JP2003159700A - Method of processing carbon nanotubes - Google Patents

Method of processing carbon nanotubes

Info

Publication number
JP2003159700A
JP2003159700A JP2001358136A JP2001358136A JP2003159700A JP 2003159700 A JP2003159700 A JP 2003159700A JP 2001358136 A JP2001358136 A JP 2001358136A JP 2001358136 A JP2001358136 A JP 2001358136A JP 2003159700 A JP2003159700 A JP 2003159700A
Authority
JP
Japan
Prior art keywords
carbon nanotubes
electron beam
carbon nanotube
energy
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001358136A
Other languages
Japanese (ja)
Other versions
JP4055046B2 (en
Inventor
Seitetsu Sakurabayashi
靖哲 櫻林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001358136A priority Critical patent/JP4055046B2/en
Publication of JP2003159700A publication Critical patent/JP2003159700A/en
Application granted granted Critical
Publication of JP4055046B2 publication Critical patent/JP4055046B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of processing carbon nanotubes which involves no remaining impurities. <P>SOLUTION: The method of processing carbon nanotubes is characterized in that carbon nanotubes are irradiated with energy rays having energy of less than 120 keV. In other words, it is thought that, in a method in which carbon nanotubes are irradiated with an electron beam accelerated by a voltage of greater than 300 kV, carbon atoms consisting of carbon nanotubes are independently ejected by the electrons irradiated, producing defects, and making them amorphous, and that under irradiation with energy rays having energy of less than 120 keV, electrons irradiated, which cannot eject carbon atoms consisting of carbon nanotubes, are captured by and accumulated in a structure comprising carbon atoms consisting of carbon nanotubes, consequently, ruptured sites of the order of nanometers arise after breaking of chemical bonds by stress arisen locally by heat generation or the like caused by concentration of electrical charge or the like. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、微少なカーボンナ
ノチューブの加工方法に関する。
TECHNICAL FIELD The present invention relates to a method for processing minute carbon nanotubes.

【0002】[0002]

【従来の技術】炭素原子からなる平面グラファイト構造
を丸めて形成される円筒構造材料(カーボンナノチュー
ブ)が新しい材料として期待されている。カーボンナノ
チューブは、内部にいろいろな物質を詰めることが可能
であり、水素吸蔵素材としての利用が期待されている。
また、その表面積が大きいことから、燃料電池の触媒担
体への応用も指向されている。
2. Description of the Related Art A cylindrical structure material (carbon nanotube) formed by rolling a flat graphite structure composed of carbon atoms is expected as a new material. Carbon nanotubes can be filled with various substances inside, and are expected to be used as hydrogen storage materials.
Further, because of its large surface area, it is also directed to application to catalyst carriers of fuel cells.

【0003】カーボンナノチューブはアスペクト比が大
きいことから、使用目的に合わせて適正な長さに切断す
る必要がある。また、カーボンナノチューブは先端部分
が閉じていることから、チューブ内部に物質を閉じこめ
る用途に用いる場合には、先端部分の開口化(キャップ
オープン処理)を行う必要がある。
Since carbon nanotubes have a large aspect ratio, it is necessary to cut them into an appropriate length according to the purpose of use. Further, since the carbon nanotube has a closed tip portion, it is necessary to open the tip portion (cap open process) when used for the purpose of confining a substance inside the tube.

【0004】従来のカーボンナノチューブの加工方法
は、硝酸、または硝酸の混合酸、あるいは硫酸を用いた
化学的な酸化による単層カーボンナノチューブの切断方
法が提案されているが、硝酸、硫酸等の強酸を用いた化
学的なウェットプロセスであるために、この強酸が製造
プロセスにおいて悪影響を及ぼすこととなり、マイクロ
素子を製造する際には適さないものであった。
As a conventional method for processing carbon nanotubes, a method for cutting single-walled carbon nanotubes by chemical oxidation using nitric acid, a mixed acid of nitric acid, or sulfuric acid has been proposed. However, strong acids such as nitric acid and sulfuric acid have been proposed. Since this is a chemical wet process using, the strong acid adversely affects the manufacturing process and is not suitable for manufacturing a micro device.

