JP2004342554A - Manufacturing method of anode active material of lithium secondary battery - Google Patents

Manufacturing method of anode active material of lithium secondary battery Download PDF

Info

Publication number
JP2004342554A
JP2004342554A JP2003140341A JP2003140341A JP2004342554A JP 2004342554 A JP2004342554 A JP 2004342554A JP 2003140341 A JP2003140341 A JP 2003140341A JP 2003140341 A JP2003140341 A JP 2003140341A JP 2004342554 A JP2004342554 A JP 2004342554A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003140341A
Other languages
Japanese (ja)
Other versions
JP4170145B2 (en
Inventor
Hirokuni Ota
洋邦 太田
Fumihiro Yonekawa
文広 米川
Nobuyuki Yamazaki
信幸 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP2003140341A priority Critical patent/JP4170145B2/en
Publication of JP2004342554A publication Critical patent/JP2004342554A/en
Application granted granted Critical
Publication of JP4170145B2 publication Critical patent/JP4170145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an anode active material of a lithium secondary battery in which especially a load characteristic, a cycle characteristic, a high-temperature storage characteristic, and a low-temperature characteristic, and furthermore safety can be improved when used as the anode active material of the lithium secondary battery. <P>SOLUTION: As for this manufacturing method of the anode active material of the lithium secondary battery, in the manufacturing method of a lithium cobalt based compound oxide containing F atom wherein a lithium compound, a cobalt compound, and a fluorine compound are mixed and subsequently calcined, magnesium fluoride (MgF<SB>2</SB>) in which the BET specific surface area is 1 m<SP>2</SP>/g or more is used, the lithium compound, the cobalt compound and the magnesium fluoride (MgF<SB>2</SB>) are mixed at the mole ratio of Li atom 0.90-1.10 and F atom 0.001-0.15 against Co atom, and this is calcined at the temperature of 800-1,100°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、F原子を含有するリチウムコバルト系のリチウム二次電池正極活物質の製造方法に関するものである。
【0002】
【従来の技術】
近年、家庭電器においてポータブル化、コードレス化が急速に進むに従い、ラップトップ型パソコン、携帯電話、ビデオカメラ等の小型電子機器の電源としてリチウムイオン二次電池が実用化されている。このリチウムイオン二次電池については、1980年に水島等によりコバルト酸リチウムがリチウムイオン二次電池の正極活物質として有用であるとの報告(「マテリアル リサーチブレティン」vol15,P783−789(1980)〕)がなされて以来、リチウム系複合酸化物に関する研究開発が活発に進められており、これまで多くの提案がなされている。
【0003】
例えば、正極活物質としてF原子を含有するリチウムコバルト系複合酸化物が提案されている(例えば、特許文献1〜3参照。)。
【0004】
特許文献1(特開平7−33443号公報)のF原子を含有するリチウムコバルト系複合酸化物は、コバルト酸リチウムとガス状ハロゲン化合物とを接触させて得られるものであり、通常このようなにして得られるコバルト酸リチウムはその表面層においてのみF原子が存在しF原子を粒子内部にまで存在させることができない。
【0005】
また、特許文献2(特開2002−298846号公報)及び特許文献3(特開2002−216760号公報)のF原子を含有するリチウムコバルト系複合酸化物はフッ素化合物としてフッ化リチウム(LiF)を用いているが、単にフッ化リチウムを用いただけではリチウムコバルト系複合酸化物の粒子内部のF原子の含有率を高めることができず、また、これを1000〜1100℃で焼成して平均粒径が10μm以上とした正極活物質を用いたリチウム二次電池に至っても、未だ満足のできる負荷特性、サイクル特性、高温保存特性及び低温特性、更には安全性を実現することができない。
【0006】
【特許文献1】
特開平7−33443号公報
【特許文献2】
特開2002−298846号公報
【特許文献3】
特開2002−216760号公報
【0007】
【発明が解決しようとする課題】
本発明者らは、かかる実情において鋭意研究を重ねた結果、リチウム化合物、コバルト化合物及びフッ素化合物とを混合し、次いで焼成を行うF原子を含有するリチウムコバルト系複合酸化物の製造方法において、前記フッ素化合物として特定比表面積のフッ化マグネシウム(MgF)を用い、各原料の混合比と焼成温度を特定範囲として得られるリチウム二次電池正極活物質を用いたリチウム二次電池は、特に負荷特性、サイクル特性、高温保存特性及び低温特性、更には安全性が向上することを見出し本発明を完成するに至った。
【0008】
即ち、本発明の目的はリチウム二次電池の正極活物質として用いたときに、特に負荷特性、サイクル特性、高温保存特性及び低温特性、更には安全性を向上させることができるリチウム二次電池正極活物質の製造方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明が提供しようするリチウム二次電池正極活物質の製造方法は、リチウム化合物、コバルト化合物及びフッ素化合物とを混合し、次いで焼成を行うF原子を含有するリチウムコバルト系複合酸化物の製造方法において、BET比表面積が1m/g以上のフッ化マグネシウム(MgF)を用い、リチウム化合物、コバルト化合物及びフッ化マグネシウム(MgF)とをCo原子に対するモル比で、Li原子0.90〜1.10、F原子0.001〜0.15で混合し、温度800〜1100℃で焼成を行うことを特徴とするリチウム二次電池正極活物質の製造方法である。
また、係るリチウム二次電池正極活物質の製造方法において、前記コバルト化合物はBET比表面積が2m/g以上のものを用いることが好ましく、前記焼成は1000〜1100℃で行うことが更に好ましい。
【0010】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明に係るリチウム二次電池正極活物質の製造方法は、リチウム化合物、コバルト化合物及びフッ素化合物とを混合し、次いで焼成を行うF原子を含有するリチウムコバルト系複合酸化物の製造方法において、前記フッ素化合物として特定比表面積のフッ化マグネシウム(MgF)を用い、各原料の混合比を特定範囲内に設定し、尚且つ特定温度範囲で焼成を行うことにその特徴がある。
【0011】
用いることができる第1の原料のリチウム化合物は、例えば、リチウムの酸化物、水酸化物、炭酸塩、硝酸塩及び有機酸塩等が挙げられるが、これらの中で、工業的に安価な炭酸リチウムが好ましい。
かかるリチウム化合物の物性等は特に制限されるものではないが、微細なものが反応性の面で好ましく、レーザー回折法から求められる平均粒径が20μm以下、好ましくは10μm以下のものが特に好ましい。
【0012】
用いることができる第2の原料のコバルト化合物は、例えば、コバルトの酸化物、水酸化物、炭酸塩、硝酸塩及び有機酸塩等が挙げられるが、工業的に安価で、反応性、更には焼成中に副生する副生物の安全性の面で四酸化三コバルト(Co)又はオキシ水酸化コバルト(CoOOH)を用いることが特に好ましい。
前記コバルト化合物の物性はBET比表面積が1m/g以上であることが好ましく、特に該コバルト化合物のBET比表面積が2m/g以上のものを用いると、フッ化マグネシウム(MgF)との相乗効果が高まり、フッ化マグネシウム(MgF)の存在下においてもリチウム化合物とコバルト化合物の共溶融温度で容易に反応するため後述する計算式(1)から求められるリチウムコバルト系複合酸化物の粒子内部のF原子の含有量(C)を更に40重量%以上に高めることができ、該リチウム二次電池正極活物質とするリチウム二次電池のサイクル特性、負荷特性、低温特性を更に向上させることができる。
【0013】
本発明のリチウム二次電池正極活物質の製造方法において、第3の原料のフッ化マグネシウム(MgF)はBET比表面積が1m/g以上、好ましくは5m/g以上のものを用いることが一つの重要な要件となる。本発明において用いるフッ化マグネシウム(MgF)のBET比表面積を当該範囲とする理由は、1m/g未満ではリチウムコバルト系複合酸化物の粒子内部にF原子とMg原子を均一に分布させることが困難になる傾向があり、該リチウム二次正極活物質を用いたリチウム二次電池の負荷特性、サイクル特性、高温保存特性及び低温特性、更には安全性の向上が低いものとなることによる。また、該フッ化マグネシウム(MgF)はレーザー回折法から求められる平均粒径が10μm以下、好ましくは5μm以下であると、更に均一にF原子とMg原子を粒子内部に分布させることができることから特に好ましい。
【0014】
前記第1〜第3の原料のリチウム化合物、コバルト化合物及びフッ素マグネシウム(MgF)は、製造履歴は問わないが、高純度リチウムコバルト系複合酸化物を製造するために、可及的に不純物含有量が少ないものであることが好ましい。
【0015】
反応操作は、まず、前記第1〜第3の原料のリチウム化合物、コバルト化合物及びフッ化マグネシウム(MgF)とを所定量混合する。混合は、乾式又は湿式のいずれの方法でもよいが、製造が容易であるため乾式が好ましい。乾式混合の場合は、原料が均一に混合するようなブレンダー等を用いることが好ましい。
【0016】
上記した第1〜第3の原料のリチウム化合物、コバルト化合物及びフッ化マグネシウム(MgF)の配合割合は、Co原子に対するモル比で、Li原子0.90〜1.10、好ましくは0.95〜1.05、F原子0.001〜0.15、好ましくは0.002〜0.10であり、この配合割合で後述する焼成を行うことにより、得られるリチウムコバルト系複合酸化物に対してF原子を0.20〜3重量%、好ましくは0.04〜2重量%含有したリチウムコバルト系複合酸化物で、尚且つ粒子内部においてもF原子の含有量が従来になく高いものを得ることができる。本発明において、前記第1〜第3の原料の配合割合を当該範囲とする理由は、当該範囲以外では、該リチウム二次電池正極活物質とするリチウム二次電池に、優れた負荷特性、サイクル特性、高温保存特性及び低温特性、更には安全性を付与することができなくなり、例えば、F原子の含有量がリチウムコバルト系複合酸化物に対して3重量%を越えるとリチウム二次電池の放電容量が減少し、一方、F原子の含有量がリチウムコバルト系複合酸化物に対して0.20重量%未満ではF原子の効果による負荷特性、サイクル特性、高温保存特性及び低温特性、更には安全性の向上が見られないためである。
【0017】
次いで、前記第1〜第3の原料のリチウム化合物、コバルト化合物及びフッ化マグネシウム(MgF)が均一混合された混合物を焼成する。
【0018】
本発明においてこの焼成温度を800〜1100℃とすることが一つの重要な要件となる。本発明において、焼成温度を当該範囲とする理由は、800℃未満ではリチウム化合物、コバルト化合物及びフッ化マグネシウム(MgF)との固相反応が十分に起こらないためF原子及びMg原子が粒子内部まで入りにくく、また、1100℃を越えると目的とするリチウムコバルト系複合酸化物が分解を起こすため好ましくない。特に本発明のリチウム二次電池正極活物質の製造方法において1000℃を越える温度、即ち1000〜1100℃で焼成を行うと粒子成長が著しいため平均粒径が10μm以上となり、これに伴って比表面積が小さくなるため、該リチウム二次電池正極活物質を用いたリチウム二次電池の安全性を更に向上させることができる。
【0019】
焼成時間は2〜24時間、好ましくは5〜10時間とすることが好ましい。焼成は大気中又は酸素雰囲気中のいずれで行ってもよく、特に制限されるものではない。また、これら焼成は必要により何度でも行うことができる。
【0020】
焼成後は、適宜冷却し、必要に応じ粉砕してリチウム二次電池正極活物質を得る。
なお、必要に応じて行われる粉砕は、焼成して得られる正極活物質がもろく結合したブロック状のものである場合等に適宜行うが、該正極活物質の粒子自体は特定の平均粒径、BET比表面積を有するものである。即ち、得られるリチウム二次電池正極活物質は、平均粒径が1.0〜20μm、好ましくは5.0〜20μmであり、BET比表面積が0.1〜2.0m/g、好ましくは0.2〜1.5m/g、さらに好ましくは0.3〜1.0m/gである。
【0021】
かくして得られるリチウム二次電池正極活物質は、F原子を0.02〜3重量%含有し、下記計算式(1)から求められる粒子内部のF原子の含有量(C)が10重量%以上、好ましくは30重量%を越える。
【数1】

Figure 2004342554
式中のA、B及びCは以下のことを示す。
A;リチウム二次電池正極活物質の粒子表面上に存在するF原子の量。
B;リチウム二次電池正極活物質中に含有されているF原子の全量。
C;リチウム二次電池正極活物質の粒子内部に存在するF原子の量。
【0022】
また、本発明の製造方法で得られるリチウム二次電池正極活物質は、残存アルカリの含有量が0.1重量%以下、好ましくは0.05重量%以下で、該リチウム二次電池正極活物質20gを水100mlに分散させたときの分散液の25℃におけるpHが9.5〜12.0、好ましくは9.5〜10.5であると、不純物、例えば炭酸リチウム、水酸化リチウム等の残存アルカリに由来するガスの発生を抑制し、該リチウム二次電池正極活物質を用いたリチウム二次電池の高温保存特性を向上させることができる。
【0023】
本発明の製造方法で得られるリチウム二次電池正極活物質は、正極、負極、セパレータ、及びリチウム塩を含有する非水電解質からなるリチウム二次電池の正極活物質として用いることができ、また、本発明のリチウム二次電池正極活物質を用いたリチウム二次電池は、特に負荷特性、サイクル特性、高温保存特性及び低温特性、更には安全性が向上する。
【0024】
【実施例】
以下、本発明を実施例により詳細に説明するが、本発明はこれらに限定されるものではない。
<酸化コバルト(Co)の調製>
・試料Co−1、Co−2
特開平4−321523号公報の四酸化三コバルトの製造方法に従って、硫酸コバルト・6水和物13.7kgを純水15Lに溶解し、コバルト水溶液を作成した。次いで炭酸水素アンモニウム9kgを純水6Lに溶解した後、攪拌しながら前記のコバルト水溶液を1時間かけて添加した。添加終了後30分間攪拌して沈澱を生成させ、次いで濾過して沈澱物を回収し、60Lの純水で2回リパルプして洗浄を行った。次いで、沈澱物を420℃で3時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、平均粒径が0.02μmで、BET比表面積は44.5m/gであった。この四酸化三コバルト試料をCo−1とし、更にこのCo−1を粉砕及び分級してBET比表面積が104m/gの四酸化三コバルトを調製し、これをCo−2試料とした。
・試料Co−3、Co−4
特願2002−162726号の四酸化三コバルトの製造方法に従って、20L容量のステンレスタンクに、予め1.8mol/L(CoSOとして)の硫酸コバルト水溶液を4L張り、これを60℃に加温し、そこに1mol/Lの炭酸水素ナトリウム水溶液14.4Lを2時間かけて60℃に温度を維持しながら滴下した。なお、滴下終了後の反応系内のpHは6.7であった.
次いで滴下終了後、温度を60℃に維持したままpH8になるまで4mol/Lの水酸化ナトリウム溶液を加え、このpHと温度を維持しながら3時間の熟成を行った。
次いで、濾過に要する時間を確認しながら、固液分離後、回収した沈澱物を10%スラリーとした時の25℃における電気伝導度を電気伝導度計で確認しながら電気伝導度が100μs/cm以下となるまで十分に押水洗浄を行い、乾燥して沈澱物856.1gを得た(収率99.96%)。
次に、この沈澱物を900℃で5時間電気炉で焼成し、冷却後、粉砕し得られたものを、X線回折測定で確認したところ凝集状の四酸化三コバルトであることを確認した。また、走査型電子顕微鏡(SEM)より観察した結果、一次粒子の粒径が0.5〜2μmで、二次粒子の平均粒径が14.1μmで、BET比表面積は0.62m/gであった。これをCo−4試料とした。
次いで、上記で得られたCo−4試料を粉砕及び分級してBET比表面積が1.02m/gの四酸化三コバルトを調製し、これをCo−3試料とした。
また、前記で調製したCo−1、Co−2、Co−3及びCo−4試料のBET比表面積を表1に示した。
【表1】
Figure 2004342554
【0025】
実施例1〜4
表2に示したCo原子とLi原子のモル比となるように各酸化コバルト試料、LiCO(平均粒径7μm)を秤量し、更に市販のMgF(Aldrich社製)を粉砕、分級してBET比表面積6.5m/g、平均粒径7μmのMgFを調製し、表2に示したF原子のモル比となるようにこの調製したMgFと各原料を乾式で十分に混合した後1020℃で5時間焼成した。該焼成物を粉砕、分級してF原子含有リチウムコバルト系複合酸化物を得た。得られたものの主物性を表3に示す。
【0026】
比較例1
表2に示したCo原子とLi原子のモル比となるように酸化コバルト(試料Co−1)、LiCO(平均粒径7μm)を秤量し、更に市販のMgF(Aldrich社製)を粉砕、分級してBET比表面積6.5m/g、平均粒径7μmのMgFを調製し、表2に示したF原子のモル比となるようにこの調製したMgFと各原料を乾式で十分に混合した後700℃で5時間焼成した。該焼成物を粉砕、分級してF原子含有リチウムコバルト系複合酸化物を得た。得られたものの主物性を表3に示す。
【0027】
比較例2
Li原子、Co原子のモル比が1.03:1.00となるように酸化コバルト(試料Co−1)、LiCO(平均粒径7μm)を乾式で十分に混合した後1020℃で5時間焼成した。該焼成物を粉砕、分級してリチウムコバルト系複合酸化物を得た。得られたものの主物性を表3に示す。
【0028】
参考例1
表2に示したCo原子とLi原子のモル比となるように酸化コバルト試料(Co−1)、LiCO(平均粒径7μm)を秤量し、更に表2に示したF原子のモル比となるように市販のMgF(BET比表面積0.1m/g、平均粒径100μm)を乾式で十分に混合した後1020℃で5時間焼成した。該焼成物を粉砕、分級してF原子含有リチウムコバルト系複合酸化物を得た。得られたものの主物性を表3に示す。
【表2】
Figure 2004342554
【0029】
<物性の評価>
▲1▼リチウムコバルト系複合酸化物の粒子内部のF原子の量
実施例1〜4、比較例1〜2及び参考例1で得られたリチウムコバルト系複合酸化物0.5gに水100mlを加え、25℃で十分に攪拌して、リチウムコバルト系複合酸化物の粒子表面からF原子を水に溶出させ、溶液中のF原子の量をイオンクロマトグラフィーにより定量した。次に、原料のフッ素化合物の添加量から求められる理論量から下記計算式(1)により、リチウムコバルト系複合酸化物の粒子内部のF原子の存在割合(C)を求めた。その結果を表3に示した。
【数2】
Figure 2004342554
式中のA、B、Cは下記のことを示す。
A:リチウム二次電池正極活物質を水に分散させて粒子表面から溶出するF原子の量をイオンクロマトグラフィーで定量分析した値。
B:フッ化マグネシウム(MgF)の添加量から求められるリチウム二次電池正極活物質粒子中に理論上含有された全F原子の量。
C:リチウム二次電池正極活物質の粒子内部に存在するF原子の量。
▲2▼分散液のpH及び残存アルカリの含有量
実施例1〜4、比較例1〜2及び参考例1で得られたリチウムコバルト系複合酸化物20gに水100mlを加え、25℃で5分間十分に攪拌した。次いで、濾過し、その濾過液のpHをpHメーターで測定した。更に、該濾過液60gを0.1NのHClを用いてアルカリ滴定により、該リチウムコバルト系複合酸化物に含まれる残存アルカリ分を測定し、その結果を表3に示した。
▲3▼平均粒径
平均粒径はレーザー回折法により求めた。
【表3】
Figure 2004342554
【0030】
<電池性能試験>
(1)リチウム二次電池の作製;
上記のように製造した実施例1〜4、比較例1〜2及び参考例1で得られたリチウムコバルト系複合酸化物91重量%、黒鉛粉末6重量%、ポリフッ化ビニリデン3重量%を混合して正極剤とし、これをN−メチル−2−ピロリジノンに分散させて混練ペーストを調製した。該混練ペーストをアルミ箔に塗布したのち乾燥、プレスして直径15mmの円盤に打ち抜いて正極板を得た。
この正極板を用いて、セパレーター、負極、正極、集電板、取り付け金具、外部端子、電解液等の各部材を使用してリチウム二次電池を製作した。このうち、負極は金属リチウム箔を用い、電解液にはエチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF 1モルを溶解したものを使用した。
【0031】
(2)電池の性能評価
作製したリチウム二次電池を室温で作動させ、下記の電池性能を評価した。
<容量維持率、エネルギー維持率の測定>
室温にて正極に対して定電流電圧(CCCV)0.5Cで4.3Vまで充電した後、0.2Cで2.7Vまで放電させる充放電を1サイクルとして、放電容量およびエネルギー密度を測定した。
次いで、上記放電容量及びエネルギー密度の測定における充放電を20サイクル行い、下記式(2)により容量維持率を算出し、また、下記式(3)によりエネルギー維持率を算出した。その結果を表4に示す。また、実施例1〜4、比較例2で調製したリチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池のこの条件下での放電特性図を図1〜5にそれぞれ示した。
【数3】
Figure 2004342554
【数4】
Figure 2004342554
【0032】
<負荷特性の評価>
まず、正極に対して定電流電圧(CCCV)充電により0.5Cで5時間かけて、4.3Vまで充電した後、放電レート0.2C、1.0C、2.0Cで2.7Vまで放電させる充放電を行い、これらの操作を1サイクルとして1サイクル毎に放電容量とエネルギー密度を測定した。
このサイクルの各放電レートで3サイクル繰り返し、3サイクル目の放電容量とエネルギー密度を求めた。その結果を表4に示す。
また、実施例1〜4及び比較例2で調製したリチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池について同様に行い、0.2C、1.0C、2.0Cでの放電特性図を図6〜10にそれぞれ示した。
なお、エネルギー密度の値が高い方が、高負荷放電時でもより多くのエネルギーを利用でき、同じ放電容量の場合にはより高電圧での放電が可能である事を示し、即ち、負荷特性が優れていることを示す。
【表4】
Figure 2004342554
表4の結果より、本発明のリチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池は比較例2のリチウムコバルト系複合酸化物を正極活物質として用いたものと比べ、容量維持率が高く、負荷特性が優れていることが分かる。更に、図6〜図10の結果より、比較例2のLiCoOを正極活物質として用いたものと比べ、放電カーブ末期にはっきりとした肩が見られ、放電の最後まで高電圧を維持していることが分かる。
【0033】
<高温保存特性の評価>
実施例1及び比較例2で調製したリチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池について、室温にて正極に対して定電流電圧(CCCV)0.5Cで4.3Vまで5時間かけて充電した後、0.2Cで2.7Vまで放電させる充放電を1サイクル行った。次いで、同様に2サイクル目の充電を行った後、リチウム二次電池を80℃に調整された恒温室中で3週間放置(自己放電)した。
次に、リチウム二次電池を恒温室から取り出して、室温まで冷却後、放電レート0.2Cで放電を行った。その際の放電特性図を図11に示した。
また、図11に室温にて正極に対して定電流電圧(CCCV)0.5Cで4.3Vまで5時間かけて充電した後、0.2Cで2.7Vまで放電させる充放電を1サイクル行った後、2サイクル目の充電を行い、室温で放電レート0.2Cで放電を行い、その際の放電特性を図11に合わせて併記した。
図11の結果より、本発明のリチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池は比較例2のLiCoOを正極活物質として用いたものと比べ、80℃で3週間放置後においても放電容量及び平均放電電圧が高いことから高温保存特性に優れていることが分かる。
【0034】
<低温特性の評価>
実施例1〜3及び比較例2で調製したリチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池について、室温にて正極に対して定電流電圧(CCCV)0.5Cで4.3Vまで5時間かけて充電した後、0.2Cで2.7Vまで放電させる充放電を1サイクル行った。次いで、同様に2サイクル目の充電を行った後、リチウム二次電池を−10℃に調整された冷蔵庫中で放電レート0.2Cで放電を行った。その際の放電特性図を図12〜15に示した。
また、図12〜15に室温にて正極に対して定電流電圧(CCCV)0.5Cで4.3Vまで5時間かけて充電した後、0.2Cで2.7Vまで放電させる充放電を1サイクル行った後、2サイクル目の充電を行い、室温で放電レート0.2Cで放電を行い、その際の放電特性を図12〜15に合わせて併記した。
図12〜15の結果より、本発明のリチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池は比較例1のLiCoOを正極活物質として用いたものと比べ、−10℃の低温においても放電容量及び放電電圧が高いことから低温特性に優れていることが分かる。
【0035】
<安全性の評価>
輿石、喜多、和田(平成13年11月21日〜23日開催 第42回 電池討論会 講演要旨集、462〜463頁)、太田、大岩、石垣ら(平成13年11月21日〜23日開催 第42回 電池討論会 講演要旨集、470〜471頁)及び特開2002−158008号公報の電池の熱安定性評価方法に基づいて、実施例1、3及び比較例2で調製したリチウムコバルト系複合酸化物を正極活物質として用いたリチウム二次電池を正極に対して、定電流電圧(CCCV)充電により0.5Cで5時間かけて、4.3Vまで充電した後、アルゴン雰囲気下でリチウム二次電池を分解し、リチウムを引き抜きデインターカレーションした正極活物質を含有する正極板を取り出した。次いで、この取り出した各正極板から正極活物質を5.0mg削り取り、エチレンカーボネートとメチルエチルカーボネートの1:1混練液1リットルにLiPF1モルを溶解した液5.0μmlと一緒に示差走査熱量測定(DSC)用密閉式セル(SUSセル)に封入し、昇温速度2℃/minにて示差走査熱量測定装置(SIIエポリードサービス社製、形式DSC6200)にて示差熱量変化を測定した。その示差熱量変化の結果を図16及び表5に示す。
この図16の縦軸の熱量は、測定した正極活物質の重さで割った値を用いた。なお、図16において発熱ピークの高さが最大になった時の温度が高く、また、発熱開始からの発熱量の勾配が緩やかな方が、熱安定性、即ち電池安全性が優れていることを示す。
【表5】
Figure 2004342554
表5及び図16の結果より、比較例2のLiCoOは、発熱ピークの高さが最大になった時の温度が217℃で、本発明の実施例1、3のリチウムコバルト系複合酸化物では、発熱ピークの高さが最大になった時の温度がそれぞれ256℃、252℃であった。
また、本発明のリチウムコバルト系複合酸化物(実施例1、3)は、発熱開始温度から発熱ピークの高さが最大となる時の温度までの発熱量の勾配が緩やかであることから電池の安全性に優れていることが分かる。
【0036】
【発明の効果】
上記したとおり、本発明の製造方法で得られるリチウム二次電池正極活物質を用いたリチウム二次電池は、特に、負荷特性、サイクル特性、高温保存特性及び低温特性、更には安全性を向上させることができる。
【図面の簡単な説明】
【図1】実施例1で得られたリチウム二次電池正極活物質を用いたリチウム二次電池のサイクル特性を示す図。
【図2】実施例2で得られたリチウム二次電池正極活物質を用いたリチウム二次電池ののサイクル特性を示す図。
【図3】実施例3で得られたリチウム二次電池正極活物質を用いたリチウム二次電池ののサイクル特性を示す図。
【図4】実施例4で得られたリチウム二次電池正極活物質を用いたリチウム二次電池ののサイクル特性を示す図。
【図5】比較例2で得られたリチウム二次電池正極活物質を用いたリチウム二次電池ののサイクル特性を示す図。
【図6】実施例1で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の0.2C、1Cと2Cでの負荷特性を示す図。
【図7】実施例2で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の0.2C、1Cと2Cでの負荷特性を示す図。
【図8】実施例3で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の0.2C、1Cと2Cでの負荷特性を示す図。
【図9】実施例4で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の0.2C、1Cと2Cでの負荷特性を示す図。
【図10】比較例2で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の0.2C、1Cと2Cでの負荷特性を示す図。
【図11】実施例1及び比較例2で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の高温保存特性を示す放電特性図。
【図12】実施例1で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の低温特性を示す放電特性図。
【図13】実施例2で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の低温特性を示す放電特性図。
【図14】実施例3で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の低温特性を示す放電特性図。
【図15】比較例2で得られたリチウム二次電池正極活物質を用いたリチウム二次電池の低温特性を示す放電特性図。
【図16】実施例1、3及び比較例2で得られたリチウム二次電池正極活物質からリチウムを引き抜きデインターカレーションした正極活物質の示差熱量変化を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a lithium cobalt-based lithium secondary battery positive electrode active material containing an F atom.
[0002]
[Prior art]
In recent years, as home appliances become more portable and cordless, lithium ion secondary batteries have been put into practical use as power supplies for small electronic devices such as laptop personal computers, mobile phones, and video cameras. Regarding this lithium-ion secondary battery, Mizushima et al. Reported in 1980 that lithium cobaltate was useful as a positive electrode active material for a lithium-ion secondary battery ("Material Research Bulletin" vol. 15, P783-789 (1980)). ), Research and development on lithium-based composite oxides have been actively promoted, and many proposals have been made so far.
[0003]
For example, lithium cobalt-based composite oxides containing an F atom as a positive electrode active material have been proposed (for example, see Patent Documents 1 to 3).
[0004]
The lithium-cobalt-based composite oxide containing an F atom disclosed in Patent Document 1 (Japanese Patent Application Laid-Open No. 7-33443) is obtained by bringing lithium cobalt oxide into contact with a gaseous halogen compound. The lithium cobalt oxide obtained has F atoms only in its surface layer, and F atoms cannot be present inside the particles.
[0005]
The lithium-cobalt-based composite oxide containing an F atom disclosed in Patent Document 2 (JP-A-2002-298846) and Patent Document 3 (JP-A-2002-216760) uses lithium fluoride (LiF) as a fluorine compound. However, the use of lithium fluoride alone cannot increase the content of F atoms inside the particles of the lithium-cobalt-based composite oxide, and it is baked at 1000 to 1100 ° C. to obtain an average particle size. However, even with a lithium secondary battery using a positive electrode active material having a particle size of 10 μm or more, satisfactory load characteristics, cycle characteristics, high-temperature storage characteristics, low-temperature characteristics, and safety cannot be realized yet.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 7-33443 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-298846 [Patent Document 3]
JP 2002-216760 A
[Problems to be solved by the invention]
The present inventors have conducted intensive studies in such circumstances, and as a result, in a method for producing a lithium-cobalt-based composite oxide containing an F atom, in which a lithium compound, a cobalt compound and a fluorine compound are mixed and then calcined, A lithium secondary battery using a positive electrode active material for a lithium secondary battery obtained by using magnesium fluoride (MgF 2 ) having a specific specific surface area as a fluorine compound and a mixing ratio of each raw material and a sintering temperature in a specific range is particularly suitable for load characteristics. The present invention was found to improve the cycle characteristics, the high-temperature storage characteristics, the low-temperature characteristics, and the safety, and completed the present invention.
[0008]
That is, an object of the present invention is to provide a positive electrode for a lithium secondary battery that can improve load characteristics, cycle characteristics, high-temperature storage characteristics and low-temperature characteristics, and furthermore, when used as a positive electrode active material of a lithium secondary battery. An object of the present invention is to provide a method for producing an active material.
[0009]
[Means for Solving the Problems]
The method for producing a positive electrode active material for a lithium secondary battery provided by the present invention is directed to a method for producing a lithium-cobalt-based composite oxide containing an F atom, in which a lithium compound, a cobalt compound and a fluorine compound are mixed and then calcined. , BET specific surface area using a 1 m 2 / g or more magnesium fluoride (MgF 2), a lithium compound, a cobalt compound and a magnesium fluoride (MgF 2) in a molar ratio to Co atoms, Li atom from 0.90 to 1 10. A method for producing a positive electrode active material for a lithium secondary battery, comprising mixing F atoms at 0.001 to 0.15 and baking at a temperature of 800 to 1100 ° C.
In the method for producing a positive electrode active material for a lithium secondary battery, it is preferable that the cobalt compound has a BET specific surface area of 2 m 2 / g or more, and the calcination is more preferably performed at 1000 to 1100 ° C.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The method for producing a positive electrode active material for a lithium secondary battery according to the present invention is a method for producing a lithium-cobalt-based composite oxide containing an F atom, in which a lithium compound, a cobalt compound and a fluorine compound are mixed and then calcined. It is characterized in that magnesium fluoride (MgF 2 ) having a specific specific surface area is used as the fluorine compound, the mixing ratio of each raw material is set within a specific range, and firing is performed in a specific temperature range.
[0011]
The lithium compound as the first raw material that can be used includes, for example, lithium oxides, hydroxides, carbonates, nitrates, and organic acid salts. Is preferred.
The physical properties and the like of such lithium compounds are not particularly limited, but fine ones are preferred in terms of reactivity, and those having an average particle diameter determined by a laser diffraction method of 20 μm or less, preferably 10 μm or less are particularly preferred.
[0012]
The cobalt compound as the second raw material that can be used includes, for example, cobalt oxides, hydroxides, carbonates, nitrates, and organic acid salts, and is industrially inexpensive, reactive, and calcined. It is particularly preferable to use tricobalt tetroxide (Co 3 O 4 ) or cobalt oxyhydroxide (CoOOH) from the viewpoint of the safety of by-products produced therein.
As for the physical properties of the cobalt compound, it is preferable that the BET specific surface area is 1 m 2 / g or more. In particular, when the BET specific surface area of the cobalt compound is 2 m 2 / g or more, the cobalt compound has a BET specific surface area higher than that of magnesium fluoride (MgF 2 ). The synergistic effect is enhanced, and the lithium-cobalt compound oxide particles easily react at the co-melting temperature of the lithium compound and the cobalt compound even in the presence of magnesium fluoride (MgF 2 ). The content (C) of the internal F atom can be further increased to 40% by weight or more, and the cycle characteristics, load characteristics, and low-temperature characteristics of the lithium secondary battery used as the positive electrode active material of the lithium secondary battery are further improved. Can be.
[0013]
In the method for producing a positive electrode active material for a lithium secondary battery of the present invention, magnesium fluoride (MgF 2 ) as the third raw material has a BET specific surface area of 1 m 2 / g or more, preferably 5 m 2 / g or more. Is one important requirement. The reason why the BET specific surface area of the magnesium fluoride (MgF 2 ) used in the present invention is in the above range is that if it is less than 1 m 2 / g, F atoms and Mg atoms are uniformly distributed inside the particles of the lithium-cobalt-based composite oxide. This is because the load characteristics, the cycle characteristics, the high-temperature storage characteristics and the low-temperature characteristics, and the safety of the lithium secondary battery using the lithium secondary positive electrode active material are less improved. When the average particle size of the magnesium fluoride (MgF 2 ) determined by a laser diffraction method is 10 μm or less, preferably 5 μm or less, F atoms and Mg atoms can be more uniformly distributed inside the particles. Particularly preferred.
[0014]
The production histories of the lithium compounds, cobalt compounds and magnesium fluoride (MgF 2 ) as the first to third raw materials are not limited. However, in order to produce a high-purity lithium-cobalt-based composite oxide, impurities are contained as much as possible. It is preferred that the amount is small.
[0015]
In the reaction operation, first, a lithium compound, a cobalt compound and magnesium fluoride (MgF 2 ) of the first to third raw materials are mixed in a predetermined amount. Mixing may be performed by either a dry method or a wet method, but a dry method is preferred because of easy production. In the case of dry mixing, it is preferable to use a blender or the like that uniformly mixes the raw materials.
[0016]
The mixing ratio of the lithium compound, the cobalt compound and the magnesium fluoride (MgF 2 ) of the first to third raw materials is 0.90 to 1.10, preferably 0.95, in terms of molar ratio to Co atom. To 1.05, F atom 0.001 to 0.15, preferably 0.002 to 0.10. By performing the calcination described below at this compounding ratio, the lithium cobalt-based composite oxide obtained is To obtain a lithium-cobalt-based composite oxide containing 0.20 to 3% by weight, preferably 0.04 to 2% by weight, of F atoms and having an unusually high F atom content even inside the particles. Can be. In the present invention, the reason for setting the mixing ratio of the first to third raw materials in the above range is that, outside the above range, the lithium secondary battery used as the positive electrode active material of the lithium secondary battery has excellent load characteristics and cycle characteristics. Characteristics, high-temperature storage characteristics, low-temperature characteristics, and safety cannot be imparted. For example, if the content of F atoms exceeds 3% by weight with respect to the lithium-cobalt-based composite oxide, the discharge of the lithium secondary battery will occur. On the other hand, when the content of F atoms is less than 0.20% by weight based on the lithium-cobalt-based composite oxide, the load characteristics, cycle characteristics, high-temperature storage characteristics and low-temperature characteristics due to the effect of F atoms, and furthermore, safety is reduced This is because no improvement in the properties is observed.
[0017]
Then firing the lithium compound of the first to third raw material, a mixture of cobalt compounds and magnesium fluoride (MgF 2) are uniformly mixed.
[0018]
In the present invention, one important requirement is to set the firing temperature to 800 to 1100 ° C. In the present invention, the reason for setting the firing temperature to the range is that if the temperature is lower than 800 ° C., a solid phase reaction with a lithium compound, a cobalt compound, and magnesium fluoride (MgF 2 ) does not sufficiently occur, so that F atoms and Mg atoms are contained inside the particles. If the temperature exceeds 1100 ° C., the intended lithium-cobalt-based composite oxide is undesirably decomposed. In particular, in the method for producing a positive electrode active material for a lithium secondary battery according to the present invention, when calcination is performed at a temperature exceeding 1000 ° C., that is, 1000 to 1100 ° C., the average particle diameter becomes 10 μm or more due to remarkable particle growth, and the specific surface area Therefore, the safety of the lithium secondary battery using the lithium secondary battery positive electrode active material can be further improved.
[0019]
The firing time is preferably 2 to 24 hours, and more preferably 5 to 10 hours. The firing may be performed in the air or in an oxygen atmosphere, and is not particularly limited. These firings can be performed as many times as necessary.
[0020]
After firing, the mixture is appropriately cooled and pulverized as necessary to obtain a lithium secondary battery positive electrode active material.
The pulverization performed as necessary is appropriately performed, for example, when the positive electrode active material obtained by baking is in the form of a brittlely bonded block, and the particles of the positive electrode active material have a specific average particle size, It has a BET specific surface area. That is, the obtained lithium secondary battery positive electrode active material has an average particle size of 1.0 to 20 μm, preferably 5.0 to 20 μm, and a BET specific surface area of 0.1 to 2.0 m 2 / g, preferably 0.2~1.5m 2 / g, more preferably from 0.3~1.0m 2 / g.
[0021]
The lithium secondary battery positive electrode active material thus obtained contains F atoms in an amount of 0.02 to 3% by weight, and the content (C) of F atoms in the particles obtained from the following formula (1) is 10% by weight or more. , Preferably more than 30% by weight.
(Equation 1)
Figure 2004342554
A, B and C in the formula indicate the following.
A: the amount of F atoms present on the particle surface of the lithium secondary battery positive electrode active material.
B: The total amount of F atoms contained in the lithium secondary battery positive electrode active material.
C: the amount of F atoms present inside the particles of the lithium secondary battery positive electrode active material.
[0022]
The lithium secondary battery positive electrode active material obtained by the production method of the present invention has a residual alkali content of 0.1% by weight or less, preferably 0.05% by weight or less. When the pH at 25 ° C. of the dispersion obtained by dispersing 20 g in 100 ml of water is 9.5 to 12.0, preferably 9.5 to 10.5, impurities such as lithium carbonate and lithium hydroxide may be used. Generation of gas derived from residual alkali can be suppressed, and the high-temperature storage characteristics of a lithium secondary battery using the positive electrode active material of the lithium secondary battery can be improved.
[0023]
The lithium secondary battery positive electrode active material obtained by the production method of the present invention can be used as a positive electrode, a negative electrode, a separator, and a positive electrode active material of a lithium secondary battery including a nonaqueous electrolyte containing a lithium salt, The lithium secondary battery using the positive electrode active material of the lithium secondary battery of the present invention has particularly improved load characteristics, cycle characteristics, high-temperature storage characteristics, low-temperature characteristics, and safety.
[0024]
【Example】
Hereinafter, the present invention will be described in detail with reference to Examples, but the present invention is not limited thereto.
<Preparation of cobalt oxide (Co 3 O 4 )>
-Samples Co-1 and Co-2
13.7 kg of cobalt sulfate hexahydrate was dissolved in 15 L of pure water to prepare a cobalt aqueous solution in accordance with the method for producing tricobalt tetroxide disclosed in JP-A-4-321523. Next, 9 kg of ammonium bicarbonate was dissolved in 6 L of pure water, and the above-mentioned aqueous cobalt solution was added over 1 hour while stirring. After completion of the addition, the mixture was stirred for 30 minutes to form a precipitate, and then the precipitate was recovered by filtration and repulped twice with 60 L of pure water for washing. Next, the precipitate was fired in an electric furnace at 420 ° C. for 3 hours, cooled, and pulverized. The obtained product was confirmed by X-ray diffraction measurement to be tricobalt tetroxide. Further, as a result of observation with a scanning electron microscope (SEM), the average particle size was 0.02 μm, and the BET specific surface area was 44.5 m 2 / g. This cobalt trioxide sample was designated as Co-1, and this Co-1 was further pulverized and classified to prepare a cobalt trioxide having a BET specific surface area of 104 m 2 / g, which was designated as Co-2 sample.
-Sample Co-3, Co-4
According to the method for producing tricobalt tetroxide in Japanese Patent Application No. 2002-162726, 4 liters of a 1.8 mol / L (as CoSO 4 ) aqueous solution of cobalt sulfate was previously placed in a 20-liter stainless steel tank, and heated to 60 ° C. Then, 14.4 L of a 1 mol / L aqueous sodium hydrogen carbonate solution was added dropwise thereto over 2 hours while maintaining the temperature at 60 ° C. The pH in the reaction system after the completion of the dropwise addition was 6.7.
Then, after completion of the dropwise addition, a 4 mol / L sodium hydroxide solution was added until the pH reached 8 while maintaining the temperature at 60 ° C., and aging was performed for 3 hours while maintaining the pH and temperature.
Then, while confirming the time required for filtration, after solid-liquid separation, the electric conductivity at 25 ° C. when the recovered precipitate was made into a 10% slurry was checked with an electric conductivity meter at 25 ° C., and the electric conductivity was 100 μs / cm. Washing was carried out sufficiently until the water content became as follows, and dried to obtain 856.1 g of a precipitate (yield: 99.96%).
Next, this precipitate was baked in an electric furnace at 900 ° C. for 5 hours, cooled, and then pulverized. The obtained product was confirmed by X-ray diffraction measurement to be agglomerated tricobalt tetroxide. . Further, as a result of observation with a scanning electron microscope (SEM), the particle diameter of the primary particles was 0.5 to 2 μm, the average particle diameter of the secondary particles was 14.1 μm, and the BET specific surface area was 0.62 m 2 / g. Met. This was used as a Co-4 sample.
Next, the Co-4 sample obtained above was pulverized and classified to prepare tricobalt tetroxide having a BET specific surface area of 1.02 m 2 / g, which was used as a Co-3 sample.
Table 1 shows the BET specific surface areas of the Co-1, Co-2, Co-3 and Co-4 samples prepared above.
[Table 1]
Figure 2004342554
[0025]
Examples 1-4
Each cobalt oxide sample and Li 2 CO 3 (average particle size: 7 μm) were weighed so that the molar ratio of Co atoms to Li atoms shown in Table 2 was obtained, and then commercially available MgF 2 (manufactured by Aldrich) was pulverized and classified. Then, MgF 2 having a BET specific surface area of 6.5 m 2 / g and an average particle diameter of 7 μm was prepared, and the prepared MgF 2 and each raw material were sufficiently dry-dried so as to have a molar ratio of F atoms shown in Table 2. After mixing, the mixture was fired at 1020 ° C. for 5 hours. The fired product was pulverized and classified to obtain an F atom-containing lithium cobalt-based composite oxide. Table 3 shows the main physical properties of the obtained product.
[0026]
Comparative Example 1
Cobalt oxide (sample Co-1) and Li 2 CO 3 (average particle size: 7 μm) were weighed so that the molar ratio of Co atoms to Li atoms shown in Table 2 was obtained, and further, commercially available MgF 2 (manufactured by Aldrich) Was pulverized and classified to prepare MgF 2 having a BET specific surface area of 6.5 m 2 / g and an average particle size of 7 μm. The prepared MgF 2 and each raw material were mixed so that the molar ratio of F atoms shown in Table 2 was obtained. After thoroughly mixing in a dry system, the mixture was baked at 700 ° C. for 5 hours. The fired product was pulverized and classified to obtain an F atom-containing lithium cobalt-based composite oxide. Table 3 shows the main physical properties of the obtained product.
[0027]
Comparative Example 2
Cobalt oxide (sample Co-1) and Li 2 CO 3 (average particle diameter 7 μm) are thoroughly mixed in a dry manner so that the molar ratio of Li atoms and Co atoms is 1.03: 1.00, and then, at 1020 ° C. It was baked for 5 hours. The fired product was pulverized and classified to obtain a lithium-cobalt-based composite oxide. Table 3 shows the main physical properties of the obtained product.
[0028]
Reference Example 1
A cobalt oxide sample (Co-1) and Li 2 CO 3 (average particle size: 7 μm) were weighed so that the molar ratio of Co atoms to Li atoms shown in Table 2 was obtained. A commercially available MgF 2 (BET specific surface area: 0.1 m 2 / g, average particle diameter: 100 μm) was thoroughly mixed in a dry system so as to obtain a ratio, and then calcined at 1020 ° C. for 5 hours. The fired product was pulverized and classified to obtain an F atom-containing lithium cobalt-based composite oxide. Table 3 shows the main physical properties of the obtained product.
[Table 2]
Figure 2004342554
[0029]
<Evaluation of physical properties>
{Circle around (1)} Amount of F atoms inside particles of lithium-cobalt-based composite oxide To 100 g of water was added 0.5 g of the lithium-cobalt-based composite oxide obtained in Examples 1-4, Comparative Examples 1-2 and Reference Example 1. After stirring sufficiently at 25 ° C., F atoms were eluted from the particle surfaces of the lithium-cobalt-based composite oxide into water, and the amount of F atoms in the solution was quantified by ion chromatography. Next, the abundance ratio (C) of F atoms in the particles of the lithium-cobalt-based composite oxide was determined from the theoretical amount determined from the added amount of the raw material fluorine compound, using the following formula (1). Table 3 shows the results.
(Equation 2)
Figure 2004342554
A, B, and C in the formula indicate the following.
A: A value obtained by quantitatively analyzing the amount of F atoms eluted from the particle surface by dispersing the lithium secondary battery positive electrode active material in water by ion chromatography.
B: The amount of all F atoms theoretically contained in the lithium secondary battery positive electrode active material particles determined from the amount of magnesium fluoride (MgF 2 ) added.
C: the amount of F atoms present inside the particles of the lithium secondary battery positive electrode active material.
{Circle around (2)} pH and content of residual alkali of dispersion liquid 100 ml of water was added to 20 g of the lithium-cobalt-based composite oxide obtained in Examples 1-4, Comparative Examples 1-2 and Reference Example 1, and the mixture was heated at 25 ° C for 5 minutes. Stir well. Next, the mixture was filtered, and the pH of the filtrate was measured with a pH meter. Further, 60 g of the filtrate was subjected to alkali titration using 0.1 N HCl to measure the residual alkali content contained in the lithium-cobalt-based composite oxide, and the results are shown in Table 3.
(3) Average particle size The average particle size was determined by a laser diffraction method.
[Table 3]
Figure 2004342554
[0030]
<Battery performance test>
(1) Preparation of lithium secondary battery;
91% by weight of the lithium-cobalt-based composite oxide, 6% by weight of graphite powder, and 3% by weight of polyvinylidene fluoride obtained in Examples 1-4, Comparative Examples 1-2 and Reference Example 1 produced as described above were mixed. This was used as a positive electrode agent, and this was dispersed in N-methyl-2-pyrrolidinone to prepare a kneaded paste. The kneaded paste was applied to an aluminum foil, dried, pressed and punched into a disk having a diameter of 15 mm to obtain a positive electrode plate.
Using this positive electrode plate, a lithium secondary battery was manufactured using each member such as a separator, a negative electrode, a positive electrode, a current collector, a mounting bracket, an external terminal, and an electrolyte. Among them, a metal lithium foil was used for the negative electrode, and an electrolytic solution obtained by dissolving 1 mol of LiPF 6 in 1 liter of a 1: 1 kneading solution of ethylene carbonate and methyl ethyl carbonate was used.
[0031]
(2) Battery Performance Evaluation The prepared lithium secondary battery was operated at room temperature, and the following battery performance was evaluated.
<Measurement of capacity maintenance rate and energy maintenance rate>
After charging the positive electrode at room temperature to 4.3 V at a constant current voltage (CCCV) of 0.5 C and discharging it to 2.7 V at 0.2 C as one cycle, the discharge capacity and the energy density were measured. .
Next, charging and discharging in the measurement of the discharge capacity and the energy density were performed for 20 cycles, the capacity retention was calculated by the following equation (2), and the energy retention was calculated by the following equation (3). Table 4 shows the results. FIGS. 1 to 5 show discharge characteristics diagrams of lithium secondary batteries using the lithium-cobalt-based composite oxide prepared in Examples 1 to 4 and Comparative Example 2 as the positive electrode active material under these conditions.
[Equation 3]
Figure 2004342554
(Equation 4)
Figure 2004342554
[0032]
<Evaluation of load characteristics>
First, the positive electrode is charged to 4.3 V by constant current voltage (CCCV) charging at 0.5 C for 5 hours, and then discharged to 2.7 V at a discharge rate of 0.2 C, 1.0 C, and 2.0 C. These operations were defined as one cycle, and the discharge capacity and energy density were measured every cycle.
Three cycles were repeated at each discharge rate of this cycle, and the discharge capacity and energy density at the third cycle were determined. Table 4 shows the results.
The same procedure was performed for a lithium secondary battery using the lithium-cobalt-based composite oxide prepared in Examples 1 to 4 and Comparative Example 2 as a positive electrode active material, and discharge was performed at 0.2C, 1.0C, and 2.0C. The characteristic diagrams are shown in FIGS.
It should be noted that a higher value of the energy density indicates that more energy can be used even during high-load discharge, and that discharge at a higher voltage is possible with the same discharge capacity. Indicates that it is excellent.
[Table 4]
Figure 2004342554
From the results shown in Table 4, the lithium secondary battery using the lithium-cobalt-based composite oxide of the present invention as a positive electrode active material has a higher capacity retention than the lithium-cobalt-based composite oxide of Comparative Example 2 using the positive electrode active material. It can be seen that the rate is high and the load characteristics are excellent. Further, from the results of FIGS. 6 to 10, a clear shoulder is seen at the end of the discharge curve as compared with the case where LiCoO 2 of Comparative Example 2 was used as the positive electrode active material, and the high voltage was maintained until the end of the discharge. I understand that there is.
[0033]
<Evaluation of high-temperature storage characteristics>
For a lithium secondary battery using the lithium-cobalt-based composite oxide prepared in Example 1 and Comparative Example 2 as a positive electrode active material, at room temperature, a constant current voltage (CCCV) of 0.5 C to 4.3 V with respect to the positive electrode at room temperature. After charging for 5 hours, one cycle of charge / discharge for discharging at 0.2 C to 2.7 V was performed. Next, after similarly performing the second cycle charging, the lithium secondary battery was allowed to stand (self-discharge) for 3 weeks in a constant temperature room adjusted to 80 ° C.
Next, the lithium secondary battery was taken out of the constant temperature chamber, cooled to room temperature, and then discharged at a discharge rate of 0.2C. FIG. 11 shows a discharge characteristic diagram at that time.
In addition, FIG. 11 shows that the positive electrode was charged at a constant current voltage (CCCV) of 0.5 C to 4.3 V over 5 hours at room temperature over 5 hours, and then discharged and charged to 2.7 V at 0.2 C for one cycle. After that, charging was performed in the second cycle, and discharging was performed at room temperature at a discharge rate of 0.2 C. The discharging characteristics at that time are also shown in FIG.
11, the lithium secondary battery using the lithium-cobalt-based composite oxide of the present invention as the positive electrode active material was left at 80 ° C. for 3 weeks as compared with the lithium secondary battery of Comparative Example 2 using LiCoO 2 as the positive electrode active material. Even afterwards, the discharge capacity and the average discharge voltage are high, indicating that the high-temperature storage characteristics are excellent.
[0034]
<Evaluation of low-temperature characteristics>
3. Regarding the lithium secondary battery using the lithium-cobalt-based composite oxide prepared in Examples 1 to 3 and Comparative Example 2 as a positive electrode active material, a constant current voltage (CCCV) of 0.5 C with respect to the positive electrode at room temperature. After charging the battery to 3 V for 5 hours, the battery was discharged and charged to 2.7 V at 0.2 C for one cycle. Next, after the second cycle of charging was performed, the lithium secondary battery was discharged at a discharge rate of 0.2 C in a refrigerator adjusted to -10 ° C. FIGS. 12 to 15 show discharge characteristics at that time.
12 to 15 show that the positive electrode was charged at a constant current voltage (CCCV) of 0.5 C to 4.3 V over 5 hours at room temperature over 5 hours, and then discharged at 0.2 C to 2.7 V. After the cycle, the second cycle was charged and discharged at room temperature at a discharge rate of 0.2 C. The discharge characteristics at that time are also shown in FIGS.
12 to 15, the lithium secondary battery using the lithium-cobalt-based composite oxide of the present invention as a positive electrode active material has a temperature of −10 ° C. as compared with the lithium secondary battery of Comparative Example 1 using LiCoO 2 as the positive electrode active material. Since the discharge capacity and the discharge voltage are high even at a low temperature, it is understood that the low temperature characteristics are excellent.
[0035]
<Safety evaluation>
Oshiishi, Kita, Wada (The 42nd Battery Symposium, November 21-23, 2001, Abstracts, 462-463), Ota, Oiwa, Ishigaki, etc. (November 21-23, 2001) Held at the 42nd Battery Symposium, Abstracts of Lectures, pp. 470-471) and lithium cobalt prepared in Examples 1, 3 and Comparative Example 2 based on the method for evaluating the thermal stability of batteries disclosed in JP-A-2002-158008. A lithium secondary battery using a lithium-based composite oxide as a positive electrode active material was charged to a positive electrode at a constant current voltage (CCCV) at 0.5 C for 5 hours to 4.3 V, and then charged under an argon atmosphere. The lithium secondary battery was disassembled, lithium was extracted, and a positive electrode plate containing the deintercalated positive electrode active material was taken out. Next, 5.0 mg of the positive electrode active material was scraped off from each of the positive electrode plates taken out, and differential scanning calorimetry was carried out together with 5.0 μml of a solution in which 1 mol of LiPF 6 was dissolved in 1 liter of a 1: 1 kneading solution of ethylene carbonate and methyl ethyl carbonate. It was sealed in a closed cell (SUS cell) for measurement (DSC), and the change in differential calorimetry was measured at a heating rate of 2 ° C./min with a differential scanning calorimeter (model DSC6200, manufactured by SII Eporide Service Co., Ltd.). FIG. 16 and Table 5 show the results of the differential calorie change.
The value of heat on the vertical axis in FIG. 16 was obtained by dividing by the measured weight of the positive electrode active material. In FIG. 16, the higher the temperature when the height of the heat generation peak becomes maximum, and the gentler the gradient of the heat generation amount from the start of heat generation, the better the thermal stability, that is, the better the battery safety. Is shown.
[Table 5]
Figure 2004342554
From the results shown in Table 5 and FIG. 16, LiCoO 2 of Comparative Example 2 has a temperature of 217 ° C. when the height of the exothermic peak is the maximum, and the lithium-cobalt-based composite oxide of Examples 1 and 3 of the present invention. , The temperatures at which the height of the exothermic peak was maximum were 256 ° C. and 252 ° C., respectively.
Further, the lithium-cobalt-based composite oxide of the present invention (Examples 1 and 3) has a gentle heat generation gradient from the heat generation start temperature to the temperature at which the height of the heat generation peak is maximum, so that the battery It turns out that it is excellent in safety.
[0036]
【The invention's effect】
As described above, the lithium secondary battery using the lithium secondary battery positive electrode active material obtained by the production method of the present invention particularly improves load characteristics, cycle characteristics, high-temperature storage characteristics and low-temperature characteristics, and further improves safety. be able to.
[Brief description of the drawings]
FIG. 1 is a view showing cycle characteristics of a lithium secondary battery using a lithium secondary battery positive electrode active material obtained in Example 1.
FIG. 2 is a diagram showing the cycle characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Example 2.
FIG. 3 is a diagram showing the cycle characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Example 3.
FIG. 4 is a diagram showing the cycle characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Example 4.
FIG. 5 is a diagram showing the cycle characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Comparative Example 2.
FIG. 6 is a diagram showing load characteristics at 0.2 C, 1 C, and 2 C of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Example 1.
FIG. 7 is a diagram showing load characteristics at 0.2 C, 1 C, and 2 C of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Example 2.
FIG. 8 is a diagram showing load characteristics at 0.2 C, 1 C, and 2 C of a lithium secondary battery using the positive electrode active material for a lithium secondary battery obtained in Example 3.
FIG. 9 is a graph showing load characteristics at 0.2 C, 1 C, and 2 C of a lithium secondary battery using a positive electrode active material for a lithium secondary battery obtained in Example 4.
FIG. 10 is a graph showing load characteristics at 0.2 C, 1 C, and 2 C of a lithium secondary battery using a positive electrode active material for a lithium secondary battery obtained in Comparative Example 2.
FIG. 11 is a discharge characteristic diagram showing high-temperature storage characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active materials obtained in Example 1 and Comparative Example 2.
FIG. 12 is a discharge characteristic diagram showing low-temperature characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Example 1.
FIG. 13 is a discharge characteristic diagram showing low-temperature characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Example 2.
FIG. 14 is a discharge characteristic diagram showing low-temperature characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Example 3.
FIG. 15 is a discharge characteristic diagram showing low-temperature characteristics of a lithium secondary battery using the lithium secondary battery positive electrode active material obtained in Comparative Example 2.
FIG. 16 is a view showing a change in differential calorie of a positive electrode active material obtained by extracting lithium from the positive electrode active materials of lithium secondary batteries obtained in Examples 1 and 3 and Comparative Example 2 and deintercalating the lithium.

Claims (3)

リチウム化合物、コバルト化合物及びフッ素化合物とを混合し、次いで焼成を行うF原子を含有するリチウムコバルト系複合酸化物の製造方法において、BET比表面積が1m/g以上のフッ化マグネシウム(MgF)を用い、リチウム化合物、コバルト化合物及びフッ化マグネシウム(MgF)とをCo原子に対するモル比でLi原子0.90〜1.10、F原子0.001〜0.15で混合し、温度800〜1100℃で焼成を行うことを特徴とするリチウム二次電池正極活物質の製造方法。A method for producing a lithium-cobalt-based composite oxide containing an F atom, in which a lithium compound, a cobalt compound, and a fluorine compound are mixed and then calcined, the magnesium fluoride (MgF 2 ) having a BET specific surface area of 1 m 2 / g or more. , A lithium compound, a cobalt compound and magnesium fluoride (MgF 2 ) are mixed at a molar ratio of Li atoms of 0.90 to 1.10 and F atoms of 0.001 to 0.15 with respect to Co atoms at a temperature of 800 to 0.15. A method for producing a positive electrode active material for a lithium secondary battery, comprising firing at 1100 ° C. 前記コバルト化合物はBET比表面積が2m/g以上のものを用いる請求項1記載のリチウム二次電池正極活物質の製造方法。The method of claim 1, wherein the cobalt compound has a BET specific surface area of 2 m 2 / g or more. 前記焼成は1000〜1100℃で行う請求項1又は2記載のリチウム二次電池正極活物質の製造方法。The method for producing a positive electrode active material for a lithium secondary battery according to claim 1, wherein the firing is performed at 1000 to 1100 ° C. 4.
JP2003140341A 2003-05-19 2003-05-19 Method for producing positive electrode active material for lithium secondary battery Expired - Fee Related JP4170145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140341A JP4170145B2 (en) 2003-05-19 2003-05-19 Method for producing positive electrode active material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140341A JP4170145B2 (en) 2003-05-19 2003-05-19 Method for producing positive electrode active material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004342554A true JP2004342554A (en) 2004-12-02
JP4170145B2 JP4170145B2 (en) 2008-10-22

Family

ID=33529088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140341A Expired - Fee Related JP4170145B2 (en) 2003-05-19 2003-05-19 Method for producing positive electrode active material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4170145B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339032A (en) * 2003-05-19 2004-12-02 Nippon Chem Ind Co Ltd Lithium cobalt-based multiple oxide, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
US8003256B2 (en) 2007-07-20 2011-08-23 Nippon Chemical Industrial Co., Ltd Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same
WO2012029730A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Lithium cobalt oxide, process for producing same, positive active material for lithium secondary battery, and lithium secondary battery
JP2018195581A (en) * 2017-05-19 2018-12-06 株式会社半導体エネルギー研究所 Positive electrode active material, method for manufacturing the same, and secondary battery
JP2018206747A (en) * 2016-07-05 2018-12-27 株式会社半導体エネルギー研究所 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
CN109792049A (en) * 2016-10-12 2019-05-21 株式会社半导体能源研究所 The manufacturing method of positive active material particle and positive active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139828A (en) * 1997-09-02 1999-05-25 Toda Kogyo Corp Production of particulate powder of lithium cobalt oxide
JP2000302552A (en) * 1999-04-15 2000-10-31 Taiheiyo Cement Corp Window material having ultraviolet transmittance
JP2001307729A (en) * 2000-04-26 2001-11-02 Nippon Chem Ind Co Ltd Lithium cobaltate and its preparation method, positive active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2001350162A (en) * 2000-06-09 2001-12-21 Minolta Co Ltd Reversible image display medium
JP2002298846A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2003229129A (en) * 2001-11-30 2003-08-15 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method
WO2003069702A1 (en) * 2002-02-15 2003-08-21 Seimi Chemical Co., Ltd. Particulate positive electrode active material for lithium secondary cell

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11139828A (en) * 1997-09-02 1999-05-25 Toda Kogyo Corp Production of particulate powder of lithium cobalt oxide
JP2000302552A (en) * 1999-04-15 2000-10-31 Taiheiyo Cement Corp Window material having ultraviolet transmittance
JP2001307729A (en) * 2000-04-26 2001-11-02 Nippon Chem Ind Co Ltd Lithium cobaltate and its preparation method, positive active material for lithium secondary battery, positive electrode and lithium secondary battery
JP2001350162A (en) * 2000-06-09 2001-12-21 Minolta Co Ltd Reversible image display medium
JP2002298846A (en) * 2001-03-30 2002-10-11 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2003229129A (en) * 2001-11-30 2003-08-15 Sanyo Electric Co Ltd Non-aqueous electrolyte secondary battery and its manufacturing method
WO2003069702A1 (en) * 2002-02-15 2003-08-21 Seimi Chemical Co., Ltd. Particulate positive electrode active material for lithium secondary cell

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339032A (en) * 2003-05-19 2004-12-02 Nippon Chem Ind Co Ltd Lithium cobalt-based multiple oxide, method of manufacturing the same, lithium secondary battery positive electrode active material and lithium secondary battery
US8003256B2 (en) 2007-07-20 2011-08-23 Nippon Chemical Industrial Co., Ltd Positive electrode active material having magnesium atoms and sulfate groups, method for manufacturing the same, and lithium secondary battery having the same
WO2012029730A1 (en) * 2010-09-02 2012-03-08 日本化学工業株式会社 Lithium cobalt oxide, process for producing same, positive active material for lithium secondary battery, and lithium secondary battery
JP2012074366A (en) * 2010-09-02 2012-04-12 Nippon Chem Ind Co Ltd Lithium cobaltate, production method therefor, cathode active material for lithium-ion secondary battery, and lithium-ion secondary battery
JP2020043090A (en) * 2016-07-05 2020-03-19 株式会社半導体エネルギー研究所 Cathode active material layer
JP2020205275A (en) * 2016-07-05 2020-12-24 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP2018206747A (en) * 2016-07-05 2018-12-27 株式会社半導体エネルギー研究所 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP2020035766A (en) * 2016-07-05 2020-03-05 株式会社半導体エネルギー研究所 Electronic equipment
US11043660B2 (en) 2016-07-05 2021-06-22 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
JP2020080332A (en) * 2016-07-05 2020-05-28 株式会社半導体エネルギー研究所 Electronic apparatus, lithium ion secondary battery, and positive electrode active material
US10741828B2 (en) 2016-07-05 2020-08-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material including lithium cobaltate coated with lithium titanate and magnesium oxide
JP7330120B2 (en) 2016-07-05 2023-08-21 株式会社半導体エネルギー研究所 Electronic devices, lithium-ion secondary batteries, and positive electrode active materials
CN109792049A (en) * 2016-10-12 2019-05-21 株式会社半导体能源研究所 The manufacturing method of positive active material particle and positive active material particle
CN109792049B (en) * 2016-10-12 2023-03-14 株式会社半导体能源研究所 Positive electrode active material particle and method for producing positive electrode active material particle
JP2020031071A (en) * 2016-10-12 2020-02-27 株式会社半導体エネルギー研究所 Lithium ion secondary battery, electronic apparatus, portable information terminal, automobile, house and building
JP2020043089A (en) * 2016-10-12 2020-03-19 株式会社半導体エネルギー研究所 Positive electrode active material layer for lithium ion secondary battery
US11094927B2 (en) 2016-10-12 2021-08-17 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle and manufacturing method of positive electrode active material particle
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
US11444274B2 (en) 2017-05-12 2022-09-13 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
JP2022087323A (en) * 2017-05-19 2022-06-09 株式会社半導体エネルギー研究所 Manufacturing method for lithium ion secondary battery
KR20230005406A (en) * 2017-05-19 2023-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP7036663B2 (en) 2017-05-19 2022-03-15 株式会社半導体エネルギー研究所 How to make a lithium-ion secondary battery
JP2020205277A (en) * 2017-05-19 2020-12-24 株式会社半導体エネルギー研究所 Positive electrode active material and lithium ion secondary battery
JP7093476B1 (en) 2017-05-19 2022-06-29 株式会社半導体エネルギー研究所 Lithium ion secondary battery
JP7093477B2 (en) 2017-05-19 2022-06-29 株式会社半導体エネルギー研究所 How to make a lithium-ion secondary battery
JP2022104643A (en) * 2017-05-19 2022-07-08 株式会社半導体エネルギー研究所 Lithium ion secondary battery
KR20200094803A (en) * 2017-05-19 2020-08-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP7146863B2 (en) 2017-05-19 2022-10-04 株式会社半導体エネルギー研究所 Positive electrode active material and lithium ion secondary battery
JP7146864B2 (en) 2017-05-19 2022-10-04 株式会社半導体エネルギー研究所 Positive electrode active material and lithium ion secondary battery
JP7146718B2 (en) 2017-05-19 2022-10-04 株式会社半導体エネルギー研究所 Positive electrode active material used for lithium ion secondary battery, and lithium ion secondary battery
JP2020024941A (en) * 2017-05-19 2020-02-13 株式会社半導体エネルギー研究所 Positive electrode active material and secondary battery
KR20230005407A (en) * 2017-05-19 2023-01-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP2021005563A (en) * 2017-05-19 2021-01-14 株式会社半導体エネルギー研究所 Positive electrode active material and lithium ion secondary battery
JP2023021178A (en) * 2017-05-19 2023-02-09 株式会社半導体エネルギー研究所 lithium ion secondary battery
KR102502813B1 (en) 2017-05-19 2023-02-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR20200009034A (en) * 2017-05-19 2020-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 A positive electrode active material, a manufacturing method of a positive electrode active material, and a secondary battery
KR102656986B1 (en) 2017-05-19 2024-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Cathode active material, method for producing cathode active material, and secondary battery
JP7301206B2 (en) 2017-05-19 2023-06-30 株式会社半導体エネルギー研究所 lithium ion secondary battery
JP2018195581A (en) * 2017-05-19 2018-12-06 株式会社半導体エネルギー研究所 Positive electrode active material, method for manufacturing the same, and secondary battery
US11799080B2 (en) 2017-05-19 2023-10-24 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR102645512B1 (en) 2017-05-19 2024-03-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
KR102655146B1 (en) 2017-05-19 2024-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Positive electrode active material, method for manufacturing positive electrode active material, and secondary battery
JP7465303B2 (en) 2017-05-19 2024-04-10 株式会社半導体エネルギー研究所 Lithium-ion secondary battery
JP7465304B2 (en) 2017-05-19 2024-04-10 株式会社半導体エネルギー研究所 Lithium-ion secondary battery
US11670770B2 (en) 2017-06-26 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material, and secondary battery

Also Published As

Publication number Publication date
JP4170145B2 (en) 2008-10-22

Similar Documents

Publication Publication Date Title
US20210367233A1 (en) Ternary positive electrode material and preparation method therefor, and lithium-ion battery
JP4592931B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP5879761B2 (en) Lithium composite compound particle powder, method for producing the same, and nonaqueous electrolyte secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP5758743B2 (en) Cobalt hydroxide and method for producing the same, and cobalt oxide and method for producing the same
JP4444117B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP3974420B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2008255000A (en) New titanium oxide, its preparation method and lithium rechargeable battery using the same as active material
JPH09175825A (en) Production of compound oxide using sol-gel method
CN109873140B (en) Graphene composite ternary cathode material of lithium ion battery and preparation method of graphene composite ternary cathode material
JP4268613B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP2009054576A (en) Manufacturing method of lithium-iron-phosphorus compound oxide carbon complex and manufacturing method of coprecipitate containing lithium, iron, and phosphorus
KR20090012162A (en) A process for preparing lithium iron phosphorus based composite oxide carbon complex and a process for preparing coprecipitate comprising lithium, iron and phosphorus
JP4785230B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2004014296A (en) Positive electrode active material for lithium ion secondary battery
JP4628704B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
JP4170145B2 (en) Method for producing positive electrode active material for lithium secondary battery
JP4271488B2 (en) Lithium cobalt based composite oxide, method for producing the same, lithium secondary battery positive electrode active material, and lithium secondary battery
KR100668050B1 (en) Manganese Oxides, Spinel type cathode active material for lithium secondary batteries using thereby and Preparation of the same
JP3315910B2 (en) Positive active material for lithium secondary battery and secondary battery using the same
JP4055269B2 (en) Manganese oxide and method for producing the same, lithium manganese composite oxide using manganese oxide, and method for producing the same
JP2001064020A (en) Production of lithium manganate
JP4276469B2 (en) Method for producing lithium cobalt oxide
US7829223B1 (en) Process for preparing lithium ion cathode material
JP2005231914A (en) Method for manufacturing lithium manganate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4170145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120815

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130815

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees