JP2003154260A - Gas storage material - Google Patents

Gas storage material

Info

Publication number
JP2003154260A
JP2003154260A JP2001355848A JP2001355848A JP2003154260A JP 2003154260 A JP2003154260 A JP 2003154260A JP 2001355848 A JP2001355848 A JP 2001355848A JP 2001355848 A JP2001355848 A JP 2001355848A JP 2003154260 A JP2003154260 A JP 2003154260A
Authority
JP
Japan
Prior art keywords
gas
hydrogen
storage material
gas storage
cnts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001355848A
Other languages
Japanese (ja)
Inventor
Morio Yumura
守雄 湯村
Satoru Oshima
哲 大嶋
Hiroki Ago
浩樹 吾郷
Kunio Uchida
邦夫 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001355848A priority Critical patent/JP2003154260A/en
Publication of JP2003154260A publication Critical patent/JP2003154260A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

PROBLEM TO BE SOLVED: To provide a gas storage material having an increased amount of gas occluded. SOLUTION: The gas storage material comprises carbon nanotubes obtained by preparing carbon nanotubes with at least one end open and filling in the openings of the carbon nanotubes with a gas adsorbing material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガス吸蔵材に関す
るものである。
TECHNICAL FIELD The present invention relates to a gas storage material.

【0002】[0002]

【従来の技術】ガスの吸蔵材としては、各種のものが知
られている。例えば、水素吸蔵材としては水素ガスを吸
蔵する各種の金属水素化物を用いる水素吸蔵合金が知ら
れ、水素自動車等での利用を目指して開発が進められて
いる。水素吸蔵合金の水素吸蔵量は水素吸蔵合金に対す
る重量比では約1.0重量%である。水素吸蔵合金は大
型の水素ボンベによる輸送コストと大差ないのが現状で
ある。現状の1.5倍〜2倍の水素吸蔵量を持つ合金の
開発が目標とされている。水素吸蔵合金の最大の問題点
として、密度が大きいことと、水素の吸蔵と放出とを繰
り返すうちに劣化することが上げられる。これらの問題
点を克服するものとして炭素系材料が注目さている。活
性炭や微細なグラファイトが積層した構造のnmサイズ
の炭素繊維、多層カーボンナノチューブ、単層カーボン
ナノチューブなどが検討されてきた。これらの中には極
めて大きな水素吸蔵能力を示すと報告されたものもあ
る。理論的な研究から、単層カーボンナノチューブが最
も可能性が高いとの評価が定着しつつある。しかし、単
層カーボンナノチューブでも、その水素吸蔵量の現状は
1〜3重量%と低い。
2. Description of the Related Art Various gas storage materials are known. For example, as a hydrogen storage material, hydrogen storage alloys using various metal hydrides that store hydrogen gas are known, and their development is being promoted with the aim of use in hydrogen automobiles and the like. The hydrogen storage amount of the hydrogen storage alloy is about 1.0% by weight relative to the hydrogen storage alloy. Currently, hydrogen storage alloys are not much different from the transportation costs of large hydrogen cylinders. The goal is to develop an alloy that has a hydrogen storage capacity that is 1.5 to 2 times the current level. The biggest problems with hydrogen storage alloys are that they have a high density and that they deteriorate during repeated storage and release of hydrogen. Carbon-based materials are attracting attention as a means of overcoming these problems. Nm-sized carbon fibers having a structure in which activated carbon and fine graphite are laminated, multi-walled carbon nanotubes, single-walled carbon nanotubes, and the like have been studied. Some of these have been reported to show extremely high hydrogen storage capacity. From theoretical studies, it is becoming clear that single-walled carbon nanotubes are the most likely. However, even with single-walled carbon nanotubes, the present hydrogen storage capacity is as low as 1 to 3% by weight.

【0003】[0003]

【発明が解決しようとする課題】本発明は、高められた
ガス吸蔵量を有するガス吸蔵材を提供することをその課
題とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a gas storage material having an increased gas storage amount.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究を重ねた結果、本発明を完成する
に至った。即ち、本発明によれば、以下に示すガス吸蔵
材及び水素吸蔵物が提供される。 (1)少なくとも一方の端部が開口しているカーボンナ
ノチューブにおいて、該開口がガス吸着性材料によって
封止されているカーボンナノチューブからなることを特
徴とするガス吸蔵材。 (2)該ガス吸着性材料が、水素吸着性金属である前記
(1)に記載のガス吸蔵材。 (3)該ガス吸着性材料が、高分子材料である前記
(1)に記載のガス吸蔵材。 (4)前記(2)に記載のガス吸蔵材に対して水素を吸
蔵させてなる水素吸蔵物。
The present inventors have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, the following gas storage material and hydrogen storage material are provided. (1) A gas storage material, wherein at least one end of the carbon nanotube is open, and the opening is made of a carbon nanotube sealed with a gas adsorbent material. (2) The gas storage material according to (1), wherein the gas adsorbent material is a hydrogen adsorbent metal. (3) The gas storage material according to (1), wherein the gas adsorbent material is a polymer material. (4) A hydrogen storage material obtained by storing hydrogen in the gas storage material according to (2).

【0005】[0005]

【発明の実施の形態】本発明のガス吸蔵材用材料として
用いるカーボンナノチューブ(以下、単にCNTsとも
言う)は、その一方の端部又は両方の端部が開口してい
るものである。そのCNTsは、単層又は多層のもので
あることができる。このCNTsにおいて、その内径
は、0.4〜50nm、好ましくは1〜10nm、より
好ましくは1〜5nmである。その長さは、0.01〜
10μm、好ましくは0.1〜1μmである。一般的に
は、CNTsの生成時の長さと内径との比(アスペクト
比)は500〜5000程度であるが、本発明の場合、
ボールミル等を用いて切断して、そのアスペクト比を1
0〜500、好ましくは50〜200程度に調節するの
が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Carbon nanotubes (hereinafter, also simply referred to as CNTs) used as a material for a gas storage material of the present invention have one end or both ends opened. The CNTs can be single or multi-layered. In the CNTs, the inner diameter is 0.4 to 50 nm, preferably 1 to 10 nm, more preferably 1 to 5 nm. Its length is 0.01 ~
The thickness is 10 μm, preferably 0.1 to 1 μm. Generally, the ratio of the length to the inner diameter (aspect ratio) at the time of producing CNTs is about 500 to 5000, but in the case of the present invention,
Cut with a ball mill etc. and set the aspect ratio to 1
It is preferably adjusted to 0 to 500, preferably about 50 to 200.

【0006】前記のようなCNTsは、従来公知のもの
であり、各種の方法で製造することができる。このよう
な方法としては、アーク放電法、レーザー法、炭化水素
を触媒下で熱分解する方法等が挙げられる。このような
CNTsの製造方法においては、通常、両端が閉じた多
層又は単層のCNTsが生成される。これらの方法の
内、炭化水素の触媒下での熱分解法における多層のCN
Tsの先端部には触媒金属があり、その触媒金属の先端
は炭素で覆われている。これらのCNTs先端の炭素
は、空気中で400〜600度の温度で酸化処理する方
法等によって、一方の端部が開口したものやその両端部
が開口したもの等が生成される。前述のボールミル等を
用いてCNTsを切断する方法も端部を開口する有効な
手段となる。本発明のガス吸蔵材は、CNTsの開口を
封止材により封止した構造を有する。
The above-mentioned CNTs are conventionally known and can be manufactured by various methods. Examples of such a method include an arc discharge method, a laser method, and a method of thermally decomposing hydrocarbons in the presence of a catalyst. In such a method for producing CNTs, usually, multi-layered or single-layered CNTs having both ends closed are produced. Among these methods, multilayer CN in the pyrolysis method under the catalyst of hydrocarbon
There is a catalytic metal at the tip of Ts, and the tip of the catalytic metal is covered with carbon. The carbon at the tip of these CNTs is produced with one end opened or both ends opened by a method such as oxidation treatment in air at a temperature of 400 to 600 degrees. The method of cutting the CNTs by using the above-described ball mill or the like is also an effective means for opening the ends. The gas storage material of the present invention has a structure in which the openings of CNTs are sealed with a sealing material.

【0007】本発明においては、前記開口封止材として
は、吸蔵すべき対象ガスに対しガス吸着性を有する材料
(ガス吸着性材料)を用いる。このガス吸着性材料は、
金属(合金を含む)、高分子物質等であることができ
る。
In the present invention, as the opening sealing material, a material having a gas adsorbing property for the target gas to be stored (gas adsorbing material) is used. This gas adsorbent material is
It can be a metal (including alloy), a polymeric substance, or the like.

【0008】本発明で用いる好ましいガス吸着性材料
は、水素ガス吸着性材料である。このようなものには、
水素吸蔵合金等として知られている各種の金属や金属水
素化物等が包含される。金属水素化物を形成する金属と
しては、Pt、Pd、Ni、Co、Ca、Mg、La、
Sm、Ti、Zr、V、Nb、合金としてはTi/F
e、La/Ni、Mg/Ni、Ca/Ni等が挙げられ
る。本発明で好ましく用いる水素吸蔵合金及びその水素
化物を示すと、LaNi5(LaNi55.0)、TiF
e(TiFeH1.9)、Mg2Ni(Mg2NiH4.0)、
CaNi5(CaNi55.0)等が挙げられる。
The preferred gas adsorbent material for use in the present invention is a hydrogen gas adsorbent material. Something like this
Various metals and metal hydrides known as hydrogen storage alloys are included. As the metal forming the metal hydride, Pt, Pd, Ni, Co, Ca, Mg, La,
Sm, Ti, Zr, V, Nb, Ti / F as alloy
e, La / Ni, Mg / Ni, Ca / Ni and the like. The hydrogen storage alloys and their hydrides preferably used in the present invention are shown as LaNi 5 (LaNi 5 H 5.0 ) and TiF.
e (TiFeH 1.9 ), Mg 2 Ni (Mg 2 NiH 4.0 ),
CaNi 5 (CaNi 5 H 5.0), and the like.

【0009】本発明で用いる他の好ましいガス吸着性材
料は、高分子物質である。このようなものには、ガス分
離膜に用いられるポリイミド、酢酸セルロース、ポリエ
チレン、ポリスチレン、ポリ塩化ビニール、ポリフッ化
ビニールなどがよく知られている。
Another preferred gas adsorbent material for use in the present invention is a polymeric material. Well-known examples of such materials include polyimide, cellulose acetate, polyethylene, polystyrene, polyvinyl chloride, and polyvinyl fluoride used for gas separation membranes.

【0010】前記ポリイミドや酢酸セルロースは、
2、He、CO2、メタンやエタン、プロピレン等の炭
素数1〜3の低級炭化水素ガスに対して吸着性を示す
他、CO、N2、O2等に対しても吸着性を示す。
The above-mentioned polyimide and cellulose acetate are
In addition to having adsorptivity for H 2 , He, CO 2 , lower hydrocarbon gas having 1 to 3 carbon atoms such as methane, ethane, propylene, etc., it also has adsorptivity for CO, N 2 , O 2, etc. .

【0011】ポリエチレン、ポリスチレン、ポリ塩化ビ
ニル、ポリフッ化ビニールは、H2に対して吸着性を示
す他、CO等に対しても吸着性を示す。
Polyethylene, polystyrene, polyvinyl chloride, and polyvinyl fluoride show adsorptivity to H 2 as well as CO and the like.

【0012】CNTsの開口端を封止材で封止する方法
としては、各種の方法を用いることができる。このよう
な方法としては、例えば、以下の方法を示すことができ
る。 (i)炭化水素の触媒下での熱分解法における多層のC
NTsの先端には触媒金属があり、触媒金属の先端は炭
素で覆われている。このCNTs先端の炭素を空気中で
400〜600度の温度で酸化処理する方法等によって
触媒金属を露出させて金属封止された開口を有するCN
Tsを形成する方法。 (ii)アーク放電法やレーザー法、炭化水素の触媒によ
る熱分解法などで合成された多層又は単層のCNTs先
端の炭素を空気中で400〜600度の温度で酸化処理
する方法やCNTsをボールミルで切断する方法等によ
って端部を開口させ、この開口端部に金属、高分子物質
等の封止剤を蒸着する方法。 (iii)アーク放電法やレーザー法、炭化水素の触媒に
よる熱分解法等で合成された多層又は単層のCNTs先
端の炭素を空気中で400〜600度の温度で酸化処理
する方法や酸を用いる湿式酸化方法、ボールミルで切断
する方法などによって端部を開口させ、この端が開口し
たCNTsを金属塩の酸溶液に浸す等の方法。
Various methods can be used to seal the open ends of the CNTs with a sealing material. As such a method, for example, the following method can be shown. (I) Multi-layered C in the thermal decomposition process of hydrocarbons
There is a catalytic metal at the tip of NTs, and the tip of the catalytic metal is covered with carbon. CN having an opening that is metal-sealed by exposing the catalytic metal by a method of oxidizing carbon at the tip of the CNTs in air at a temperature of 400 to 600 degrees
Method of forming Ts. (Ii) Multi-layered or single-layered CNTs synthesized by an arc discharge method, a laser method, a thermal decomposition method using a hydrocarbon catalyst, or the like. A method in which an end is opened by a method such as cutting with a ball mill, and a sealant such as a metal or a polymer substance is vapor-deposited on the open end. (Iii) A method of oxidizing carbon at the tip of multi-layered or single-layered CNTs synthesized by an arc discharge method, a laser method, a thermal decomposition method using a hydrocarbon catalyst, or the like in air at a temperature of 400 to 600 ° C. or an acid. A method in which the end portion is opened by a wet oxidation method used, a method of cutting with a ball mill, or the like, and the CNTs having the opened end portion are immersed in an acid solution of a metal salt.

【0013】本発明のガス吸蔵材は、これを吸蔵すべき
対象ガスと接触させることにより、そのCNTs内部に
そのガス吸蔵させることができる。このガス吸蔵の機構
を水素の吸蔵を例にとって示すと以下の通りである。水
素吸着性材料で開口端が封止されたCNTsを水素ガス
と接触させると、その水素ガスは、先ず、開口端を封止
する材料内に吸着(吸蔵)される。この材料内に吸着さ
れた水素は、その材料内を拡散して、チューブ内空間に
対向する側の材料端面に達する。この場合、その材料端
面の水素濃度は、チューブ内空間の水素濃度より大き
く、この水素濃度差を推進力として、その材料端面の水
素は離脱してチューブ内に拡散侵入する。チューブ内空
間の水素は、そのチューブ内壁面に吸着され、これによ
ってチューブ内水素濃度は低く保持され、その結果、チ
ューブ内空間にはその封止材料を介して水素が連続的に
拡散侵入する。このようにして、チューブ壁には水素が
多分子吸着され、その吸着量が飽和吸着量に達する。こ
のようにして本発明のガス吸蔵材には多量(3重量%以
上)の水素を吸蔵させることができる。
The gas storage material of the present invention can be stored inside the CNTs by bringing it into contact with the target gas to be stored. The mechanism of this gas occlusion will be described below by taking the occlusion of hydrogen as an example. When CNTs whose opening ends are sealed with a hydrogen adsorbing material are brought into contact with hydrogen gas, the hydrogen gas is first adsorbed (occluded) in the material that seals the opening ends. The hydrogen adsorbed in this material diffuses in the material and reaches the end surface of the material on the side facing the inner space of the tube. In this case, the hydrogen concentration on the material end surface is higher than the hydrogen concentration in the tube inner space, and the hydrogen on the material end surface is released and diffuses into the tube by using this hydrogen concentration difference as a driving force. Hydrogen in the tube inner space is adsorbed on the inner wall surface of the tube, whereby the hydrogen concentration in the tube is kept low, and as a result, hydrogen continuously diffuses and enters the tube inner space through the sealing material. In this way, multiple molecules of hydrogen are adsorbed on the tube wall, and the adsorbed amount reaches the saturated adsorbed amount. In this way, the gas storage material of the present invention can store a large amount (3% by weight or more) of hydrogen.

【0014】本発明のガス吸蔵材と対象ガスとの接触方
法としては、ガス吸蔵材を充填した充填塔に対して、対
象ガスを流通接触させる方法や、攪拌装置内において対
象ガスの流通下でガス吸蔵材を攪拌する方法、流動化用
ガスとして対象ガスを用いて、ガス吸蔵材を流動化させ
る方法等の従来公知の各種の固体/気体接触法を用いる
ことができる。
The method for contacting the gas storage material of the present invention with the target gas may be a method of bringing the target gas into flow contact with a packed column filled with the gas storage material, or a method of contacting the target gas in a stirrer under the flow of the target gas. Various conventionally known solid / gas contact methods such as a method of stirring the gas storage material and a method of fluidizing the gas storage material by using the target gas as the fluidizing gas can be used.

【0015】[0015]

【発明の効果】本発明のガス吸蔵材は、そのカーボンナ
ノチューブ内壁面のすぐれたガス吸着性により、多量の
対象ガスを吸蔵することができる。この場合、その開口
端部を封止する材料として、特定のガスに対して選択吸
着性を有する材料を用いることにより、混合ガス中から
特定のガスを選択的に吸蔵させることができる。本発明
による開口端を水素吸着性材料で封止したガス吸蔵材
は、水素吸蔵材として好適のものである。このような水
素吸蔵材には、3重量%以上、好ましくは5重量%以上
の水素を吸蔵させることができる。その吸蔵量の上限値
は、通常10重量%程度である。
The gas storage material of the present invention can store a large amount of target gas due to its excellent gas adsorption property on the inner wall surface of the carbon nanotube. In this case, by using a material having a selective adsorption property for a specific gas as a material for sealing the opening end, the specific gas can be selectively occluded from the mixed gas. The gas storage material having the open end sealed with a hydrogen adsorbing material according to the present invention is suitable as a hydrogen storage material. Such hydrogen storage material can store 3% by weight or more, preferably 5% by weight or more of hydrogen. The upper limit of the storage amount is usually about 10% by weight.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 邦夫 茨城県つくば市東1−1−1 独立行政法 人産業技術総合研究所 つくばセンター内 Fターム(参考) 4G040 AA01 AA32 4G046 CB01 CB08 4G066 AA02B AA02D AA04B AC13B AC27B AC27D CA38    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kunio Uchida             1-1-1 Higashi 1-1-1 Tsukuba City, Ibaraki Prefecture             National Institute of Advanced Industrial Science and Technology Tsukuba Center F-term (reference) 4G040 AA01 AA32                 4G046 CB01 CB08                 4G066 AA02B AA02D AA04B AC13B                       AC27B AC27D CA38

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも一方の端部が開口しているカ
ーボンナノチューブにおいて、該開口がガス吸着性材料
によって封止されているカーボンナノチューブからなる
ことを特徴とするガス吸蔵材。
1. A gas storage material, wherein at least one end of the carbon nanotube is open, and the opening is made of a carbon nanotube sealed with a gas adsorbing material.
【請求項2】 該ガス吸着性材料が、水素吸着性金属で
ある請求項1に記載のガス吸蔵材。
2. The gas storage material according to claim 1, wherein the gas adsorbent material is a hydrogen adsorbent metal.
【請求項3】 該ガス吸着性材料が、高分子材料である
請求項1に記載のガス吸蔵材。
3. The gas storage material according to claim 1, wherein the gas adsorbent material is a polymer material.
【請求項4】 請求項2に記載のガス吸蔵材に対して水
素を吸蔵させてなる水素吸蔵物。
4. A hydrogen storage material obtained by storing hydrogen in the gas storage material according to claim 2.
JP2001355848A 2001-11-21 2001-11-21 Gas storage material Pending JP2003154260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001355848A JP2003154260A (en) 2001-11-21 2001-11-21 Gas storage material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001355848A JP2003154260A (en) 2001-11-21 2001-11-21 Gas storage material

Publications (1)

Publication Number Publication Date
JP2003154260A true JP2003154260A (en) 2003-05-27

Family

ID=19167475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001355848A Pending JP2003154260A (en) 2001-11-21 2001-11-21 Gas storage material

Country Status (1)

Country Link
JP (1) JP2003154260A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261739A (en) * 2003-03-03 2004-09-24 Toyota Motor Corp Hydrogen occlusion composite material
JP2006007127A (en) * 2004-06-28 2006-01-12 Shimadzu Corp Adsorbent and adsorbing method by using fibrous carbon
WO2007004652A1 (en) * 2005-07-05 2007-01-11 National University Corporation NARA Institute of Science and Technology Method for producing carbon nanotube dispersion liquid
WO2007007594A1 (en) * 2005-07-11 2007-01-18 National University Corporation NARA Institute of Science and Technology Process for preparation of aqueous solution containing carbon nanotube
JP2010144926A (en) * 2008-12-22 2010-07-01 Korea Electronics Telecommun Gas storage structure and gas storage device including the same
US8029758B2 (en) 2005-12-06 2011-10-04 Toyota Jidosha Kabushiki Kaisha Process for producing single-walled carbon nanotubes with increased diameter
JP2011195390A (en) * 2010-03-19 2011-10-06 Kuraray Co Ltd Hydrogen adsorption material, storage material, and method for storing hydrogen

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004261739A (en) * 2003-03-03 2004-09-24 Toyota Motor Corp Hydrogen occlusion composite material
JP2006007127A (en) * 2004-06-28 2006-01-12 Shimadzu Corp Adsorbent and adsorbing method by using fibrous carbon
WO2007004652A1 (en) * 2005-07-05 2007-01-11 National University Corporation NARA Institute of Science and Technology Method for producing carbon nanotube dispersion liquid
JP5109129B2 (en) * 2005-07-05 2012-12-26 国立大学法人 奈良先端科学技術大学院大学 Method for producing carbon nanotube dispersion
WO2007007594A1 (en) * 2005-07-11 2007-01-18 National University Corporation NARA Institute of Science and Technology Process for preparation of aqueous solution containing carbon nanotube
US8029758B2 (en) 2005-12-06 2011-10-04 Toyota Jidosha Kabushiki Kaisha Process for producing single-walled carbon nanotubes with increased diameter
JP2010144926A (en) * 2008-12-22 2010-07-01 Korea Electronics Telecommun Gas storage structure and gas storage device including the same
US8047361B2 (en) 2008-12-22 2011-11-01 Electronics And Telecommunications Research Institute Gas storage structure and gas storage apparatus including the same
JP2011195390A (en) * 2010-03-19 2011-10-06 Kuraray Co Ltd Hydrogen adsorption material, storage material, and method for storing hydrogen

Similar Documents

Publication Publication Date Title
Ströbel et al. Hydrogen storage by carbon materials
US6290753B1 (en) Hydrogen storage in carbon material
US6596055B2 (en) Hydrogen storage using carbon-metal hybrid compositions
Oriňáková et al. Recent applications of carbon nanotubes in hydrogen production and storage
Pan et al. Reactions over catalysts confined in carbon nanotubes
Ledoux et al. New catalytic phenomena on nanostructured (fibers and tubes) catalysts
Reardon et al. Emerging concepts in solid-state hydrogen storage: the role of nanomaterials design
Dillon et al. Hydrogen storage using carbon adsorbents: past, present and future
JP4452831B2 (en) Hydrogen storage method and hydrogen storage body
JP2004059409A (en) Carbon nano material, its manufacturing method and hydrogen storage material
JPH1072201A (en) Hydrogen storage method
He et al. Hydrogen storage in hierarchical nanoporous silicon–carbon nanotube architectures
JP2003154260A (en) Gas storage material
Doğan et al. Storage of hydrogen in activated carbons and carbon nanotubes
Rojas-Garcia et al. Enhancing in the hydrogen storage by SWCNT/HKUST-1 composites: Effect of SWCNT amount
Kapsi et al. Zeolite-templated sub-nanometer carbon nanotube arrays and membranes for hydrogen storage and separation
Chancolon et al. Filling of carbon nanotubes with selenium by vapor phase process
Luxembourg et al. Hydrogen storage capacity at high pressure of raw and purified single wall carbon nanotubes produced with a solar reactor
JP4049097B2 (en) Gas storage material and gas storage device
Blackman High pressure hydrogen storage on carbon materials for mobile applications
JP4456712B2 (en) Hydrogen gas storage material and storage method
JP2003054901A (en) Core-shell carbon nanofiber for hydrogen storage and process for preparing the fiber
JP2002071098A (en) Scatterproof member of powdered material occluding hydrogen
KR102660812B1 (en) REVERSIBLE HYDROGEN STORAGE OF AMORPHOUS C60 FULLERENE WITH CARBON DEFECT FACILITATED BY ATOMIC Pt-MEDIATED HYDROGEN SPILLOVER IN AMBIENT CONDITION
JP2008062183A (en) Gas adsorbent material and method for opening cap structure of single-wall carbon nanotube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050322