JP2006007127A - Adsorbent and adsorbing method by using fibrous carbon - Google Patents

Adsorbent and adsorbing method by using fibrous carbon Download PDF

Info

Publication number
JP2006007127A
JP2006007127A JP2004189490A JP2004189490A JP2006007127A JP 2006007127 A JP2006007127 A JP 2006007127A JP 2004189490 A JP2004189490 A JP 2004189490A JP 2004189490 A JP2004189490 A JP 2004189490A JP 2006007127 A JP2006007127 A JP 2006007127A
Authority
JP
Japan
Prior art keywords
adsorbent
fibrous carbon
ions
gold
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004189490A
Other languages
Japanese (ja)
Inventor
Shigeru Kimoto
成 木本
Shigeki Ono
成樹 尾野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004189490A priority Critical patent/JP2006007127A/en
Publication of JP2006007127A publication Critical patent/JP2006007127A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent which has a bulk density larger than activated carbons and can reduce the filling capacity and miniaturize an adsorbing device. <P>SOLUTION: This method which employs a fibrous carbon as the adsorbent includes an adsorbing step for adsorbing metal ions in a solution. The metal ions are, for example, chrome ions or gold ions. Also, this method includes an adsorbing step for adsorbing a gas component in a gas by utilizing the fibrous carbon as the adsorbent. In this case, an object gas component to be adsorbed is ammonia gas, formaldehyde or hydrogen sulfide gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は種々のイオンやガス成分の吸着剤及び吸着方法に関するもので、例えば、クロムや金などの金属イオンの吸着や回収を行なう分野に関する。   The present invention relates to adsorbents and adsorption methods for various ions and gas components, and relates to the field of adsorption and recovery of metal ions such as chromium and gold.

近年、科学技術の発展に伴って多種多様な化学物質が製造され使用されており、このような物質には人の健康や生態系に有害な影響を及ぼすものも多く存在している。
一般産業廃棄物、溶剤製造工程廃棄物、合成ゴム製造工程廃棄物などの産業廃棄物、各種研究施設や、医療機関からの廃棄物、更には家庭ゴミにも水銀、銅、鉛、亜鉛、クロム、ニッケル、カドミウム、チタン、マンガン、コバルト、ヒ素、スズ、ビスマス等の重金属化合物が含有されており、これら金属の無害化や回収は重要な課題である。
In recent years, with the development of science and technology, a wide variety of chemical substances are manufactured and used, and many of these substances have harmful effects on human health and ecosystems.
Mercury, copper, lead, zinc, chromium in industrial waste such as general industrial waste, solvent manufacturing process waste, synthetic rubber manufacturing process waste, various research facilities, waste from medical institutions, and household waste , Nickel, cadmium, titanium, manganese, cobalt, arsenic, tin, bismuth and other heavy metal compounds are contained, and detoxification and recovery of these metals is an important issue.

クロムは金属加工の表面処理で非常に有効なメッキ材料として、また写真、皮なめし、染料などとして使用され、工場排水に含有されている。クロムは3価と6価のクロムなどが化合物などの形で使用されているが、6価クロムは水質汚濁防止法で指定有害物質となっており、排水基準は0.05mg/L以下とされている。
そのためクロムの無害化処理は非常に重要であり、特にメッキ工業にとってはメッキの過程から生じる排水の処理は避けられず、廃水処理の経済性、安定化は重要な課題となっている。6価クロムの毒性はラットの経口急性毒性でみると80mg/kgであり、ヒトでは1日あたり0.5mg/kgで寿命が低下すると言われている。
Chromium is used as a plating material that is very effective in surface treatment of metal processing, as a photograph, tanning, and dye, and is contained in industrial wastewater. Although chromium and trivalent chromium are used in the form of compounds, etc., hexavalent chromium is a hazardous substance designated by the Water Pollution Control Law, and the wastewater standard is 0.05 mg / L or less. ing.
Therefore, the detoxification treatment of chromium is very important. In particular, for the plating industry, the treatment of waste water generated from the plating process is inevitable, and the economical efficiency and stabilization of waste water treatment are important issues. The toxicity of hexavalent chromium is 80 mg / kg in terms of oral acute toxicity in rats, and it is said that the lifespan of humans decreases at 0.5 mg / kg per day.

これら各種廃棄物は元の素材に応じて分別処理され、ガラス、鉄、アルミニウムなどを主成分とする廃棄物は分別回収の後再使用されるが、その他の廃棄物の大半は燃焼焼却により廃棄処理が行われている。このため、焼却処理に伴う重金属含有燃焼ガス中及び、燃焼ガスや燃焼灰を洗浄した廃水中には多量の重金属が含有されている。また、発ガン性が最も高い化合物とされるダイオキシンの発生に際し、ごみの不完全燃焼に伴う未燃焼有機物が比較的低い温度域の燃焼灰表面で、塩化銅などの重金属化合物による触媒作用を受けてダイオキシンが発生するという報告もある。   These various wastes are separated according to the original materials, and wastes mainly composed of glass, iron, aluminum, etc. are reused after separation and collection, but most of the other wastes are discarded by combustion incineration. Processing is in progress. For this reason, a large amount of heavy metals are contained in the heavy metal-containing combustion gas accompanying the incineration process and in the waste water from which the combustion gas and combustion ash are washed. In addition, when dioxins, which are considered to have the highest carcinogenicity, are generated, unburned organic substances associated with incomplete combustion of garbage are catalyzed by heavy metal compounds such as copper chloride on the combustion ash surface in a relatively low temperature range. There are also reports that dioxins are generated.

従来のクロム廃液の無害化処理方法は、還元―水酸化物沈殿法や、イオン交換樹脂による処理法が知られている。
還元―水酸化物沈殿法は、pHを2以下の範囲に調節し、適当な還元剤で6価クロムを3価クロムに還元し、続いて再酸化しない酸化剤で過剰な還元剤を分解除去し、適当な凝集剤を添加することでpHを5から6の範囲に調節し、水酸化クロムを沈殿分離させる3段階の工程からなる。
イオン交換樹脂での無害化処理方法は、クロム酸に対する強力な吸着能を有する強塩基性陰イオン交換樹脂を利用し、排水中などのクロム酸を吸着除去する。
Conventional methods for detoxifying chromium waste liquors include a reduction-hydroxide precipitation method and a treatment method using an ion exchange resin.
The reduction-hydroxide precipitation method adjusts the pH to a range of 2 or less, reduces hexavalent chromium to trivalent chromium with an appropriate reducing agent, and then decomposes and removes excess reducing agent with an oxidizing agent that does not reoxidize. Then, the pH is adjusted to a range of 5 to 6 by adding an appropriate flocculant, and chromium hydroxide is precipitated and separated.
The detoxification treatment method using an ion exchange resin utilizes a strongly basic anion exchange resin having a strong adsorption ability for chromic acid, and adsorbs and removes chromic acid in waste water.

こうした従来の手法に加え、近年、活性炭等を用いた吸着処理がされている。活性炭による吸着処理法は、反応槽内の被処理水に主として粉末活性炭を用い機械的に攪拌して処理する方法や、粒状の活性炭を充填した槽内に廃水を通水して吸着させる方法(特許文献1参照。)がある。   In addition to these conventional methods, in recent years, adsorption treatment using activated carbon or the like has been performed. The adsorption treatment method using activated carbon is a method of mechanically stirring mainly using powdered activated carbon in the water to be treated in the reaction tank, or a method of passing waste water into a tank filled with granular activated carbon and adsorbing it ( Patent Document 1).

重金属に限らず、貴金属の回収も重要である。
従来、金含有物から金を回収する方法として、王水による方法又はシアン化合物による方法が用いられてきた。王水は硝酸と塩酸の混合液であるために、取り扱いは極めて危険である。また、シアン化合物は強い毒性を有する毒物であることから、取り扱いは極めて危険を伴う。
Not only heavy metals but also precious metal recovery is important.
Conventionally, as a method for recovering gold from a gold-containing material, a method using aqua regia or a method using a cyanide compound has been used. Since aqua regia is a mixture of nitric acid and hydrochloric acid, handling is extremely dangerous. Further, since cyanide is a poisonous substance having strong toxicity, handling is extremely dangerous.

金、銀を回収する方法として、チオ尿素を添加した浸出水溶液に鉄イオンを存在させ、生成する水酸化鉄の沈殿中に金、銀を共沈させる方法がある(特許文献2参照。)。これは、例えば、3g/Lのチオ尿素を添加した浸出水溶液に0.5g/Lの鉄イオンを酸化剤として存在させた溶液に、1規定水酸化ナトリウム溶液をアルカリ剤として添加しpHを6.5以上にするか、又は0.8L/分の割合で30分のエアレーションを行なった後にアルカリ剤を添加してpHを4.0以上とすることによって、溶液の底に生成する水酸化鉄の沈殿中に金、銀を共沈させ、沈殿物を分離して金、銀を回収する方法である。   As a method for recovering gold and silver, there is a method in which iron ions are present in a leaching aqueous solution to which thiourea is added, and gold and silver are co-precipitated during the precipitation of iron hydroxide to be generated (see Patent Document 2). For example, a 1N sodium hydroxide solution is added as an alkaline agent to a solution in which 0.5 g / L of iron ions are present as an oxidizing agent in a leachable aqueous solution to which 3 g / L of thiourea has been added to adjust the pH to 6 Iron hydroxide formed at the bottom of the solution by adjusting the pH to 4.0 or more by adding an alkali agent after aeration for 30 minutes at a rate of 0.8 L / min. In this method, gold and silver are co-precipitated during precipitation, and the precipitate is separated to recover gold and silver.

前記の方法では、金、銀のチオ尿素化合物を含む水溶液に、全く還元能がない鉄イオンを金の10倍から100倍程度存在させ、生成した沈殿物を回収するのであるが、金、銀を含む沈殿物量が多量となり、しかもその形状はゲル状を呈するスラリー状となる。
金を回収する前記方法で鉄イオンを用いる代わりに、還元剤として亜鉛粉末、ヒドラジン、亜硫酸ナトリウム等を使用して金を回収したところ、還元剤の使用量が多量になって、鉄イオンと同じように実用性が大幅に低下することがわかっている。
特開平7−328434号公報 特開昭60−103138号公報
In the above-described method, iron ions having no reducing ability are present in an aqueous solution containing gold and silver thiourea compounds at 10 to 100 times that of gold, and the generated precipitate is recovered. In addition, the amount of the precipitate containing a large amount, and the shape thereof becomes a gel-like slurry.
Instead of using iron ions in the above method of recovering gold, gold was recovered using zinc powder, hydrazine, sodium sulfite, etc. as a reducing agent, and the amount of reducing agent used was large, the same as iron ions It has been found that practicality is greatly reduced.
JP-A-7-328434 JP-A-60-103138

クロムイオンに対する還元―水酸化物沈殿法は、経済的には一般的に有利な場合もあるが、無害化処理工程での手間などが欠点となる場合もある。一方、イオン交換樹脂による無害化処理法は、還元―水酸化物沈殿法より操作手順が省けるために有利であるが、経済性が悪いという欠点がある。
チオ尿素及び金を含有する水溶液から金を回収する方法は、水酸化鉄の沈殿中に金を共沈させ、該沈殿物を分離して金を回収する方法であるが、金を回収する作業は困難であり、処理作業の効率が悪化し、実用性の向上が望めないのが実状である。
The reduction-hydroxide precipitation method for chromium ions may be generally advantageous from an economic standpoint, but there may be drawbacks such as troublesome detoxification treatment steps. On the other hand, the detoxification treatment method using an ion exchange resin is advantageous in that the operation procedure can be omitted compared with the reduction-hydroxide precipitation method, but has a disadvantage of poor economic efficiency.
The method of recovering gold from an aqueous solution containing thiourea and gold is a method in which gold is coprecipitated during precipitation of iron hydroxide, and the precipitate is separated to recover gold. In reality, it is difficult to improve the efficiency of processing work, and improvement in practicality cannot be expected.

吸着処理において活性炭のかさ密度は0.2〜0.5mg/mLである。
本発明は種々のイオンをはじめ、ガス成分も簡便に吸着できるとともに、かさ密度が活性炭より大きく、充填容量が低減でき吸着装置の小型化を可能とする吸着剤を提供することを目的とする。
In the adsorption treatment, the bulk density of the activated carbon is 0.2 to 0.5 mg / mL.
An object of the present invention is to provide an adsorbent that can easily adsorb various ions and gas components, has a bulk density larger than that of activated carbon, can reduce a filling capacity, and can reduce the size of the adsorption apparatus.

本発明は、繊維状炭素を吸着剤として溶液中の金属イオン又は非金属イオンを吸着させる吸着方法である。その場合、目的とする被吸着金属イオンは、例えばクロムイオン又は金イオンである。
また、本発明は繊維状炭素を吸着剤として気体中のガス成分を吸着させる吸着方法である。その場合、目的とする被吸着ガス成分はアンモニア、ホルムアルデヒド又は硫化水素ガスである。
本発明の吸着剤は、金属イオン、非金属イオン、又はガス成分の吸着剤であり、繊維状炭素を利用することを特徴としている。
繊維状炭素は繊維の先端に金属微結晶を付着していることが好ましく、また繊維状炭素は繊維状炭素が絡み合った粒状炭素も含んでいる。
The present invention is an adsorption method for adsorbing metal ions or non-metal ions in a solution using fibrous carbon as an adsorbent. In that case, the target adsorbed metal ions are, for example, chromium ions or gold ions.
The present invention is also an adsorption method for adsorbing gas components in a gas using fibrous carbon as an adsorbent. In that case, the target adsorbed gas component is ammonia, formaldehyde or hydrogen sulfide gas.
The adsorbent of the present invention is an adsorbent of metal ions, non-metal ions, or gas components, and is characterized by utilizing fibrous carbon.
The fibrous carbon preferably has metal microcrystals attached to the tip of the fiber, and the fibrous carbon also includes granular carbon in which the fibrous carbon is intertwined.

繊維状炭素のかさ密度は、0.6g/mLであり、かさ密度が0.2〜0.5g/mLの市販の活性炭より大きく、充填量を少なくできるため、装置を小型化できる。
この吸着剤をクロムイオンの吸着に用いると、従来の還元―水酸化沈殿法のような過剰な還元剤の分解、汚濁成分の凝集沈殿のような複雑なプロセスを簡略化できる。
また、金イオンの吸着に用いると、従来の凝集沈殿のような複雑なプロセスを簡略化でき、さらに高純度の金を回収できる。
The bulk density of fibrous carbon is 0.6 g / mL, which is larger than commercially available activated carbon having a bulk density of 0.2 to 0.5 g / mL, and can reduce the filling amount, thereby reducing the size of the apparatus.
When this adsorbent is used for adsorption of chromium ions, it is possible to simplify complicated processes such as decomposition of excess reducing agent such as the conventional reduction-hydroxylation precipitation method and aggregation precipitation of polluted components.
In addition, when used for the adsorption of gold ions, a complicated process such as conventional coagulation precipitation can be simplified, and gold of higher purity can be recovered.

繊維状炭素の一例は、メタンガスと二酸化炭素ガスが主成分であるバイオガスを、Niを主成分とする金属微結晶触媒の存在下で、400℃から650℃の温度で反応させて得られたものであり、金属微結晶触媒を先端に付着させている。   An example of fibrous carbon was obtained by reacting biogas mainly composed of methane gas and carbon dioxide gas at a temperature of 400 ° C. to 650 ° C. in the presence of a metal microcrystal catalyst mainly composed of Ni. The metal microcrystal catalyst is attached to the tip.

吸着剤の原料となるバイオガスは、生ごみなどの食品性廃棄物、家畜糞尿や人糞尿など、あらゆる嫌気性のある発酵物から微生物の働きで発生するメタンガスと、温暖化現象の原因として知られている二酸化炭素ガスを主成分としている。バイオガスは意図的に伐採した樹木を原料として得られるものではなく、廃棄物などのリサイクルから得られるものであり、二酸化炭素を削減するため環境に優しい。   Biogas, which is the raw material of the adsorbent, is known as the cause of global warming and methane gas generated by the action of microorganisms from all anaerobic fermented products such as food waste such as garbage, livestock manure and human manure. The main component is carbon dioxide gas. Biogas is not obtained from intentionally harvested trees, but is obtained from the recycling of waste and the like, and is environmentally friendly because it reduces carbon dioxide.

本発明の吸着剤のおおもとの形状は、1本のつながった繊維状炭素であるが、吸着剤の形状は限定されるものではなく、繊維状炭素が絡み合って粒状炭素になっているものや、直線状又は非直線状で曲がりくねっているものでも使用することができる。さらに、繊維状炭素をシート状などの形状に加工して使用することもできる。   The basic shape of the adsorbent of the present invention is one continuous fibrous carbon, but the shape of the adsorbent is not limited, and the carbon is intertwined into granular carbon Alternatively, a straight or non-linear shape that is winding can be used. Further, the fibrous carbon can be processed into a sheet shape or the like.

吸着剤の根元にあるNiを主成分とする金属微結晶触媒は、そのまま含有させていても、硝酸などで金属微結晶を溶かして洗浄し、繊維状炭素又は粒状炭素にしても使用できるが、金属微結晶触媒を含有したまま使用する方が好ましい。
吸着は、静置させた状態でも、対象物質が含まれる廃水中に繊維状炭素又は粒状炭素を混入して攪拌しても可能であるが、攪拌する処理のほうが好ましい。
Although the metal microcrystal catalyst mainly composed of Ni at the base of the adsorbent is contained as it is, it can be used by dissolving the metal microcrystal with nitric acid or the like and washing it into fibrous carbon or granular carbon. It is preferable to use it while containing the metal microcrystal catalyst.
Adsorption can be carried out even in a stationary state or by mixing and stirring fibrous carbon or granular carbon in waste water containing the target substance, but stirring is preferred.

本発明の一実施例として、有害重金属として知られているクロム化合物である、二クロム酸カリウムのクロムイオンの吸着について、バッチ法で行なった結果を説明する。
試料水として1000mg/Lの二クロム酸カリウム標準液を超純水で50mg/Lに希釈し、容器に50mLを用意する。固体吸着剤は、繊維状炭素又は繊維状炭素が絡み合った粒状炭素と、比較のための市販の吸着剤として木材系活性炭であるF−17W及びヤシガラ系活性炭であるY−300CWのそれぞれを電子天秤で50mg量り取り、前記50mLのクロム溶液中にそれぞれ混ぜる。
前記それぞれの容器に攪拌子を入れ、スターラーで400rpmの攪拌速度で常温で4時間連続攪拌する。
As an example of the present invention, the results of a batch method for adsorption of chromium ions of potassium dichromate, which is a chromium compound known as a harmful heavy metal, will be described.
As a sample water, a 1000 mg / L potassium dichromate standard solution is diluted with ultrapure water to 50 mg / L, and 50 mL is prepared in a container. The solid adsorbent is an electronic balance of fibrous carbon or granular carbon intertwined with fibrous carbon, and wood-based activated carbon F-17W and coconut shell activated carbon Y-300CW as commercially available adsorbents for comparison. Weigh out 50 mg and mix into the 50 mL chromium solution.
A stir bar is placed in each of the containers, and stirring is continued for 4 hours at room temperature with a stirrer at a stirring speed of 400 rpm.

吸着量の測定は、攪拌終了後の二クロム酸カリウム溶液を、吸着剤からメンブレンフィルターを用いて濾別し、その残存濃度を測定することで求めた。測定は5〜7回繰り返して行い、その平均値をとった結果を表1に示す。
かさ密度の測定は、炭素材料を200mLメスシリンダーに入れ、その上にゴム板を被せて上から手動で軽くたたきながら充填し、その後、充填した炭素材料を取り出して乾燥させた後に質量を量り、単位体積当たりの重量を計算し、平均をとって求めた。その結果を表1に示す。
The amount of adsorption was determined by filtering the potassium dichromate solution after completion of stirring from the adsorbent using a membrane filter and measuring the residual concentration. The measurement is repeated 5 to 7 times, and the average value is shown in Table 1.
The bulk density is measured by putting a carbon material in a 200 mL graduated cylinder, covering it with a rubber plate and filling it manually by tapping from the top, then taking out the dried carbon material and drying it, weighing it, The weight per unit volume was calculated and obtained by averaging. The results are shown in Table 1.

Figure 2006007127
Figure 2006007127

固体吸着剤1gあたりの吸着量(mg/g)は、本発明で提供した繊維状炭素の場合、市販の木材活性炭吸着剤に比べて良い結果となり、1.5倍から4倍の吸着量があることがわかった。また、単位体積あたりの重さ(かさ密度(g/mL))は、繊維状炭素の場合、市販の吸着剤よりも大きな値となることから、少ない体積で目的試料を吸着することが可能である。体積あたりの吸着量(mg/mL)の結果をそれぞれの吸着剤で比較した場合、繊維状炭素の吸着剤は、市販の木材系活性炭の2倍から9倍の吸着量があることがわかる。
また、吸着処理可能量の比較結果でも、繊維状炭素の結果は市販の木材系活性炭よりも優れた結果となった。
In the case of fibrous carbon provided in the present invention, the amount of adsorption per gram of solid adsorbent (mg / g) is better than that of commercially available wood activated carbon adsorbent, and the amount adsorbed is 1.5 to 4 times. I found out. Moreover, since the weight per unit volume (bulk density (g / mL)) is larger than that of a commercially available adsorbent in the case of fibrous carbon, it is possible to adsorb the target sample with a small volume. is there. When the results of adsorption amount per volume (mg / mL) are compared with each adsorbent, it can be seen that the adsorbent of fibrous carbon has an adsorption amount that is 2 to 9 times that of commercially available wood-based activated carbon.
Moreover, also in the comparison result of the amount that can be adsorbed, the result of fibrous carbon was superior to that of commercially available wood-based activated carbon.

前記の吸着剤の比較実験は常温で行なったが、二クロム酸カリウム溶液の温度を50℃に保ちながら同様の実験を行なった場合、常温と同じ結果となり、測定した範囲では温度依存性は無いと推定される。つまり、クロム含有廃液の温度は、常温でも高温でも使用できると推定される。   The comparative experiment of the adsorbent was performed at room temperature, but when the same experiment was performed while maintaining the temperature of the potassium dichromate solution at 50 ° C., the same result as at room temperature was obtained, and there was no temperature dependence in the measured range. It is estimated to be. That is, it is estimated that the chromium-containing waste liquid can be used at normal temperature or high temperature.

次に、本発明の他の実施例として貴金属として知られる金イオンの吸着について、バッチ法で行なった結果を説明する。試料水として1000mg/Lの金標準液を超純水で50mg/L又は100mg/Lに希釈し、容器に50mLずつ用意する。固体吸着剤は、繊維状炭素又は繊維状炭素が絡み合った粒状炭素を電子天秤で50mg量り取り、前記50mLのそれぞれの金溶液中に混ぜる。
前記容器に攪拌子を入れ、スターラーで400rpmの攪拌速度で常温で4時間連続攪拌する。
Next, the results of the batch method for the adsorption of gold ions known as noble metals as another embodiment of the present invention will be described. As a sample water, a gold standard solution of 1000 mg / L is diluted with ultrapure water to 50 mg / L or 100 mg / L, and 50 mL is prepared in a container. As for the solid adsorbent, 50 mg of fibrous carbon or granular carbon in which the fibrous carbon is entangled is weighed with an electronic balance and mixed into each 50 mL of the gold solution.
A stir bar is placed in the container, and stirring is continued for 4 hours at room temperature with a stirrer at a stirring speed of 400 rpm.

攪拌終了後の金溶液はメンブレンフィルターを用いて吸着剤から濾別し、その残存濃度から吸着量を測定した。測定は2回行い、その平均をとった結果を表2に示す。金の試料濃度を50mg/L又は100mg/Lと変えた場合、吸着量は45mg/gから50mg/gの間の値を示した。   The gold solution after the stirring was separated from the adsorbent using a membrane filter, and the amount of adsorption was measured from the residual concentration. The measurement was performed twice, and the averaged results are shown in Table 2. When the gold sample concentration was changed to 50 mg / L or 100 mg / L, the adsorption amount showed a value between 45 mg / g and 50 mg / g.

本発明の吸着剤を金含有液体からの金回収処理に用いると、従来の凝集沈殿のような複雑なプロセスを簡略化された金の回収が可能となる。
金を吸着させた繊維状炭素は焼却し、フィルター等の捕集材を用いて回収することで、高純度の金を回収することが可能である。
When the adsorbent of the present invention is used for gold recovery from a gold-containing liquid, it is possible to recover gold by simplifying a complicated process such as conventional coagulation precipitation.
High-purity gold can be recovered by incinerating the fibrous carbon adsorbed with gold and recovering it using a collection material such as a filter.

Figure 2006007127
Figure 2006007127

前記説明の実施例はクロムと金の溶液についてであるが、金属として白金、非金属として塩素、ガスとしてアンモニアガス、ホルムアルデヒドガス及び硫化水素ガスについても検討した。それらの結果も表2に示す。
白金イオン測定試料は白金標準液を希薄して調製したものであり、塩素は水道水に含まれるもの(0.5mg/L)、アンモニアガスは養鶏場施設(66mg/L)、ホルムアルデヒドガスは新築住宅(0.16mg/L)、硫化水素ガスは養鶏場施設(6mg/L)から採取又は採水したものを用いた。
The embodiment described above relates to a solution of chromium and gold, but platinum as a metal, chlorine as a nonmetal, and ammonia gas, formaldehyde gas, and hydrogen sulfide gas as gas were also examined. The results are also shown in Table 2.
Platinum ion measurement sample was prepared by diluting platinum standard solution, chlorine contained in tap water (0.5 mg / L), ammonia gas for poultry farm facility (66 mg / L), and formaldehyde gas newly built Houses (0.16 mg / L) and hydrogen sulfide gas collected or collected from chicken farm facilities (6 mg / L) were used.

表2に示す結果より、前記それぞれの物質は繊維状炭素による吸着が行なわれ、活性炭よりも少ない体積での吸着が可能である。   From the results shown in Table 2, the respective substances are adsorbed by fibrous carbon and can be adsorbed in a smaller volume than activated carbon.

本発明は種々のイオンやガス成分の吸着剤及び吸着方法に関し、例えば、クロムや金などの金属イオンの吸着や回収を行なうことができる。
The present invention relates to adsorbents and adsorption methods for various ions and gas components, and can adsorb and collect metal ions such as chromium and gold, for example.

Claims (7)

繊維状炭素を吸着剤として溶液中の金属イオン又は非金属イオンを吸着させる吸着方法。   An adsorption method for adsorbing metal ions or nonmetal ions in a solution using fibrous carbon as an adsorbent. 前記金属イオンはクロムイオン又は金イオンである請求項1に記載の吸着方法。   The adsorption method according to claim 1, wherein the metal ions are chromium ions or gold ions. 繊維状炭素を吸着剤として気体中のガス成分を吸着させる吸着方法。   An adsorption method for adsorbing gas components in gas using fibrous carbon as an adsorbent. 前記ガス成分はアンモニア、ホルムアルデヒド又は硫化水素である請求項3に記載の吸着方法。   The adsorption method according to claim 3, wherein the gas component is ammonia, formaldehyde, or hydrogen sulfide. 繊維状炭素からなる金属イオン又は非金属イオンの吸着剤。   An adsorbent of metal ions or non-metal ions made of fibrous carbon. 繊維状炭素からなるガス成分の吸着剤。   Gas component adsorbent made of fibrous carbon. 前記繊維状炭素は繊維の先端に金属微結晶を付着しているものである請求項5又は6に記載の吸着剤。
The adsorbent according to claim 5 or 6, wherein the fibrous carbon has metal fine crystals attached to the tip of the fiber.
JP2004189490A 2004-06-28 2004-06-28 Adsorbent and adsorbing method by using fibrous carbon Pending JP2006007127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189490A JP2006007127A (en) 2004-06-28 2004-06-28 Adsorbent and adsorbing method by using fibrous carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189490A JP2006007127A (en) 2004-06-28 2004-06-28 Adsorbent and adsorbing method by using fibrous carbon

Publications (1)

Publication Number Publication Date
JP2006007127A true JP2006007127A (en) 2006-01-12

Family

ID=35774945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189490A Pending JP2006007127A (en) 2004-06-28 2004-06-28 Adsorbent and adsorbing method by using fibrous carbon

Country Status (1)

Country Link
JP (1) JP2006007127A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181295A1 (en) * 2012-05-29 2013-12-05 Advanced Technology Materials, Inc. Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent
US9186650B2 (en) 2013-04-05 2015-11-17 Entegris, Inc. Adsorbent having utility for CO2 capture from gas mixtures
US9468901B2 (en) 2011-01-19 2016-10-18 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57501633A (en) * 1980-10-01 1982-09-09
JPH09173829A (en) * 1995-12-26 1997-07-08 Nippon Chem Ind Co Ltd Air purifying agent and filter for purifying air
JP2000015053A (en) * 1998-07-02 2000-01-18 Tokyo Gas Co Ltd Method for activation of active carbon fibrous desulfurizer and activated active carbon fibrous desulfurizer
JP2002159851A (en) * 2000-11-24 2002-06-04 Japan Science & Technology Corp Adsorbent, catalyst, and catalyst carrier comprising single-layer carbon nanohorn
JP2003154260A (en) * 2001-11-21 2003-05-27 National Institute Of Advanced Industrial & Technology Gas storage material
JP2003221217A (en) * 2001-10-04 2003-08-05 Canon Inc Method for manufacturing nanocarbon material
JP2004025012A (en) * 2002-06-25 2004-01-29 Yoichi Kadokami Gas storage material, and method of storing and discharging gas
JP2004057894A (en) * 2002-07-26 2004-02-26 Yoichi Kadokami Filter for cleaning, refining or decoloring and its production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57501633A (en) * 1980-10-01 1982-09-09
JPH09173829A (en) * 1995-12-26 1997-07-08 Nippon Chem Ind Co Ltd Air purifying agent and filter for purifying air
JP2000015053A (en) * 1998-07-02 2000-01-18 Tokyo Gas Co Ltd Method for activation of active carbon fibrous desulfurizer and activated active carbon fibrous desulfurizer
JP2002159851A (en) * 2000-11-24 2002-06-04 Japan Science & Technology Corp Adsorbent, catalyst, and catalyst carrier comprising single-layer carbon nanohorn
JP2003221217A (en) * 2001-10-04 2003-08-05 Canon Inc Method for manufacturing nanocarbon material
JP2003154260A (en) * 2001-11-21 2003-05-27 National Institute Of Advanced Industrial & Technology Gas storage material
JP2004025012A (en) * 2002-06-25 2004-01-29 Yoichi Kadokami Gas storage material, and method of storing and discharging gas
JP2004057894A (en) * 2002-07-26 2004-02-26 Yoichi Kadokami Filter for cleaning, refining or decoloring and its production method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9468901B2 (en) 2011-01-19 2016-10-18 Entegris, Inc. PVDF pyrolyzate adsorbent and gas storage and dispensing system utilizing same
WO2013181295A1 (en) * 2012-05-29 2013-12-05 Advanced Technology Materials, Inc. Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent
US9126139B2 (en) 2012-05-29 2015-09-08 Entegris, Inc. Carbon adsorbent for hydrogen sulfide removal from gases containing same, and regeneration of adsorbent
US9186650B2 (en) 2013-04-05 2015-11-17 Entegris, Inc. Adsorbent having utility for CO2 capture from gas mixtures
US9283512B2 (en) 2013-04-05 2016-03-15 Entegris, Inc. Adsorbent having utility for CO2 capture from gas mixtures

Similar Documents

Publication Publication Date Title
Long et al. A review of removal technology for antimony in aqueous solution
Aydın et al. Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents
Gautam et al. Contamination of heavy metals in aquatic media: transport, toxicity and technologies for remediation
Syed Silver recovery aqueous techniques from diverse sources: Hydrometallurgy in recycling
Hasar Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk
Devi et al. Adsorption of chromium on activated carbon prepared from coconut shell
US7491335B2 (en) Removal of arsenic from water with oxidized metal coated pumice
US7892436B2 (en) Compositions and methods for removing arsenic in water
JP5700651B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
JP6118571B2 (en) Treatment method of contaminated soil
CN103920461B (en) Magnetic bio charcoal quantum dot complex adsorbent and preparation and application thereof
CN102874956B (en) Novel treatment process for mercurous industrial waste water
Gupta et al. Adsorption of chromium (VI) by a low-cost adsorbent prepared from tamarind seeds
JP2008018312A (en) Manganese dioxide heavy metal adsorbent and treatment method using the same
Pham et al. Alginate-modified biochar derived from rice husk waste for improvement uptake performance of lead in wastewater
Aghaei et al. Mercury sequestration from synthetic and real gold processing wastewaters using Fe–Al bimetallic particles
Cui et al. Cellulose bridged carbonate hydroxyapatite nanoparticles as novel adsorbents for efficient Cr (VI) removal
JP5000700B2 (en) Treatment agent and treatment method for contaminated water containing heavy metals
TW576825B (en) Method for liquid chromate ion and oxy-metal ions removal and stabilization
JP2006007127A (en) Adsorbent and adsorbing method by using fibrous carbon
JP6208648B2 (en) Treatment agent and treatment method for contaminated water or soil
EP2141126A1 (en) Porous iron oxide, process for producing the same, and method of treating water
Kalra et al. Sorption of heavy metal ions onto e-waste-derived ion-exchange material–selecting the optimum isotherm
Saha et al. Synthesis and characterization of noble hydrogel beads of amino functionalized reduced graphene oxide for selective extraction of gold from electronic waste
Goren et al. Insights into sustainability of engineered carbonaceous material-based technologies for advanced cyanide removal from wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106