に用いることができることから
特に好ましい。
Further, the ferrous phosphate hydrate salt crystal according to the present invention has Ti, Mn, Zn and C in addition to the above Na content.
The total content of metals selected from r, Ni, Cu and Co is 1 wt% or less, preferably 0.8 wt% or less, and further K, Ca, Mg, Al, Si, SO 4 , Cl, NO 3 It is particularly preferable that the content of impurities such as 1% by weight or less, preferably 0.8% by weight or less, can be suitably used as a raw material for producing a functional inorganic material that requires particularly high purity.

【0017】次に、本発明に係るリン酸第一鉄含水塩結
晶の製造方法について説明する。本発明にかかるリン酸
第一鉄含水塩結晶の製造方法は、2価の鉄塩とリン酸を
含む水溶液に、アルカリを添加して反応を行うことを特
徴とするものである。
Next, a method for producing ferrous phosphate hydrate crystals according to the present invention will be described. The method for producing ferrous phosphate hydrate crystals according to the present invention is characterized by carrying out a reaction by adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid.

【0018】用いることができる2価の鉄塩としては、
例えば、硫酸第一鉄、塩化第一鉄、酢酸鉄、蓚酸鉄等が
挙げられ、これらは1種又は2種以上で用いることがで
き、また、これらは含水物であっても無水物であっても
よい。この中、硫酸第一鉄7水和物(FeSO4・7H2
O)が工業的に容易に入手することができ安価であるた
め特に好ましい。
As the divalent iron salt that can be used,
For example, ferrous sulfate, ferrous chloride, iron acetate, iron oxalate and the like can be mentioned, and these can be used alone or in combination of two or more, and these are hydrates or anhydrides. May be. Among them, ferrous sulfate heptahydrate (FeSO 4 .7H 2
O) is particularly preferable because it is industrially easily available and inexpensive.

【0019】用いることができるリン酸としては、工業
的に入手できるものであれば特に制限はない。
The phosphoric acid that can be used is not particularly limited as long as it is industrially available.

【0020】用いることができるアルカリとしては、特
に制限はなく、例えば、アンモニアガス、アンモニア
水、苛性ソーダ、苛性カリ、NaHCO3、Na2
3、K2CO3、KHCO3、Ca(OH)2、LiOH
等の無機アルカリ、またはエタノールアミン等の有機ア
ルカリ等が挙げられ、これらのアルカリは1種又は2種
以上で用いることができる。この中、水酸化ナトリウム
が工業的に容易に入手することができ安価であるため特
に好ましい。
The alkali that can be used is not particularly limited, and examples thereof include ammonia gas, ammonia water, caustic soda, caustic potash, NaHCO 3 , Na 2 C.
O 3 , K 2 CO 3 , KHCO 3 , Ca (OH) 2 , LiOH
And the like, organic alkalis such as ethanolamine, and the like, and these alkalis can be used alone or in combination of two or more. Of these, sodium hydroxide is particularly preferable because it is industrially easily available and inexpensive.

【0021】具体的な反応操作としては、まず、リン酸
を2価の鉄塩中の鉄原子に対するモル比で0.60〜
0.75、好ましくは0.65〜0.70となるように
2価の鉄塩とリン酸を溶解した水溶液を調製する。この
場合水溶液の濃度は、2価の鉄塩とリン酸を溶解できる
濃度であれば特に制限はないが、通常2価の鉄塩として
0.1モル/L以上、好ましくは0.5〜1.0モル/
Lとすることが好ましい。
As a concrete reaction operation, first, phosphoric acid is added in a molar ratio of 0.60 to iron atoms in the divalent iron salt.
An aqueous solution in which a divalent iron salt and phosphoric acid are dissolved so as to be 0.75, preferably 0.65 to 0.70 is prepared. In this case, the concentration of the aqueous solution is not particularly limited as long as it is a concentration capable of dissolving the divalent iron salt and phosphoric acid, but is usually 0.1 mol / L or more, preferably 0.5 to 1 as the divalent iron salt. 0.0 mol /
It is preferably L.

【0022】次いで、この水溶液にアルカリを添加し、
リン酸第一鉄含水塩結晶を析出させる。リン酸第一鉄含
水塩結晶の析出反応は、このアルカリの添加により速や
かに進行する。アルカリの添加量は、2価の鉄塩に対す
るモル比で1.8〜2.0、好ましくは1.95〜2.
0とすることが好ましい。このアルカリの添加温度は、
特に制限はなく、通常5〜80℃、好ましくは15〜3
5℃であり、また、このアルカリの滴下速度等も特に制
限されるものではないが、安定した品質のものを得るた
め、一定の滴下速度で除々に反応系内に導入することが
好ましい。
Then, an alkali is added to this aqueous solution,
Crystals of ferrous phosphate hydrate are precipitated. The precipitation reaction of ferrous phosphate hydrate crystals proceeds rapidly by the addition of this alkali. The amount of alkali added is 1.8 to 2.0, preferably 1.95 to 2.
It is preferably 0. The addition temperature of this alkali is
There is no particular limitation, usually 5 to 80 ° C., preferably 15 to 3
The temperature is 5 ° C., and the dropping rate of the alkali is not particularly limited, however, in order to obtain a stable quality, it is preferable to gradually introduce the alkali into the reaction system at a constant dropping rate.

【0023】反応終了後、常法により固液分離して、析
出物を回収し、洗浄、乾燥、必要により粉砕、分級して
製品とする。なお必要に応じて行われる粉砕は、得られ
るリン酸第一鉄含水塩結晶(Fe3(PO42・8H2O)がも
ろく結合したブロック状のものである場合等に適宜行う
が、リン酸第一鉄含水塩結晶の粒子自体は上記特定の平
均粒径を有するものである。即ち、得られるリン酸第一
鉄含水塩結晶はレーザー回折法により求められる平均粒
径が5μm以下、好ましくは1〜5μmである。
After completion of the reaction, solid-liquid separation is carried out by a conventional method, and the precipitate is recovered, washed, dried, and if necessary, pulverized and classified to obtain a product. Note grinding performed as needed, ferrous phosphate hydrate crystals (Fe 3 (PO 4) 2 · 8H 2 O) obtained suitably performed but the like when is of block-like bonded brittle, The particles of the ferrous phosphate hydrate crystals themselves have the above-mentioned average particle size. That is, the obtained ferrous phosphate hydrate crystals have an average particle size of 5 μm or less, preferably 1 to 5 μm, as determined by a laser diffraction method.

【0024】なお、洗浄は、析出したリン酸第一鉄含水
塩結晶のNa含有量が1重量%以下、好ましくは0.8
重量%以下となるまで水で十分に洗浄することが好まし
い。
For washing, the precipitated ferrous phosphate hydrate salt crystals have a Na content of 1% by weight or less, preferably 0.8%.
It is preferable to wash thoroughly with water until the content becomes less than or equal to wt%.

【0025】また、乾燥は、35℃未満では乾燥に時間
がかかり、50℃を超えると2価の鉄の酸化や結晶水の
脱離が起こるため35〜50℃、好ましくは40〜50
℃で行うことが好ましい。
When the temperature is lower than 35 ° C., it takes a long time to dry, and when the temperature exceeds 50 ° C., oxidation of divalent iron and elimination of water of crystallization occur, so that the temperature is 35 to 50 ° C., preferably 40 to 50 ° C.
It is preferable to carry out at ℃.

【0026】かくして得られるリン酸第一鉄含水塩結晶
は、レーザー回折法により求められる平均粒径が5μm
以下、好ましくは1〜5μmであり、更に好ましい物性
としては、X線回折分析から求められる格子面(020
面)の回折ピークの半値幅が0.20°以上、好ましく
は0.20〜0.40°である。更に前記物性に加えて
不純物としてのNa含有量が1重量%以下、好ましくは
0.8重量%以下で、更に好ましくは不純物としてのT
i、Mn、Zn、Cr、Ni、Cu、Coから選ばれる
金属の含有量が総量で1重量%以下、好ましくは0.8
重量%以下、K、Ca、Mg、Al、Si、SO4、C
l、NO3等の不純物の含有量が1重量%以下、好まし
くは0.8重量%以下であることが好ましい。
The ferrous phosphate hydrate crystals thus obtained have an average particle size of 5 μm as determined by a laser diffraction method.
The following is preferably 1 to 5 μm, and more preferable physical properties include a lattice plane (020
The full width at half maximum of the diffraction peak of (plane) is 0.20 ° or more, preferably 0.20 to 0.40 °. In addition to the above physical properties, the content of Na as an impurity is 1% by weight or less, preferably 0.8% by weight or less, and more preferably T as an impurity.
The total content of metals selected from i, Mn, Zn, Cr, Ni, Cu and Co is 1% by weight or less, preferably 0.8.
Weight% or less, K, Ca, Mg, Al, Si, SO 4 , C
It is preferable that the content of impurities such as l and NO 3 is 1% by weight or less, preferably 0.8% by weight or less.

【0027】本発明のリン酸第一鉄含水塩結晶の製造方
法によれば、予めFe3(PO42・8H2Oの組成と同
じ比率で鉄とリンが共存する反応系内にアルカリを添加
することでpHの上昇と共に均一にリン酸の解離が起こ
り、これと周囲に所定比で共存する鉄イオンと反応して
均一にFe3(PO42・8H2Oが生成するため結晶成
長が起こりにくい状況となり,得られる結晶は粒径が小
さく反応性のよいものとなると考えられる。
According to the method for producing ferrous phosphate hydrate crystals of the present invention, alkali is previously prepared in the reaction system in which iron and phosphorus coexist in the same proportion as the composition of Fe 3 (PO 4 ) 2 .8H 2 O. Since the dissociation of phosphoric acid occurs uniformly with the increase of pH by the addition of Fe, and this reacts with the iron ions coexisting with it in a predetermined ratio to produce Fe 3 (PO 4 ) 2 .8H 2 O uniformly. It is considered that crystal growth does not occur easily, and the resulting crystals have a small grain size and good reactivity.

【0028】本発明にかかるリン酸第一鉄含水塩結晶
は、粒径が小さく反応性に優れるため、機能性無機材料
の製造原料、特にリチウム二次電池の正極活物質で用い
るLiFePO4やLiFeMePO4(MeはMn、C
o、Ni及びAlから選ばれる少なくとも1種以上の金
属元素を示す。)の製造原料として好適に用いることが
できる。
Since the ferrous phosphate hydrate salt crystal according to the present invention has a small particle size and is excellent in reactivity, LiFePO 4 or LiFeMePO used as a raw material for producing a functional inorganic material, particularly as a positive electrode active material of a lithium secondary battery. 4 (Me is Mn, C
At least one metal element selected from o, Ni and Al is shown. ) Can be preferably used as a manufacturing raw material.

【0029】以下、本発明のリチウム鉄リン系複合酸化
物の製造方法について説明する。本発明のリチウム鉄リ
ン系複合酸化物の製造方法は、前記のリン酸第一鉄含水
塩結晶、リン酸リチウム及び導電性炭素材料を混合し焼
成を行うか(以下、「Aの製造方法」と呼ぶ。)又は前
記のリン酸第一鉄含水塩結晶、リン酸リチウム、Mn、
Co、Ni及びAlから選ばれる金属元素を含有する少
なくとも1種以上の金属化合物及び導電性炭素材料とを
混合し焼成を行う(以下、「Bの製造方法」と呼ぶ。)
ことを特徴とするものである。
The method for producing the lithium iron phosphorus composite oxide of the present invention will be described below. In the method for producing a lithium iron phosphorus-based composite oxide according to the present invention, is the above ferrous phosphate hydrate salt crystal, lithium phosphate and a conductive carbon material mixed and fired (hereinafter, referred to as “method for producing A”). Or a ferrous phosphate hydrate crystal, lithium phosphate, Mn,
At least one metal compound containing a metal element selected from Co, Ni, and Al and a conductive carbon material are mixed and fired (hereinafter, referred to as “B manufacturing method”).
It is characterized by that.

【0030】本発明の前記A及びBのリチウム鉄リン系
複合酸化物の製造方法において、特に(A)前記のリン
酸第一鉄含水塩結晶、リン酸リチウム及び導電性炭素質
材料又は(B)前記のリン酸第一鉄含水塩結晶、リン酸
リチウム、Mn、Co、Ni及びAlから選ばれる金属
元素を含有する少なくとも1種以上の金属化合物及び導
電性炭素質材料とを混合する第一工程、次いで、得られ
る混合物を粉砕処理して反応前駆体を得る第二工程、次
いで、該反応前駆体を焼成してリチウム鉄リン系複合酸
化物を得る第三工程を含むことが特に得られるリチウム
鉄リン系複合酸化物をリチウム二次電池の正極活物質と
して用いる場合において放電容量を向上させることがで
きることから特に好ましい。
In the method for producing a lithium iron phosphorus complex oxide of A and B of the present invention, in particular, (A) the above ferrous phosphate hydrate crystal, lithium phosphate and conductive carbonaceous material or (B ) A mixture of the above ferrous phosphate hydrate crystal, lithium phosphate, at least one metal compound containing a metal element selected from Mn, Co, Ni and Al and a conductive carbonaceous material It is particularly obtainable to include a step, followed by a second step of milling the resulting mixture to obtain a reaction precursor, and then a third step of calcining the reaction precursor to obtain a lithium iron phosphorus complex oxide. It is particularly preferable to use the lithium iron phosphorus complex oxide as a positive electrode active material of a lithium secondary battery because the discharge capacity can be improved.

【0031】前記Aの製造方法によれば、リチウム二次
電池の正極活物質として好適なLiFePO4の粒子表
面を導電性炭素材料で被覆したリチウム鉄リン系複合酸
化物を得ることができ、また、前記Bの製造方法によれ
ばLiFeMePO4(MeはMn、Co、Ni及びA
lから選ばれる少なくとも1種以上の金属元素を示
す。)の粒子表面を導電性炭素材料で被覆したリチウム
鉄リン系複合酸化物を得ることができる。
According to the production method A, a lithium iron phosphorus-based composite oxide in which the particle surface of LiFePO 4 suitable for the positive electrode active material of a lithium secondary battery is coated with a conductive carbon material can be obtained. According to the manufacturing method of B, LiFeMePO 4 (Me is Mn, Co, Ni and A
At least one metal element selected from 1 is shown. It is possible to obtain a lithium-iron-phosphorus-based composite oxide in which the particle surface of (1) is coated with a conductive carbon material.

【0032】前記第一工程において、前記A及びBの製
造方法で用いることができるリン酸リチウム(Li3
4)は、工業的に入手できるものであれば特に制限は
ないが、レーザー回折法により求められる平均粒径が1
0μm以下、好ましくは5μm以下であると、混合が十
分に行われ反応性が良くなることから特に好ましい。
In the first step, lithium phosphate (Li 3 P) that can be used in the above-mentioned production methods A and B is used.
O 4 ) is not particularly limited as long as it is industrially available, but the average particle size determined by laser diffraction method is 1
It is particularly preferably 0 μm or less, preferably 5 μm or less, because the mixing is sufficiently performed and the reactivity is improved.

【0033】前記A及びBの製造方法で用いることがで
きる導電性炭素材料としては、例えば、鱗状黒鉛、鱗片
状黒鉛及び土状黒鉛等の天然黒鉛及び人工黒鉛等の黒
鉛、カーボンブラック、アセチレンブラック、ケッチェ
ンブラック、チャンネルブラック、ファーネスブラッ
ク、ランプブラック、サーマルブラック等のカーボンブ
ラック類、炭素繊維等が挙げられ、これらは1種又は2
種以上で用いることができる。この中、ケッチェンブラ
ックが微粒なものを工業的に容易に入手できるため特に
好ましい。これらの導電性炭素材料は電子顕微鏡写真か
ら求められる平均粒径が1μm以下、好ましくは0.1
μm以下、特に好ましくは0.01〜0.1μmである
とLiFePO4又はLiFeMePO4(MeはMn、
Co、Ni及びAlから選ばれる少なくとも1種以上の
金属元素を示す。)の粒子表面に高分散状態で付着させ
ることができることから好ましい。
Examples of the conductive carbon materials that can be used in the above-mentioned production methods A and B include natural graphite such as scaly graphite, scaly graphite and earth-like graphite and graphite such as artificial graphite, carbon black, acetylene black. , Ketjen black, channel black, furnace black, lamp black, thermal black, and other carbon blacks, carbon fibers, and the like. These are one kind or two kinds.
It can be used in more than one species. Of these, Ketjen Black is particularly preferable because it can be easily obtained industrially as fine particles. These conductive carbon materials have an average particle size of 1 μm or less, preferably 0.1, as determined from an electron micrograph.
If it is less than or equal to μm, particularly preferably 0.01 to 0.1 μm, LiFePO 4 or LiFeMePO 4 (Me is Mn,
At least one metal element selected from Co, Ni and Al is shown. It is preferable because it can be attached in a highly dispersed state on the particle surface of (1).

【0034】前記Bの製造方法で用いることができるM
n、Co、Ni及びAlから選ばれる金属元素を含有す
る少なくとも1種以上の金属化合物としては、これらの
金属元素を含む酸化物、水酸化物、硝酸塩、酢酸塩、炭
酸塩、リン酸塩、有機酸塩等が挙げられ、これらの金属
化合物の物性としてはレーザー回折法により求められる
平均粒径が10μm以下、好ましくは5μm以下である
と、混合が十分に行われ反応性が良くなることから特に
好ましい。
M that can be used in the manufacturing method of B
As the at least one metal compound containing a metal element selected from n, Co, Ni and Al, oxides, hydroxides, nitrates, acetates, carbonates, phosphates containing these metal elements, Examples of the physical properties of these metal compounds include organic acid salts and the like, and when the average particle diameter determined by a laser diffraction method is 10 μm or less, preferably 5 μm or less, mixing is sufficiently performed and reactivity is improved. Particularly preferred.

【0035】なお、本発明のリチウム鉄リン系複合酸化
物の製造方法において前記の原料のリン酸第一鉄含水塩
結晶(Fe3(PO42・8H2O)、リン酸リチウム、導電性
炭素材料及び金属化合物は高純度のものを用いることが
特にリチウム二次電池の正極活物質として用いる場合に
好ましい。
It should be noted, said iron phosphate hydrate crystal raw material in the manufacturing method of the lithium-iron-phosphorus compound oxide of the present invention (Fe 3 (PO 4) 2 · 8H 2 O), lithium phosphate, conductive It is preferable to use high-purity carbonaceous materials and metal compounds, especially when used as a positive electrode active material of a lithium secondary battery.

【0036】第一工程の操作は、まず、(A)リン酸第
一鉄含水塩結晶(Fe3(PO42・8H 2O)とリン酸リチウ
ム(Li3PO4)および導電性炭素材料又は(B)リン酸第
一鉄含水塩結晶(Fe3(PO42・8H2O)、リン酸リチウ
ム(Li3PO4)、導電性炭素材料及びMn、Co、Ni及
びAlから選ばれる金属元素を含有する少なくとも1種
以上の金属化合物を所定量混合する。
The operation of the first step is as follows: (A) phosphoric acid first
Hydrated iron salt crystals (Fe3(POFour)2・ 8H 2O) and Lithium phosphate
Mu (Li3POFour) And a conductive carbon material or (B) phosphoric acid
Hydrated iron salt crystals (Fe3(POFour)2・ 8H2O), Lithium phosphate
Mu (Li3POFour), Conductive carbon materials and Mn, Co, Ni and
And at least one containing a metal element selected from Al
A predetermined amount of the above metal compound is mixed.

【0037】前記Aの製造方法においてリン酸第一鉄含
水塩結晶とリン酸リチウムとの配合割合は、リン酸第一
鉄含水塩結晶中のFe原子とリン酸リチウム中のLi原
子とのモル比(Li/Fe)で0.9〜1.1、好まし
くは1.00〜1.05であるとLiFePO4の単相
が得られる点で好ましく、このモル比が0.9未満及び
1.1を越えると未反応原料が残存することから好まし
くない。また、前記Bの製造方法においてリン酸第一鉄
含水塩結晶、リン酸リチウムおよびMn、Co、Ni及
びAlから選ばれる金属元素を含有する少なくとも1種
以上の金属化合物の配合割合は、リン酸第一鉄含水塩結
晶中のFe原子、リン酸リチウム中のLi原子および金
属化合物中の金属原子(Me)のモル比として、Li/
(Fe+Me)で0.9〜1.1、好ましくは1.00
〜1.05であると、LiFeMePO4の単相が得ら
れる点で特に好ましい。
In the production method of the above A, the compounding ratio of the ferrous phosphate hydrate crystals and lithium phosphate is such that the moles of Fe atoms in the ferrous phosphate hydrate crystals and Li atoms in the lithium phosphate are A ratio (Li / Fe) of 0.9 to 1.1, preferably 1.00 to 1.05 is preferable in that a single phase of LiFePO 4 is obtained, and this molar ratio is less than 0.9 and 1. When it exceeds 1, unreacted raw materials remain, which is not preferable. Further, in the production method of B, the mixing ratio of at least one metal compound containing ferrous phosphate hydrate crystals, lithium phosphate and a metal element selected from Mn, Co, Ni and Al is phosphoric acid. As a molar ratio of Fe atoms in ferrous hydrate salt crystals, Li atoms in lithium phosphate and metal atoms (Me) in the metal compound, Li /
(Fe + Me) 0.9-1.1, preferably 1.00
If it is 1.05, particularly preferable in that a single phase of LiFeMePO 4 is obtained.

【0038】また、導電性炭素材料は、焼成前に比べて
焼成後では導電性炭素材料に含まれるC原子の量が若干
ながら減少する傾向があることから、導電性炭素材料の
配合量がリン酸第一鉄含水塩結晶とリン酸リチウム又は
リン酸第一鉄含水塩結晶とリン酸リチウム及び金属化合
物との総量に対して0.08〜15.5重量%、好まし
くは3.8〜9.5重量%であると、導電性炭素材料の
被覆量は、LiFePO4又はLiFeMePO4(Me
はMn、Co、Ni及びAlから選ばれる少なくとも1
種以上の金属元素を示す。)に対するC原子の含有量で
0.1〜20重量%、好ましくは5〜12重量%とな
る。この導電性炭素材料の配合量が0.08重量%未満
ではリチウム鉄リン系複合酸化物に十分な導電性を付与
させることができなくなるため得られるリチウム鉄リン
系複合酸化物を正極活物質とするリチウム二次電池にお
いて内部抵抗が上昇し、一方、15.5重量%を超える
と逆に重量或いは体積当たりの放電容量が減少するため
好ましくない。
Further, since the conductive carbon material tends to decrease the amount of C atoms contained in the conductive carbon material after firing as compared with that before firing, the blending amount of the conductive carbon material is phosphorus. 0.08 to 15.5% by weight, preferably 3.8 to 9% by weight based on the total amount of ferrous acid hydrate crystals and lithium phosphate or ferrous phosphate hydrate crystals and lithium phosphate and metal compounds. When it is 0.5% by weight, the coating amount of the conductive carbon material is LiFePO 4 or LiFeMePO 4 (Me
Is at least 1 selected from Mn, Co, Ni and Al
Indicates a metal element of at least one species. The content of C atom with respect to 1) is 0.1 to 20% by weight, preferably 5 to 12% by weight. When the content of the conductive carbon material is less than 0.08% by weight, it becomes impossible to impart sufficient conductivity to the lithium iron phosphorus-based composite oxide, and thus the obtained lithium iron phosphorus-based composite oxide is used as a positive electrode active material. In the lithium secondary battery, the internal resistance increases, while if it exceeds 15.5% by weight, the discharge capacity per weight or volume decreases, which is not preferable.

【0039】なお、第一工程において、後述する第二工
程を実施するに当り予め各原料が均一に混合するように
ブレンダー等を用いて乾式で十分に混合しておくことが
好ましい。
In the first step, it is preferable that the raw materials are sufficiently dry-mixed in advance by using a blender or the like so that the respective raw materials can be uniformly mixed before the second step to be described later is carried out.

【0040】第二工程は、前記A及びBの製造方法にお
いて、これらの原料の混合物を、更に反応性をよくする
するため粉砕機を用いて乾式で十分に混合及び粉砕処理
して反応前駆体を得る工程である。
In the second step, in the method for producing A and B, the mixture of these raw materials is thoroughly dry-mixed and pulverized by using a pulverizer to further improve the reactivity, and the reaction precursor is prepared. Is a step of obtaining.

【0041】ここで前記反応前駆体とは(A)リン酸第
一鉄含水塩結晶(Fe3(PO42・8H 2O)とリン酸リチウ
ム(Li3PO4)及び導電性炭素材料又は(B)リン酸第一
鉄含水塩結晶(Fe3(PO42・8H2O)、リン酸リチウム
(Li3PO4)、導電性炭素材料及びMn、Co、Ni及び
Alから選ばれる金属元素を含有する少なくとも1種以
上の金属化合物を含有する混合物を後の焼成に先だって
反応性をよくするために、各原料を高分散させると共に
各原料間の粒子間距離を可能なかぎり近づけ、各原料の
接触面積を高めたものである。
Here, the reaction precursor is (A) phosphoric acid
Hydrated iron salt crystals (Fe3(POFour)2・ 8H 2O) and Lithium phosphate
Mu (Li3POFour) And a conductive carbon material or (B) phosphoric acid first
Iron hydrate salt crystals (Fe3(POFour)2・ 8H2O), lithium phosphate
(Li3POFour), A conductive carbon material and Mn, Co, Ni and
At least one or more containing a metal element selected from Al
Prior to subsequent firing of the mixture containing the above metal compounds
In order to improve reactivity, each material is highly dispersed and
Keep the distance between particles between each raw material as close as possible to
The contact area is increased.

【0042】本発明においてこの粉砕処理後の混合物は
比容積が1.5ml/g以下、好ましくは1.0〜1.
4ml/gであると500〜700℃の低温の焼成温度
で焼結による粒成長もなく、X線回折分析においてLi
FePO4又はLiFeMePO4(MeはMn、Co、
Ni及びAlから選ばれる少なくとも1種以上の金属元
素を示す。)の単相の粒子表面に導電性炭素材料を均一
に被覆したリチウム鉄リン系複合酸化物が得られること
から、当該範囲の比容積の混合物を反応前駆体とするこ
とが好ましい。
In the present invention, the mixture after the pulverization treatment has a specific volume of 1.5 ml / g or less, preferably 1.0-1.
If it is 4 ml / g, there is no grain growth due to sintering at a low firing temperature of 500 to 700 ° C., and Li in an X-ray diffraction analysis is performed.
FePO 4 or LiFeMePO 4 (Me is Mn, Co,
At least one metal element selected from Ni and Al is shown. It is preferable to use a mixture having a specific volume within the range as a reaction precursor, since a lithium iron phosphorus-based composite oxide in which the surface of the single-phase particles of (1) is uniformly coated with a conductive carbon material can be obtained.

【0043】なお、本発明における比容積とはJIS−
K−5101に記載された見掛け密度又は見掛け比容の
方法に基づいて、タップ法により50mlのメスシリン
ダーにサンプル10gをいれ、500回タップし静置
後、容積を読みとり、下記式により求めたものである。
The specific volume in the present invention is JIS-
Based on the method of apparent density or apparent specific volume described in K-5101, 10 g of the sample was put into a 50 ml graduated cylinder by the tap method, tapped 500 times and allowed to stand, then the volume was read and calculated by the following formula Is.

【数1】 (式中、F;受器内の処理した試料の質量(g)、V;
タップ後の試料の容量(ml)を示す。)
[Equation 1] (In the formula, F; mass (g) of the treated sample in the receiver, V;
The volume (ml) of the sample after tapping is shown. )

【0044】更に、本発明のリチウム鉄リン系複合酸化
物の製造方法において、前記反応前駆体は、比容積が当
該範囲であることに加えて、該反応前駆体中に含まれる
原料のリン酸鉄含水塩結晶がほぼ非晶質状態であると,
粒子径の成長を抑制する目的で500〜700℃の低温
で焼成した場合においても反応が完全に進行し、LiF
ePO4、もしくはLiFeMePO4(Meは、Mn、
Co、Ni、Alから選ばれる少なくとも1種以上の金
属元素を示す。)の単相が得られることから特に好まし
い。
Further, in the method for producing a lithium iron phosphorus complex oxide according to the present invention, in addition to the specific volume of the reaction precursor being within the range, the phosphoric acid which is a raw material contained in the reaction precursor. If the iron hydrate salt crystals are almost amorphous,
The reaction completely progresses even when firing is performed at a low temperature of 500 to 700 ° C. for the purpose of suppressing the growth of the particle size, and the LiF
ePO 4 or LiFeMePO 4 (Me is Mn,
At least one metal element selected from Co, Ni, and Al is shown. (1) is particularly preferable because a single phase can be obtained.

【0045】用いることができる粉砕機としては、強力
なせん断力を有する粉砕機が好ましく、このような強力
なせん断力を有する粉砕機としては、転動ボールミル、
振動ミル、遊星ミル、媒体攪拌ミル等を用いることが好
ましい。この種の粉砕機は、容器中にボール、ビーズ等
の粉砕媒体が入っており、主として媒体の剪断・摩擦作
用によって粉砕を行う粉砕機である。このような装置と
しては市販されているものを利用することができる。
As a crusher that can be used, a crusher having a strong shearing force is preferable, and as a crusher having such a strong shearing force, a rolling ball mill,
It is preferable to use a vibration mill, a planetary mill, a medium stirring mill, or the like. This type of crusher is a crusher in which a crushing medium such as balls and beads is contained in a container, and crushing is performed mainly by the shearing / friction action of the medium. As such a device, a commercially available device can be used.

【0046】粉砕媒体の粒径は1〜25mmであると粉
砕が十分に行えるため好ましい。この粉砕媒体の材質
は、ジルコニア、アルミナのセラミックビーズが、硬度
が高く磨耗に強いこと及び材料の金属汚染を防止するこ
とができることから特に好ましい。
It is preferable that the particle size of the grinding medium is 1 to 25 mm because the grinding can be performed sufficiently. The material of this grinding medium is particularly preferable because the ceramic beads of zirconia and alumina have high hardness and are resistant to abrasion and can prevent metal contamination of the material.

【0047】また、前記粉砕媒体は、空間容積50〜9
0%で容器内に粉砕媒体を収納し、流動媒体による剪断
力と摩擦力を適切に管理するため、粉砕機の運転条件を
適宜調整して粉砕処理することが好ましい。
The grinding medium has a space volume of 50-9.
It is preferable to adjust the operating conditions of the crusher and perform the crushing treatment so that the crushing medium is contained in the container at 0% and the shearing force and the frictional force due to the fluidizing medium are appropriately controlled.

【0048】また、本発明のリチウム鉄リン系複合酸化
物の製造方法において、必要に応じて、上記粉砕処理に
加えて該反応前駆体を加圧成形処理して、更に各原料の
接触面積を高めると、放電容量とサイクル特性を更に向
上させることができる。成形圧は、プレス機、仕込み量
等により異なり、特に限定されるものではないが、通常
5〜200MPaである。プレス成形機は、ハンドプレ
ス、打錠機、ブリケットマシン、ローラコンパクター等
好適に使用できるがプレスできるものであればよく、特
に制限はない。
In the method for producing a lithium iron phosphorus complex oxide of the present invention, the reaction precursor is pressure-molded in addition to the above-mentioned pulverization treatment, if necessary, and the contact area of each raw material is further increased. When it is increased, the discharge capacity and cycle characteristics can be further improved. The molding pressure varies depending on the pressing machine, the charging amount, etc. and is not particularly limited, but is usually 5 to 200 MPa. The press molding machine is preferably a hand press, a tableting machine, a briquette machine, a roller compactor or the like, but is not particularly limited as long as it can be pressed.

【0049】次いで、第三工程において、第二工程で得
られた反応前駆体を焼成する。焼成温度は500〜70
0℃、好ましくは550〜650℃である。本発明にお
いて、この焼成温度を当該範囲とすることにより得られ
るリチウム鉄リン系複合酸化物を正極活物質とするリチ
ウム二次電池は、放電容量及び充電サイクル特性を向上
させることができる。焼成温度が500℃未満では、反
応が十分に進行しないため未反応原料が残存し、一方、
700℃を越えると上記したとおり焼結が進行して粒子
成長が起こるため好ましくない。焼成時間は、2〜20
時間、好ましくは5〜10時間とすることが好ましい。
焼成は、窒素、アルゴン等の不活性ガス雰囲気中又は水
素や一酸化炭素等の還元雰囲気中のいずれで行ってもよ
く、特に制限されるものではないが、操作時の安全性の
面で窒素、アルゴンガス等の不活性ガス雰囲気中で行う
ことが好ましい。また、これらの焼成は必要により何度
でも行うことができる。
Next, in the third step, the reaction precursor obtained in the second step is fired. Baking temperature is 500-70
The temperature is 0 ° C, preferably 550 to 650 ° C. In the present invention, the lithium secondary battery using the lithium iron phosphorus-based composite oxide obtained by setting the firing temperature within the range as the positive electrode active material can improve the discharge capacity and the charge cycle characteristics. If the firing temperature is lower than 500 ° C., the reaction does not proceed sufficiently, so that unreacted raw materials remain.
If it exceeds 700 ° C., sintering proceeds as described above and particle growth occurs, which is not preferable. The firing time is 2 to 20
It is preferable to set the time, preferably 5 to 10 hours.
The calcination may be performed in an atmosphere of an inert gas such as nitrogen or argon or in a reducing atmosphere such as hydrogen or carbon monoxide, and is not particularly limited, but nitrogen is used in terms of safety during operation. It is preferable to carry out in an inert gas atmosphere such as argon gas. Further, these firings can be repeated as many times as necessary.

【0050】焼成後は、適宜冷却し、必要に応じ粉砕又
は分級してLiFePO4又はLiFeMePO4(Me
はMn、Co、Ni及びAlから選ばれる少なくとも1
種以上の金属元素を示す。)の粒子表面を導電性炭素材
料で均一に被覆したリチウム鉄リン系複合酸化物を得
る。なお、FeおよびMe元素の酸化を防止するため、
冷却中は反応系内を窒素、アルゴン等の不活性ガス雰囲
気又は水素や一酸化炭素等の還元雰囲気として行うこと
が好ましい。また、必要に応じて行われる粉砕は、焼成
して得られるリチウム鉄リン系複合酸化物がもろく結合
したブロック状のものである場合等に適宜行うが、本発
明のリチウム鉄リン系複合酸化物の好ましい実施形態の
製造方法によれば、リチウム鉄リン系複合酸化物の粒子
自体は下記の特定の平均粒径、BET比表面積を有する
ものである。即ち、得られるリチウム鉄リン系複合酸化
物は、走査型電子顕微鏡写真(SEM)から求められる
平均粒径が0.5μm以下、好ましくは0.05〜0.
5μmであり、BET比表面積が10〜100m2
g、好ましくは30〜70m2/gである。
After firing, the mixture is appropriately cooled and, if necessary, pulverized or classified to prepare LiFePO 4 or LiFeMePO 4 (Me
Is at least 1 selected from Mn, Co, Ni and Al
Indicates a metal element of at least one species. To obtain a lithium-iron-phosphorus-based composite oxide in which the surface of the particles in 1) is uniformly coated with a conductive carbon material. In order to prevent the oxidation of Fe and Me elements,
During cooling, it is preferable to carry out the reaction system in an atmosphere of an inert gas such as nitrogen or argon or a reducing atmosphere of hydrogen or carbon monoxide. In addition, the pulverization that is performed as necessary is appropriately performed when the lithium iron phosphorus-based composite oxide obtained by firing is in the form of a block that is brittle and bonded, but the lithium iron phosphorus-based composite oxide of the present invention is used. According to the manufacturing method of the preferred embodiment, the particles of the lithium iron phosphorus-based composite oxide itself have the following specific average particle diameter and BET specific surface area. That is, the obtained lithium iron phosphorus composite oxide has an average particle size of 0.5 μm or less, preferably 0.05 to 0. 0, as determined from a scanning electron micrograph (SEM).
5 μm and BET specific surface area of 10 to 100 m 2 /
g, preferably 30 to 70 m 2 / g.

【0051】このようにして得られる本発明のリチウム
鉄リン系複合酸化物は、正極、負極、セパレータ及びリ
チウム塩を含有する非水電解質からなるリチウム二次電
池の正極活物質として好適に用いることができる。
The lithium iron phosphorus complex oxide of the present invention thus obtained is preferably used as a positive electrode active material of a lithium secondary battery comprising a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte containing a lithium salt. You can

【0052】なお、該リチウム鉄リン系複合酸化物を正
極活物質とする場合は、その形態は、平均粒径0.05
μm以上0.5μm以下の一次粒子が集合してなる平均
粒径1μm以上75μmの一次粒子集合体であってもよ
い。更に、上記一次集合体において全体積の70%以
上、好ましくは80%以上が粒径1μm以上20μm以
下であることが好ましく、また、該リチウム鉄リン系複
合酸化物は大気中で粉砕等を行うと得られるリチウム鉄
リン系複合酸化物には、3000ppm以上の水分が含
有されているため、正極活物質として用いる前に真空乾
燥等の操作を施して該リチウム鉄リン系複合酸化物の水
分含有量を2000ppm以下、好ましくは1500p
pm以下として用いることが好ましい。
When the lithium iron phosphorus composite oxide is used as the positive electrode active material, its form is 0.05
It may be a primary particle aggregate having an average particle diameter of 1 μm or more and 75 μm or more, which is an aggregate of primary particles of μm or more and 0.5 μm or less. Further, 70% or more, preferably 80% or more of the total volume of the primary aggregate preferably has a particle size of 1 μm or more and 20 μm or less, and the lithium iron phosphorus complex oxide is pulverized in the atmosphere. Since the obtained lithium iron phosphorus-based composite oxide contains water of 3000 ppm or more, the lithium iron phosphorus-based composite oxide is subjected to an operation such as vacuum drying before being used as the positive electrode active material. 2,000ppm or less, preferably 1500p
It is preferably used as pm or less.

【0053】また、本発明の製造方法で得られるリチウ
ム鉄リン系複合酸化物は、公知の他のリチウムコバルト
系複合酸化物、リチウムニッケル複合酸化物又はリチウ
ムマンガン系複合酸化物と併用して用いることで,従来
のリチウムコバルト系複合酸化物、リチウムニッケル複
合酸化物又はリチウムマンガン系複合酸化物を用いたリ
チウム二次電池の安全性を更に向上させることができ
る。この場合、併用するリチウムコバルト系複合酸化
物、リチウムニッケル複合酸化物又はリチウムマンガン
系複合酸化物の物性等は特に制限されるものではない
が、平均粒径が1.0〜20μm、好ましくは1.0〜
15μm、さらに好ましくは2.0〜10μmで、BE
T比表面積が0.1〜2.0m2/g、好ましくは0.
2〜1.5m2/g、さらに好ましくは0.3〜1.0
2/gであるものが好ましい。
The lithium iron phosphorus complex oxide obtained by the production method of the present invention is used in combination with other known lithium cobalt complex oxide, lithium nickel complex oxide or lithium manganese complex oxide. As a result, the safety of the lithium secondary battery using the conventional lithium cobalt composite oxide, lithium nickel composite oxide, or lithium manganese composite oxide can be further improved. In this case, the physical properties of the lithium cobalt-based composite oxide, lithium nickel composite oxide, or lithium manganese-based composite oxide used in combination are not particularly limited, but the average particle diameter is 1.0 to 20 μm, preferably 1 .0 to
15 μm, more preferably 2.0 to 10 μm, BE
T specific surface area is 0.1 to 2.0 m 2 / g, preferably 0.1.
2 to 1.5 m 2 / g, more preferably 0.3 to 1.0
It is preferably m 2 / g.

【0054】[0054]

【実施例】以下、本発明を実施例により詳細に説明する
が本発明はこれらに限定されるものではない <硫酸第一鉄7水和物(FeSO4・7H2O)>実施例で用いた
原料の硫酸第一鉄7水和物は市販の工業品を用い、その
品位を表1に示す。なお、Na、Ti、Mn、Zn、C
r、Ni、Cu、Coの含有量は、ICP分光法により
求めた。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto. <Ferrous sulfate heptahydrate (FeSO 4 .7H 2 O)> As the starting material, ferrous sulfate heptahydrate, a commercially available industrial product was used, and its grade is shown in Table 1. In addition, Na, Ti, Mn, Zn, C
The contents of r, Ni, Cu and Co were determined by ICP spectroscopy.

【表1】 [Table 1]

【0055】<リン酸第一鉄含水塩結晶の合成> 実施例1 硫酸第一鉄7水和物(FeSO4・7H2O)907g(3モル)
と75%リン酸(H3PO 4)261g(2モル)を,水3
Lに溶解させ,混合溶液を作成した(温度17℃、pH
1.6)。この混合溶液に,16%水酸化ナトリウム
(NaOH)水溶液1500ml(6モル)を83ml/m
inの滴下速度で18分で滴下し、リン酸第一鉄を析出
させた(温度31℃、pH 6.7)。次に、ろ過して
リン酸第一鉄を回収し、この回収したリン酸第一鉄を水
4.5Lで入念に洗浄した。次いで、洗浄後のリン酸第
一鉄を温度50℃で23時間乾燥し、乾燥品490gを
得た。得られた乾燥品をX線回折で分析したところJC
PDSカード番号30−662と回折パターンが一致し
ていることから、この乾燥品はFe3(PO42・8H2
Oであることを確認した(収率98%)。得られたFe
3(PO42・8H2Oの諸物性値を表2に示す。また、
得られたFe3(PO42・8H2Oを線源としてCuK
α線を用いてX線回折分析を行い2θ=13.1°近傍
の回折ピーク(020面)の半値幅を測定し、その結果
を表2に示す。また、得られたFe3(PO42・8H2
OのX線回折図を図1に示す。なお、Na、Ti、M
n、Zn、Cr、Ni、Cu、Coの含有量は、ICP
分光法により求めた。また、SO4含有量はICP分光
法によるS原子濃度測定結果を換算して求め、該乾燥品
のP含有量を吸光光度法により求めた。このP含有量の
値が高い方が乾燥品の純度が高いことを示す。また、平
均粒径は、レーザー回折法により求めた。
<Synthesis of Ferrous Phosphate Hydrous Crystal> Example 1 Ferrous sulfate heptahydrate (FeSOFour・ 7H2O) 907 g (3 mol)
And 75% phosphoric acid (H3PO Four) 261 g (2 mol) in water 3
It was dissolved in L to prepare a mixed solution (temperature 17 ° C, pH
 1.6). 16% sodium hydroxide was added to this mixed solution.
(NaOH) aqueous solution 1500ml (6mol) 83ml / m
Dropping at a dropping rate of in for 18 minutes to deposit ferrous phosphate
(Temperature 31 ° C., pH 6.7). Then filter
The ferrous phosphate was recovered and the recovered ferrous phosphate was added to water.
It was washed thoroughly with 4.5 L. Then, wash with phosphoric acid
Iron iron is dried at a temperature of 50 ° C for 23 hours, and 490 g of a dried product is added.
Obtained. When the obtained dried product was analyzed by X-ray diffraction, JC
The diffraction pattern matches the PDS card number 30-662.
Therefore, this dried product is Fe3(POFour)2・ 8H2
It was confirmed to be O (yield 98%). Obtained Fe
3(POFour)2・ 8H2Various physical properties of O are shown in Table 2. Also,
Obtained Fe3(POFour)2・ 8H2Cu as O source
X-ray diffraction analysis was performed using α rays, and 2θ = 13.1 ° vicinity.
Half width of the diffraction peak (020 plane) of
Is shown in Table 2. Also, the obtained Fe3(POFour)2・ 8H2
The X-ray diffraction pattern of O is shown in FIG. In addition, Na, Ti, M
The content of n, Zn, Cr, Ni, Cu, Co is ICP.
Determined by spectroscopy. Also, SOFourICP spectroscopy content
The S atom concentration measurement result by the method is converted to obtain the dried product.
The P content of was determined by absorptiometry. Of this P content
The higher the value, the higher the purity of the dried product. Also, flat
The average particle size was determined by the laser diffraction method.

【0056】実施例2 硫酸第一鉄7水和物(FeSO4・7H2O)816 g(2.7モル)と
75%リン酸(H3PO4)261g(2モル)を,水3Lに溶解さ
せ,混合溶液を作成した(温度8 ℃、pH 0.6).この
混合溶液に,24 %水酸化ナトリウム(NaOH)水溶液100
0 ml(6 モル)を166 ml/minの滴下速度で6分
で滴下し、リン酸第一鉄を析出させた(温度21℃、pH
7.4)。次に、ろ過してリン酸第一鉄を回収し、この回
収したリン酸第一鉄を水4.5Lで入念に洗浄した。次い
で、洗浄後のリン酸第一鉄を温度50℃で23時間乾燥し、
乾燥品480gを得た。得られた乾燥品をX線回折で分析
したところJCPDSカード番号30−662と回折パ
ターンが一致していることから、この乾燥品はFe
3(PO42・8H2Oであることを確認した(収率94
%)。得られたFe3(PO42・8H2Oの諸物性値を
表2に示す。なお、Na、Ti、Mn、Zn、Cr、N
i、Cu、Co、SO4含有量、P含有量、平均粒径は
実施例1と同じ手法で求めた。
Example 2 Ferrous sulfate heptahydrate (FeSO 4 .7H 2 O) (816 g, 2.7 mol)
261 g (2 mol) of 75% phosphoric acid (H 3 PO 4 ) was dissolved in 3 L of water to prepare a mixed solution (temperature 8 ° C., pH 0.6). To this mixed solution, add 100% 24% sodium hydroxide (NaOH) aqueous solution.
0 ml (6 mol) was added dropwise at a dropping rate of 166 ml / min for 6 minutes to precipitate ferrous phosphate (temperature 21 ° C, pH
7.4). Next, the ferrous phosphate was recovered by filtration, and the recovered ferrous phosphate was thoroughly washed with 4.5 L of water. Then, the washed ferrous phosphate is dried at a temperature of 50 ° C. for 23 hours,
480 g of dried product was obtained. When the obtained dried product was analyzed by X-ray diffraction and the diffraction pattern coincided with that of JCPDS card No. 30-662, this dried product was Fe.
3 (PO 4) was confirmed to be 2 · 8H 2 O (yield: 94
%). Table 2 shows the physical properties of the obtained Fe 3 (PO 4 ) 2 .8H 2 O. In addition, Na, Ti, Mn, Zn, Cr, N
The i, Cu, Co, SO 4 content, P content, and average particle size were determined by the same method as in Example 1.

【0057】比較例1 硫酸第一鉄7水和物(FeSO4・7H2O)278g(1モル)
を水1Lに溶解させ、硫酸第一鉄水溶液を作成した。別
にリン酸水素ナトリウム12水和物(Na2HPO4・1
2H2O)240g(0.67モル)を水2Lに溶解
し、リン酸水素ナトリウム水溶液を作成した。硫酸第一
鉄水溶液にリン酸水素ナトリウム水溶液を56ml/m
inの滴下速度で36分で滴下し、リン酸第一鉄を析出
させた。次に、ろ過してリン酸第一鉄を回収し、この回
収したリン酸第一鉄を水4.5Lで入念に洗浄した。次
いで、洗浄後のリン酸第一鉄を温度45℃で23時間乾
燥し、乾燥品82gを得た。得られた乾燥品をX線回折
で分析したところJCPDSカード番号30−662と
回折パターンが一致していることから、この乾燥品はF
3(PO4 2・8H2Oであることを確認した(収率4
9%)。得られたFe3(PO42・8H2Oの諸物性値
を表2に示す。また、得られたFe3(PO42・8H2
Oを線源としてCukα線を用いてX線回折分析を行い
2θ=13.1近傍の回折ピーク(020面)の半値幅
を測定し、図2にそのX線回折図を示す。なお、Na、
Ti、Mn、Zn、Cr、Ni、Cu、Co、SO4
有量、P含有量及び平均粒径は実施例1と同じ手法で求
めた。
Comparative Example 1 Ferrous sulfate heptahydrate (FeSOFour・ 7H2O) 278 g (1 mol)
Was dissolved in 1 L of water to prepare a ferrous sulfate aqueous solution. Another
Sodium hydrogen phosphate dodecahydrate (Na2HPOFour・ 1
2H2O) 240 g (0.67 mol) dissolved in 2 L of water
Then, an aqueous solution of sodium hydrogen phosphate was prepared. Sulfuric acid first
56 ml / m of sodium hydrogen phosphate aqueous solution to iron aqueous solution
It is added dropwise at a dropping rate of in 36 minutes to precipitate ferrous phosphate.
Let Next, the ferrous phosphate is recovered by filtration, and this time
The collected ferrous phosphate was thoroughly washed with 4.5 L of water. Next
And dry the washed ferrous phosphate at 45 ° C for 23 hours.
It was dried to obtain 82 g of a dried product. X-ray diffraction of the obtained dried product
When analyzed by JCPDS card number 30-662
Since the diffraction patterns match, this dried product is F
e3(POFour) 2・ 8H2It was confirmed to be O (yield 4
9%). Obtained Fe3(POFour)2・ 8H2Physical properties of O
Is shown in Table 2. Also, the obtained Fe3(POFour)2・ 8H2
X-ray diffraction analysis is performed using Cukα rays with O as a radiation source.
Full width at half maximum of diffraction peak (020 plane) near 2θ = 13.1
Was measured, and the X-ray diffraction pattern thereof is shown in FIG. In addition, Na,
Ti, Mn, Zn, Cr, Ni, Cu, Co, SOFourIncluding
The content, P content and average particle size were determined by the same method as in Example 1.
I have

【0058】比較例2 市販のリン酸鉄第一鉄(Fe3(PO42・8H2O)を
実施例1と同様にX線回折分析し、2θ=13.1近傍
の格子面(020面)の回折ピークの半値幅、Na、T
i、Mn、Zn、Cr、Ni、Cu、Co及びSO4
有量、P含有量、平均粒径を測定し、その結果を表2に
示す。
Comparative Example 2 Commercially available ferrous iron phosphate (Fe 3 (PO 4 ) 2 .8H 2 O) was subjected to X-ray diffraction analysis in the same manner as in Example 1, and the lattice plane (in the vicinity of 2θ = 13.1) ( FWHM of diffraction peak of (020 plane), Na, T
The i, Mn, Zn, Cr, Ni, Cu, Co and SO 4 contents, the P content, and the average particle size were measured, and the results are shown in Table 2.

【0059】[0059]

【表2】 注)表中の「−」は、検出限界1ppm以下であること
を示す。
[Table 2] Note) "-" in the table indicates that the detection limit is 1 ppm or less.

【0060】<リチウム鉄リン系複合酸化物の合成> 実施例3 実施例1で調製したリン酸第一鉄含水塩結晶(Fe
3(PO42・8H2O)10kgとリン酸リチウム(L
3PO4;平均粒径5.8μm、FMC社製)2.4k
g及び粒径が0.05μmのケッチェンブラック(ケッ
チェンブラックインターナショナル社製、商品名EC
P)1kgをヘンシェルミキサーにより十分混合した。
次いで、この混合物を乾式ビーズミル装置を用いて粉砕
処理し、反応前駆体を得た。得られた反応前駆体の主物
性を表3に示した。また、ビーズミル粉砕品の比容積
は、50mlのメスシリンダーにサンプル10gを入
れ、ユアサアイオニクス(株)製、DUAL AUTO
TAP装置にセットし、500回タップした後、容積を
読みとり下記式により求めた。
<Synthesis of Lithium Iron Phosphorus Complex Oxide> Example 3 Ferrous Phosphate Hydrate Crystal (Fe) Prepared in Example 1
3 (PO 4) 2 · 8H 2 O) 10kg and lithium phosphate (L
i 3 PO 4 ; average particle size 5.8 μm, manufactured by FMC) 2.4 k
Ketjen Black with g and particle size of 0.05 μm (Ketjen Black International, trade name EC
P) 1 kg was thoroughly mixed with a Henschel mixer.
Next, this mixture was pulverized using a dry bead mill to obtain a reaction precursor. Table 3 shows the main physical properties of the obtained reaction precursor. Further, the specific volume of the bead mill crushed product is such that a sample of 10 g is put in a graduated cylinder of 50 ml and manufactured by Yuasa Ionics Co., Ltd., DUAL AUTO.
After being set in the TAP device and tapped 500 times, the volume was read and determined by the following formula.

【数2】 (式中、F;受器内の処理した試料の質量(g)、V;
タップ後の試料の容量(ml)を示す。) なお、乾式ビーズミル装置の条件は以下のとおりであ
る。 ・流動媒体;アルミナビーズ(平均粒径5mm) ・空間容積;64% ・周速度;5.2 m/S 次に、得られた粉砕品を窒素雰囲気下に600℃で5時
間焼成し、冷却後、粉砕、分級してケッチェンブラック
を被覆したLiFePO4を得た。得られたケッチェン
ブラックを被覆したLiFePO4の主物性を表4に示
す。なお、Na、Ti、Mn、Zn、Cr、Ni、C
u、Coの含有量は、ICP分光法により求めた。また、
SO4含有量はICP分光法によるS原子濃度測定結果を換
算して求めた。平均粒径は、電子顕微鏡写真により求め
た。また、ケッチェンブラックを被覆したLiFePO
4中のC原子の含有量を全有機体炭素計(島津製作所社
製、TOC−5000A)により測定した。
[Equation 2] (In the formula, F; mass (g) of the treated sample in the receiver, V;
The volume (ml) of the sample after tapping is shown. The conditions of the dry bead mill device are as follows. -Fluid medium: Alumina beads (average particle size 5 mm) -Space volume: 64% -Peripheral velocity: 5.2 m / S Next, the obtained pulverized product is fired at 600 ° C for 5 hours in a nitrogen atmosphere and cooled. Then, it was pulverized and classified to obtain LiFePO 4 coated with Ketjen black. Table 4 shows the main physical properties of LiFePO 4 coated with the obtained Ketjen Black. In addition, Na, Ti, Mn, Zn, Cr, Ni, C
The contents of u and Co were determined by ICP spectroscopy. Also,
The SO 4 content was obtained by converting the S atom concentration measurement result by ICP spectroscopy. The average particle size was determined by an electron micrograph. In addition, LiFePO coated with Ketjen Black
The content of C atoms in 4 was measured by a total organic carbon meter (TOC-5000A, manufactured by Shimadzu Corp.).

【0061】実施例4 実施例1で調製したリン酸第一鉄含水塩結晶(Fe
3(PO42・8H2O)10kgとリン酸リチウム(L
3PO4;平均粒径5.8μm、FMC社製)2.4k
g及び粒径が0.1μmのケッチェンブラック(ケッチ
ェンブラックインターナショナル社製、商品名ECP)
1kgをヘンシェルミキサーにより十分混合した。次い
で、この混合物を乾式ビーズミル装置を用いて粉砕処理
し、反応前駆体を得た。得られた反応前駆体の主物性を
実施例3と同様に測定し、その結果を表3に示した。な
お、乾式ビーズミル装置の条件は以下のとおりである。 ・流動媒体;アルミナビーズ(平均粒径5mm) ・空間容積;75% ・周速度;5.2 m/S 次に、反応前駆体10gをハンドプレスにより44MP
aでプレス成形した。次いで、このプレス成形品を窒素
雰囲気下に600℃で5時間焼成し、冷却後、粉砕、分
級しケッチェンブラックを被覆したLiFePO4を得
た。得られたリチウム鉄リン系複合体の平均粒径、BE
T比表面積、Na、Ti、Mn、Zn、Cr、Ni、C
u、Co、SO4、C原子の含有量を実施例3と同様な手
法で求めその結果を表4に示す。また、得られたリチウ
ム鉄リン系複合酸化物のX線回折図を図3に示した。
Example 4 Ferrous phosphate hydrate crystals (Fe
3 (PO 4) 2 · 8H 2 O) 10kg and lithium phosphate (L
i 3 PO 4 ; average particle size 5.8 μm, manufactured by FMC) 2.4 k
Ketjen Black with g and particle size of 0.1 μm (Ketjen Black International, trade name ECP)
1 kg was thoroughly mixed with a Henschel mixer. Next, this mixture was pulverized using a dry bead mill to obtain a reaction precursor. The main physical properties of the obtained reaction precursor were measured in the same manner as in Example 3, and the results are shown in Table 3. The conditions of the dry bead mill are as follows. -Fluid medium: Alumina beads (average particle size 5 mm) -Space volume: 75% -Peripheral velocity: 5.2 m / S Next, 10 g of the reaction precursor is 44MP by a hand press.
It was press molded in a. Next, this press-molded product was baked in a nitrogen atmosphere at 600 ° C. for 5 hours, cooled, pulverized and classified to obtain LiFePO 4 coated with Ketjen black. Average particle size of the obtained lithium iron phosphorus composite, BE
T specific surface area, Na, Ti, Mn, Zn, Cr, Ni, C
The contents of u, Co, SO 4 , and C atoms were determined by the same method as in Example 3, and the results are shown in Table 4. Further, an X-ray diffraction diagram of the obtained lithium iron phosphorus complex oxide is shown in FIG.

【0062】実施例5 実施例1で調製したリン酸第一鉄含水塩結晶(Fe
3(PO42・8H2O)10kgとリン酸リチウム(L
3PO4;平均粒径5.8μm、FMC社製)2.4k
g及び粒径が0.1μmのケッチェンブラック(ケッチ
ェンブラックインターナショナル社製、商品名ECP)
1kgをヘンシェルミキサーにより十分混合した。次い
で、この混合物を乾式ビーズミル装置を用いて粉砕処理
し、反応前駆体を得た。得られた反応前駆体の主物性を
実施例3と同様に測定し、その結果を表3に示した。な
お、乾式ビーズミル装置の条件は以下のとおりである。 ・流動媒体;アルミナビーズ(平均粒径8mm) ・空間容積;75% ・周速度;4.7 m/S 次に、反応前駆体10gをハンドプレスにより44MP
aでプレス成形した。次いで、このプレス成形品を窒素
雰囲気下に600℃で5時間焼成し、冷却後、粉砕、分
級しケッチェンブラックを被覆したLiFePO4を得
た。得られたリチウム鉄リン系複合体の平均粒径、BE
T比表面積、Na、Ti、Mn、Zn、Cr、Ni、C
u、Co、SO4、C原子の含有量を実施例3と同様な手
法で求めその結果を表4に示す。
Example 5 Ferrous phosphate hydrate crystals (Fe
3 (PO 4) 2 · 8H 2 O) 10kg and lithium phosphate (L
i 3 PO 4 ; average particle size 5.8 μm, manufactured by FMC) 2.4 k
Ketjen Black with g and particle size of 0.1 μm (Ketjen Black International, trade name ECP)
1 kg was thoroughly mixed with a Henschel mixer. Next, this mixture was pulverized using a dry bead mill to obtain a reaction precursor. The main physical properties of the obtained reaction precursor were measured in the same manner as in Example 3, and the results are shown in Table 3. The conditions of the dry bead mill are as follows. -Fluid medium: Alumina beads (average particle size 8 mm) -Space volume: 75% -Peripheral velocity: 4.7 m / S Next, 10 g of the reaction precursor was hand-pressed to 44 MP
It was press molded in a. Next, this press-molded product was baked in a nitrogen atmosphere at 600 ° C. for 5 hours, cooled, pulverized and classified to obtain LiFePO 4 coated with Ketjen black. Average particle size of the obtained lithium iron phosphorus composite, BE
T specific surface area, Na, Ti, Mn, Zn, Cr, Ni, C
The contents of u, Co, SO 4 , and C atoms were determined by the same method as in Example 3, and the results are shown in Table 4.

【0063】実施例6 <リン酸マンガンの合成>硫酸マンガン1水和物(MnSO4
・H2O)1352 g(8モル)と75 %リン酸(H3PO4)697 g
(5.3モル)を水25 Lに溶解させ,混合溶液を作成し
た.(pH 1.3)この混合溶液に,4 %水酸化ナトリウム
(NaOH)水溶液16 L(16モル)を161 ml/minの滴下速度
で約100分で滴下し,リン酸マンガンを析出させた(pH
6.5).次に,濾過してリン酸マンガンを回収し,この
回収したリン酸マンガンを水40Lで入念に洗浄した.次
いで,洗浄後のリン酸マンガンを温度50℃で23時間乾燥
し,乾燥品1214 gを得た.得られた乾燥品をX線回折で
分析したところ,文献(Russ. J. Inorg. Chem. 23, 34
1, 1978)記載のデータと面間隔および回折強度が一致
していること,およびMn含有量が34.8重量%、P
4含有量が40.2重量%であることからこの乾燥品
はMn3(PO4)2・6H2Oであることを確認した(収率98%).
なお、得られたリン酸マンガンはレーザー回折法から求
められる平均粒径が4.9μmであった。 <リン酸(鉄−マンガン)リン系複合酸化物の合成>実
施例1で合成したリン酸第一鉄含水塩結晶(Fe3(PO4)2
8H2O)23.7 gと上記で合成したリン酸マンガン含水塩結
晶(Mn3(PO4)2・6H2O)25.1 gとリン酸リチウム(Li3
PO4;平均粒径5.8μm、FMC社製)12.0 g及び
粒径が0.1μmのケッチェンブラック(ケッチェンブ
ラックインターナショナル社製、商品名ECP)4.9 g
をミキサーにより充分混合した.次いで,この混合物を
振動ミルを用いて粉砕処理し,反応前駆体を得た.得ら
れた反応前駆体の諸物性を実施例3と同様に測定し,表
3に示した.なお,振動ミルの運転条件は以下の通りで
ある. ・振動数;1000 Hz ・処理時間;3分 ・原料の仕込量;12 g 次に、反応前駆体10gをハンドプレスにより44MP
aでプレス成形した。次いで、このプレス成形品を窒素
雰囲気下に600℃で5時間焼成し、冷却後、粉砕、分
級しケッチェンブラックを被覆したリン酸(鉄−マンガ
ン)リン系複合酸化物を得た。得られたリン酸(鉄−マ
ンガン)リン系複合酸化物の平均粒径、BET比表面
積、Na、Ti、Mn、Zn、Cr、Ni、Cu、C
o、SO4の含有量を実施例3と同様な手法で求めその
結果を表4に示す。
Example 6 <Synthesis of manganese phosphate> Manganese sulfate monohydrate (MnSO 4
・ H 2 O) 1352 g (8 mol) and 75% phosphoric acid (H 3 PO 4 ) 697 g
(5.3 mol) was dissolved in 25 L of water to prepare a mixed solution. (PH 1.3) 16 L (16 mol) of 4% sodium hydroxide (NaOH) aqueous solution was added dropwise to this mixed solution at a dropping rate of 161 ml / min for about 100 minutes to precipitate manganese phosphate (pH
6.5). Next, the manganese phosphate was recovered by filtration, and the recovered manganese phosphate was thoroughly washed with 40 L of water. Then, the washed manganese phosphate was dried at a temperature of 50 ° C for 23 hours to obtain 1214 g of a dried product. When the obtained dried product was analyzed by X-ray diffraction, it was found in the literature (Russ. J. Inorg. Chem. 23 , 34
1, 1978), the interplanar spacing and the diffraction intensity are in agreement with the data described, and the Mn content is 34.8% by weight, P
The dried product since O 4 content of 40.2 wt% was found to be Mn 3 (PO 4) is 2 · 6H 2 O (98% yield).
The obtained manganese phosphate had an average particle size of 4.9 μm, which was determined by a laser diffraction method. <Synthesis of Phosphoric Acid (Iron-Manganese) Phosphorus Complex Oxide> Ferrous Phosphate Hydrate Crystal (Fe 3 (PO 4 ) 2
8H 2 O) 23.7 g and synthesized manganese phosphate salt hydrate crystals in the (Mn 3 (PO 4) 2 · 6H 2 O) 25.1 g of lithium phosphate (Li 3
PO 4 ; average particle size 5.8 μm, manufactured by FMC) 12.0 g and particle size Ketjen Black (product name ECP, manufactured by Ketjen Black International Co., Ltd.) 4.9 g
Was thoroughly mixed with a mixer. Then, this mixture was pulverized using a vibration mill to obtain a reaction precursor. Various physical properties of the obtained reaction precursor were measured in the same manner as in Example 3 and shown in Table 3. The operating conditions of the vibration mill are as follows.・ Frequency: 1000 Hz ・ Treatment time: 3 minutes ・ Amount of raw material charged: 12 g Next, 10 g of reaction precursor was hand-pressed to 44 MP
It was press molded in a. Next, this press-molded product was baked in a nitrogen atmosphere at 600 ° C. for 5 hours, cooled, pulverized and classified to obtain a phosphoric acid (iron-manganese) phosphorus-based composite oxide coated with Ketjen black. Average particle size, BET specific surface area, Na, Ti, Mn, Zn, Cr, Ni, Cu, C of the obtained phosphoric acid (iron-manganese) phosphorus-based composite oxide
The contents of o and SO 4 were determined by the same method as in Example 3, and the results are shown in Table 4.

【0064】[0064]

【表3】 [Table 3]

【0065】[0065]

【表4】 注)表4中のC原子の含有量は、LiFePO4又はLiFe0.5Mn
0.5PO4 に対するC原子の量を示す。
[Table 4] Note) The content of C atoms in Table 4 is LiFePO 4 or LiFe 0.5 Mn
The amount of C atoms relative to 0.5 PO 4 is shown.

【0066】<参考例> <電池性能試験> (I)リチウム二次電池の作製;上記のように製造した
実施例3〜5のケッチェンブラックを被覆したLiFe
PO4を真空乾燥し、カールフィッシャー滴定法により
250℃水分気化法で求められる該ケッチェンブラック
を被覆したLiFePO4の水分含有量をそれぞれ15
00ppm以下とし、このリチウム鉄リン系複合酸化物
91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン
3重量%を混合して正極剤とし、これをN−メチル−2
−ピロリジノンに分散させて混練ペーストを調製した。
該混練ペーストをアルミ箔に塗布したのち乾燥、プレス
して直径15mmの円盤に打ち抜いて正極板を得た。こ
の正極板を用いて、セパレーター、負極、正極、集電
板、取り付け金具、外部端子、電解液等の各部材を使用
してリチウム二次電池を製作した。このうち、負極は金
属リチウム箔を用い、電解液にはエチレンカーボネート
とメチルエチルカーボネートの1:1混練液1リットル
にLiPF6 1モルを溶解したものを使用した。 (II)電池の性能評価 作製したリチウム二次電池を室温で作動させ、初期放電
容量および10サイクル後の放電容量を測定した。ま
た、LiFePO4の理論放電容量(170mAh/
g)に対する比を下記の式により算出した。
Reference Example <Battery Performance Test> (I) Production of Lithium Secondary Battery; LiFe coated with Ketjen Black of Examples 3 to 5 produced as described above
The PO 4 was vacuum dried, and the water content of LiFePO 4 coated with the Ketjen black was determined to be 15 by the Karl Fischer titration method by the water vaporization method at 250 ° C.
The amount was adjusted to 00 ppm or less, and 91% by weight of this lithium iron phosphorus-based composite oxide, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride were mixed as a positive electrode agent, and this was used as N-methyl-2.
A kneading paste was prepared by dispersing in pyrrolidinone.
The kneading paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate. Using this positive electrode plate, a lithium secondary battery was manufactured by using each member such as a separator, a negative electrode, a positive electrode, a current collector plate, a fitting, an external terminal, and an electrolytic solution. Of these, a metal lithium foil was used for the negative electrode, and an electrolyte prepared by dissolving 1 mol of LiPF 6 in 1 liter of a 1: 1 kneading solution of ethylene carbonate and methyl ethyl carbonate was used. (II) Battery Performance Evaluation The manufactured lithium secondary battery was operated at room temperature, and the initial discharge capacity and the discharge capacity after 10 cycles were measured. Also, the theoretical discharge capacity of LiFePO 4 (170 mAh /
The ratio to g) was calculated by the following formula.

【数3】 [Equation 3]

【0067】[0067]

【表5】 [Table 5]

【0068】表5の結果より、本発明のリン酸第一鉄含
水塩結晶を用いて、製造したLiFePO 4を正極活物質とし
て用いたリチウム二次電池は、LiFePO4の理論放電容量
に近い値を示し、極めて高放電容量のリチウム二次電池
が得られた。
From the results shown in Table 5, the ferrous phosphate-containing material of the present invention is contained.
LiFePO produced using hydrous crystals FourAs the positive electrode active material
The lithium secondary battery used was LiFePOFourTheoretical discharge capacity of
Rechargeable lithium secondary battery with a value close to
was gotten.

【0069】[0069]

【発明の効果】上記したとおり、本発明のリン酸第一鉄
含水塩結晶は、機能性無機材料、特にリチウム二次電池
の正極活物質で用いるLiFePO4又はLiFeMe
PO4(Meは、Mn、Co、Ni、Alから選ばれる
少なくとも1種以上の金属元素を示す。)の製造原料の
用途に適した微細で、結晶性が低いリン酸第一鉄含水塩
結晶であり、また、本発明の製造方法によれば、高収率
で該リン酸第一鉄含水塩結晶を工業的に有利に製造する
ことができる。また、本発明のリン酸第一鉄含水塩結晶
を製造原料として用いて得られるリチウム鉄リン系複合
酸化物を正極活物質とするリチウム二次電池はLiFePO4
の理論放電容量に近い値を示す。
INDUSTRIAL APPLICABILITY As described above, the ferrous phosphate hydrate salt crystal of the present invention is a functional inorganic material, particularly LiFePO 4 or LiFeMe used in a positive electrode active material of a lithium secondary battery.
Fine, low crystallinity ferrous phosphate hydrate crystal suitable for use as a raw material for producing PO 4 (Me represents at least one metal element selected from Mn, Co, Ni and Al) Further, according to the production method of the present invention, the ferrous phosphate hydrate crystals can be industrially advantageously produced in high yield. Further, a lithium secondary battery using a lithium iron phosphorus complex oxide obtained by using the ferrous phosphate hydrate crystal of the present invention as a raw material for production is a LiFePO 4
Shows a value close to the theoretical discharge capacity of.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で得られたリン酸鉄含水塩結晶のX
線回折図。
FIG. 1 X of iron phosphate hydrate crystals obtained in Example 1
Line diffraction diagram.

【図2】 比較例1で得られたリン酸鉄含水塩結晶のX
線回折図。
FIG. 2 X of iron phosphate hydrate crystals obtained in Comparative Example 1
Line diffraction diagram.

【図3】 実施例4で得られたリチウム鉄リン系複合酸
化物のX線回折図。
FIG. 3 is an X-ray diffraction diagram of the lithium iron phosphorus complex oxide obtained in Example 4.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 根岸 克幸 東京都江東区亀戸9丁目11番1号 日本化 学工業株式会社電材研究部内 Fターム(参考) 5H050 BA17 CA07 DA02 GA02 GA03 GA05 HA05    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Katsuyuki Negishi             9-11 Kameido, Koto-ku, Tokyo Japanization             Gaku Kogyo Co., Ltd. F-term (reference) 5H050 BA17 CA07 DA02 GA02 GA03                       GA05 HA05

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 一般式;Fe3(PO42・8H2Oで示
されるリン酸第一鉄含水塩であって、平均粒径が5μm
以下である物性を有することを特徴とするリン酸第一鉄
含水塩結晶。
1. A general formula; a Fe 3 (PO 4) phosphoric acid ferrous salt hydrate represented by 2 · 8H 2 O, an average particle diameter of 5μm
A ferrous phosphate hydrate salt crystal having the following physical properties:
【請求項2】 X線回折分析から求められる格子面(0
20面)の回折ピークの半値幅が0.20°以上である
請求項1記載のリン酸第一鉄含水塩結晶。
2. A lattice plane (0
The ferrous phosphate hydrate salt crystal according to claim 1, wherein the full width at half maximum of the diffraction peak of (20th plane) is 0.20 ° or more.
【請求項3】 不純物としてのNaの含有量が1重量%
以下である請求項1又は2記載のリン酸第一鉄含水塩結
晶。
3. The content of Na as an impurity is 1% by weight.
The ferrous phosphate hydrate salt crystal according to claim 1 or 2, wherein:
【請求項4】 2価の鉄塩とリン酸を含む水溶液に、ア
ルカリを添加して反応を行うことを特徴とするリン酸第
一鉄含水塩結晶の製造方法。
4. A method for producing ferrous phosphate hydrate crystals, which comprises adding an alkali to an aqueous solution containing a divalent iron salt and phosphoric acid to carry out the reaction.
【請求項5】 前記2価の鉄塩は、硫酸第一鉄7水和物
(FeSO4・7H2O)である請求項4記載のリン酸第
一鉄含水塩結晶の製造方法。
5. The method for producing ferrous phosphate hydrate crystals according to claim 4 , wherein the divalent iron salt is ferrous sulfate heptahydrate (FeSO 4 .7H 2 O).
【請求項6】 (A)請求項1乃至3の何れか1項に記
載のリン酸第一鉄含水塩結晶、リン酸リチウム及び導電
性炭素質材料又は(B)請求項1乃至3の何れか1項に
記載のリン酸第一鉄含水塩結晶、リン酸リチウム、M
n、Co、Ni及びAlから選ばれる金属元素を含有す
る少なくとも1種以上の金属化合物及び導電性炭素質材
料とを混合し焼成を行うことを特徴とするリチウム鉄リ
ン系複合酸化物の製造方法。
6. (A) The ferrous phosphate hydrate crystal according to any one of claims 1 to 3, lithium phosphate and a conductive carbonaceous material, or (B) any one of claims 1 to 3. 1. The ferrous phosphate hydrate crystal according to item 1, lithium phosphate, M
A method for producing a lithium-iron-phosphorus composite oxide, which comprises mixing at least one metal compound containing a metal element selected from n, Co, Ni and Al and a conductive carbonaceous material and firing the mixture. .
【請求項7】 (A)請求項1乃至3の何れか1項に記
載のリン酸第一鉄含水塩結晶、リン酸リチウム及び導電
性炭素質材料又は(B)請求項1乃至3の何れか1項に
記載のリン酸第一鉄含水塩結晶、リン酸リチウム、M
n、Co、Ni及びAlから選ばれる金属元素を含有す
る少なくとも1種以上の金属化合物及び導電性炭素質材
料とを混合する第一工程、次いで、得られる混合物を乾
式で粉砕処理して反応前駆体を得る第二工程、次いで、
該反応前駆体を焼成してリチウム鉄リン系複合酸化物を
得る第三工程を含むことを特徴とする請求項6記載のリ
チウム鉄リン系複合酸化物の製造方法。
7. (A) The ferrous phosphate hydrate crystal according to any one of claims 1 to 3, lithium phosphate and a conductive carbonaceous material, or (B) any one of claims 1 to 3. 1. The ferrous phosphate hydrate crystal according to item 1, lithium phosphate, M
A first step of mixing at least one metal compound containing a metal element selected from n, Co, Ni and Al and a conductive carbonaceous material, and then pulverizing the resulting mixture in a dry process to prepare a reaction precursor. The second step to get the body, then
The method for producing a lithium iron phosphorus complex oxide according to claim 6, comprising a third step of firing the reaction precursor to obtain a lithium iron phosphorus complex oxide.
【請求項8】 前記第二工程後、得られる反応前駆体を
加圧成形する工程を設ける請求項7記載のリチウム鉄リ
ン系複合酸化物の製造方法。
8. The method for producing a lithium iron phosphorus complex oxide according to claim 7, further comprising a step of press-molding the obtained reaction precursor after the second step.
【請求項9】 生成させるリチウム鉄リン系複合酸化物
は平均粒径が0.5μm以下である請求項6乃至8記載
のリチウム鉄リン系複合酸化物の製造方法。
9. The method for producing a lithium iron phosphorus composite oxide according to claim 6, wherein the lithium iron phosphorus composite oxide to be produced has an average particle diameter of 0.5 μm or less.
JP2002379425A 2002-01-31 2002-12-27 Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide Expired - Fee Related JP4180363B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002379425A JP4180363B2 (en) 2002-01-31 2002-12-27 Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
CNB031020941A CN1299979C (en) 2002-01-31 2003-01-29 Ferrous phosphate hydrated salt crystal, producing method thereof and method for producing Li-Fe-P composite oxides
KR1020030006177A KR100898236B1 (en) 2002-01-31 2003-01-30 Ferrous Phosphate Hydrate Crystal, Process for Preparing the Same, and Process for Preparing Lithium-Iron-Phosphor Based Combination

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-23934 2002-01-31
JP2002023934 2002-01-31
JP2002379425A JP4180363B2 (en) 2002-01-31 2002-12-27 Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide

Publications (2)

Publication Number Publication Date
JP2003292307A true JP2003292307A (en) 2003-10-15
JP4180363B2 JP4180363B2 (en) 2008-11-12

Family

ID=27667467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379425A Expired - Fee Related JP4180363B2 (en) 2002-01-31 2002-12-27 Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide

Country Status (3)

Country Link
JP (1) JP4180363B2 (en)
KR (1) KR100898236B1 (en)
CN (1) CN1299979C (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123107A (en) * 2003-10-20 2005-05-12 Hitachi Maxell Ltd Active material for electrochemical element, its manufacturing method, and the electrochemical element using the same
EP1722428A1 (en) * 2005-05-13 2006-11-15 Süd-Chemie Ag Lithium secondary battery and electrodes for use therein
JP2006339104A (en) * 2005-06-06 2006-12-14 Toyota Central Res & Dev Lab Inc Active material for lithium secondary battery, and its manufacturing method as well as the lithium secondary battery
JP2007035295A (en) * 2005-07-22 2007-02-08 Tayca Corp Manufacturing method of carbon-olivine type iron lithium phosphate complex particle, and cathode material for lithium ion battery
JP2007134274A (en) * 2005-11-14 2007-05-31 Sumitomo Osaka Cement Co Ltd Electrode material, electrode, and lithium ion battery
CN1328808C (en) * 2004-04-23 2007-07-25 中国科学院物理研究所 Nitrogen phosphate anode material for secondary lithium battery and uses thereof
JP2009301813A (en) * 2008-06-12 2009-12-24 Tayca Corp Method for manufacturing carbon-olivine type iron lithium phosphate complex, and cathode material for lithium ion battery
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
WO2011030786A1 (en) 2009-09-09 2011-03-17 戸田工業株式会社 Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery
US20110068295A1 (en) * 2009-09-18 2011-03-24 A123 Systems, Inc. Ferric phosphate and methods of preparation thereof
FR2955573A1 (en) * 2010-01-28 2011-07-29 Phostech Lithium Inc Carbon-metal oxide material having metal compound particles, which have a olivine structure and a carbon film deposited by pyrolysis, covering its surface, useful in electrode and battery, where battery is lithium metal polymer technology
US8053075B2 (en) 2005-04-05 2011-11-08 Sued-Chemie Ag Crystalline ion-conducting nanomaterial and method for the production thereof
CN102765709A (en) * 2012-08-07 2012-11-07 北京科锐志投资管理中心(有限合伙) Preparation method of layered ferrous phosphate
EP2529431A1 (en) * 2010-01-28 2012-12-05 Phostech Lithium Inc. Method for optimizing a cathode material and cathode material having enhanced electrochemical properties
US8685566B2 (en) 2009-06-01 2014-04-01 Clariant (Canada) Inc. Process to induce polymerization of an organic electronically conductive polymer
JP2014239036A (en) * 2006-10-30 2014-12-18 フォステック リチウム インコーポレイテッドPhostech Lithium Inc. Carbonated complex oxide and method for producing the same
US9269950B2 (en) 2010-01-28 2016-02-23 Johnson Matthey Public Limited Company Procedure to optimize materials for cathodes and cathode material having enhanced electrochemical properties
JP2016134198A (en) * 2015-01-15 2016-07-25 株式会社デンソー Electrode and nonaqueous electrolyte secondary battery
JP2016146302A (en) * 2015-02-09 2016-08-12 三井造船株式会社 Manufacturing method of positive electrode material for lithium secondary battery
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
WO2019102226A1 (en) * 2017-11-27 2019-05-31 Johnson Matthey Public Limited Company Cathode materials
CN112838289A (en) * 2021-02-24 2021-05-25 武汉工程大学 Method for recovering lithium and ferrous phosphate from lithium iron phosphate positive electrode material
CN115477291A (en) * 2022-09-29 2022-12-16 四川龙蟒磷化工有限公司 Method for preparing battery-grade anhydrous ferrous phosphate from wet-process phosphoric acid and titanium dioxide byproducts

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376475C (en) * 2005-10-14 2008-03-26 江苏大学 Spherical porous high-density LiFePO4 powder and process for preparing same
CN101327920B (en) * 2007-06-20 2010-08-11 中国科学院金属研究所 Sheet-like LiFePO4 nanocrystalline powder and method for preparing the same
RU2484009C2 (en) 2008-10-22 2013-06-10 ЭлДжи КЕМ, ЛТД. Lithium-iron phosphate having olivine structure and method for analysis thereof
CN105144440A (en) * 2013-04-24 2015-12-09 住友大阪水泥股份有限公司 Electrode material, electrode and lithium ion battery
TWI551549B (en) * 2014-03-17 2016-10-01 友達光電股份有限公司 Method for removing phosphorus from wastewater and method for preparing ferrous phosphate
TWI645605B (en) * 2017-05-12 2018-12-21 創奕能源科技股份有限公司 Method for preparing cathode material of lithium ion battery
CN107394203A (en) * 2017-07-13 2017-11-24 扬州大学 A kind of preparation method of two-dimensional ultrathin sheet manganese phosphate
CN109449403A (en) * 2018-10-29 2019-03-08 张美芳 The preparation method of carbon composite lithium iron phosphate material
CN109244461A (en) * 2018-10-29 2019-01-18 张美芳 The preparation method of LiFePO 4 material
CN113735091B (en) * 2021-09-07 2023-06-02 湖北云翔聚能新能源科技有限公司 Preparation method of nano spherical lithium iron phosphate and lithium iron phosphate material
CN114394610A (en) * 2021-12-20 2022-04-26 格林美股份有限公司 Recovery method of waste lithium iron phosphate battery
CN114560549B (en) * 2022-02-28 2023-06-16 中国科学技术大学 Application of synthetic wurtzite in advanced oxidation process water treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166172A (en) * 1997-12-01 1999-06-22 Pola Chem Ind Inc Ultraviolet absorber and composition containing same
WO2000060679A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JP2001250555A (en) * 2000-03-06 2001-09-14 Sony Corp Method to manufacture activate substance for positive electrode and method of manufacturing non aqueous electrolyte cell
JP2002110161A (en) * 2000-09-29 2002-04-12 Sony Corp Manufacturing methods of positive pole active material and nonaqueous electrolyte battery
JP2002110165A (en) * 2000-09-29 2002-04-12 Sony Corp Method for manufacturing positive electrode active material and nonaqueous electrolytic battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2035766B1 (en) * 1991-04-03 1994-03-01 Torrent Castellet Jose METHOD FOR CORRECTING FERRIC CHLOROSIS IN PLANTS.
JPH11181093A (en) * 1997-12-24 1999-07-06 Toyobo Co Ltd Production of polybenzazole

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11166172A (en) * 1997-12-01 1999-06-22 Pola Chem Ind Inc Ultraviolet absorber and composition containing same
WO2000060679A1 (en) * 1999-04-06 2000-10-12 Sony Corporation Method for manufacturing active material of positive plate and method for manufacturing nonaqueous electrolyte secondary cell
JP2001250555A (en) * 2000-03-06 2001-09-14 Sony Corp Method to manufacture activate substance for positive electrode and method of manufacturing non aqueous electrolyte cell
JP2002110161A (en) * 2000-09-29 2002-04-12 Sony Corp Manufacturing methods of positive pole active material and nonaqueous electrolyte battery
JP2002110165A (en) * 2000-09-29 2002-04-12 Sony Corp Method for manufacturing positive electrode active material and nonaqueous electrolytic battery

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123107A (en) * 2003-10-20 2005-05-12 Hitachi Maxell Ltd Active material for electrochemical element, its manufacturing method, and the electrochemical element using the same
JP4641375B2 (en) * 2003-10-20 2011-03-02 日立マクセル株式会社 Method for producing composite of olivine type lithium phosphate and carbon material
CN1328808C (en) * 2004-04-23 2007-07-25 中国科学院物理研究所 Nitrogen phosphate anode material for secondary lithium battery and uses thereof
US8053075B2 (en) 2005-04-05 2011-11-08 Sued-Chemie Ag Crystalline ion-conducting nanomaterial and method for the production thereof
TWI423501B (en) * 2005-04-05 2014-01-11 Sued Chemie Ip Gmbh & Co Kg Kristallines ionenleitendes nanomaterial und verfahren zu seiner herstellung
EP1722428A1 (en) * 2005-05-13 2006-11-15 Süd-Chemie Ag Lithium secondary battery and electrodes for use therein
WO2006119995A1 (en) * 2005-05-13 2006-11-16 Süd-Chemie AG Lithium secondary battery and electrodes for use therein
JP2008541364A (en) * 2005-05-13 2008-11-20 ズード−ケミー・アクチエンゲゼルシヤフト Lithium secondary battery and electrode used therefor
JP2006339104A (en) * 2005-06-06 2006-12-14 Toyota Central Res & Dev Lab Inc Active material for lithium secondary battery, and its manufacturing method as well as the lithium secondary battery
JP4525474B2 (en) * 2005-06-06 2010-08-18 株式会社豊田中央研究所 Active material for lithium secondary battery and method for producing the same, lithium secondary battery
JP2007035295A (en) * 2005-07-22 2007-02-08 Tayca Corp Manufacturing method of carbon-olivine type iron lithium phosphate complex particle, and cathode material for lithium ion battery
JP2007134274A (en) * 2005-11-14 2007-05-31 Sumitomo Osaka Cement Co Ltd Electrode material, electrode, and lithium ion battery
JP2014239036A (en) * 2006-10-30 2014-12-18 フォステック リチウム インコーポレイテッドPhostech Lithium Inc. Carbonated complex oxide and method for producing the same
JP2010517218A (en) * 2007-01-18 2010-05-20 エルジー・ケム・リミテッド Positive electrode active material and secondary battery including the same
JP2009301813A (en) * 2008-06-12 2009-12-24 Tayca Corp Method for manufacturing carbon-olivine type iron lithium phosphate complex, and cathode material for lithium ion battery
US8685566B2 (en) 2009-06-01 2014-04-01 Clariant (Canada) Inc. Process to induce polymerization of an organic electronically conductive polymer
JP2012012279A (en) * 2009-09-09 2012-01-19 Toda Kogyo Corp Ferric phosphate hydrate particle powder and method for producing the same, olivine-type lithium iron phosphate particle powder and method for producing the same, and non-aqueous electrolyte secondary battery
KR20120079058A (en) 2009-09-09 2012-07-11 도다 고교 가부시끼가이샤 Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery
WO2011030786A1 (en) 2009-09-09 2011-03-17 戸田工業株式会社 Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery
JP2013505193A (en) * 2009-09-18 2013-02-14 エー123 システムズ, インコーポレイテッド Ferric phosphate and method for its preparation
US9660267B2 (en) 2009-09-18 2017-05-23 A123 Systems, LLC High power electrode materials
US11652207B2 (en) 2009-09-18 2023-05-16 A123 Systems Llc High power electrode materials
US10522833B2 (en) 2009-09-18 2019-12-31 A123 Systems, LLC High power electrode materials
US9954228B2 (en) 2009-09-18 2018-04-24 A123 Systems, LLC High power electrode materials
US9174846B2 (en) * 2009-09-18 2015-11-03 A123 Systems Llc Ferric phosphate and methods of preparation thereof
US20110068295A1 (en) * 2009-09-18 2011-03-24 A123 Systems, Inc. Ferric phosphate and methods of preparation thereof
US9269950B2 (en) 2010-01-28 2016-02-23 Johnson Matthey Public Limited Company Procedure to optimize materials for cathodes and cathode material having enhanced electrochemical properties
EP2529431A1 (en) * 2010-01-28 2012-12-05 Phostech Lithium Inc. Method for optimizing a cathode material and cathode material having enhanced electrochemical properties
EP2529431A4 (en) * 2010-01-28 2014-12-03 Bathium Canada Inc Method for optimizing a cathode material and cathode material having enhanced electrochemical properties
FR2955573A1 (en) * 2010-01-28 2011-07-29 Phostech Lithium Inc Carbon-metal oxide material having metal compound particles, which have a olivine structure and a carbon film deposited by pyrolysis, covering its surface, useful in electrode and battery, where battery is lithium metal polymer technology
CN102765709A (en) * 2012-08-07 2012-11-07 北京科锐志投资管理中心(有限合伙) Preparation method of layered ferrous phosphate
CN102765709B (en) * 2012-08-07 2014-04-02 北京科锐志投资管理中心(有限合伙) Preparation method of layered ferrous phosphate
JP2016134198A (en) * 2015-01-15 2016-07-25 株式会社デンソー Electrode and nonaqueous electrolyte secondary battery
US10439209B2 (en) 2015-01-15 2019-10-08 Denso Corporation Electrode and non-aqueous electrolyte secondary battery
JP2016146302A (en) * 2015-02-09 2016-08-12 三井造船株式会社 Manufacturing method of positive electrode material for lithium secondary battery
WO2019102226A1 (en) * 2017-11-27 2019-05-31 Johnson Matthey Public Limited Company Cathode materials
CN112838289B (en) * 2021-02-24 2022-02-01 武汉工程大学 Method for recovering lithium and ferrous phosphate from lithium iron phosphate positive electrode material
CN112838289A (en) * 2021-02-24 2021-05-25 武汉工程大学 Method for recovering lithium and ferrous phosphate from lithium iron phosphate positive electrode material
CN115477291A (en) * 2022-09-29 2022-12-16 四川龙蟒磷化工有限公司 Method for preparing battery-grade anhydrous ferrous phosphate from wet-process phosphoric acid and titanium dioxide byproducts
CN115477291B (en) * 2022-09-29 2024-03-26 四川龙蟒磷化工有限公司 Method for preparing battery-grade anhydrous ferrous phosphate from wet-process phosphoric acid and titanium white byproducts

Also Published As

Publication number Publication date
CN1299979C (en) 2007-02-14
JP4180363B2 (en) 2008-11-12
CN1435372A (en) 2003-08-13
KR100898236B1 (en) 2009-05-18
KR20030066396A (en) 2003-08-09

Similar Documents

Publication Publication Date Title
JP4180363B2 (en) Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP4260572B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP6063503B2 (en) Pure phase lithium aluminum titanium phosphate, process for its production and use thereof
JP5517032B2 (en) Non-aqueous electrolyte secondary battery olivine-type composite oxide particle powder, method for producing the same, and secondary battery
JP4225859B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP5758743B2 (en) Cobalt hydroxide and method for producing the same, and cobalt oxide and method for producing the same
JP5004413B2 (en) Method for producing positive electrode material for ammonium iron phosphate and lithium ion secondary battery, and lithium ion secondary battery
JP5323410B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP2003292308A (en) Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
US20120237425A1 (en) Ferric phosphate hydrate particles and process for producing the same, olivine type lithium iron phosphate particles and process for producing the same, and non-aqueous electrolyte secondary battery
CN107408689B (en) Positive electrode active material for nonaqueous electrolyte secondary battery and secondary battery
US7879266B2 (en) Composite carbonate and method for producing the same
JP2003292309A (en) Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP5678685B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
JP2004359538A (en) Lithium phosphate aggregate, its manufacture method, and manufacture method of lithium/iron/phosphorus-based complex oxide
JP2013206679A (en) Nonaqueous electrolyte secondary battery cathode active material and manufacturing method thereof and secondary battery
US20090028772A1 (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
EP2736101B1 (en) Method for preparing battery composite material
JP2021160970A (en) Spinel lithium manganate and method for producing the same and applications thereof
JP4086551B2 (en) Method for producing tricobalt tetroxide and method for producing lithium cobaltate
WO2018168470A1 (en) Spinel type lithium nickel manganese-containing composite oxide
JP2004342554A (en) Manufacturing method of anode active material of lithium secondary battery
JP4276469B2 (en) Method for producing lithium cobalt oxide
CN116924377B (en) Ammonium ferromanganese phosphate, lithium ferromanganese phosphate, and preparation methods and applications thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4180363

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees