JP4260572B2 - Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom - Google Patents

Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom Download PDF

Info

Publication number
JP4260572B2
JP4260572B2 JP2003281561A JP2003281561A JP4260572B2 JP 4260572 B2 JP4260572 B2 JP 4260572B2 JP 2003281561 A JP2003281561 A JP 2003281561A JP 2003281561 A JP2003281561 A JP 2003281561A JP 4260572 B2 JP4260572 B2 JP 4260572B2
Authority
JP
Japan
Prior art keywords
lithium
iron
phosphorus
atoms
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003281561A
Other languages
Japanese (ja)
Other versions
JP2005047751A (en
Inventor
泰裕 仲岡
真之 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2003281561A priority Critical patent/JP4260572B2/en
Publication of JP2005047751A publication Critical patent/JP2005047751A/en
Application granted granted Critical
Publication of JP4260572B2 publication Critical patent/JP4260572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法、更に詳しくは特にリチウム二次電池正極活物質として有用なMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法に関するものである。   The present invention relates to a method for producing a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms, and more specifically, a lithium iron phosphorus composite oxide carbon containing Mn atoms particularly useful as a positive electrode active material for a lithium secondary battery. The present invention relates to a method for producing a composite.

近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアル リサーチブレティン」vol15,P783-789(1980))がなされて以来、コバルト酸リチウムに関する研究開発が活発に進められており、これまで多くの提案がなされている。   In recent years, as home appliances have become portable and cordless, lithium ion secondary batteries have been put to practical use as power sources for small electronic devices such as laptop computers, mobile phones, and video cameras. Regarding this lithium ion secondary battery, in 1980, Mizushima et al. Reported that lithium cobalt oxide was useful as a positive electrode active material for lithium ion secondary batteries ("Material Research Bulletin" vol15, P783-789 (1980)). Since then, research and development on lithium cobaltate has been actively promoted, and many proposals have been made so far.

しかしながら、Coは地球上に偏在し、希少な資源であるため、コバルト酸リチウムに代わる新たな正極活物質として、例えば、LiNiO2、LiMn24、LiFeO2、LiFePO4等の開発が進められている。 However, Co is unevenly distributed on the earth and is a scarce resource. Therefore, for example, LiNiO 2 , LiMn 2 O 4 , LiFeO 2 , LiFePO 4, etc. are being developed as new positive electrode active materials to replace lithium cobalt oxide. ing.

この中、リチウム鉄リン系複合酸化物に関して、LiFePO4のFeをMnで置換したMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体が提案され(特許文献1〜3参照。)、このMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を正極活物質として用いたリチウム二次電池は、高放電容量となることが報告されている(例えば、特許文献1〜4参照。)。 Among these, regarding the lithium iron phosphorus composite oxide, a lithium iron phosphorus composite oxide carbon composite containing a Mn atom obtained by substituting Fe of LiFePO 4 with Mn has been proposed (see Patent Documents 1 to 3). It has been reported that a lithium secondary battery using a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms as a positive electrode active material has a high discharge capacity (see, for example, Patent Documents 1 to 4). .

従来このMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法としては、例えば、炭酸リチウム、シュウ酸鉄、リン酸二水素アンモニウム、炭酸マンガン及び導電性炭素材料を反応原料とする方法(例えば、特許文献1〜3参照。)が提案されている。この炭酸リチウム、シュウ酸鉄、リン酸二水素アンモニウム及び炭酸マンガンの反応は、下記反応式(1)

Figure 0004260572
に従って進行する。したがって,製造時に有毒ガスが発生するという問題や、原料系が複雑であるためLi、Fe、Mn、Pの各元素の組成調整が難しく、また、リチウム二次電池の正極活物質として用いる場合に要望される物性として、平均粒径が0.5μm以下の微粒でX線回折的に単相のものが得られ難いと言う問題がある。 Conventionally, as a method for producing this lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms, for example, lithium carbonate, iron oxalate, ammonium dihydrogen phosphate, manganese carbonate, and a conductive carbon material are used as reaction raw materials. A method (for example, refer to Patent Documents 1 to 3) has been proposed. This reaction of lithium carbonate, iron oxalate, ammonium dihydrogen phosphate and manganese carbonate is represented by the following reaction formula (1)
Figure 0004260572
Proceed according to. Therefore, it is difficult to adjust the composition of each element of Li, Fe, Mn, and P due to the problem that toxic gas is generated during production, and the raw material system is complicated, and when used as a positive electrode active material of a lithium secondary battery. As a desired physical property, there is a problem that it is difficult to obtain a fine particle having an average particle diameter of 0.5 μm or less and having a single phase in X-ray diffraction.

また、リン酸を含む溶液中で、鉄、コバルト、マンガン、ニッケル、銅及びバナジウムから選ばれる金属を含有する1種又は複数種の化合物と、酢酸リチウム等のリチウムを含有する1種又は複数種の化合物を反応させ、その後所定の温度で焼成するリチウム鉄リン系複合酸化物の製造方法も提案されている(特許文献4参照。)。しかしこの方法は、少なくともLi、Fe、Mn、Pの全ての組成調整を溶液中で行うものであり、各元素の組成調整が難しいという問題がある。   Further, in a solution containing phosphoric acid, one or more compounds containing a metal selected from iron, cobalt, manganese, nickel, copper and vanadium, and one or more kinds containing lithium such as lithium acetate There has also been proposed a method for producing a lithium iron-phosphorus composite oxide in which the above compound is reacted and then fired at a predetermined temperature (see Patent Document 4). However, this method has a problem that it is difficult to adjust the composition of each element, since at least all the composition adjustments of Li, Fe, Mn, and P are performed in a solution.

特開2002−117908号公報、第3頁。JP 2002-117908 A, page 3. 特開2001−307732号公報、第5頁。JP 2001-307732 A, page 5. WO 00/60679号公報、第17頁。WO 00/60679, page 17. 特開2003−157845号公報、第1頁。JP 2003-157845 A, page 1.

本発明者らは、かかる実情に鑑み、製造時に副生する有毒ガスの発生がなく、Li、Fe、Mn、Pの各元素の組成調整が容易で、尚且つリチウム二次電池の正極活物質として使用することができるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得る方法について鋭意研究を重ねた結果、2価の鉄塩と2価のマンガン塩及びリン酸を溶解した水溶液にアルカリを添加すると、定量的に鉄、マンガン及びリンを含む共沈体を得ることができ、この得られた共沈体とリン酸リチウム及び導電性炭素材料とを混合し得られる混合物を特定比容積まで粉砕処理して反応前駆体としたものを特定温度範囲で焼成することにより、リチウム二次電池の正極活物質として必要な平均粒径0.5μm以下の微細な粒子でX線回折分析からみて単相のリチウム鉄リン系複合酸化物炭素複合体となることを見出し、本発明を完成するに至った。   In view of such circumstances, the present inventors have no generation of toxic gas produced as a by-product during production, easy composition adjustment of each element of Li, Fe, Mn, and P, and a positive electrode active material for a lithium secondary battery As a result of diligent research on a method for obtaining a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms that can be used as an aqueous solution in which a divalent iron salt, a divalent manganese salt, and phosphoric acid are dissolved When an alkali is added to the product, a coprecipitate containing iron, manganese and phosphorus can be quantitatively obtained, and a mixture obtained by mixing the obtained coprecipitate with lithium phosphate and a conductive carbon material is specified. X-ray diffraction analysis of fine particles with an average particle size of 0.5 μm or less required as a positive electrode active material for lithium secondary batteries by firing a reaction precursor that has been pulverized to a specific volume within a specific temperature range Single view It found that the lithium-iron-phosphorus complex oxide-carbon composite, and have completed the present invention.

即ち、本発明の目的は、製造時に有毒ガスの発生もなく、Li、Fe、Mn、Pの各元素の組成調整が容易で、且つ平均粒径が0.5μm以下でX線回折分析からみて単相の、Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を工業的に有利な方法で製造する方法の提供にある。   That is, the object of the present invention is that no toxic gas is generated during production, the composition of each element of Li, Fe, Mn, and P can be easily adjusted, and the average particle size is 0.5 μm or less from the viewpoint of X-ray diffraction analysis. The object is to provide a method for producing a single-phase lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms in an industrially advantageous manner.

本発明が提供しようとするMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法は、2価の鉄塩と2価のマンガン塩及び該2価の鉄塩と該2価のマンガン塩中の鉄原子とマンガン原子の総量(Fe+Mn)に対するモル比で0.60〜0.75のリン酸を溶解した水溶液にアルカリを添加し、鉄、マンガン及びリンを含む共沈体を得る第一工程、次いで得られた鉄、マンガン及びリンを含む共沈体、リン酸リチウム及び導電性炭素材料を混合する第二工程、次いで、得られた混合物を乾式で粉砕処理して比容積が1.5mL/g以下の反応前駆体を得る第三工程、次いで、該反応前駆体を500〜700℃で焼成する第四工程を含むことを特徴とする、Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法である。
かかるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法において、前記第三工程後、得られた反応前駆体を加圧成形する工程を設けることが好ましい。
また、前記第二工程のリン酸リチウムは、平均粒径が10μm以下で、格子面(010)面の半値幅が0.2°以上のものを用いることが好ましい。
The method for producing a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms to be provided by the present invention includes a divalent iron salt, a divalent manganese salt, the divalent iron salt, and the divalent iron salt. Alkali is added to an aqueous solution in which phosphoric acid having a molar ratio of 0.60 to 0.75 is dissolved with respect to the total amount of iron atoms and manganese atoms (Fe + Mn) in the manganese salt to obtain a coprecipitate containing iron, manganese and phosphorus. The first step, then the second step of mixing the obtained coprecipitate containing iron, manganese and phosphorus, lithium phosphate and the conductive carbon material, and then the resulting mixture is pulverized by a dry process to obtain a specific volume. A lithium iron phosphorous system containing Mn atoms, comprising a third step of obtaining a reaction precursor of 1.5 mL / g or less, and then a fourth step of firing the reaction precursor at 500 to 700 ° C. In the manufacturing method of composite oxide carbon composite is there.
In the method for producing a lithium iron phosphorus composite oxide-carbon composite containing Mn atoms, it is preferable to provide a step of pressure-molding the obtained reaction precursor after the third step.
Moreover, it is preferable to use the lithium phosphate of said 2nd process whose average particle diameter is 10 micrometers or less and whose half value width of a lattice plane (010) plane is 0.2 degrees or more.

本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法によれば、製造時に有毒ガスの発生もなく、また、Li、Fe、Mn、Pの各元素の組成調整が容易で、且つリチウム二次電池の正極活物質としての用途に期待できる平均粒径が0.5μm以下の粒子で、X線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を工業的に有利に製造することができる。   According to the method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms of the present invention, no toxic gas is generated during production, and composition adjustment of each element of Li, Fe, Mn, and P is possible. Lithium iron-phosphorus composite oxide that is easy and has an average particle size of 0.5 μm or less that can be expected for use as a positive electrode active material of a lithium secondary battery, and that contains single-phase Mn atoms as seen from X-ray diffraction analysis A carbon composite can be produced industrially advantageously.

以下、本発明をその好ましい実施形態に基づき詳細に説明する。
本発明の第一工程は、2価の鉄塩と2価のマンガン塩及びリン酸を溶解した水溶液に、アルカリを添加し、鉄、マンガン及びリンを含む共沈体を得る工程である。
Hereinafter, the present invention will be described in detail based on preferred embodiments thereof.
The first step of the present invention is a step of obtaining a coprecipitate containing iron, manganese and phosphorus by adding an alkali to an aqueous solution in which a divalent iron salt, a divalent manganese salt and phosphoric acid are dissolved.

第一工程で用いる2価の鉄塩としては、例えば、硫酸第一鉄、酢酸鉄、蓚酸鉄等が挙げられ、これらは、含水物であっても無水物であってもよい。   Examples of the divalent iron salt used in the first step include ferrous sulfate, iron acetate, and iron oxalate, and these may be hydrated or anhydrous.

また、用いることができる2価のマンガン塩としては、例えば、硝酸マンガン、硫酸マンガン、塩化マンガン、酢酸マンガン等が挙げられ、これらは、含水物であっても無水物であってもよい。   Examples of the divalent manganese salt that can be used include manganese nitrate, manganese sulfate, manganese chloride, manganese acetate, and the like, and these may be hydrated or anhydrous.

また、用いることができるリン酸としては、工業的に入手できるものであれば特に制限なく用いることができる。   Moreover, as phosphoric acid that can be used, any industrially available phosphoric acid can be used without particular limitation.

また、用いることができるアルカリとしては、特に制限はなく、例えば、アンモニアガス、アンモニア水、水酸化ナトリウム、水酸化カリウム、NaHCO3、Na2CO3、LiOH、K2CO3、KHCO3、Ca(OH)2等の無機アルカリ、またはエタノールアミン等の有機アルカリ等が挙げられる。これらのアルカリは1種又は2種以上で用いることができ、この中、水酸化ナトリウムが安価で工業的に入手しやすいことから特に好ましい。 As the alkali which can be used is not particularly limited, for example, ammonia gas, aqueous ammonia, sodium hydroxide, potassium hydroxide, NaHCO 3, Na 2 CO 3 , LiOH, K 2 CO 3, KHCO 3, Ca An inorganic alkali such as (OH) 2 or an organic alkali such as ethanolamine can be used. These alkalis can be used alone or in combination of two or more. Among them, sodium hydroxide is particularly preferable because it is inexpensive and easily available industrially.

これらの原料の2価の鉄塩、2価のマンガン塩、リン酸及びアルカリは、高純度のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得る上で不純物含有量が少ないものを用いることが特に好ましい   The divalent iron salt, divalent manganese salt, phosphoric acid, and alkali of these raw materials have a small impurity content in obtaining a lithium iron-phosphorus-based composite oxide carbon composite containing high-purity Mn atoms. It is particularly preferable to use

第一工程の操作は、まず、リン酸を2価の鉄塩と2価のマンガン塩中のFe原子とMn原子の総量(Fe+Mn)に対するモル比で0.60〜0.75、好ましくは0.65〜0.70となるように2価の鉄塩、2価のマンガン塩及びリン酸を溶解した水溶液を調整する。なお、本発明において、水溶液中のFe原子とMn原子の配合割合は任意に設定することができる。2価の鉄塩、2価のマンガン塩及びリン酸を溶解した水溶液濃度は、2価の鉄塩、2価のマンガン塩及びリン酸を溶解できる濃度であれば特に制限はないが、通常、2価の鉄塩と2価のマンガン塩を総量で0.1モル/L以上、好ましくは0.1〜1.0モル/Lとすることが好ましい。   In the operation of the first step, first, phosphoric acid is 0.60 to 0.75 in terms of molar ratio to the total amount of Fe atoms and Mn atoms (Fe + Mn) in divalent iron salt and divalent manganese salt, preferably 0. An aqueous solution in which a divalent iron salt, a divalent manganese salt, and phosphoric acid are dissolved is prepared so that the pH is 65 to 0.70. In the present invention, the mixing ratio of Fe atoms and Mn atoms in the aqueous solution can be arbitrarily set. The concentration of the aqueous solution in which the divalent iron salt, divalent manganese salt and phosphoric acid are dissolved is not particularly limited as long as it is a concentration capable of dissolving the divalent iron salt, divalent manganese salt and phosphoric acid. The total amount of divalent iron salt and divalent manganese salt is 0.1 mol / L or more, preferably 0.1 to 1.0 mol / L.