【0005】そこで、ドライプロセスでカーボンナノチ
ューブを加工する方法が望まれている。ドライプロセス
の従来技術としては、特開平9−139209号公報に
開示されたように、カーボンナノチューブに300kV
以上の電圧で加速した電子線を照射することを特徴とす
るカーボンナノチューブの加工方法がある。そして、特
開2001−180920号公報に開示されたように、
カーボンナノチューブにイオンを照射する工程とそのカ
ーボンナノチューブを酸化する工程とを含むことを特徴
とするカーボンナノチューブの加工方法がある。
Therefore, a method for processing carbon nanotubes by a dry process is desired. As a conventional technique of the dry process, as disclosed in Japanese Patent Laid-Open No. 9-139209, 300 kV is applied to a carbon nanotube.
There is a carbon nanotube processing method characterized by irradiating an electron beam accelerated with the above voltage. Then, as disclosed in JP 2001-180920 A,
There is a carbon nanotube processing method characterized by including a step of irradiating the carbon nanotube with ions and a step of oxidizing the carbon nanotube.

【0006】また、特開平7−172807号公報に開
示されたように、カーボンナノチューブに適当な質量と
エネルギーのイオンを照射し、そのカーボンナノチュー
ブを構成する炭素原子の結合の一部を切断して未接合手
を作り出す工程を含むことを特徴とするカーボンナノチ
ューブの加工方法がある。そして、特開2001−17
2011号公報に開示されたように、カーボンナノチュ
ーブを加工用反応物質と反応させ、熱処理して加工する
ことを特徴とするカーボンナノチューブの加工方法があ
る。
Further, as disclosed in Japanese Patent Application Laid-Open No. 7-172807, the carbon nanotube is irradiated with ions having an appropriate mass and energy to cut a part of bonds of carbon atoms constituting the carbon nanotube. There is a carbon nanotube processing method characterized by including a step of producing an unbonded hand. Then, Japanese Patent Laid-Open No. 2001-17
As disclosed in Japanese Patent Publication No. 2011, there is a carbon nanotube processing method characterized in that carbon nanotubes are reacted with a processing reactant and heat-treated for processing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
9−139209号公報に開示された加工方法のよう
に、300kV以上で加速した電子線をカーボンナノチ
ューブに照射する方法は、電子線による炭素原子の弾き
出しを利用するもので、加工方法というよりも、カーボ
ンナノチューブの基材に対する非晶質化や変態を促すも
の(Åオーダーでの加工)であり、カーボンナノチュー
ブの切断やキャップオープン処理といったnmオーダー
での微細加工は困難であった。さらに、300kV以上
で電子線を加速するためには大規模な加速装置が必要で
あり、コスト的な問題もあった。
However, a method of irradiating a carbon nanotube with an electron beam accelerated at 300 kV or higher as in the processing method disclosed in Japanese Patent Laid-Open No. 9-139209 discloses a method of irradiating carbon atoms with an electron beam. This is a method that uses flipping, and rather than a processing method, that promotes amorphization and transformation of the carbon nanotube base material (processing in the Å order), and in the nm order such as cutting and cap-opening of the carbon nanotube. It was difficult to perform fine processing. Further, a large-scale accelerator is required to accelerate the electron beam at 300 kV or more, which causes a cost problem.

【0008】また、特開2001−180920号公報
及び特開平7−172807号公報に開示されたよう
に、カーボンナノチューブへのイオン照射による加工方
法は、照射するイオンビームのエネルギーを制御した
り、イオンビームを絞ったりすることが困難であって微
細加工にはマスキング処理を行う必要がある等、微細処
理には不向きであると共に、照射したイオンが不純物と
してカーボンナノチューブ中に残存してしまう不都合が
あった。
Further, as disclosed in Japanese Patent Application Laid-Open No. 2001-180920 and Japanese Patent Application Laid-Open No. 7-172807, the processing method by ion irradiation of carbon nanotubes controls the energy of the irradiation ion beam and Since it is difficult to narrow the beam and it is necessary to perform a masking process for fine processing, it is not suitable for fine processing and there is a problem that irradiated ions remain as impurities in the carbon nanotubes. It was

【0009】さらに、特開2001−172011号公
報に開示されたように、加工用反応物質と接触させて加
工する方法も、カーボンナノチューブと加工用反応物質
との位置関係を制御することが困難であるばかりか、カ
ーボンナノチューブと加工用反応物質とが接触すること
によって不純物の残存が生起するという不都合があっ
た。
Further, as disclosed in Japanese Patent Laid-Open No. 2001-172011, it is difficult to control the positional relationship between the carbon nanotubes and the processing reactant even in the method of processing by contacting with the processing reactant. In addition, there is a problem that impurities remain due to the contact between the carbon nanotubes and the processing reactant.

【0010】上記課題に鑑み、本発明では、カーボンナ
ノチューブへ不純物が残存せずに加工が行えるカーボン
ナノチューブの加工方法を提供することを解決すべき課
題とする。
In view of the above problems, it is an object of the present invention to provide a method for processing carbon nanotubes, which enables processing without impurities remaining in the carbon nanotubes.

【0011】[0011]

【課題を解決するための手段】本発明者は上記課題を解
決する目的で鋭意研究を行った結果、イオンビームの照
射時にイオンビームを発生するイオン銃のように照射領
域の縮小が困難(イオン銃では照射領域をミリオーダー
程度にしか縮小できない)で照射するイオンがカーボン
ナノチューブに取り込まれるといった不都合が生じな
い、エネルギー線(たとえば電子線)照射について照射
するエネルギー線のエネルギーを適正に制御すること
で、カーボンナノチューブの非晶質化や変態を起こさず
にnmオーダーでの加工が可能であることを見出し、以
下の発明を行った。
As a result of intensive research aimed at solving the above-mentioned problems, the present inventor has found that it is difficult to reduce the irradiation area like an ion gun which generates an ion beam during irradiation of the ion beam (ion With a gun, the irradiation area can be reduced only to the order of millimeters. Ions that are irradiated do not cause the inconvenience of being taken into the carbon nanotubes, and the energy of the energy rays that are irradiated for energy ray (for example, electron beam) irradiation must be properly controlled. Then, the inventors have found that it is possible to process the carbon nanotubes on the nm order without causing amorphization or transformation of the carbon nanotubes, and made the following inventions.

【0012】すなわち、本発明のカーボンナノチューブ
の加工方法は、エネルギーが120keVより低いエネ
ルギー線をカーボンナノチューブに照射することを特徴
とする。このエネルギー線は、電子線であることが好ま
しい。さらに電子線のエネルギーは80keVであるこ
とが好ましい。
That is, the method for processing a carbon nanotube of the present invention is characterized in that the carbon nanotube is irradiated with an energy ray having an energy lower than 120 keV. This energy beam is preferably an electron beam. Further, the energy of the electron beam is preferably 80 keV.

【0013】つまり、300kV以上で加速した電子線
をカーボンナノチューブに照射する方法では、図1に示
すように、照射された電子によりカーボンナノチューブ
1を構成する炭素原子2が単独で弾き出されることで欠
陥2’が生成し、本来平面グラファイト構造を基本とす
るカーボンナノチューブの基材の化学構造が維持できな
くなり、非晶質化しているのである。
That is, in the method of irradiating the carbon nanotubes with an electron beam accelerated at 300 kV or more, as shown in FIG. 1, the carbon atoms 2 constituting the carbon nanotubes 1 are independently ejected by the irradiated electrons to cause defects. 2'is generated, and the chemical structure of the carbon nanotube base material, which is essentially based on the planar graphite structure, cannot be maintained and becomes amorphous.

【0014】それに対して、本発明のカーボンナノチュ
ーブの加工方法のように、エネルギーを120keVよ
り小さくしたエネルギー線の照射を行うことで、図2
(a)に示すように、照射された電子はカーボンナノチ
ューブ1を構成する炭素原子を弾き出すことができず、
カーボンナノチューブを構成する炭素原子からなる構造
中に取り込まれ蓄積する結果、電荷等の集中による発熱
などで局所的に応力が発生してその部分の化学結合が切
断されて、図2(b)に示すように、nmオーダーの破
断部位3が生起することとなるものと考えられる。
On the other hand, as in the carbon nanotube processing method of the present invention, by irradiating with an energy ray having an energy smaller than 120 keV, FIG.
As shown in (a), the irradiated electrons cannot eject the carbon atoms constituting the carbon nanotube 1,
As a result of being taken up and accumulated in the structure composed of carbon atoms constituting the carbon nanotube, stress is locally generated due to heat generation due to concentration of electric charges, and the chemical bond at that portion is cut off, as shown in FIG. 2 (b). As shown, it is considered that the fracture site 3 of nm order will occur.

【0015】[0015]

【発明の実施の形態】本発明のカーボンナノチューブの
加工方法は、エネルギーが120keVより低いエネル
ギー線をカーボンナノチューブに照射することで、カー
ボンナノチューブを加工する。
BEST MODE FOR CARRYING OUT THE INVENTION In the method for processing a carbon nanotube of the present invention, the carbon nanotube is processed by irradiating the carbon nanotube with an energy ray having an energy lower than 120 keV.

【0016】エネルギー線としては、電子線が好適な例
として挙げることができる。120keVの電子線の波
長は0.033Åであり、エネルギー線として電子線を
用いる場合には波長の長さが0.033Å以上とする。
好ましいエネルギー線のエネルギーとしては80keV
である。電子線を用いる場合には波長が0.042Åで
ある。
An electron beam can be cited as a preferable example of the energy beam. The wavelength of the electron beam of 120 keV is 0.033Å, and when the electron beam is used as the energy ray, the length of the wavelength is 0.033Å or more.
80 keV is preferable as the energy of the energy ray
Is. When using an electron beam, the wavelength is 0.042Å.

【0017】エネルギー線をカーボンナノチューブに照
射する照射密度としては特に限定しないが、一例を挙げ
ると、4.0〜5.0×10-11A/cm2程度が挙げら
れる。エネルギー線として電子線を用いる場合に電子線
を発生させる方法としては、タングステンや、LaB6
等からなるフィラメントをもつ冷陰極電界放出型銃によ
り発生する熱電子を必要な加速電圧で加速することで、
必要なエネルギーをもつ電子線を照射することができ
る。
The irradiation density for irradiating the carbon nanotubes with energy rays is not particularly limited, but one example is about 4.0 to 5.0 × 10 -11 A / cm 2 . When an electron beam is used as the energy beam, tungsten or LaB 6 is used as a method for generating the electron beam.
By accelerating thermoelectrons generated by a cold cathode field emission gun having a filament made of
It can be irradiated with an electron beam having the required energy.

【0018】エネルギー線をカーボンナノチューブに照
射する環境としてはエネルギー線の透過を阻害しない真
空下が好ましい。たとえば、4.0×10-3Pa(3.
0×10-5Torr)程度にまで減圧する。
As an environment for irradiating the carbon nanotubes with energy rays, it is preferable to use a vacuum that does not hinder the transmission of energy rays. For example, 4.0 × 10 −3 Pa (3.
The pressure is reduced to about 0 × 10 −5 Torr).

【0019】エネルギー線をカーボンナノチューブに照
射する時間としては特に限定しないが、数秒〜数分程度
のエネルギー線の照射時間で充分にカーボンナノチュー
ブの加工を行うことができる。
The time of irradiating the carbon nanotubes with the energy rays is not particularly limited, but the carbon nanotubes can be sufficiently processed with the irradiation time of the energy rays of about several seconds to several minutes.

【0020】エネルギー線を照射されるカーボンナノチ
ューブはメッシュ上などに載置できる。エネルギー線は
カーボンナノチューブ全体に広く照射しても良いし、そ
の照射スポット径を絞ってもよい。
The carbon nanotubes that are irradiated with energy rays can be placed on a mesh or the like. The energy beam may be widely irradiated to the entire carbon nanotube, or the irradiation spot diameter may be narrowed.

【0021】エネルギー線をカーボンナノチューブ全体
に広く照射することで、カーボンナノチューブの加工さ
れる部位は確率的に決定されるようになる。たとえば、
全体的にカーボンナノチューブの長さを短くしたいよう
な場合に適用できる。
By broadly irradiating the entire carbon nanotube with the energy beam, the processed portion of the carbon nanotube is stochastically determined. For example,
It can be applied when it is desired to shorten the length of the carbon nanotube as a whole.

【0022】また、電子線ビームの照射スポットを絞っ
てカーボンナノチューブのキャップオープン処理等を行
う目的の部位にのみ照射することで、局所的な微細処理
を行うことができる。局所的な照射を行う方法としては
マスクによりエネルギー線の遮蔽を行うマスキング処理
を適用することもできる。
Further, by localizing the irradiation spot of the electron beam and irradiating only the target portion for the cap open treatment of the carbon nanotube, the local fine treatment can be performed. As a method for locally irradiating, masking treatment for shielding energy rays by a mask can be applied.

【0023】エネルギー線を照射する時間の適正化や、
カーボンナノチューブへの局所的なエネルギー線の照射
を好適に行うには、電子顕微鏡等の微細構造を観察でき
る手段の下で、本発明のカーボンナノチューブの加工方
法を適用することが好ましい。その場合に、電子顕微鏡
に必要とされる電子線と本加工方法に必要とされる電子
線との発生源を兼用することも可能である。
Optimization of the irradiation time of energy rays,
In order to suitably irradiate the carbon nanotubes with local energy rays, it is preferable to apply the carbon nanotube processing method of the present invention under a means capable of observing a fine structure such as an electron microscope. In this case, it is also possible to use both the electron beam required for the electron microscope and the electron beam required for the present processing method.

【0024】[0024]

【実施例】以下に本発明のカーボンナノチューブの加工
方法について実施例に基づいてさらに詳細に説明をす
る。なお、本実施例ではエネルギー線として電子線を用
いて検討を行った。
EXAMPLES The carbon nanotube processing method of the present invention will be described below in more detail based on examples. In this example, an electron beam was used as the energy beam for the study.

【0025】(カーボンナノチューブへの電子線の照射
方法)カーボンナノチューブへの電子線の照射は市販の
透過型電子顕微鏡(日本電子製、製品名(型番)JEM
−2010)を用い、カーボンナノチューブをその透過
型電子顕微鏡の試料台上にCu製のメッシュ(200
番)上に一度に10μg載置して行った。概略図を図3
に示す。透過型電子顕微鏡10内にメッシュ30を介し
てカーボンナノチューブ90を載置した後に、透過型電
子顕微鏡のカラム内を4.0×10-3Pa(3.0×1
-5Torr)にまで減圧した。そして、LaB6から
なるフィラメントをもつ冷陰極電界放出型銃20から電
子線を発生させてカーボンナノチューブ90に照射し
た。電子線のエネルギーは加速電圧を80kV(実施
例)、120kV(比較例1)、200kV(比較例
2)と変化させて3段階に変化させた。
(Method of Irradiating Carbon Nanotube with Electron Beam) Irradiation of carbon nanotube with electron beam is carried out by a commercially available transmission electron microscope (manufactured by JEOL Ltd., product name (model number) JEM).
-2010), and the carbon nanotube was placed on the sample stage of the transmission electron microscope of the Cu mesh (200
No.), 10 μg was placed at a time. Figure 3 is a schematic diagram
Shown in. After placing the carbon nanotubes 90 in the transmission electron microscope 10 through the mesh 30, the inside of the column of the transmission electron microscope is 4.0 × 10 −3 Pa (3.0 × 1).
The pressure was reduced to 0 -5 Torr). Then, an electron beam was generated from the cold cathode field emission gun 20 having a filament made of LaB 6 and irradiated to the carbon nanotube 90. The energy of the electron beam was changed in three steps by changing the accelerating voltage to 80 kV (Example), 120 kV (Comparative Example 1) and 200 kV (Comparative Example 2).

【0026】実施例では3〜4分程度、比較例1でも3
〜4分程度、そして比較例2では30〜40秒程度電子
線を照射した。実施例及び各比較例について電子線の照
射前後のカーボンナノチューブの様子を本透過型電子顕
微鏡により観察した。
In the example, about 3 to 4 minutes, and in the comparative example 1, 3
The electron beam was irradiated for about 4 minutes, and for Comparative Example 2 for about 30-40 seconds. With respect to the examples and the respective comparative examples, the states of the carbon nanotubes before and after the electron beam irradiation were observed by the transmission electron microscope.

【0027】(結果)実施例及び各比較例について電子
線照射前後の透過型電子顕微鏡写真をそれぞれ図4(実
施例)、図5(比較例1)、図6(比較例2)に示す。
それぞれの図で(a)が電子線の照射前、(b)が電子
線の照射後である。
(Results) Transmission electron micrographs before and after electron beam irradiation are shown in FIGS. 4 (Example), 5 (Comparative Example 1) and 6 (Comparative Example 2), respectively.
In each figure, (a) is before the electron beam irradiation, and (b) is after the electron beam irradiation.

【0028】図4から明らかなように、実施例の条件
(加速電圧80kV)で電子線を照射したカーボンナノ
チューブは、電子線の照射後に電子線の集中による熱及
び応力集中によって、カーボンナノチューブの破断(矢
印部位)や、孔の形成(矢印部位)が認められた。
As is clear from FIG. 4, the carbon nanotubes irradiated with the electron beam under the conditions of the embodiment (accelerating voltage 80 kV) were broken by the heat and stress concentration due to the electron beam concentration after the electron beam irradiation. (Arrow site) and pore formation (Arrow site) were observed.

【0029】図5から明らかなように、比較例1の条件
(加速電圧120kV)で電子線を照射したカーボンナ
ノチューブは、電子線の照射後に電子線によるカーボン
ナノチューブを構成する炭素原子の弾き出し現象によ
り、カーボンナノチューブの壁面に凹凸発生(矢印部
位)が認められた。
As is clear from FIG. 5, the carbon nanotubes irradiated with the electron beam under the conditions of Comparative Example 1 (accelerating voltage 120 kV) were affected by the repulsion phenomenon of carbon atoms constituting the carbon nanotube by the electron beam after the irradiation with the electron beam. As a result, unevenness (arrow portion) was observed on the wall surface of the carbon nanotube.

【0030】図6から明らかなように、比較例2の条件
(加速電圧200kV)で電子線を照射したカーボンナ
ノチューブは、電子線の照射後に電子線によるカーボン
ナノチューブを構成する炭素原子の弾き出し現象によ
り、カーボンナノチューブの壁面に凹凸発生(丸で囲っ
た部位)が認められた。このカーボンナノチューブ壁面
の凹凸は比較例1よりも顕著なものであった。
As is clear from FIG. 6, the carbon nanotubes irradiated with the electron beam under the conditions of Comparative Example 2 (accelerating voltage of 200 kV) have a phenomenon that the carbon atoms constituting the carbon nanotubes are ejected by the electron beam after the irradiation of the electron beam. As a result, unevenness was observed on the wall surface of the carbon nanotube (the area surrounded by a circle). The unevenness on the wall surface of the carbon nanotube was more remarkable than in Comparative Example 1.

【0031】すなわち、カーボンナノチューブへの電子
線照射において、加速電圧を120kVより低くする
(より詳しくは80kVとする)ことで、カーボンナノ
チューブの結晶構造等の基材部分の化学構造へのダメー
ジを最小限に抑制しながら、カーボンナノチューブを加
工することができることが分かった。
That is, in irradiating the carbon nanotubes with an electron beam, the acceleration voltage is set to be lower than 120 kV (more specifically, 80 kV) to minimize damage to the chemical structure of the base material such as the crystal structure of the carbon nanotubes. It has been found that the carbon nanotube can be processed while suppressing it to the limit.

【0032】[0032]

【発明の効果】以上説明したように、本発明のカーボン
ナノチューブの加工方法によると、カーボンナノチュー
ブの一部に孔を開けたり、切断したりすることがカーボ
ンナノチューブの基材部分に悪影響を与えることなく容
易に遂行でき、カーボンナノチューブに新しい機能を付
与することが可能となる。
As described above, according to the method of processing a carbon nanotube of the present invention, opening or cutting a part of the carbon nanotube adversely affects the base portion of the carbon nanotube. It can be easily carried out and it is possible to add a new function to the carbon nanotube.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来技術の電子線照射時のカーボンナノチュー
ブ中の様子を説明する模式図である。
FIG. 1 is a schematic diagram illustrating a state in a carbon nanotube at the time of electron beam irradiation according to a conventional technique.

【図2】本発明の電子線照射時のカーボンナノチューブ
中の様子を説明する模式図である。
FIG. 2 is a schematic diagram illustrating a state in a carbon nanotube at the time of electron beam irradiation of the present invention.

【図3】実施例で用いた電子線照射装置(透過型電子顕
微鏡)の模式図である。
FIG. 3 is a schematic diagram of an electron beam irradiation apparatus (transmission electron microscope) used in Examples.

【図4】実施例における電子線照射前の透過型電子顕微
鏡写真(a)と、電子線照射後の透過型電子顕微鏡写真
(b)である。
FIG. 4 is a transmission electron microscope photograph (a) before electron beam irradiation and a transmission electron microscope photograph (b) after electron beam irradiation in Examples.

【図5】比較例1における電子線照射前の透過型電子顕
微鏡写真(a)と、電子線照射後の透過型電子顕微鏡写
真(b)図である。
5 is a transmission electron microscope photograph (a) before electron beam irradiation and a transmission electron microscope photograph (b) after electron beam irradiation in Comparative Example 1. FIG.

【図6】比較例2における電子線照射前の透過型電子顕
微鏡写真(a)と、電子線照射後の透過型電子顕微鏡写
真(b)図である。
6 is a transmission electron micrograph (a) before electron beam irradiation and a transmission electron micrograph (b) after electron beam irradiation in Comparative Example 2. FIG.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 エネルギーが120keVより低いエネ
ルギー線をカーボンナノチューブに照射することを特徴
とするカーボンナノチューブの加工方法。
1. A method of processing a carbon nanotube, which comprises irradiating the carbon nanotube with an energy ray having an energy lower than 120 keV.
【請求項2】 前記エネルギー線は、電子線である請求
項1に記載のカーボンナノチューブの加工方法。
2. The carbon nanotube processing method according to claim 1, wherein the energy beam is an electron beam.
【請求項3】 前記電子線のエネルギーは80keVで
ある請求項1又は2に記載のカーボンナノチューブの加
工方法。
3. The method for processing a carbon nanotube according to claim 1, wherein the energy of the electron beam is 80 keV.
JP2001358136A 2001-11-22 2001-11-22 Carbon nanotube processing method Expired - Fee Related JP4055046B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001358136A JP4055046B2 (en) 2001-11-22 2001-11-22 Carbon nanotube processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001358136A JP4055046B2 (en) 2001-11-22 2001-11-22 Carbon nanotube processing method

Publications (2)

Publication Number Publication Date
JP2003159700A true JP2003159700A (en) 2003-06-03
JP4055046B2 JP4055046B2 (en) 2008-03-05

Family

ID=19169366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001358136A Expired - Fee Related JP4055046B2 (en) 2001-11-22 2001-11-22 Carbon nanotube processing method

Country Status (1)

Country Link
JP (1) JP4055046B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024759A (en) * 2004-07-08 2006-01-26 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing semiconductor device
JP2006086259A (en) * 2004-09-15 2006-03-30 Nippon Telegr & Teleph Corp <Ntt> Method for forming tunnel junction
KR100611644B1 (en) 2005-05-30 2006-08-11 광주과학기술원 Method of purifying carbon nanotubes
JP2006272374A (en) * 2005-03-28 2006-10-12 National Institute For Materials Science Cutting/machining method of carbon fiber and its apparatus
JP2007123657A (en) * 2005-10-31 2007-05-17 Nec Corp Semiconductor device and manufacturing method thereof
JP2007518067A (en) * 2003-11-06 2007-07-05 ルビー ブライアン Manufacturing method of nanostructure chip
US7674389B2 (en) * 2004-10-26 2010-03-09 The Regents Of The University Of California Precision shape modification of nanodevices with a low-energy electron beam
US7838843B2 (en) 2005-03-14 2010-11-23 Hamamatsu Photonics K.K. Carbon nano tube processing method, processing apparatus, and carbon nano tube dispersion liquid, carbon nano tube powder
US9771266B2 (en) 2011-08-12 2017-09-26 Tokyo Electron Limited Method and apparatus for processing carbon nanotubes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518067A (en) * 2003-11-06 2007-07-05 ルビー ブライアン Manufacturing method of nanostructure chip
JP2006024759A (en) * 2004-07-08 2006-01-26 Nippon Telegr & Teleph Corp <Ntt> Method of manufacturing semiconductor device
JP2006086259A (en) * 2004-09-15 2006-03-30 Nippon Telegr & Teleph Corp <Ntt> Method for forming tunnel junction
US7674389B2 (en) * 2004-10-26 2010-03-09 The Regents Of The University Of California Precision shape modification of nanodevices with a low-energy electron beam
US7838843B2 (en) 2005-03-14 2010-11-23 Hamamatsu Photonics K.K. Carbon nano tube processing method, processing apparatus, and carbon nano tube dispersion liquid, carbon nano tube powder
JP2006272374A (en) * 2005-03-28 2006-10-12 National Institute For Materials Science Cutting/machining method of carbon fiber and its apparatus
JP4730686B2 (en) * 2005-03-28 2011-07-20 独立行政法人物質・材料研究機構 Carbon fiber cutting and processing methods
KR100611644B1 (en) 2005-05-30 2006-08-11 광주과학기술원 Method of purifying carbon nanotubes
JP2007123657A (en) * 2005-10-31 2007-05-17 Nec Corp Semiconductor device and manufacturing method thereof
US9771266B2 (en) 2011-08-12 2017-09-26 Tokyo Electron Limited Method and apparatus for processing carbon nanotubes

Also Published As

Publication number Publication date
JP4055046B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
JP2873930B2 (en) Carbonaceous solid structure having carbon nanotubes, electron emitter for electron beam source element composed of carbonaceous solid structure, and method of manufacturing carbonaceous solid structure
DE60014461T2 (en) Field emission device with aligned and shortened carbon nanotubes and manufacturing process
Kammler et al. Lateral control of self-assembled island nucleation by focused-ion-beam micropatterning
US6787122B2 (en) Method of making nanotube-based material with enhanced electron field emission properties
EP1413551A1 (en) Methods for Manufacturing Multi-Wall Carbon Nanotubes
JP2003159700A (en) Method of processing carbon nanotubes
Qin et al. Onion-like graphitic particles produced from diamond
JP2591458B2 (en) Processing method of carbon nanotube
TW200425210A (en) Method of manufacturing electron-emitting source
JP4730686B2 (en) Carbon fiber cutting and processing methods
WO2004070766A1 (en) Electron source
JP2004058194A (en) Working process of carbon nanotube
EP3587347A1 (en) Method for producing carbon nanohorn aggregates
US20150147525A1 (en) Method for enhancing growth of carbon nanotubes on substrates
JP3627021B2 (en) Method for producing tube-like substance with different elements introduced
JP3188952B2 (en) Recovery method of carbon nanotube
JP4862435B2 (en) Nanomaterial selective removal method and nanomaterial selective removal apparatus
JPH08315633A (en) Manufacture of fine conductor
US11387103B1 (en) Process for fabricating semiconductor nanofibers
JP2007169091A (en) Method for controlling diameter of carbon nanotube and apparatus for controlling diameter
US20200392002A1 (en) Method for shortening fibrous carbon nanohorn aggregate and shortened fibrous carbon nanohorn aggregate
JP2004244293A (en) Method of manufacturing carbon nanotube
CN117776102A (en) Preparation method of fullerene hydrogen storage material and fullerene hydrogen storage film
JPWO2020158665A1 (en) Parts and manufacturing method for continuous manufacturing of carbon nanobrushes
Hashida et al. Carbon-nanotube cathode modified by femtosecond laser ablation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees