JP2002334697A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2002334697A
JP2002334697A JP2001137580A JP2001137580A JP2002334697A JP 2002334697 A JP2002334697 A JP 2002334697A JP 2001137580 A JP2001137580 A JP 2001137580A JP 2001137580 A JP2001137580 A JP 2001137580A JP 2002334697 A JP2002334697 A JP 2002334697A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
negative electrode
aqueous secondary
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001137580A
Other languages
Japanese (ja)
Inventor
Tohyo Kyo
東彪 姜
Shuichi Wada
秀一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2001137580A priority Critical patent/JP2002334697A/en
Publication of JP2002334697A publication Critical patent/JP2002334697A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery that has a large energy density and high capacity and is superior in cycle characteristics. SOLUTION: This is a non-aqueous secondary battery that has a negative electrode having a carbon nano tube 1 and an element 3 capable of forming an alloy with lithium is arranged in the hollow section 2 of the carbon nano tube 1. It is desirable that the element 3 capable of forming an alloy with lithium is at least one kind of element selected from a group of zinc, cadmium, aluminum, gallium, indium, thallium, silicon, germanium, tin, lead, antimony, and bismuth. And it is desirable that the ratio of carbon nano tube to the total negative electrode is 5-100%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エネルギー密度が
大きく、高容量で、且つサイクル特性に優れた非水二次
電池に関する。
The present invention relates to a non-aqueous secondary battery having a high energy density, a high capacity, and excellent cycle characteristics.

【0002】[0002]

【従来の技術】リチウム二次電池の負極材料としては、
活物質である金属リチウムをそのまま使えれば、電位が
最も卑になるので、エネルギー密度の面からは一番望ま
しい。しかし、充電の際に負極表面に比表面積が大きく
活性な樹枝状結晶又は苔状結晶の金属リチウムが析出
し、これらの結晶が電解液中の溶媒と反応して不活性化
しやすい。そのため、負極容量が急激に低下することか
ら、負極の金属リチウム量を予め多量に充填する必要が
あった。また、析出した樹枝状結晶(デンドライト)が
セパレータを貫通し、内部短絡を起こす恐れがあり、安
全性に問題があると共に、サイクル寿命が短いという欠
点があった。
2. Description of the Related Art As a negative electrode material of a lithium secondary battery,
If metal lithium, which is an active material, can be used as it is, the potential becomes the lowest, and thus it is most desirable from the viewpoint of energy density. However, during charging, active lithium dendritic crystals or mossy crystals having a large specific surface area precipitate on the surface of the negative electrode, and these crystals react with the solvent in the electrolytic solution and are likely to be inactivated. Therefore, the capacity of the negative electrode rapidly decreases, so that it is necessary to previously fill the negative electrode with a large amount of metallic lithium. In addition, the dendritic crystals (dendrites) that have precipitated may penetrate the separator and cause an internal short circuit, causing a problem in safety and a short cycle life.

【0003】このような充電時のデンドライトの発生を
抑制するために、Li−Al合金やLiと易融合金であ
るウッドメタルとの合金が負極材料として用いられるこ
とが試みられた。リチウムと合金を形成することが可能
な金属及びそれらの金属を少なくとも一種類含んだ合金
の場合、初期の充放電サイクルの段階においては電気化
学的に比較的高容量を示す。
[0003] In order to suppress the generation of dendrites during such charging, attempts have been made to use a Li-Al alloy or an alloy of Li and wood metal, which is a fusible alloy, as a negative electrode material. In the case of a metal capable of forming an alloy with lithium and an alloy containing at least one of those metals, a relatively high capacity is electrochemically exhibited at an initial charge / discharge cycle stage.

【0004】しかし、充放電によりリチウムとの合金化
とリチウムの脱離を繰り返すことによって、元来の骨格
合金の結晶構造を維持してはいるが、相変化を生じた
り、あるいは元素の骨格合金とは相違する結晶構造に変
化してしまう場合がある。そのような場合、活物質のリ
チウムのホスト物質である金属又は合金粒子が膨張、収
縮を起こし、充放電サイクルの進行により前記金属又は
合金の結晶粒に亀裂が入り、粒子の微細化が進むことに
なる。この微細化現象は負極材料粒子間の電気抵抗を高
め、充放電時の抵抗分極を増大させることにより、実用
上満足できるサイクル寿命特性を発揮できなかった。
[0004] However, by repeatedly alloying with lithium and desorbing lithium by charging and discharging, the crystal structure of the original skeletal alloy is maintained, but a phase change occurs or the skeletal alloy of the element is produced. In some cases, the crystal structure changes to a different crystal structure. In such a case, the metal or alloy particles, which are the host material of lithium as the active material, expand and shrink, and the crystal grains of the metal or alloy are cracked by the progress of the charge / discharge cycle, and the miniaturization of the particles proceeds. become. This miniaturization phenomenon increases the electrical resistance between the negative electrode material particles and increases the resistance polarization during charge and discharge, so that a cycle life characteristic that is practically satisfactory cannot be exhibited.

【0005】近年、充放電によりリチウムイオンが吸
蔵、放出できる黒鉛などの炭素材をホスト物質として負
極材料に用い、リチウム含有遷移金属酸化物を正極材料
として組み合わせ、有機電解液を用いた系が、いわゆる
リチウムイオン二次電池の名称ですでに実用化されてい
る。
In recent years, a system using a carbon material such as graphite, which can occlude and release lithium ions by charge and discharge, as a host material for a negative electrode material, a lithium-containing transition metal oxide as a positive electrode material, and an organic electrolyte has been proposed. It has already been put to practical use under the name of a so-called lithium ion secondary battery.

【0006】そして、更に負極容量を増大させる目的で
特開平7−315822号公報に開示されているよう
に、黒鉛化炭素質からなるホスト物質と、このホスト物
質に組み込まれた例えばケイ素との複合物を負極材料に
用いることが提案されている。この提案により、ケイ素
単独をリチウムのホスト物質とする負極より、高容量化
し、サイクル寿命も向上する。しかし、ケイ素と炭素の
化学結合力が小さいためか、ケイ素内にリチウムが吸蔵
されることによる体積膨張をケイ素の周囲の炭素によっ
て完全に抑制することができず、満足できるサイクル特
性は達成できていない。
As disclosed in JP-A-7-315822 for the purpose of further increasing the capacity of the negative electrode, a composite of a graphitized carbonaceous host material and, for example, silicon incorporated in the host material is disclosed. It has been proposed to use a material for a negative electrode material. According to this proposal, the capacity is increased and the cycle life is improved as compared with a negative electrode using silicon alone as a lithium host material. However, because of the small chemical bonding force between silicon and carbon, volume expansion due to occlusion of lithium in silicon cannot be completely suppressed by carbon around silicon, and satisfactory cycle characteristics have been achieved. Absent.

【0007】特開平7−315822号公報と同様に高
容量で長いサイクル寿命特性を達成するための負極材料
として、Fe2Si3、FeSi、FeSi2等の鉄のケ
イ化物を用いることが特開平5−159780号公報
に、遷移元素であり且つ非鉄金属元素のケイ化物を用い
ることが特開平7−240201号公報に記載されてい
る。更に、4B族元素、P及びSbの少なくとも一種の
元素を含む金属間化合物からなり、それらの結晶構造が
CaF2型、ZnS型及びAlLiSi型のいずれかか
らなるホスト物質を負極材料として用いることも提案さ
れている。
[0007] As in Japanese Patent Application Laid-Open No. Hei 7-315822, as a negative electrode material for achieving a long cycle life characteristic with high capacity, use of an iron silicide such as Fe 2 Si 3 , FeSi, and FeSi 2 is disclosed. Japanese Patent Application Laid-Open No. Hei 7-240201 discloses that a silicide of a non-ferrous metal element which is a transition element is used in Japanese Patent Application Laid-Open No. 5-159780. Further, a host material composed of an intermetallic compound containing at least one element of a 4B group element, P and Sb, and having a crystal structure of any of CaF 2 type, ZnS type and AlLiSi type may be used as the negative electrode material. Proposed.

【0008】しかし、これら負極材料の結晶格子間に吸
蔵、放出されるリチウム量には限界があり、高容量化の
点で満足できる水準でなかった。
However, the amount of lithium inserted and extracted between the crystal lattices of these negative electrode materials is limited, and is not a satisfactory level in terms of increasing the capacity.

【0009】[0009]

【発明が解決しようとする課題】近年、黒鉛構造を示し
ているカーボンナノチューブが盛んに研究されるように
なり、リチウム電池の負極材料としても検討されてき
た。カーボンナノチューブは、6員環で形成された炭素
のシートが中空部を中心に螺旋状に数層から数十層に巻
かれた構造を持ち、その両端部は5員環を含んだ半球状
となり中空部が閉口されている。このカーボンナノチュ
ーブの両端部を開口することにより中空部が直接的に電
解液と接することが可能となる。
In recent years, carbon nanotubes having a graphite structure have been actively studied, and have been studied as negative electrode materials for lithium batteries. Carbon nanotubes have a structure in which a sheet of carbon formed of a six-membered ring is spirally wound into several to several tens of layers around a hollow part, and both ends are hemispherical including a five-membered ring. The hollow part is closed. By opening both end portions of the carbon nanotube, the hollow portion can be in direct contact with the electrolytic solution.

【0010】このカーボンナノチューブは、リチウムの
吸蔵による膨張・収縮が小さいことと、カーボンナノチ
ューブ自身の特徴的な構造から層間だけでなく、内部の
サイトにもリチウムの吸蔵が可能ということから、黒鉛
の理論容量372mAh/gを越える高容量の炭素材料
として期待されてきた。
This carbon nanotube has a small expansion and contraction due to the absorption of lithium and the characteristic structure of the carbon nanotube itself allows lithium to be absorbed not only at the interlayer but also at an internal site. It has been expected as a carbon material having a high capacity exceeding the theoretical capacity of 372 mAh / g.

【0011】しかし、充電時に吸蔵されるリチウムが放
電時の脱離性に欠けるため、結果として不可逆容量が大
きくなり、実用化にまでは至らないという問題があっ
た。その原因としては、カーボンナノチューブの中空部
に吸蔵されているリチウムはリチウムクラスタの状態で
存在し、可逆性には乏しいことが指摘されている。
[0011] However, there is a problem that since the lithium absorbed during charging lacks the desorbing property at the time of discharging, the irreversible capacity becomes large as a result, and practical use is not achieved. It has been pointed out that lithium occluded in the hollow portion of the carbon nanotube exists in a state of lithium cluster and has poor reversibility.

【0012】また現在、リチウム二次電池の負極活物質
に天然黒鉛、人造黒鉛などが用いられているが、理論容
量が372mAh/gと限界があり、高容量化には体積
エネルギー密度の向上が必要とされている。
At present, natural graphite, artificial graphite and the like are used as a negative electrode active material of a lithium secondary battery. However, the theoretical capacity is limited to 372 mAh / g, and improvement in volume energy density is required to increase the capacity. is needed.

【0013】そこで、本発明は、前記従来の問題を解決
するため、エネルギー密度が大きく、高容量で、且つサ
イクル特性に優れた非水二次電池を提供することを目的
とする。
Therefore, an object of the present invention is to provide a non-aqueous secondary battery having a high energy density, a high capacity, and excellent cycle characteristics in order to solve the above-mentioned conventional problems.

【0014】[0014]

【課題を解決するための手段】前記目的を達成するた
め、本発明の非水二次電池は、カーボンナノチューブを
有する負極を備えた非水二次電池であって、前記カーボ
ンナノチューブの中空部にリチウムと合金を形成するこ
とが可能な元素を配置したことを特徴とする。
In order to achieve the above object, a non-aqueous secondary battery according to the present invention is a non-aqueous secondary battery provided with a negative electrode having carbon nanotubes, wherein a non-aqueous secondary battery is provided in a hollow portion of the carbon nanotube. An element capable of forming an alloy with lithium is provided.

【0015】また、本発明の非水二次電池は、前記リチ
ウムと合金を形成することが可能な元素が、亜鉛、カド
ミウム、アルミニウム、ガリウム、インジウム、タリウ
ム、ケイ素、ゲルマニウム、錫、鉛、アンチモン、及び
ビスマスからなる群から選択される少なくとも一種類の
元素であることが好ましい。
Further, in the non-aqueous secondary battery of the present invention, the elements capable of forming an alloy with lithium include zinc, cadmium, aluminum, gallium, indium, thallium, silicon, germanium, tin, lead, and antimony. , And at least one element selected from the group consisting of bismuth.

【0016】また、本発明の非水二次電池は、前記カー
ボンナノチューブの負極全体に対する割合が、5〜10
0質量%であることが好ましい。
Further, in the non-aqueous secondary battery of the present invention, the ratio of the carbon nanotube to the whole negative electrode is 5 to 10%.
It is preferably 0% by mass.

【0017】[0017]

【発明の実施の形態】図1は、本発明で用いるカーボン
ナノチューブの概要図である。本発明の非水二次電池
は、カーボンナノチューブ1を有する負極を備えた非水
二次電池であって、前記カーボンナノチューブ1の中空
部2にリチウムと合金を形成することが可能な元素3を
配置したものである。上記負極以外の部分については、
通常の非水二次電池に用いられるものを使用できる。例
えば、正極材料としては、金属酸化物リチウム化合物が
使用できる。
FIG. 1 is a schematic view of a carbon nanotube used in the present invention. The non-aqueous secondary battery of the present invention is a non-aqueous secondary battery provided with a negative electrode having a carbon nanotube 1, wherein an element 3 capable of forming an alloy with lithium is formed in a hollow portion 2 of the carbon nanotube 1. It is arranged. For parts other than the negative electrode,
Those used for ordinary non-aqueous secondary batteries can be used. For example, a lithium metal oxide compound can be used as the positive electrode material.

【0018】現在、リチウムイオン電池の負極材料に用
いられている黒鉛は、充電時にc軸方向で約10%の膨
張が起き、充放電を繰り返すことにより上記膨張・収縮
で粒子と粒子の間、電極活物質と集電体との間の接触の
劣化に伴い、サイクル特性、負荷特性が低下している。
At present, graphite used as a negative electrode material of a lithium ion battery expands by about 10% in the c-axis direction at the time of charging. With deterioration of contact between the electrode active material and the current collector, cycle characteristics and load characteristics have been reduced.

【0019】カーボンナノチューブは黒鉛構造を有する
炭素系材料の一種であるが、結晶性は黒鉛と乱層構造の
間に位置しており、チューブの中心は中空構造になって
いる。その中空部の内径は数nmであり、硫酸と硝酸を
用いてチューブの両端を開くオープン化処理により傾斜
の構造を持っている形状のものが得られている。このよ
うな構造により、リチウムの挿入、脱離に伴う膨張・収
縮が黒鉛に比べ小さくなり、また中空部に存在するリチ
ウムと合金を形成することが可能な元素もLiとの合金
化に伴う微粉化が抑制され、可逆性良く充放電に寄与で
きることになる。また、リチウムと合金を形成すること
が可能なナノ粒子状態で存在する元素の活性も保たれ、
カーボンナノチューブとバランス良く活物質としての働
きを維持できる。充電時にリチウムは電気化学的に先に
合金化できる元素と合金化し、合金化して膨張した粒子
は、リチウムのカーボンナノチューブ黒鉛層間への挿入
に伴う中空部内径の収縮に伴い、カーボンナノチューブ
の中空内壁との接触も更に強くなり、十分な導電性を保
つことができる。放電時はその逆のメカニズムで反応が
進行し、始終合金化できる粒子とカーボンナノチューブ
の電子伝導性が保たれることになる。従って、合金のサ
イクルの進行に伴なう微粉化が防止され、充放電のサイ
クルに伴なう特性も改善できる。また、リチウムと合金
の反応は中空部の中で起きるため、カーボンナノチュー
ブの表面でのリチウムの析出の恐れもないため、デンド
ライトによる内部短絡も防止できる。なお、リチウムと
合金化する元素の量は、カーボンナノチューブ合成時の
雰囲気、あるいは触媒の量と材料によって選択的に決定
することができる。
A carbon nanotube is a kind of carbon-based material having a graphite structure, but its crystallinity is located between graphite and a turbostratic structure, and the center of the tube has a hollow structure. The inner diameter of the hollow portion is several nm, and a shape having an inclined structure is obtained by open processing in which both ends of the tube are opened using sulfuric acid and nitric acid. Due to such a structure, expansion and shrinkage due to insertion and desorption of lithium are smaller than that of graphite, and elements capable of forming an alloy with lithium existing in the hollow portion are also fine powders due to alloying with Li. Is suppressed, and can contribute to charge and discharge with good reversibility. In addition, the activity of elements that exist in the form of nanoparticles capable of forming an alloy with lithium is also maintained,
The function as an active material can be maintained in good balance with the carbon nanotube. At the time of charging, lithium is electrochemically alloyed with an element that can be alloyed first, and the alloyed and expanded particles form a hollow inner wall of the carbon nanotube as the inner diameter of the hollow decreases as lithium is inserted between the carbon nanotube graphite layers. Contact is further strengthened, and sufficient conductivity can be maintained. At the time of discharge, the reaction proceeds by the reverse mechanism, and the particles that can be alloyed all the time and the electron conductivity of the carbon nanotube are maintained. Therefore, pulverization accompanying the progress of the alloy cycle can be prevented, and the characteristics associated with the charge / discharge cycle can be improved. In addition, since the reaction between the lithium and the alloy occurs in the hollow portion, there is no risk of lithium being deposited on the surface of the carbon nanotube, so that an internal short circuit due to dendrite can be prevented. The amount of the element alloying with lithium can be selectively determined depending on the atmosphere at the time of carbon nanotube synthesis, or the amount and material of the catalyst.

【0020】カーボンナノチューブの合成法については
特に限定しているものではない。従来のカーボンナノチ
ューブを合成できる方法、例えば、気相合成法、熱分解
法、CVD法、アーク放電法等を用いて、触媒の組成と
雰囲気をコントロールすることで目的の組成物を合成す
ることができる。
The method for synthesizing carbon nanotubes is not particularly limited. It is possible to synthesize a desired composition by controlling the composition and atmosphere of a catalyst using a method capable of synthesizing a conventional carbon nanotube, for example, a gas phase synthesis method, a thermal decomposition method, a CVD method, an arc discharge method, or the like. it can.

【0021】特に、気相合成法では、カーボンナノチュ
ーブが触媒となる金属粒子を核として成長するため、触
媒として用いられる目的元素の濃度により中空部に含有
する金属粒子の濃度をコントロールすることができ、よ
り望ましい合成方法である。
In particular, in the gas phase synthesis method, since carbon nanotubes grow with metal particles serving as a catalyst as nuclei, the concentration of metal particles contained in the hollow part can be controlled by the concentration of the target element used as a catalyst. Is a more desirable synthesis method.

【0022】前記リチウムと合金を形成することが可能
な元素としては、亜鉛、カドミウム、アルミニウム、ガ
リウム、インジウム、タリウム、ケイ素、ゲルマニウ
ム、錫、鉛、アンチモン、及びビスマスからなる群から
選択される少なくとも一種類の元素を用いることができ
る。この中でケイ素は、リチウムの吸蔵量がより多く、
高容量化が可能となる点で特に好ましい。
The element capable of forming an alloy with lithium is at least one selected from the group consisting of zinc, cadmium, aluminum, gallium, indium, thallium, silicon, germanium, tin, lead, antimony, and bismuth. One type of element can be used. Among them, silicon has a larger lithium storage capacity,
It is particularly preferable in that high capacity can be achieved.

【0023】前記カーボンナノチューブの負極全体に対
する割合は、5〜100質量%である。この割合が10
0質量%の場合は、前記カーボンナノチューブのみを単
独で負極の活物質として用いた場合である。それ以外
は、前記カーボンナノチューブに他の1種類以上の活物
質やバインダ等を混合して用いる場合である。前記カー
ボンナノチューブの負極全体に対する割合がこの範囲内
であれば、十分にその効果を発揮できるが、より好まし
い範囲は、50〜100質量%の範囲である。
The ratio of the carbon nanotubes to the whole negative electrode is 5 to 100% by mass. This ratio is 10
The case of 0% by mass is a case where only the carbon nanotube is used alone as the active material of the negative electrode. In other cases, the carbon nanotube is mixed with one or more other active materials, binders, and the like. If the ratio of the carbon nanotubes to the whole negative electrode is within this range, the effect can be sufficiently exhibited, but a more preferable range is 50 to 100% by mass.

【0024】[0024]

【実施例】以下、本発明を実施例によって具体的に説明
するが、本発明はこれに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

【0025】(実施例1)リチウムと合金を形成するこ
とが可能な元素としてSiを用いるため、Siの供給体
として粒径1〜15μmのSiO2を準備した。また、
カーボンナノチューブの合成のための触媒として粒径1
〜15μmのFe23を準備した。このSiO2及びF
23の粉体を1:1モルの割合で混合した後、大気炉
で1400℃の温度で10時間焼結して複合酸化物を調
製した。この複合酸化物をH2ガスの雰囲気中でFeの
部分還元を行ない、続いてC24ガスとH2ガスの雰囲
気で600℃でカーボンナノチューブを合成した。合成
後のカーボンナノチューブを透過型電子顕微鏡(TE
M)による分析及び蛍光X線分析を行ない、組成につい
て定量を行なった。その結果、カーボンナノチューブの
中空部に含有されているSiの含有量は2質量%であっ
た。
Example 1 In order to use Si as an element capable of forming an alloy with lithium, SiO 2 having a particle size of 1 to 15 μm was prepared as a Si supply material. Also,
Particle size 1 as a catalyst for the synthesis of carbon nanotubes
215 μm Fe 2 O 3 was prepared. This SiO 2 and F
After mixing e 2 O 3 powder at a ratio of 1: 1 mol, the mixture was sintered in an atmospheric furnace at a temperature of 1400 ° C. for 10 hours to prepare a composite oxide. This composite oxide was subjected to partial reduction of Fe in an atmosphere of H 2 gas, and then carbon nanotubes were synthesized at 600 ° C. in an atmosphere of C 2 H 4 gas and H 2 gas. The synthesized carbon nanotubes are transferred to a transmission electron microscope (TE
M) and X-ray fluorescence analysis were performed to quantify the composition. As a result, the content of Si contained in the hollow portion of the carbon nanotube was 2% by mass.

【0026】得られたカーボンナノチューブを負極活物
質とし、ポリフッ化ビニリデン(PVDF)をバインダ
に用い、この負極活物質45gとPVDF5gとを混合
してペースト状とし、このペーストを厚み10μmの銅
箔に塗布し、乾燥後カレンダーロールを用いて圧縮成形
して電極を作成した。この電極を作用極とし、対極、参
照極には金属Liを用い、電解液にはエチレンカーボネ
ート(EC)とメチルエチルカーボネート(MEC)が
体積割合で1:2の混合溶液に1.2mol/dm3
LiPF6を溶解したものを用いた。これらを用いてモ
デルセルを組み立て、充放電特性を調べた。
The obtained carbon nanotubes are used as a negative electrode active material, polyvinylidene fluoride (PVDF) is used as a binder, and 45 g of this negative electrode active material and 5 g of PVDF are mixed to form a paste. After coating, drying and compression molding using a calender roll, an electrode was prepared. This electrode is used as a working electrode, metal Li is used for a counter electrode and a reference electrode, and a mixed solution of ethylene carbonate (EC) and methyl ethyl carbonate (MEC) in a volume ratio of 1: 2 is 1.2 mol / dm. of LiPF 6 3 was prepared by dissolving. Using these, a model cell was assembled and charge / discharge characteristics were examined.

【0027】(実施例2)実施例1で準備したものと同
様のSiO2及びFe23の粉体を5:1モルの割合で
混合した後、大気炉で1400℃の温度で10時間焼結
して複合酸化物を調製した。この複合酸化物をH2ガス
の雰囲気中でFeの部分還元を行ない、続いてC24
スとH2ガスの雰囲気で600℃でカーボンナノチュー
ブを合成した。合成後のカーボンナノチューブをTEM
による分析及び蛍光X線分析を行ない、組成について定
量を行なった。その結果、カーボンナノチューブの中空
部に含有されているSiの含有量は10質量%であっ
た。
(Example 2) The same SiO 2 and Fe 2 O 3 powders as those prepared in Example 1 were mixed at a ratio of 5: 1 mol, and the mixture was heated in an air furnace at a temperature of 1400 ° C. for 10 hours. The composite oxide was prepared by sintering. This composite oxide was subjected to partial reduction of Fe in an atmosphere of H 2 gas, and then carbon nanotubes were synthesized at 600 ° C. in an atmosphere of C 2 H 4 gas and H 2 gas. Synthesized carbon nanotubes in TEM
And X-ray fluorescence analysis were performed to quantify the composition. As a result, the content of Si contained in the hollow portion of the carbon nanotube was 10% by mass.

【0028】得られたカーボンナノチューブを負極活物
質とし、PVDFをバインダに用い、この負極活物質4
5gとPVDF5gとを混合してペースト状とし、この
ペーストを厚み10μmの銅箔に塗布し、乾燥後カレン
ダーロールを用いて圧縮成形して電極を作成した。この
電極を作用極とし、対極、参照極には金属Liを用い、
電解液にはECとMECが体積割合で1:2の混合溶液
に1.2mol/dm 3のLiPF6を溶解したものを用
いた。これらを用いてモデルセルを組み立て、充放電特
性を調べた。
The obtained carbon nanotube was used as a negative electrode active material.
The anode active material 4 is made of PVDF as a binder.
5g and 5g of PVDF are mixed to form a paste,
Apply the paste to a 10μm thick copper foil, dry
An electrode was prepared by compression molding using a Darroll. this
Using the electrode as a working electrode, metal Li as a counter electrode and a reference electrode,
EC and MEC mixed solution of 1: 2 by volume in electrolyte
1.2 mol / dm ThreeLiPF6For use
Was. Assemble the model cell using these and charge and discharge
The sex was examined.

【0029】(実施例3)実施例1で準備したものと同
様のSiO2及びFe23の粉体を5:1モルの割合で
混合した後、大気炉で1400℃の温度で10時間焼結
して複合酸化物を調製した。この複合酸化物をH2ガス
の雰囲気中でFeの部分還元を行ない、続いてC24
スとH2ガスの雰囲気で600℃でカーボンナノチュー
ブを合成した。合成後のカーボンナノチューブをTEM
による分析及び蛍光X線分析を行ない、組成について定
量を行なった。その結果、カーボンナノチューブの中空
部に含有されているSiの含有量は10質量%であっ
た。
Example 3 The same powders of SiO 2 and Fe 2 O 3 as those prepared in Example 1 were mixed at a ratio of 5: 1 mol, and then, in an air furnace at a temperature of 1400 ° C. for 10 hours. The composite oxide was prepared by sintering. This composite oxide was subjected to partial reduction of Fe in an atmosphere of H 2 gas, and then carbon nanotubes were synthesized at 600 ° C. in an atmosphere of C 2 H 4 gas and H 2 gas. Synthesized carbon nanotubes in TEM
And X-ray fluorescence analysis were performed to quantify the composition. As a result, the content of Si contained in the hollow portion of the carbon nanotube was 10% by mass.

【0030】得られたカーボンナノチューブと、他にメ
ソカーボンマイクロビーズを質量比3:1で混合し、こ
の混合物を負極活物質とし、PVDFをバインダに用
い、この負極活物質45gとPVDF5gとを混合して
ペースト状とし、このペーストを厚み10μmの銅箔に
塗布し、乾燥後カレンダーロールを用いて圧縮成形して
電極を作成した。この電極を作用極とし、対極、参照極
には金属Liを用い、電解液にはECとMECが体積割
合で1:2の混合溶液に1.2mol/dm3のLiP
6を溶解したものを用いた。これらを用いてモデルセ
ルを組み立て、充放電特性を調べた。
The obtained carbon nanotubes and other mesocarbon microbeads were mixed at a mass ratio of 3: 1, and this mixture was used as a negative electrode active material. Using PVDF as a binder, 45 g of this negative electrode active material and 5 g of PVDF were mixed. The paste was applied to a copper foil having a thickness of 10 μm, dried, and compression-molded using a calender roll to form an electrode. This electrode is used as a working electrode, metallic Li is used for a counter electrode and a reference electrode, and 1.2 mol / dm 3 LiP is added to a mixed solution of EC and MEC in a volume ratio of 1: 2 as an electrolytic solution.
It was prepared by dissolving the F 6. Using these, a model cell was assembled and charge / discharge characteristics were examined.

【0031】(比較例1)実施例1で準備したものと同
様のFe23の粉体を大気炉で1400℃の温度で10
時間焼結し、その後これをH2ガスの雰囲気中でFeの
部分還元を行ない、続いてC24ガスとH2ガスの雰囲
気で600℃でカーボンナノチューブを合成した。
Comparative Example 1 The same powder of Fe 2 O 3 as that prepared in Example 1 was heated in an atmospheric furnace at a temperature of 1400 ° C. for 10 minutes.
After sintering for a period of time, this was subjected to partial reduction of Fe in an atmosphere of H 2 gas, and subsequently carbon nanotubes were synthesized at 600 ° C. in an atmosphere of C 2 H 4 gas and H 2 gas.

【0032】得られたカーボンナノチューブを負極活物
質とし、PVDFをバインダに用い、この負極活物質4
5gとPVDF5gとを混合してペースト状とし、この
ペーストを厚み10μmの銅箔に塗布し、乾燥後カレン
ダーロールを用いて圧縮成形して電極を作成した。この
電極を作用極とし、対極、参照極には金属Liを用い、
電解液にはECとMECが体積割合で1:2の混合溶液
に1.2mol/dm 3のLiPF6を溶解したものを用
いた。これらを用いてモデルセルを組み立て、充放電特
性を調べた。
The obtained carbon nanotube was used as a negative electrode active material.
The anode active material 4 is made of PVDF as a binder.
5g and 5g of PVDF are mixed to form a paste,
Apply the paste to a 10μm thick copper foil, dry
An electrode was prepared by compression molding using a Darroll. this
Using the electrode as a working electrode, metal Li as a counter electrode and a reference electrode,
EC and MEC mixed solution of 1: 2 by volume in electrolyte
1.2 mol / dm ThreeLiPF6For use
Was. Assemble the model cell using these and charge and discharge
The sex was examined.

【0033】上記実施例1〜3及び比較例1の充放電特
性の結果を表1に示す。
Table 1 shows the results of the charge / discharge characteristics of Examples 1 to 3 and Comparative Example 1.

【0034】[0034]

【表1】 [Table 1]

【0035】表1から明らかように、カーボンナノチュ
ーブの中空部にリチウムと合金を形成することが可能な
Siを配置した実施例1〜3では、1サイクル目の充電
容量及び放電容量が比較例1に比べて大きいことが分か
る。特に、SiO2の混合割合が多く、且つバインダ以
外はすべてカーボンナノチューブを負極活物質として用
いた実施例2の放電容量が最も優れている。また、50
サイクル目の放電容量についても上記と同様の傾向を示
している。
As is clear from Table 1, in Examples 1 to 3 in which Si capable of forming an alloy with lithium was disposed in the hollow portion of the carbon nanotube, the charge capacity and the discharge capacity in the first cycle were compared with those in Comparative Example 1. It turns out that it is larger than. In particular, the discharge capacity of Example 2 in which the mixing ratio of SiO 2 was large and carbon nanotubes were used as the negative electrode active material except for the binder was the most excellent. Also, 50
The discharge capacity at the cycle also shows the same tendency as described above.

【0036】以上より、本発明の非水二次電池は、従来
のものに比べてエネルギー密度が高く、高容量で、且つ
サイクル特性が優れていることが分かる。
From the above, it can be seen that the non-aqueous secondary battery of the present invention has a higher energy density, a higher capacity, and superior cycle characteristics as compared with conventional batteries.

【0037】また、本発明の非水二次電池は、カーボン
ナノチューブを主体とした負極活物質を使用しているた
め、リチウムのデンドライトの発生が抑制され、電池の
安全性が向上し、また自己放電特性も向上する。
Further, since the non-aqueous secondary battery of the present invention uses a negative electrode active material mainly composed of carbon nanotubes, the generation of lithium dendrites is suppressed, the safety of the battery is improved, and The discharge characteristics are also improved.

【0038】更に、充放電に伴うカーボンナノチューブ
の膨張・収縮は黒鉛に比べて小さいため、本発明の非水
二次電池の負荷特性も向上する。
Further, since the expansion and contraction of the carbon nanotube due to charge and discharge is smaller than that of graphite, the load characteristics of the nonaqueous secondary battery of the present invention are also improved.

【0039】[0039]

【発明の効果】以上のように本発明の非水二次電池によ
れば、エネルギー密度が高く、高容量で、サイクル特性
に優れ、安全性の面で信頼性が高く、自己放電が少な
く、負荷特性が良好な非水二次電池を提供できる。
As described above, according to the non-aqueous secondary battery of the present invention, the energy density is high, the capacity is high, the cycle characteristics are excellent, the reliability is high in terms of safety, the self-discharge is small, A non-aqueous secondary battery having good load characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いるカーボンナノチューブの概要図
である。 1 カーボンナノチューブ 2 中空部 3 リチウムと合金を形成することが可能な元素
FIG. 1 is a schematic view of a carbon nanotube used in the present invention. DESCRIPTION OF SYMBOLS 1 Carbon nanotube 2 Hollow part 3 Element which can form an alloy with lithium

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AJ05 AK03 AK11 AL06 AM03 AM05 AM07 HJ01 5H050 AA02 AA07 AA08 BA15 BA16 BA17 CA07 CA17 CB07 FA07 HA01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5H029 AJ02 AJ03 AJ05 AK03 AK11 AL06 AM03 AM05 AM07 HJ01 5H050 AA02 AA07 AA08 BA15 BA16 BA17 CA07 CA17 CB07 FA07 HA01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 カーボンナノチューブを有する負極を備
えた非水二次電池であって、前記カーボンナノチューブ
の中空部にリチウムと合金を形成することが可能な元素
を配置したことを特徴とする非水二次電池。
1. A non-aqueous secondary battery provided with a negative electrode having carbon nanotubes, wherein an element capable of forming an alloy with lithium is arranged in a hollow portion of the carbon nanotube. Rechargeable battery.
【請求項2】 前記リチウムと合金を形成することが可
能な元素が、亜鉛、カドミウム、アルミニウム、ガリウ
ム、インジウム、タリウム、ケイ素、ゲルマニウム、
錫、鉛、アンチモン、及びビスマスからなる群から選択
される少なくとも一種類の元素である請求項1に記載の
非水二次電池。
2. The element capable of forming an alloy with lithium includes zinc, cadmium, aluminum, gallium, indium, thallium, silicon, germanium,
The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery is at least one element selected from the group consisting of tin, lead, antimony, and bismuth.
【請求項3】 前記カーボンナノチューブの負極全体に
対する割合が、5〜100質量%である請求項1又は2
に記載の非水二次電池。
3. The method according to claim 1, wherein the ratio of the carbon nanotubes to the whole negative electrode is 5 to 100% by mass.
The non-aqueous secondary battery according to 1.
JP2001137580A 2001-05-08 2001-05-08 Non-aqueous secondary battery Withdrawn JP2002334697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001137580A JP2002334697A (en) 2001-05-08 2001-05-08 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001137580A JP2002334697A (en) 2001-05-08 2001-05-08 Non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2002334697A true JP2002334697A (en) 2002-11-22

Family

ID=18984670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001137580A Withdrawn JP2002334697A (en) 2001-05-08 2001-05-08 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2002334697A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220911A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
JP2004220910A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
JP2004319186A (en) * 2003-04-14 2004-11-11 Sony Corp Nonaqueous electrolyte battery
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
CN1309104C (en) * 2005-04-06 2007-04-04 清华大学 Method for increasing electrochemical lithium storage content of nano-carbon tube
JP2007234338A (en) * 2006-02-28 2007-09-13 Equos Research Co Ltd Secondary battery's positive electrode material, its manufacturing method and secondary battery
JP2007234358A (en) * 2006-02-28 2007-09-13 Toshiba Corp Electrode material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and battery pack
JP2007294196A (en) * 2006-04-24 2007-11-08 Kansai Coke & Chem Co Ltd Anode material for lithium ion secondary battery and its manufacturing method
JP2008077969A (en) * 2006-09-21 2008-04-03 Toyota Motor Corp Lithium-ion secondary battery and its manufacturing method
JP2010003695A (en) * 2008-06-20 2010-01-07 Toyota Motor Engineering & Manufacturing North America Inc Lithium alloying material/carbon composite
JP2010277989A (en) * 2009-04-28 2010-12-09 Denso Corp Negative electrode for nonaqueous electrolyte solution battery, and nonaqueous electrolyte solution
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
JP2012530349A (en) * 2009-06-18 2012-11-29 エルジー・ケム・リミテッド Negative electrode active material for lithium secondary battery and method for producing the same
JP2013187097A (en) * 2012-03-09 2013-09-19 Nec Corp Composite body of silicon or silicon oxide and carbon nanohorn, electrode material, lithium ion secondary battery, and method for producing composite body of silicon or silicon oxide and carbon nanohorn
KR101337528B1 (en) 2011-04-26 2013-12-06 인하대학교 산학협력단 Manufacturing method of Tin-filled Carbon nanotubes as anode materials for improving the charge/discharge system

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004220910A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
JP2004220911A (en) * 2003-01-15 2004-08-05 Mitsubishi Materials Corp Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
JP4543618B2 (en) * 2003-04-14 2010-09-15 ソニー株式会社 Non-aqueous electrolyte battery
JP2004319186A (en) * 2003-04-14 2004-11-11 Sony Corp Nonaqueous electrolyte battery
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
CN1309104C (en) * 2005-04-06 2007-04-04 清华大学 Method for increasing electrochemical lithium storage content of nano-carbon tube
JP2007234338A (en) * 2006-02-28 2007-09-13 Equos Research Co Ltd Secondary battery's positive electrode material, its manufacturing method and secondary battery
JP2007234358A (en) * 2006-02-28 2007-09-13 Toshiba Corp Electrode material for nonaqueous electrolyte battery, nonaqueous electrolyte battery, and battery pack
JP2007294196A (en) * 2006-04-24 2007-11-08 Kansai Coke & Chem Co Ltd Anode material for lithium ion secondary battery and its manufacturing method
JP2008077969A (en) * 2006-09-21 2008-04-03 Toyota Motor Corp Lithium-ion secondary battery and its manufacturing method
JP2010003695A (en) * 2008-06-20 2010-01-07 Toyota Motor Engineering & Manufacturing North America Inc Lithium alloying material/carbon composite
JP2010277989A (en) * 2009-04-28 2010-12-09 Denso Corp Negative electrode for nonaqueous electrolyte solution battery, and nonaqueous electrolyte solution
JP2012530349A (en) * 2009-06-18 2012-11-29 エルジー・ケム・リミテッド Negative electrode active material for lithium secondary battery and method for producing the same
US9391321B2 (en) 2009-06-18 2016-07-12 Lg Chem, Ltd. Negative-electrode active material for lithium secondary battery and method of preparing the same
JP2011057541A (en) * 2009-08-11 2011-03-24 Sekisui Chem Co Ltd Carbon material, electrode material, and negative-electrode material for lithium-ion secondary battery
KR101337528B1 (en) 2011-04-26 2013-12-06 인하대학교 산학협력단 Manufacturing method of Tin-filled Carbon nanotubes as anode materials for improving the charge/discharge system
JP2013187097A (en) * 2012-03-09 2013-09-19 Nec Corp Composite body of silicon or silicon oxide and carbon nanohorn, electrode material, lithium ion secondary battery, and method for producing composite body of silicon or silicon oxide and carbon nanohorn

Similar Documents

Publication Publication Date Title
US8617746B2 (en) Si/C composite, anode active materials, and lithium battery including the same
US7452632B2 (en) Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery comprising same
JP4713051B2 (en) Battery active material and method for producing the same
US7534528B2 (en) Electrode material for anode of rechargeable lithium battery, electrode structural body using said electrode material, rechargeable lithium battery using said electrode structural body, process for producing said electrode structural body, and process for producing said rechargeable lithium battery
KR100433002B1 (en) Electrode, lithium battery adopting the same, and method for manufacturing the same
US8343657B2 (en) Negative electrode for lithium secondary battery, method of manufacturing the electrode, and lithium secondary battery
JPH103920A (en) Lithium secondary battery, and manufacture of the same
JP5098192B2 (en) COMPOSITE PARTICLE FOR LITHIUM SECONDARY BATTERY, ITS MANUFACTURING METHOD, AND LITHIUM SECONDARY BATTERY USING THE SAME
JPWO2004100293A1 (en) NEGATIVE ELECTRODE ACTIVE MATERIAL, MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY USING THE SAME
JP2010278014A (en) Lithium secondary battery
JP2008034368A (en) Lithium ion storage battery containing contains tio2-b as anode active substance
WO2022016951A1 (en) Silicon-based negative electrode material, negative electrode, and lithium-ion battery and preparation method therefor
JP2000164218A (en) Negative electrode active material for lithium secondary battery, and manufacture thereof, and lithium secondary battery including the same
JP2004055505A (en) Lithium secondary battery and negative electrode material therefor
JP2002334697A (en) Non-aqueous secondary battery
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
JP4379971B2 (en) Electrical energy storage element
JP3200572B2 (en) Lithium secondary battery
JP5706065B2 (en) Composite negative electrode active material, manufacturing method thereof, and negative electrode and lithium battery employing the same
JP2003208893A (en) Non-aqueous secondary battery and charging method thereof
JP2012529747A (en) Thin film alloy electrode
KR100950312B1 (en) Negative active material for lithium secondary battery, method of preparing same and lithium secondary battery comprising same
Guo et al. A novel SnxSbNi composite as anode materials for Li rechargeable batteries
JP2000173587A (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805