次いで、この水溶液にアルカリを添加し、鉄、マンガン及びリンを含む共沈体を析出させる。鉄、マンガン及びリンを含む共沈体の析出反応は、このアルカリの添加により速やかに進行する。アルカリの添加量は、2価の鉄塩及び2価のマンガン塩の総量に対するモル比で1.8〜2.0、好ましくは1.95〜2.0である。   Next, an alkali is added to the aqueous solution to precipitate a coprecipitate containing iron, manganese and phosphorus. The precipitation reaction of the coprecipitate containing iron, manganese and phosphorus proceeds rapidly by the addition of this alkali. The addition amount of the alkali is 1.8 to 2.0, preferably 1.95 to 2.0 as a molar ratio with respect to the total amount of the divalent iron salt and the divalent manganese salt.

このアルカリの添加温度は、特に制限はなく、通常5〜80℃、好ましくは15〜35℃である。また、アルカリの滴下速度等は特に制限されるものではないが、安定した品質のものを得るため一定の滴下速度で除々に反応系内に導入することが好ましい。   There is no restriction | limiting in particular in the addition temperature of this alkali, Usually, 5-80 degreeC, Preferably it is 15-35 degreeC. The alkali dropping rate is not particularly limited, but it is preferable to gradually introduce it into the reaction system at a constant dropping rate in order to obtain a stable quality.

反応終了後、常法により固液分離して、共沈体を回収し、洗浄、乾燥して製品とする。   After completion of the reaction, solid-liquid separation is performed by a conventional method, and the coprecipitate is recovered, washed and dried to obtain a product.

なお、洗浄は、特に、アルカリとして水酸化ナトリウムを用いた場合には、析出した共沈体のNa含有量が1重量%以下、好ましくは0.8重量%以下となるまで水で十分に洗浄することが好ましい。   In particular, when sodium hydroxide is used as the alkali, the washing is sufficiently performed with water until the Na content of the precipitated coprecipitate is 1% by weight or less, preferably 0.8% by weight or less. It is preferable to do.

また、乾燥は、35℃未満では乾燥に時間がかかり、50℃を超えると2価の鉄及び2価のマンガン塩の酸化や結晶水の脱離が起こるため35〜50℃で行うことが好ましい。   In addition, drying is preferably performed at 35 to 50 ° C. since drying takes time when the temperature is lower than 35 ° C., and oxidation of divalent iron and divalent manganese salts and elimination of crystal water occur when the temperature exceeds 50 ° C. .

第二工程は、第一工程で得られた共沈体とリン酸リチウム及び導電性炭素材料を混合する工程である。   The second step is a step of mixing the coprecipitate obtained in the first step, lithium phosphate and a conductive carbon material.

この第二工程で用いる原料のリン酸リチウムは、工業的に入手できるものであれば特に制限はないが、走査型電子顕微鏡写真から求められる平均粒径が10μm以下、好ましくは1〜5μmで、更に線源としてCuKα線を用いて該リン酸リチウムをX線回折分析したときに2θ=16.8°近傍の回折ピーク(010)面の半値幅が0.2°以上、好ましくは0.2〜0.3°の結晶性が低く粉砕等の加工性及び反応性に優れたリン酸リチウムを用いると後述する反応前駆体の比容積を容易に1.5mL/g以下とすることができることから特に好ましく、また、該リン酸リチウムは上記特性に加えて、安息角が50度以下、好ましくは30〜50度の微細な一次粒子が一次粒子の集合体を形成してなり、該一次粒子の集合体の平均粒径が当該範囲の10μm以下のリン酸リチウム凝集体を用いると各原料の均一分散性が良好となるため特に好ましい。   The raw material lithium phosphate used in the second step is not particularly limited as long as it is industrially available, but the average particle size determined from a scanning electron micrograph is 10 μm or less, preferably 1 to 5 μm. Further, when the lithium phosphate is subjected to X-ray diffraction analysis using CuKα ray as a radiation source, the half-value width of the diffraction peak (010) plane near 2θ = 16.8 ° is 0.2 ° or more, preferably 0.2 Since the specific volume of the reaction precursor described later can be easily reduced to 1.5 mL / g or less by using lithium phosphate having a low crystallinity of ˜0.3 ° and excellent workability and reactivity such as pulverization. Particularly preferably, in addition to the above-mentioned characteristics, the lithium phosphate has a repose angle of 50 degrees or less, preferably 30 to 50 degrees, and fine primary particles form an aggregate of primary particles. The average particle size of the aggregate is in this range Particularly preferred for uniform dispersibility of the raw material and using the following lithium phosphate aggregates 10μm is improved.

このようなリン酸リチウムは、水酸化リチウムを含む水溶液とリン酸を含む水溶液との反応によりリン酸リチウムを製造する方法において、用いる水酸化リチウム水溶液の濃度を4〜6重量%とし、更に反応条件において反応温度を70℃以下、好ましくは5〜40℃で反応を行うことにより製造することができる。   Such lithium phosphate is used in a method for producing lithium phosphate by a reaction between an aqueous solution containing lithium hydroxide and an aqueous solution containing phosphoric acid. It can be produced by carrying out the reaction at a reaction temperature of 70 ° C. or lower, preferably 5 to 40 ° C. under the conditions.

用いることができる水酸化リチウムは、工業的に入手可能なものであれば特に制限はなく含水物であっても無水物であってもよいが、高純度のリン酸リチウムを得る上で不純物含有量が少ないものを用いることが好ましく、特に工業的に入手可能な水酸化リチウムにはNaが20ppm以上、Caが60ppm以上、Alが100ppm以上、Siが100ppm以上含有されていることから、これらの不純物を除去した精製水酸化リチウムを用いることが高純度のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得る上で特に好ましい。この精製水酸化リチウムは、水酸化リチウムを含む水溶液を精密濾過した後、晶析を行うことによりNa、Ca、Al、Si等の不純物を低減した精製水酸化リチウムであることが好ましい(特願2003−131032号参照。)。   The lithium hydroxide that can be used is not particularly limited as long as it is industrially available, and may be a hydrate or an anhydride, but it contains impurities to obtain a high purity lithium phosphate. It is preferable to use a small amount of lithium hydroxide, and industrially available lithium hydroxide contains Na of 20 ppm or more, Ca of 60 ppm or more, Al of 100 ppm or more, and Si of 100 ppm or more. It is particularly preferable to use purified lithium hydroxide from which impurities have been removed, in order to obtain a lithium iron-phosphorus composite oxide carbon composite containing high-purity Mn atoms. The purified lithium hydroxide is preferably purified lithium hydroxide in which impurities such as Na, Ca, Al, Si, etc. are reduced by microfiltration of an aqueous solution containing lithium hydroxide and crystallization. 2003-131032).

第二工程で用いる原料の導電性炭素材料としては、例えば、鱗状黒鉛、鱗片状黒鉛及び土状黒鉛等の天然黒鉛及び人工黒鉛等の黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック(登録商標)、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック類、炭素繊維等が挙げられ、これらは1種又は2種以上で用いることができる。この中、ケッチェンブラック(登録商標)が微粒なものを工業的に容易に入手できるため特に好ましい。 Examples of the conductive carbon material used in the second step include natural graphite such as scaly graphite, scaly graphite, and earth graphite, and graphite such as artificial graphite, carbon black, acetylene black, and ketjen black (registered trademark). , Carbon blacks such as channel black, furnace black, lamp black and thermal black, carbon fibers, and the like, and these may be used alone or in combination of two or more. Among these, ketjen black (registered trademark) with fine particles is particularly preferable because it can be easily obtained industrially.

これらの導電性炭素材料は走査型電子顕微鏡写真から求められる平均粒径が1μm以下、好ましくは0.1μm以下、特に好ましくは0.01〜0.1μmであると得られるMn原子を含有するリチウム鉄リン系複合酸化物の粒子表面に高分散状態で付着させることができることから好ましい。   These conductive carbon materials have an average particle size determined from a scanning electron micrograph of 1 μm or less, preferably 0.1 μm or less, particularly preferably 0.01 to 0.1 μm, and lithium containing Mn atoms. This is preferable because it can be adhered in a highly dispersed state to the particle surface of the iron-phosphorus composite oxide.

第二工程の操作は、まず、前記第一工程で得られた鉄、マンガン及びリンを含む共沈体、リン酸リチウムおよび導電性炭素材料を所定量混合する。   In the operation of the second step, first, a predetermined amount of the coprecipitate containing iron, manganese and phosphorus obtained in the first step, lithium phosphate and a conductive carbon material is mixed.

鉄、マンガン及びリンを含む共沈体及びリン酸リチウムの配合割合は、該共沈体中のFe原子、Mn原子及びリン酸リチウム中のLi原子のモル比として、Li/(Fe+Mn)で0.9〜1.1、好ましくは1.00〜1.05であると、Mn原子を含有するリチウム鉄リン系複合酸化物の単相が得られる点で特に好ましい。   The mixing ratio of the coprecipitate containing iron, manganese and phosphorus and the lithium phosphate is 0.9 in terms of Li / (Fe + Mn) as the molar ratio of Fe atom, Mn atom in the coprecipitate and Li atom in the lithium phosphate. -1.1, preferably 1.00-1.05 is particularly preferred in that a single phase of a lithium iron-phosphorus composite oxide containing Mn atoms can be obtained.

また、導電性炭素材料は、焼成前に比べて焼成後では導電性炭素材料に含まれるC原子の量が若干ながら減少する傾向があることから、導電性炭素材料の配合量が鉄、マンガン及びリンを含む共沈体及びリン酸リチウムの総量に対して0.08〜15.5重量%、好ましくは3.8〜9.5重量%であると、導電性炭素材料の被覆量は、Mn原子を含有するリチウム鉄リン系複合酸化物に対するC原子の含有量で0.1〜20重量%、好ましくは5〜12重量%となる。この導電性炭素材料の配合量が0.08重量%未満では、例えば、該Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体をリチウム二次電池の正極活物質として用いた場合に十分に導電性を付与することができなくなるため得られるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を正極活物質とするリチウム二次電池において内部抵抗が上昇しやすくなり、一方、15.5重量%を超えると逆に重量或いは体積当たりの放電容量が減少しやすくなるため好ましくない。   In addition, since the conductive carbon material has a tendency to slightly decrease the amount of C atoms contained in the conductive carbon material after firing compared to before firing, the compounding amount of the conductive carbon material is iron, manganese and When the amount of the conductive carbon material is 0.08 to 15.5% by weight, preferably 3.8 to 9.5% by weight, based on the total amount of the coprecipitate containing phosphorus and lithium phosphate, The C atom content relative to the lithium iron phosphorus-based composite oxide containing atoms is 0.1 to 20% by weight, preferably 5 to 12% by weight. When the blending amount of the conductive carbon material is less than 0.08% by weight, for example, it is sufficient when the lithium iron phosphorus composite oxide carbon composite containing the Mn atom is used as a positive electrode active material of a lithium secondary battery. In the lithium secondary battery using the obtained lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms as the positive electrode active material, the internal resistance tends to increase. On the other hand, if it exceeds 5% by weight, the discharge capacity per unit weight or volume tends to decrease.

なお、第二工程において、後述する第三工程を実施するに当り予め各原料が均一に混合するようにブレンダー等を用いて乾式で十分に混合しておくことが好ましい。   In the second step, it is preferable that the raw material is sufficiently mixed by a dry method using a blender or the like so that the respective raw materials are uniformly mixed in advance in performing the third step described later.

第三工程は、第二工程で得られた原料混合物を、更に反応性をよくするため粉砕機を用いて乾式で十分に混合及び粉砕処理して反応前駆体を得る工程である。 Third step, a raw material mixture obtained in the second step is a step of obtaining a reaction precursor was thoroughly mixed and pulverized using a further order crusher you good reactivity dry.

この第三工程では、前記原料混合物を後述する比容積の範囲となるまで十分に乾式で混合及び粉砕処理することが重要な要件となる。
ここで前記反応前駆体とは前記原料の鉄、マンガン及びリンを含む共沈体、リン酸リチウム及び導電性炭素材料を含有する混合物を後の焼成に先だって反応性をよくするために、各原料を高分散させると共に各原料間の粒子間距離を可能なかぎり近づけ、各原料の接触面積を高めたものである。
In this third step, it is an important requirement to sufficiently dry and mix and pulverize the raw material mixture until it reaches the specific volume range described below.
Here, in order to improve the reactivity of the mixture containing the raw material iron, manganese and phosphorus containing coprecipitate, lithium phosphate and conductive carbon material prior to the subsequent firing, And the distance between particles between the raw materials is made as close as possible to increase the contact area of the raw materials.

本発明においてこの粉砕処理後の混合物は比容積が1.5ml/g以下、好ましくは1.0〜1.4ml/gであると500〜700℃の低温の焼成温度で焼結による粒成長もなく、走査型電子顕微鏡写真から求められる平均粒径が0.5μm以下で、X線回折分析において単相のMn原子を含有するリチウム鉄リン系複合酸化物の粒子表面を導電性炭素材料で均一に被覆したMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体が得られることから、当該範囲の比容積の原料混合物を反応前駆体とする。   In the present invention, the mixture after the pulverization treatment has a specific volume of 1.5 ml / g or less, preferably 1.0 to 1.4 ml / g. In addition, the average particle size obtained from a scanning electron micrograph is 0.5 μm or less, and the surface of lithium iron phosphorus composite oxide particles containing a single-phase Mn atom in X-ray diffraction analysis is uniformly made of a conductive carbon material. Since a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms coated on is obtained, a raw material mixture having a specific volume within this range is used as a reaction precursor.

なお、本発明における比容積とはJIS−K−5101に記載された見掛け密度又は見掛け比容の方法に基づいて、タップ法により50mlのメスシリンダーにサンプル10gをいれ、500回タップし静置後、容積を読みとり、下記式により求めたものである。

Figure 0004260572
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(ml)を示す。) The specific volume in the present invention is based on the method of apparent density or apparent specific volume described in JIS-K-5101, 10 g of sample is put into a 50 ml graduated cylinder by the tap method, and after tapping 500 times, left standing. The volume is read and obtained by the following formula.
Figure 0004260572
(Wherein, F represents the mass (g) of the processed sample in the receiver, and V represents the volume (ml) of the sample after tapping.)

用いることができる乾式粉砕機としては、強力なせん断力を有する粉砕機が好ましく、このような強力なせん断力を有する粉砕機としては、転動ボールミル、振動ミル、遊星ミル、媒体攪拌ミル等を用いることが好ましい。この種の粉砕機は、容器中にボール、ビーズ等の粉砕媒体が入っており、主として媒体の剪断・摩擦作用によって粉砕を行う粉砕機である。このような装置としては市販されているものを利用することができる。   As the dry pulverizer that can be used, a pulverizer having a strong shearing force is preferable. Examples of the pulverizer having such a strong shearing force include a rolling ball mill, a vibration mill, a planetary mill, and a medium agitating mill. It is preferable to use it. This type of pulverizer is a pulverizer in which a pulverization medium such as balls and beads is contained in a container and pulverization is performed mainly by the shearing and frictional action of the medium. A commercially available apparatus can be used as such an apparatus.

粒状媒体の粒径は1〜25mmであると粉砕が十分に行えるため好ましい。この粒状媒体の材質は、ジルコニア、アルミナのセラミックビーズが、硬度が高く磨耗に強いこと及び材料の金属汚染を防止することができることから特に好ましい。
また、前記粒状媒体は、空間容積50〜90%で容器内に収納し、流動媒体による剪断力と摩擦力を適切に管理するため、粉砕機の運転条件を適宜調整して粉砕処理することが好ましい。
The particle size of the granular medium is preferably 1 to 25 mm because pulverization can be sufficiently performed. As the material of the granular medium, zirconia and alumina ceramic beads are particularly preferable since they have high hardness and resistance to wear and can prevent metal contamination of the material.
In addition, the granular medium is stored in a container with a space volume of 50 to 90%, and the shearing force and frictional force due to the fluid medium are appropriately managed. preferable.

また、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法において、必要に応じて、上記粉砕処理に加えて該反応前駆体を加圧成形処理して、更に各原料の接触面積を高めると、より完全に反応を進行させることができる。この場合、成形圧は、プレス機、仕込み量等により異なり、特に限定されるものではないが、通常5〜200MPaである。プレス成形機は、打錠機、ブリケットマシン、ローラコンパクター等好適に使用できるがプレスできるものであればよく、特に制限はない。   Further, in the method for producing a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms of the present invention, if necessary, the reaction precursor is subjected to pressure molding treatment in addition to the above pulverization treatment, Increasing the contact area of the raw material allows the reaction to proceed more completely. In this case, the molding pressure varies depending on the press, the amount charged, etc., and is not particularly limited, but is usually 5 to 200 MPa. The press molding machine can be suitably used such as a tableting machine, a briquette machine, a roller compactor, etc., but may be any press as long as it can be pressed, and is not particularly limited.

次いで、第四工程において、前記第三工程で得られた反応前駆体を焼成する。
焼成温度は500〜700℃、好ましくは550〜650℃である。本発明において、この焼成温度を当該範囲とする理由は、焼成温度が500℃未満では、反応が十分に進行しないため未反応原料が残存し、一方、700℃を越えると上記したとおり焼結が進行して粒子成長が起こるためリチウム二次電池の正極活物質の用途に適しない特性を有するようになるため好ましくない。
焼成時間は、2〜20時間、好ましくは5〜10時間とすることが好ましい。
焼成は、Fe及びMn元素の酸化を防止するため窒素、アルゴン等の不活性ガス雰囲気中又は水素や一酸化炭素等の還元雰囲気中で行うことが好ましい。また、これらの焼成は必要により何度でも行うことができる。
Next, in the fourth step, the reaction precursor obtained in the third step is baked.
The firing temperature is 500 to 700 ° C, preferably 550 to 650 ° C. In the present invention, the reason for setting the firing temperature in this range is that when the firing temperature is less than 500 ° C., the reaction does not proceed sufficiently, so that the unreacted raw material remains. Since it progresses and particle growth occurs, it is not preferable because it has characteristics that are not suitable for the use of the positive electrode active material of the lithium secondary battery.
The firing time is 2 to 20 hours, preferably 5 to 10 hours.
Firing is preferably performed in an inert gas atmosphere such as nitrogen or argon or in a reducing atmosphere such as hydrogen or carbon monoxide in order to prevent oxidation of Fe and Mn elements. Moreover, these baking can be performed as many times as necessary.

焼成後は、適宜冷却し、必要に応じ粉砕又は分級してMn原子を含有するリチウム鉄リン系複合酸化物の粒子表面を導電性炭素材料で均一に被覆したMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得る。なお、FeおよびMn元素の酸化を防止するため、冷却中は反応系内を窒素、アルゴン等の不活性ガス雰囲気又は水素や一酸化炭素等の還元雰囲気として行うことが好ましい。また、必要に応じて行われる粉砕は、焼成して得られるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体がもろく結合したブロック状のものである場合等に適宜行うが、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の好ましい実施形態の製造方法によれば、該Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の粒子自体は下記の特定の平均粒径、BET比表面積を有するものである。即ち、得られるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体は、走査型電子顕微鏡写真(SEM)から求められる平均粒径が0.5μm以下、好ましくは0.05〜0.5μmであり、BET比表面積が10〜100m2/g、好ましくは30〜70m2/gである。 After firing, it is cooled appropriately, and pulverized or classified as necessary, and the lithium iron phosphorus-based composite oxide containing Mn atoms in which the particle surface of the lithium iron-phosphorus composite oxide containing Mn atoms is uniformly coated with a conductive carbon material. A composite oxide carbon composite is obtained. In order to prevent oxidation of Fe and Mn elements, it is preferable to perform the reaction system in an inert gas atmosphere such as nitrogen or argon or a reducing atmosphere such as hydrogen or carbon monoxide during cooling. In addition, the pulverization performed as necessary is appropriately performed when the lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms obtained by firing is in a brittlely bonded block form. According to the production method of a preferred embodiment of the lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms, the particles of the lithium iron phosphorus composite oxide-carbon composite containing Mn atoms are specified as follows. Having an average particle size of BET and a BET specific surface area. That is, the obtained lithium iron phosphorus composite oxide-carbon composite containing Mn atoms has an average particle size of 0.5 μm or less, preferably 0.05 to 0.5 μm, as determined from a scanning electron micrograph (SEM). The BET specific surface area is 10 to 100 m 2 / g, preferably 30 to 70 m 2 / g.

本発明に係るMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法によれば、2価の鉄塩と2価のマンガン塩及びリン酸を溶解した水溶液にアルカリを添加して、水溶液中の鉄及びマンガンを不溶性のリン酸塩として共沈させることで、共沈体中に鉄及びマンガンの成分を定量的に、且つ高分散状態で存在させることができる。また、この共沈体とリン酸リチウム及び導電性炭素材料を反応原料として用いることで、従来にも増して各原料が均一分散化された反応前駆体を得ることができる。また、この共沈体とリン酸リチウムとの反応は下記反応式(2)

Figure 0004260572
に示すが如く、製造時に副生するのは水のみで、また、本発明は基本的に固相反応を2つの原料系で行うため従来の4つの原料系の反応と比べて容易に所望のLi、Fe、Mn、Pの組成調整を行うことができる。更に、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法によれば、第三工程で得られた原料混合物を乾式粉砕処理して当該範囲内の比容積の反応前駆体を調製することで、第四工程の焼成温度を粒子成長が起こらないような低温での焼成を行ってもX線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体を得ることができる。 According to the method for producing a lithium iron phosphorus-based composite oxide carbon composite containing Mn atoms according to the present invention, an alkali is added to an aqueous solution in which a divalent iron salt, a divalent manganese salt and phosphoric acid are dissolved. By coprecipitating iron and manganese in an aqueous solution as an insoluble phosphate, iron and manganese components can be present quantitatively and in a highly dispersed state in the coprecipitate. In addition, by using this coprecipitate, lithium phosphate, and conductive carbon material as reaction raw materials, a reaction precursor in which the respective raw materials are uniformly dispersed can be obtained as compared with the prior art. The reaction between this coprecipitate and lithium phosphate is represented by the following reaction formula (2).
Figure 0004260572
As shown in FIG. 4, only water is produced as a by-product during production, and since the present invention basically performs a solid-phase reaction with two raw material systems, it can be easily obtained as compared with the conventional four raw material reactions. The composition of Li, Fe, Mn, and P can be adjusted. Furthermore, according to the method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms of the present invention, the raw material mixture obtained in the third step is subjected to a dry pulverization treatment and a reaction having a specific volume within the range. By preparing a precursor, lithium iron phosphorus-based composite oxidation containing a single-phase Mn atom as seen from X-ray diffraction analysis even when firing at a low temperature such that particle growth does not occur in the fourth step. A carbon composite can be obtained.

このような微細でX線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体は、特にリチウム二次電池の正極活物質としての用途に期待できる。この場合、その形態は、平均粒径0.05μm以上0.5μm以下の一次粒子が集合してなる平均粒径1μm以上75μm以下の一次粒子集合体であってもよい。更に、上記一次集合体において全体積の70%以上、好ましくは80%以上が粒径1μm以上20μm以下であることが好ましく、また、該Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体は大気中で粉砕等を行うと得られる該リチウム鉄リン系複合酸化物炭素複合体には、3000ppm以上の水分が含有されているため、正極活物質として用いる前に真空乾燥等の操作を施して該リチウム鉄リン系複合酸化物炭素複合体の水分含有量を2000ppm以下、好ましくは1500ppm以下として用いることが好ましい。   In view of such fine X-ray diffraction analysis, the lithium iron-phosphorus-based composite oxide-carbon composite containing a single-phase Mn atom can be expected particularly for use as a positive electrode active material of a lithium secondary battery. In this case, the form may be a primary particle aggregate having an average particle diameter of 1 μm or more and 75 μm or less formed by aggregating primary particles having an average particle diameter of 0.05 μm or more and 0.5 μm or less. Furthermore, it is preferable that 70% or more, preferably 80% or more of the total volume in the primary aggregate is a particle size of 1 μm or more and 20 μm or less, and the lithium iron phosphorus composite oxide carbon composite containing the Mn atom. Since the lithium iron phosphorus-based composite oxide carbon composite obtained by pulverizing in the atmosphere contains 3000 ppm or more of water, an operation such as vacuum drying is performed before using as a positive electrode active material. Thus, it is preferable to use the lithium iron phosphorus composite oxide-carbon composite at a moisture content of 2000 ppm or less, preferably 1500 ppm or less.

以下、本発明を実施例により説明するが、本発明はこれらに限定されるものではない。
[合成例1];リン酸リチウムの合成
水酸化リチウムは、市販の水酸化リチウム1水塩を下記の精製操作を施したものを使用し、リン酸リチウムの合成原料とした。
この市販の水酸化リチウム試料中の主な不純物含有量を表1に示す。
なお、この不純物含有量は、ICP質量分析法及び比濁法によって求めた値である。

Figure 0004260572
上記した粗製水酸化リチウム1水塩1062gを純水5000gに50℃で溶解し水溶液を調製した。
次いで、上記で調製した粗製水酸化リチウムを溶解した水溶液を40℃で孔径0.5μmのPTFE製メンブランフィルターを使用して濾過を行った。
次いで、95℃に加温し、減圧下に水分を抑留しながら4時間晶析を行った。なお、回収した水分は3300gであった。冷却後、常法により固液分離して析出した水酸化リチウムを回収し、次いで、減圧下に乾燥を行って精製水酸化リチウム試料とした。また、得られた精製水酸化リチウム(LiOH・H2O)試料中の主な不純物含有量を表2に示した。
Figure 0004260572
上記で調製した精製水酸化リチウム1水塩126gを純水に溶解し1500gとし、4.8重量%水酸化リチウム水溶液を調製した(pH 11.6)。
次いでこの反応容器にリン酸を9.8重量%含むリン酸水溶液1000gを83mL/分の速度で反応系の温度を40℃以下に維持しながら全量を約12分間かけて滴下しリン酸リチウムを析出させた(pH 10.5)。
次に、ろ過してリン酸リチウムを回収した。
次いで、回収したリン酸リチウムを温度110℃で20時間乾燥し、微細な一次粒子が集合した集合体の乾燥品を得た。得られた乾燥品をX線回折で分析したところJCPDSカード番号(25−1030)と回折パターンが一致していることから、この乾燥品はLi3PO4であることを確認した。
得られたLi3PO4の諸物性値を表3に示す。不純物含有量はICP分光法により求めた。また、得られたLi3PO4を線源としてCuKα線を用いてX線回折分析を行い2θ=16.8近傍の回折ピーク(010)面の半値幅を測定した。また、一次粒子と一次粒子の集合体の粒径は走査型電子顕微鏡写真(SEM)により求めた。
Figure 0004260572
注)表3中の「N.D.」は検出限界1ppm以下を示す。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these.
[Synthesis Example 1]; Synthesis of Lithium Phosphate Lithium hydroxide was obtained by subjecting a commercially available lithium hydroxide monohydrate to the following purification operation, and was used as a raw material for the synthesis of lithium phosphate.
Table 1 shows the main impurity contents in this commercially available lithium hydroxide sample.
The impurity content is a value obtained by ICP mass spectrometry and turbidimetry.
Figure 0004260572
The above-mentioned crude lithium hydroxide monohydrate 1062 g was dissolved in pure water 5000 g at 50 ° C. to prepare an aqueous solution.
Next, the aqueous solution in which the crude lithium hydroxide prepared above was dissolved was filtered at 40 ° C. using a PTFE membrane filter having a pore size of 0.5 μm.
Next, the mixture was heated to 95 ° C. and crystallized for 4 hours while retaining moisture under reduced pressure. The recovered water was 3300 g. After cooling, the precipitated lithium hydroxide was recovered by solid-liquid separation by a conventional method, and then dried under reduced pressure to obtain a purified lithium hydroxide sample. Further, Table 2 shows main impurity contents in the obtained purified lithium hydroxide (LiOH.H 2 O) sample.
Figure 0004260572
126 g of the purified lithium hydroxide monohydrate prepared above was dissolved in pure water to 1500 g to prepare a 4.8 wt% lithium hydroxide aqueous solution (pH 11.6).
Next, 1000 g of an aqueous phosphoric acid solution containing 9.8% by weight of phosphoric acid was added dropwise to the reaction vessel at a rate of 83 mL / min over a period of about 12 minutes while maintaining the temperature of the reaction system at 40 ° C. or less. Precipitated (pH 10.5).
Next, it filtered and lithium phosphate was collect | recovered.
Next, the recovered lithium phosphate was dried at a temperature of 110 ° C. for 20 hours to obtain a dried product of aggregates in which fine primary particles were aggregated. When the obtained dried product was analyzed by X-ray diffraction, the diffraction pattern was in agreement with the JCPDS card number (25-1030), and it was confirmed that this dried product was Li 3 PO 4 .
Various physical properties of the obtained Li 3 PO 4 are shown in Table 3. The impurity content was determined by ICP spectroscopy. Further, X-ray diffraction analysis was performed using the obtained Li 3 PO 4 as a radiation source using CuKα rays, and the half width of the diffraction peak (010) plane in the vicinity of 2θ = 16.8 was measured. Moreover, the particle diameter of the aggregate | assembly of a primary particle and a primary particle was calculated | required by the scanning electron micrograph (SEM).
Figure 0004260572
Note) “ND” in Table 3 indicates a detection limit of 1 ppm or less.

実施例1〜3及び参考例1〜2
(第一工程)
硫酸第一鉄7水和物と硫酸マンガン1水和物を表4に示したように,鉄とマンガンの総量に対するマンガンの割合 x(=Mn/(Fe+Mn))が0,0.25,0.5,0.75,1.0となるように秤量し,純水25kgに溶解した。この溶液に75%リン酸を697g加えた。別に,25重量%水酸化ナトリウム水溶液を2560gはかり取り,純水を加え16kgとした。硫酸鉄‐硫酸マンガン‐リン酸の混合溶液に水酸化ナトリウム水溶液を定量ポンプで滴下し(温度11〜15℃),生じた沈殿を濾過,洗浄,乾燥し,表4に示した量の乾燥粉体を得た。鉄,マンガン,リンの各元素の含有割合をICP質量分析法により求め、その結果を表4に示す。
Examples 1-3 and Reference Examples 1-2
(First step)
As shown in Table 4 for ferrous sulfate heptahydrate and manganese sulfate monohydrate, the ratio of manganese to the total amount of iron and manganese x (= Mn / (Fe + Mn)) is 0, 0.25, 0.5, 0.75. , 1.0 and was dissolved in 25 kg of pure water. To this solution, 697 g of 75% phosphoric acid was added. Separately, 2560 g of 25 wt% aqueous sodium hydroxide solution was weighed out and pure water was added to make 16 kg. A sodium hydroxide aqueous solution is dropped into a mixed solution of iron sulfate-manganese sulfate-phosphoric acid with a metering pump (temperature 11 to 15 ° C.), and the resulting precipitate is filtered, washed and dried. Got the body. The content ratio of each element of iron, manganese, and phosphorus was determined by ICP mass spectrometry, and the results are shown in Table 4.

Figure 0004260572
注)表4中の注1)xは原料仕込み量から求められるMn/(Fe+Mn)のモル比、注2)xは共沈体をICP質量分析法して求めたMn/(Fe+Mn)のモル比の実測値を示す。
Figure 0004260572
Note) Note 1 ) in Table 4 x ) M is the molar ratio of Mn / (Fe + Mn) determined from the raw material charge, and Note 2) x is the Mn / (Fe + Mn) mole determined by ICP mass spectrometry of the coprecipitate. The measured value of the ratio is shown.

(第二工程〜第四工程)
上記で合成した鉄、マンガン及びリンを含む共沈体,リン酸リチウム及び平均粒径が0.05μmのケッチェンブラック(登録商標)(ケッチェンブラックインターナショナル社製、商品名ECP)を表5に示した所定量秤量し,ミキサーで混合した。
この混合物を振動ミルを用いて粉砕処理し,反応前駆体を得た。また、振動ミル粉砕品の比容積は、50mLのメスシリンダーにサンプル10gを入れ、ユアサアイオニクス(株)製、DUAL AUTOTAP装置にセットし、500回タップした後、容積を読みとり下記式により求めた。
(数2)
比容積(mL/g)=V/F
(式中、F;受器内の処理した試料の質量(g)、V;タップ後の試料の容量(mL)を示す。)
なお、振動ミルの運転条件は以下の通りである。
・振動数;1000Hz
・処理時間;3分
・原料の仕込量;12g
(Second process to fourth process)
Table 5 shows coprecipitates containing iron, manganese and phosphorus, lithium phosphate, and Ketjen Black (registered trademark) (trade name ECP, manufactured by Ketjen Black International Co., Ltd.) having an average particle size of 0.05 μm. The indicated amount was weighed and mixed with a mixer.
This mixture was pulverized using a vibration mill to obtain a reaction precursor. Further, the specific volume of the vibration mill pulverized product was obtained by putting 10 g of a sample in a 50 mL measuring cylinder, setting it on a Yuasa Ionics Co., Ltd., DUAL AUTOTAP device, tapping 500 times, reading the volume, and obtaining the following formula. .
(Equation 2)
Specific volume (mL / g) = V / F
(Wherein, F represents the mass (g) of the processed sample in the receiver, and V represents the volume (mL) of the sample after tapping.)
The operating conditions of the vibration mill are as follows.
・ Frequency: 1000Hz
・ Processing time: 3 minutes ・ Material charge: 12 g

得られた反応前駆体の主物性を表5に示す。
次に、反応前駆体10gをハンドプレスにより44MPaでプレス成形した。次いで、得られた粉砕品を窒素雰囲気下に600℃で5時間焼成し,冷却後,粉砕した。得られた粉体の平均粒径を走査型電子顕微鏡写真(SEM)で求めた以外は主物性を合成例1と同様に求め,その結果を表5に示す。また,得られた粉体に対して,線源としてCuKα線を用いてX線回折分析を行い,得られたXRDパターンを図1に示す。このXRDパターンは,オリビン構造を有する単相であることが分かった。XRDパターンの(200)面のピーク位置を詳細に見ると,xの値が0から1に向かって変化するにつれ,ピーク位置がリン酸鉄リチウムのピーク位置である29. 7°からリン酸マンガンリチウムのピーク位置である29.2°に向かって連続的に変化していることが分かった。これらのことから,得られた粉体は,鉄とマンガンが固溶したオリビン構造単相を示し,組成式LiFe1-xMnxPO4で表されるリン酸(鉄‐マンガン)リチウムであるといえる。
Table 5 shows the main physical properties of the obtained reaction precursor.
Next, 10 g of the reaction precursor was press-molded at 44 MPa by hand press. Subsequently, the obtained pulverized product was fired at 600 ° C. for 5 hours in a nitrogen atmosphere, cooled and pulverized. The main physical properties were determined in the same manner as in Synthesis Example 1 except that the average particle size of the obtained powder was determined by scanning electron micrograph (SEM), and the results are shown in Table 5. The obtained powder was subjected to X-ray diffraction analysis using CuKα rays as a radiation source, and the obtained XRD pattern is shown in FIG. This XRD pattern was found to be a single phase having an olivine structure. Looking at the peak position on the (200) plane of the XRD pattern in detail, as the value of x changes from 0 to 1, the peak position is 29.7 °, which is the peak position of lithium iron phosphate, and manganese phosphate. It was found that it continuously changed toward 29.2 ° which is the peak position of lithium. From these results, the obtained powder is lithium phosphate (iron-manganese) which shows an olivine structure single phase in which iron and manganese are solid-solved and is represented by the composition formula LiFe 1-x Mn x PO 4. It can be said.

Figure 0004260572
注)表5中の注3)xは焼成品をICP質量分析法して求めたMn/(Fe+Mn)のモル比の実測値を示す。
Figure 0004260572
Note) Note 3 ) in Table 5 x represents the actual value of the molar ratio of Mn / (Fe + Mn) obtained by ICP mass spectrometry of the fired product.

表5の結果より、本発明のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法によれば原料仕込み量から求められる理論的なMn/(Fe+Mn)のモル比と焼成品(Mn原子を含有するリチウム鉄リン系複合酸化物炭素複合体)の実測値から求められるMn/(Fe+Mn)のモル比がほぼ一致していることから、Li、Fe、Mn、Pの組成調整が容易であることが分かる。また、図1及び表6の結果より、本発明の製造方法で得られるMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体は、何れも平均粒径が0.5μm以下の微細な粒子で、また、X線回折分析からみて単相のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体であることが分かる。   From the results of Table 5, the theoretical Mn / (Fe + Mn) molar ratio determined from the raw material charge and the calcined product according to the method for producing a lithium iron phosphorus composite oxide-carbon composite containing Mn atoms of the present invention Since the molar ratio of Mn / (Fe + Mn) obtained from the actual measurement value of (lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms) is almost the same, the composition adjustment of Li, Fe, Mn, and P Is easy to understand. From the results shown in FIG. 1 and Table 6, the lithium iron phosphorus composite oxide-carbon composite containing Mn atoms obtained by the production method of the present invention is a fine particle having an average particle size of 0.5 μm or less. From the X-ray diffraction analysis, it can be seen that the lithium iron phosphorus composite oxide-carbon composite contains a single-phase Mn atom.

実施例1〜3及び参考例1〜2で得られたリチウム鉄リン系複合酸化物炭素複合体のX線回折図。The X-ray-diffraction figure of the lithium iron phosphorus type complex oxide carbon composite obtained in Examples 1-3 and Reference Examples 1-2.

Claims (3)

2価の鉄塩と2価のマンガン塩及び該2価の鉄塩と該2価のマンガン塩中の鉄原子とマンガン原子の総量(Fe+Mn)に対するモル比で0.60〜0.75のリン酸を溶解した水溶液にアルカリを添加し、鉄、マンガン及びリンを含む共沈体を得る第一工程、次いで得られた鉄、マンガン及びリンを含む共沈体、リン酸リチウム及び導電性炭素材料を混合する第二工程、次いで、得られた混合物を乾式で粉砕処理して比容積が1.5mL/g以下の反応前駆体を得る第三工程、次いで、該反応前駆体を500〜700℃で焼成する第四工程を含むことを特徴とするMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法。 Phosphorus having a molar ratio of 0.60 to 0.75 with respect to the total amount of iron atoms and manganese atoms (Fe + Mn) in the divalent iron salt and the divalent manganese salt and the divalent iron salt and the divalent manganese salt First step of adding an alkali to an acid-dissolved aqueous solution to obtain a coprecipitate containing iron, manganese and phosphorus, then the obtained coprecipitate containing iron, manganese and phosphorus, lithium phosphate and conductive carbon material A second step of mixing the obtained mixture, then, a third step of obtaining a reaction precursor having a specific volume of 1.5 mL / g or less by pulverizing the resulting mixture dry, and then the reaction precursor is heated to 500 to 700 ° C. A method for producing a lithium iron-phosphorus-based composite oxide-carbon composite containing Mn atoms, comprising a fourth step of calcining at a temperature. 前記第三工程後、得られた反応前駆体を加圧成形する工程を設ける請求項1記載のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法。   The method for producing a lithium iron phosphorus-based composite oxide-carbon composite containing Mn atoms according to claim 1, wherein a step of pressure-molding the obtained reaction precursor is provided after the third step. 前記第二工程のリン酸リチウムは、平均粒径が10μm以下で、格子面(010)面の半値幅が0.2°以上のものを用いる請求項1又は2記載のMn原子を含有するリチウム鉄リン系複合酸化物炭素複合体の製造方法。   3. The lithium containing Mn atoms according to claim 1, wherein the lithium phosphate in the second step has an average particle diameter of 10 μm or less and a half-width of a lattice plane (010) plane of 0.2 ° or more. A method for producing an iron-phosphorus composite oxide carbon composite.
JP2003281561A 2003-07-29 2003-07-29 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom Expired - Fee Related JP4260572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003281561A JP4260572B2 (en) 2003-07-29 2003-07-29 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003281561A JP4260572B2 (en) 2003-07-29 2003-07-29 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom

Publications (2)

Publication Number Publication Date
JP2005047751A JP2005047751A (en) 2005-02-24
JP4260572B2 true JP4260572B2 (en) 2009-04-30

Family

ID=34267026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003281561A Expired - Fee Related JP4260572B2 (en) 2003-07-29 2003-07-29 Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom

Country Status (1)

Country Link
JP (1) JP4260572B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005012640B4 (en) * 2005-03-18 2015-02-05 Süd-Chemie Ip Gmbh & Co. Kg Circular process for the wet-chemical production of lithium metal phosphates
CA2623636C (en) 2005-09-21 2015-04-14 Kanto Denka Kogyo Co., Ltd. Method of producing positive electrode active material and nonaqueous electrolyte battery using same
CN101283465B (en) * 2005-09-21 2010-10-27 关东电化工业株式会社 Positive electrode active material, method for producing same, and nonaqueous electrolyte battery having positive electrode containing positive electrode active material
CN100563047C (en) * 2006-04-25 2009-11-25 立凯电能科技股份有限公司 Be applicable to the composite material and the prepared battery thereof of the positive pole of making secondary cell
JP4767798B2 (en) * 2006-09-05 2011-09-07 住友大阪セメント株式会社 Electrode material manufacturing method, lithium recovery method, positive electrode material, electrode and battery
CA2566906A1 (en) * 2006-10-30 2008-04-30 Nathalie Ravet Carbon-coated lifepo4 storage and handling
JP5245084B2 (en) * 2007-01-29 2013-07-24 国立大学法人九州大学 Olivine-type compound ultrafine particles and method for producing the same
KR100946387B1 (en) 2008-03-25 2010-03-08 주식회사 에너세라믹 Olivine type positive active material precursor for lithium battery, olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
KR101071336B1 (en) 2008-03-25 2011-10-07 주식회사 에너세라믹 Olivine type positive active material precursor for lithium battery, and method for preparing the same
JP5460980B2 (en) * 2008-07-09 2014-04-02 住友化学株式会社 Process for producing transition metal phosphate
JP5460979B2 (en) * 2008-07-09 2014-04-02 住友化学株式会社 Transition metal phosphate, positive electrode for sodium secondary battery using the same, and secondary battery using the positive electrode
WO2010005097A1 (en) * 2008-07-09 2010-01-14 住友化学株式会社 Transition metal phosphoric acid salt, process for producing same, positive electrode, and sodium secondary battery
JP5347605B2 (en) * 2009-03-16 2013-11-20 Tdk株式会社 Active material, electrode including the same, lithium ion secondary battery including the electrode, and method for producing active material
KR20100117895A (en) * 2009-04-27 2010-11-04 대정이엠(주) Method of preparing olivine type cathode active material for lithium secondary batteries and lithium secondary batteries using the same
US9269950B2 (en) * 2010-01-28 2016-02-23 Johnson Matthey Public Limited Company Procedure to optimize materials for cathodes and cathode material having enhanced electrochemical properties
CA2691265A1 (en) * 2010-01-28 2011-07-28 Phostech Lithium Inc. Optimized cathode material for a lithium-metal-polymer battery
DE102010006083B4 (en) * 2010-01-28 2014-12-11 Süd-Chemie Ip Gmbh & Co. Kg Substituted lithium manganese metal phosphate
JP5636772B2 (en) * 2010-07-02 2014-12-10 日亜化学工業株式会社 Olivine-type lithium transition metal composite oxide and method for producing the same
JP5831296B2 (en) * 2011-03-07 2015-12-09 日亜化学工業株式会社 Olivine-type lithium transition metal oxide and method for producing the same
JP5835334B2 (en) * 2011-09-14 2015-12-24 住友金属鉱山株式会社 Ammonium manganese iron phosphate, method for producing the same, and method for producing positive electrode active material for lithium secondary battery using the ammonium manganese iron phosphate
JP5120523B1 (en) * 2011-09-14 2013-01-16 住友金属鉱山株式会社 Ammonium manganese iron magnesium phosphate and its production method, positive electrode active material for lithium secondary battery using said ammonium manganese iron magnesium magnesium, its production method, and lithium secondary battery using said positive electrode active material
EP2698346A1 (en) * 2012-08-14 2014-02-19 Clariant International Ltd. Mixed sulphate containing lithium-manganese-metal phosphate
KR101624317B1 (en) * 2014-09-01 2016-06-07 한국생산기술연구원 Fabricating Method of Positive Electrode Material for Secondary Battery
JP5999240B1 (en) * 2015-09-30 2016-09-28 住友大阪セメント株式会社 ELECTRODE MATERIAL FOR LITHIUM ION SECONDARY BATTERY AND METHOD FOR PRODUCING THE SAME

Also Published As

Publication number Publication date
JP2005047751A (en) 2005-02-24

Similar Documents

Publication Publication Date Title
JP4260572B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
JP4180363B2 (en) Ferrous phosphate hydrate salt crystal, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP4225859B2 (en) Method for producing lithium iron phosphorus composite oxide carbon composite containing Mn atom
KR101338816B1 (en) Positive electrode materials combining high safety and high power in a li rechargeable battery
EP2492243B1 (en) Nickel-cobalt-manganese compound particle powder and method for producing same, lithium composite oxide particle powder and method for producing same, and nonaqueous electrolyte secondary battery
JP5835540B2 (en) A method for producing ferric phosphate hydrate particles, a method for producing olivine-type lithium iron phosphate particles, and a method for producing a nonaqueous electrolyte secondary battery.
EP3774663B1 (en) O3/p2 mixed phase sodium-containing doped layered oxide materials
JP4620378B2 (en) Lithium phosphate aggregate, method for producing the same, and method for producing lithium iron phosphorus composite oxide
JP5281765B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
JP5776573B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same, precursor of the positive electrode active material and method for producing the same, and lithium secondary battery using the positive electrode active material
JP5323410B2 (en) Method for producing lithium iron phosphorus-based composite oxide carbon composite and method for producing coprecipitate containing lithium, iron and phosphorus
US7879266B2 (en) Composite carbonate and method for producing the same
JP5004413B2 (en) Method for producing positive electrode material for ammonium iron phosphate and lithium ion secondary battery, and lithium ion secondary battery
JP2003292308A (en) Carbon composite of lithium/iron/phosphorus-based complex oxide, production method therefor, positive pole activating material for lithium secondary battery, and lithium secondary battery
JP5678685B2 (en) Precursor of positive electrode active material for lithium secondary battery, method for producing the same, and method for producing positive electrode active material for lithium secondary battery
JP5164287B2 (en) Lithium silicate compound and method for producing the same
KR20110007112A (en) Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
EP2407426A1 (en) Process for producing lithium borate compound
CN111422851B (en) Lithium iron phosphate and preparation method thereof
TW201221469A (en) Manufacturing method for lithium iron phosphate material and lithium iron phosphate powder produced thereby
US20090028772A1 (en) Method for manufacturing lithium-iron-phosphorus compound oxide carbon complex and method for manufacturing coprecipitate containing lithium, iron, and phosphorus
JP4086551B2 (en) Method for producing tricobalt tetroxide and method for producing lithium cobaltate
JP5121625B2 (en) Method for producing positive electrode active material for lithium secondary battery, positive electrode active material and lithium secondary battery
KR20060122450A (en) Manganese oxides, spinel type cathode active material for lithium secondary batteries using thereby and preparation of the same
KR20160064136A (en) Lmfp cathode materials with improved electrochemical performance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4260572

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees