JP5119584B2 - Nonaqueous electrolyte secondary battery and method for producing the negative electrode - Google Patents

Nonaqueous electrolyte secondary battery and method for producing the negative electrode Download PDF

Info

Publication number
JP5119584B2
JP5119584B2 JP2005296289A JP2005296289A JP5119584B2 JP 5119584 B2 JP5119584 B2 JP 5119584B2 JP 2005296289 A JP2005296289 A JP 2005296289A JP 2005296289 A JP2005296289 A JP 2005296289A JP 5119584 B2 JP5119584 B2 JP 5119584B2
Authority
JP
Japan
Prior art keywords
negative electrode
lithium
particles
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005296289A
Other languages
Japanese (ja)
Other versions
JP2007109423A (en
Inventor
俊忠 佐藤
康隆 古結
和義 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005296289A priority Critical patent/JP5119584B2/en
Publication of JP2007109423A publication Critical patent/JP2007109423A/en
Application granted granted Critical
Publication of JP5119584B2 publication Critical patent/JP5119584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は非水電解質二次電池に関し、より詳しくはSiおよびSi化合物を含む高容量タイプの負極を用いた非水電解質二次電池の長寿命化に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to extending the life of a non-aqueous electrolyte secondary battery using a high-capacity type negative electrode containing Si and a Si compound.

リチウムイオン二次電池に代表される非水電解質二次電池は、ポータブル機器を中心に高容量電源として注目されている。近年、この電池のさらなる高容量化を目的に、電極材料の開発(高容量活物質の活用および副材料の減量)や機構部品の改良(薄型化など)が活発化している。   Nonaqueous electrolyte secondary batteries typified by lithium ion secondary batteries are attracting attention as high-capacity power supplies mainly in portable devices. In recent years, development of electrode materials (utilization of high-capacity active materials and reduction of secondary materials) and improvement of mechanical parts (thinning, etc.) have been activated for the purpose of further increasing the capacity of the battery.

中でも負極活物質としてのSiおよびSi化合物は、理論容量が黒鉛を遥かに凌ぐ高容量材料であり、その活用に向けた改良研究が試みられている。一例として、Siを銅箔などの集電体上に薄膜形成して負極に用いた非水電解質二次電池(例えば特許文献1)や、Siより低容量ながら長寿命であるSi酸化物を負極活物質に用いた非水電解質二次電池(例えば特許文献2)が報告されている。   Among these, Si and Si compounds as negative electrode active materials are high-capacity materials whose theoretical capacity far exceeds that of graphite, and improvement studies for their utilization have been attempted. As an example, a non-aqueous electrolyte secondary battery (for example, Patent Document 1) in which Si is formed into a thin film on a current collector such as a copper foil and used as a negative electrode, or a Si oxide having a lower capacity than Si but a long life is used as a negative electrode. A non-aqueous electrolyte secondary battery (for example, Patent Document 2) used as an active material has been reported.

ところで上述したSiやSi化合物は、総じて負極活物質として用いた場合の不可逆容量(充電時に吸蔵されるが放電時に放出されないLi量)が非常に大きい。そこでこの不可逆容量を補填するために、表面が炭酸リチウムを主とする化合物で覆われた粒子を負極中に添加することが提案されている(例えば特許文献3)。この技術を特許文献1および2に展開することにより、SiやSi化合物の利点(高容量)を損なわず最大限活用した非水電解質二次電池が実現できると考えられる。
特開2002−083594号公報 特許第2997741号公報 米国特許第5567474号明細書
Incidentally, the above-described Si and Si compounds generally have a very large irreversible capacity (amount of Li that is occluded during charging but not released during discharging) when used as a negative electrode active material. In order to compensate for this irreversible capacity, it has been proposed to add particles whose surface is covered with a compound mainly composed of lithium carbonate into the negative electrode (for example, Patent Document 3). By deploying this technology in Patent Documents 1 and 2, it is considered that a non-aqueous electrolyte secondary battery that can be utilized to the maximum without impairing the advantages (high capacity) of Si and Si compounds can be realized.
Japanese Patent Laid-Open No. 2002-083594 Japanese Patent No. 2999741 US Pat. No. 5,567,474

しかしながら特許文献3の技術を用いた場合、上述した不可逆容量の課題は解決されるものの、新たな課題として保存時あるいは充放電サイクル中のガス発生(主成分はCO2)によって電池が膨張することが判明した。本発明はこの課題を解決するものであり、SiおよびSi化合物の課題である不可逆容量の補填を、ガス発生などの新課題を発生させることなく行える、高容量で特性バランスに優れた非水電解質二次電池を提供することを目的とする。 However, when the technique of Patent Document 3 is used, the above-described irreversible capacity problem is solved, but as a new problem, the battery expands due to gas generation (main component is CO 2 ) during storage or charge / discharge cycles. There was found. The present invention solves this problem, and can compensate for irreversible capacity, which is a problem of Si and Si compounds, without generating new problems such as gas generation, and has a high capacity and excellent property balance. An object is to provide a secondary battery.

上記課題を鑑みて、本発明の非水電解質二次電池は、リチウムを電気化学的に吸蔵放出可能な正極および負極と、非水電解質とから構成され、負極はSiおよび/あるいはSi化合物と、酸化リチウムを主体とする表層を有する金属リチウム粒子とを含むことを特徴とする。   In view of the above problems, the nonaqueous electrolyte secondary battery of the present invention is composed of a positive electrode and a negative electrode capable of electrochemically occluding and releasing lithium, and a nonaqueous electrolyte, and the negative electrode includes Si and / or a Si compound, And metal lithium particles having a surface layer mainly composed of lithium oxide.

またこの非水電解質二次電池を具現化する方法として、本発明の非水電解質二次電池用負極の製造方法は、Siおよび/あるいはSi化合物を含む活物質層に金属リチウムを配置する第1の工程と、酸化性雰囲気中で金属リチウムを酸化させることにより酸化リチウムを主体とする表層を有する金属リチウム粒子を形成させる第2の工程とを有することを特徴とする。   As a method for embodying this non-aqueous electrolyte secondary battery, the method for producing a negative electrode for a non-aqueous electrolyte secondary battery according to the present invention is a first method in which metallic lithium is arranged on an active material layer containing Si and / or Si compounds. And a second step of forming metal lithium particles having a surface layer mainly composed of lithium oxide by oxidizing metal lithium in an oxidizing atmosphere.

本発明者らは鋭意検討の結果、不可逆容量の補填源である金属リチウムを安定的に電池内に存在させるためには、金属リチウムの表層に酸化リチウムを主体とする表層を設けることが好ましいことを見出した。さらに本発明者らは、金属リチウムを粒子状にしてその表面積を増すことにより、不可逆容量の補填源として顕著な効果を発揮することを見出した。しかしこのような粒子は単体としての作製が困難であり、仮に作製できたとしてもこれを効率的に負極に分散投入することは極めて困難である。そこで本発明者らはさらに、Siおよび/あるいはSi化合物を含む活物質層に金属リチウムを配置した上で、この金属リチウムを酸化性雰囲気中で酸化させることにより、酸化リチウムを主体とする表層を有する金属リチウム粒子を、負極に安定して形成させることができることを見出した。本発明は以上の知見を集積したものである。   As a result of intensive studies, the inventors of the present invention preferably provide a surface layer mainly composed of lithium oxide on the surface layer of the metal lithium in order to make the metal lithium, which is a source of irreversible capacity, stably present in the battery. I found. Furthermore, the present inventors have found that by making metallic lithium into a particulate form and increasing its surface area, a remarkable effect can be exhibited as a supplement source for irreversible capacity. However, such particles are difficult to produce as a single substance, and even if they can be produced, it is extremely difficult to efficiently disperse them into the negative electrode. Therefore, the present inventors further arranged a surface layer mainly composed of lithium oxide by disposing metal lithium in an active material layer containing Si and / or Si compound and oxidizing the metal lithium in an oxidizing atmosphere. It has been found that the lithium metal particles can be stably formed on the negative electrode. The present invention is a collection of the above findings.

本発明によれば、SiおよびSi化合物による多大な不可逆容量を、ガス発生などの課題を引き起こすことなく補填できるため、高容量で特性バランスに優れた非水電解質二次電池を、無理なく供給することが可能となる。   According to the present invention, a large amount of irreversible capacity due to Si and Si compounds can be compensated without causing problems such as gas generation, so that a non-aqueous electrolyte secondary battery having a high capacity and excellent characteristic balance can be supplied without difficulty. It becomes possible.

以下、本発明を実施するための最良の形態について、詳細に記す。   Hereinafter, the best mode for carrying out the present invention will be described in detail.

請求項1に記載の発明は、リチウムを電気化学的に吸蔵放出可能な正極および負極と、非水電解質とから構成され、負極はSiおよび/あるいはSi化合物と、酸化リチウムを主体とする表層を有する金属リチウム粒子とを含むことを特徴とする非水電解質二次電池に関する。Siおよび/あるいはSi化合物は高容量な負極活物質であるが不可逆容量が大きい。この不可逆容量分のリチウムを補填するためには金属リチウムが必要であるが、金属リチウムを安定的に電池内に存在させるためには、金属リチウムの表層に酸化リチウムを主体とする表層を設けることが好ましい。さらは金属リチウムを表面積の大きい粒子状とすることにより、不可逆容量の補填が容易になる。請求項1の構成はこれらの新たな知見を活用したものであり、この構成を採ることにより、ガス発生などの課題がない高容量タイプの非水電解質二次電池を安定に作製できる。   The invention described in claim 1 is composed of a positive electrode and a negative electrode capable of electrochemically occluding and releasing lithium, and a non-aqueous electrolyte. The negative electrode has a surface layer mainly composed of Si and / or Si compound and lithium oxide. The present invention relates to a non-aqueous electrolyte secondary battery characterized by containing metallic lithium particles. Si and / or Si compounds are high-capacity negative electrode active materials, but have a large irreversible capacity. In order to make up for this irreversible capacity of lithium, metallic lithium is necessary, but in order to make metallic lithium stably present in the battery, a surface layer mainly composed of lithium oxide is provided on the surface layer of metallic lithium. Is preferred. Furthermore, by making the metallic lithium into particles having a large surface area, it becomes easy to compensate for the irreversible capacity. The configuration of claim 1 utilizes these new findings. By adopting this configuration, a high-capacity non-aqueous electrolyte secondary battery free from problems such as gas generation can be stably produced.

なお金属リチウムの表層には酸化リチウムの他に炭酸リチウム、水酸化リチウム、あるいは塩化リチウム、フッ化リチウムなどが存在してもよいが、全リチウム化合物に占める酸化リチウムの割合は60重量%以上(好ましくは80重量%以上)であるのが望ましい。またこの表層の厚みは粒子の直径に対して1%以下であることが好ましく、例えば直径1μmの粒子であれば10nm以下であることが望ましい。この理由は、粒子の表面に存在する化合物の厚みが厚すぎると、内部の金属リチウムが反応に関与することができず、不可逆容量の補填をすることが困難になるためである。   In addition to lithium oxide, lithium carbonate, lithium hydroxide, lithium chloride, lithium fluoride or the like may be present on the surface layer of metallic lithium, but the proportion of lithium oxide in the total lithium compound is 60% by weight or more ( Preferably, it is 80% by weight or more. The thickness of the surface layer is preferably 1% or less with respect to the diameter of the particles. For example, in the case of particles having a diameter of 1 μm, the thickness is preferably 10 nm or less. This is because if the thickness of the compound existing on the surface of the particles is too thick, the internal metallic lithium cannot participate in the reaction, making it difficult to compensate for the irreversible capacity.

請求項2に記載の発明は、請求項1の記載内容を前提として、金属リチウム粒子の粒径が0.1〜5μmであることを特徴とする。金属リチウムの粒子化による表面積拡大の効果を得るためには、粒径が5μm以下であるのが好ましい。ただし粒径が0.1μm未満になると、この金属リチウム粒子の表面に設けた酸化リチウム(不可逆容量の補填源とはなり得ない)の割合が過剰となるので好ましくない。請求項2の範囲で構成することにより、本発明の効果が十分に発揮される。   The invention described in claim 2 is characterized in that, based on the description of claim 1, the particle size of the metal lithium particles is 0.1 to 5 μm. In order to obtain the effect of increasing the surface area by forming metal lithium into particles, the particle diameter is preferably 5 μm or less. However, when the particle size is less than 0.1 μm, the ratio of lithium oxide (cannot be a source of irreversible capacity) provided on the surface of the metal lithium particles becomes excessive, which is not preferable. By comprising in the range of Claim 2, the effect of this invention is fully exhibited.

なお金属リチウムの粒径は、図1に示す電子顕微鏡写真(SEM像)などから倍率換算により求めることが可能である。図1において1はSi化合物からなる活物質、2は酸化リチウムを主体とする表層を有する金属リチウム粒子である。活物質1と金属リチウム粒子2との区別は、X線光電子分光法(ESCA)と電子顕微鏡写真を組み合わせて用いることにより可能である。さらに金属リチウム粒子2の表面に酸化リチウム層が存在するこ
とは、上述のESCAでも可能であるし、さらにはオージェ分光分析法または核磁気共鳴法(Li−NMR)により同定が可能である。
In addition, the particle size of metallic lithium can be calculated | required by magnification conversion from the electron micrograph (SEM image) etc. which are shown in FIG. In FIG. 1, 1 is an active material made of a Si compound, and 2 is a metal lithium particle having a surface layer mainly composed of lithium oxide. The active material 1 and the metal lithium particles 2 can be distinguished from each other by using a combination of X-ray photoelectron spectroscopy (ESCA) and an electron micrograph. Further, the presence of the lithium oxide layer on the surface of the metal lithium particles 2 can be performed by the above-described ESCA, and further can be identified by Auger spectroscopy or nuclear magnetic resonance (Li-NMR).

請求項3に記載の発明は、Siおよび/あるいはSi化合物を含む活物質層に金属リチウムを配置する第1の工程と、酸化性雰囲気中で金属リチウムを酸化させることにより酸化リチウムを主体とする表層を有する金属リチウム粒子を形成させる第2の工程とを有することを特徴とする非水電解質二次電池用負極の製造方法に関する。請求項1に記載の金属リチウム粒子は単体としての作製が困難であり、仮に作製できたとしてもこれを効率的に負極に分散投入することは極めて困難である。そこで請求項3に記載したように、Siおよび/あるいはSi化合物を含む活物質層に金属リチウムを配置した上で、この金属リチウムを酸化性雰囲気中で酸化させることにより、酸化リチウムを主体とする表層を有する金属リチウム粒子を、負極に安定して形成させる製造方法が必須となる。   According to a third aspect of the present invention, the first step of arranging metallic lithium on the active material layer containing Si and / or the Si compound, and lithium oxide by oxidizing metallic lithium in an oxidizing atmosphere are mainly used. It has a 2nd process of forming the metal lithium particle which has a surface layer, and relates to the manufacturing method of the negative electrode for nonaqueous electrolyte secondary batteries characterized by the above-mentioned. The metal lithium particles according to claim 1 are difficult to produce as a single substance, and even if they can be produced, it is extremely difficult to efficiently disperse them into the negative electrode. Therefore, as described in claim 3, after lithium metal is arranged in the active material layer containing Si and / or Si compound, the metal lithium is oxidized in an oxidizing atmosphere, so that lithium oxide is mainly used. A production method for stably forming metallic lithium particles having a surface layer on the negative electrode is essential.

第1の工程で用いる金属リチウムとしては、ワイヤー状、メッシュ状あるいは箔状のものを用いることができる。上述した金属リチウムをSiおよび/あるいはSi化合物を含む活物質層に配置した後、ローラなどを通して負極を平滑にし、第2の工程に導入する。第2の工程における酸化性雰囲気とは、金属リチウムの表面を酸化しうる量の酸素を含有した雰囲気を指し、具体的にはドライエアや脱水したアルゴンまたは窒素と酸素とを適量混合した状態などを指す。上述した雰囲気下で例えば80℃〜120℃に加熱することにより、一部のリチウムは負極活物質中に拡散するが、大部分のリチウムは表面が酸化リチウムに覆われた状態で負極合剤表面あるいは内部に配置される。なお負極を加熱する手段としては、負極を平滑にするローラを加熱する方法などが挙げられる。   As the metal lithium used in the first step, a wire, mesh, or foil can be used. After the metallic lithium described above is disposed on the active material layer containing Si and / or Si compound, the negative electrode is smoothed through a roller or the like and introduced into the second step. The oxidizing atmosphere in the second step refers to an atmosphere containing an amount of oxygen that can oxidize the surface of metallic lithium, and specifically includes a state in which an appropriate amount of dry air, dehydrated argon, nitrogen, and oxygen are mixed. Point to. By heating to 80 ° C. to 120 ° C., for example, in the above-described atmosphere, some lithium diffuses into the negative electrode active material, but most of the lithium is in the negative electrode mixture surface with the surface covered with lithium oxide. Or it is arranged inside. Examples of the means for heating the negative electrode include a method of heating a roller for smoothing the negative electrode.

請求項4に記載の発明は、請求項3の記載内容を前提として、第1の工程において金属リチウムを真空中でいったん蒸発させることを特徴とする。金属リチウムを粒子状にするという第1の要件と、その表面に酸化リチウム層を設けるという第2の要件を、工業的に安定化させるためには、請求項4に記載したように、第1の工程で設けた金属リチウムを真空中でいったん蒸発させるのが好ましい。この手法を用いると純度が高く、かつ表面積の大きな粒子を得ることができ、本発明の効果が一層顕著になる。   According to a fourth aspect of the present invention, on the premise of the content of the third aspect, in the first step, metallic lithium is once evaporated in a vacuum. In order to industrially stabilize the first requirement that metallic lithium is in the form of particles and the second requirement that a lithium oxide layer is provided on the surface thereof, the first requirement is as follows. It is preferable to evaporate the metallic lithium provided in step (1) in a vacuum. When this method is used, particles having high purity and a large surface area can be obtained, and the effect of the present invention becomes more remarkable.

本発明の金属リチウム粒子は負極上で直接作製するのが望ましい。いったん外部で金属リチウム粒子を作製し、その粒子を別工程にて負極に混合させる手段も考えられるが、非常に活性な粒子であるために負極上で直接作製する手法の方が安定的である。   The metallic lithium particles of the present invention are desirably produced directly on the negative electrode. Although it is conceivable to make metallic lithium particles externally and mix the particles with the negative electrode in a separate process, the method of producing directly on the negative electrode is more stable because it is a very active particle. .

次に本発明の主構成要素について、図を用いて説明する。   Next, main components of the present invention will be described with reference to the drawings.

図2は本発明の非水電解質二次電池の一例を示す概略断面図である。正極11と負極12とを、セパレータ13を介して円筒状に捲回することにより電極群を形成する。ここで正極11に正極リード14が、負極12には負極リード15が付設されている。この電極群の上面に上部絶縁リング16を、底面に下部絶縁リング17を配置して電池缶18に挿入した後、安全弁などを備えた封口板19をかしめることにより密閉して、本発明の非水電解質二次電池が形成されている。   FIG. 2 is a schematic cross-sectional view showing an example of the nonaqueous electrolyte secondary battery of the present invention. An electrode group is formed by winding the positive electrode 11 and the negative electrode 12 in a cylindrical shape with a separator 13 interposed therebetween. Here, a positive electrode lead 14 is attached to the positive electrode 11, and a negative electrode lead 15 is attached to the negative electrode 12. After the upper insulating ring 16 and the lower insulating ring 17 are disposed on the upper surface and the bottom surface of the electrode group, the electrode group is inserted into the battery can 18 and then sealed by caulking a sealing plate 19 provided with a safety valve or the like. A non-aqueous electrolyte secondary battery is formed.

正極11は、一般的な非水電解質二次電池の正極製造法に沿って作製される。具体的には正極活物質と、カーボンブラックなどの導電剤と、ポリフッ化ビニリデン(PVDF)などの結着剤とを液相中で混合し、得られたペーストをAl等からなる正極集電体上に塗布し、乾燥し、圧延することによって正極11が得られる。ここで正極活物質としては、一般的なリチウム含有遷移金属化合物を限定なく用いることができる。代表例としては、LiCoO2、LiNiO2、LiMn24、LiMnO2などを挙げることができる。前記の化合物の遷移金属元素を異種の金属元素に置換した化合物も好ましく用いられる。例
えば、LiCo1-xMgx2、LiNi1-yCoy2、LiNi1-y-zCoyMnz2(x、y、zは全て0以上1以下の数)等が挙げられる。
The positive electrode 11 is produced in accordance with a general method for producing a positive electrode of a nonaqueous electrolyte secondary battery. Specifically, a cathode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride (PVDF) are mixed in a liquid phase, and the resulting paste is a cathode current collector made of Al or the like. The positive electrode 11 is obtained by coating on top, drying and rolling. Here, as the positive electrode active material, a general lithium-containing transition metal compound can be used without limitation. Representative examples include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 and the like. A compound obtained by substituting a transition metal element of the above compound with a different metal element is also preferably used. For example, LiCo 1-x Mg x O 2, LiNi 1-y Co y O 2, LiNi 1-yz Co y Mn z O 2 (x, y, z , all number of 0 or more and 1 or less) and the like.

負極12は、一般的な非水電解質二次電池の負極製造法(塗布法)のほか、金属箔上に直接負極活物質を設ける方法を採ることができる。塗布法では、具体的には負極活物質と、必要に応じてカーボンブラックなどの導電剤と、結着剤および増粘剤とを液相中で混合し、得られたペーストをCu等からなる負極集電体上に塗布し、乾燥し、圧延することによって負極12が得られる。金属箔上に直接負極活物質を設ける方法では、具体的にはCu等からなる負極集電体上にスパッタリング法、真空蒸着法、溶射法、ショットピーニング法、CVD法などを用いてSiやSi化合物を堆積させることによって負極12が得られる。   The negative electrode 12 can employ a method of providing a negative electrode active material directly on a metal foil, in addition to a general negative electrode manufacturing method (coating method) for a nonaqueous electrolyte secondary battery. In the coating method, specifically, a negative electrode active material, a conductive agent such as carbon black, if necessary, a binder and a thickener are mixed in a liquid phase, and the obtained paste is made of Cu or the like. The negative electrode 12 is obtained by coating on a negative electrode current collector, drying, and rolling. In the method of directly providing a negative electrode active material on a metal foil, specifically, Si or Si is used by using a sputtering method, a vacuum deposition method, a thermal spraying method, a shot peening method, a CVD method or the like on a negative electrode current collector made of Cu or the like. The negative electrode 12 is obtained by depositing the compound.

負極活物質には高容量材料であるSiおよびSi化合物を用いることができるが、中でもSi酸化物が特に望ましい。Si酸化物はSiOx(xは0<x<2で示される任意の数)で示される。特に本発明では0<x≦1.0であることが、高容量化の観点から好ましい。さらにこの負極活物質は本来電子伝導性が極めて低いことから、リンや遷移金属などの元素を少量添加することも好ましい。またこれら高容量材料は、非晶質または低結晶性であることが好ましい。ここで低結晶性とは、結晶粒の粒径が50nm以下の領域を言う。結晶粒の粒径は、X線回折分析で得られる回折像の中で最も強度の大きなピークの半価幅から、Scherrerの式によって算出される。また非晶質とは、X線回折分析で得られる回折像において、2θ=15〜40°の範囲にブロードなピークを有することを言う。負極活物質が結晶性である場合、リチウムの挿入にともなう膨張によって負極活物質粒子または薄膜の割れ、破壊が生じる。この結果、負極活物質は反応面積が増大され非水電解質中に含まれるフッ酸と接する機会が増大する。これによりSiの溶解反応および皮膜としての析出反応が促進される。これに対し、非晶質または低結晶性の場合リチウムの挿入にともなう膨張は存在するものの、非常に微細な(数nm〜50nm程度)粒界によって区切られていることにより膨張応力が各粒界の間で分散・緩和され、結果として粒子、膜の割れや破壊が生じにくい。   Si and Si compounds, which are high-capacity materials, can be used for the negative electrode active material, and Si oxide is particularly desirable among them. The Si oxide is represented by SiOx (x is an arbitrary number represented by 0 <x <2). Particularly, in the present invention, 0 <x ≦ 1.0 is preferable from the viewpoint of increasing the capacity. Furthermore, since this negative electrode active material inherently has very low electron conductivity, it is also preferable to add a small amount of an element such as phosphorus or a transition metal. These high capacity materials are preferably amorphous or low crystalline. Here, low crystallinity refers to a region where the grain size of crystal grains is 50 nm or less. The grain size of the crystal grain is calculated by the Scherrer equation from the half-value width of the peak having the highest intensity in the diffraction image obtained by X-ray diffraction analysis. Amorphous means having a broad peak in the range of 2θ = 15 to 40 ° in a diffraction image obtained by X-ray diffraction analysis. In the case where the negative electrode active material is crystalline, the negative electrode active material particles or the thin film is cracked or broken due to expansion accompanying the insertion of lithium. As a result, the reaction area of the negative electrode active material is increased, and the opportunity to come into contact with hydrofluoric acid contained in the nonaqueous electrolyte increases. Thereby, the dissolution reaction of Si and the precipitation reaction as a film are promoted. On the other hand, in the case of amorphous or low crystallinity, although expansion due to lithium insertion exists, the expansion stress is separated from each grain boundary by being separated by very fine (about several to 50 nm) grain boundaries. As a result, the particles and the film are not easily cracked or broken.

塗布法で負極12を形成する場合、負極活物質は粒状であり、その粒径は0.1μm以上50μm以下であることが好ましい。また結着剤および増粘剤には、非水電解質二次電池が動作する電位範囲において電気化学的に不活性な材料を選択できる。例えばPVDFのほかにスチレン−ブチレン共重合ゴム(SBR)、ポリアクリル酸、ポリエチレン、ポリウレタン、ポリメタクリル酸メチル、ポリ4フッ化エチレン、カルボキシメチルセルロース(CMC)、メチルセルロース等が選択できる。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。結着剤の添加量は、活物質層の構造維持の観点からは多いほど好ましいが、電池容量および放電特性の向上の観点からは少ない方が好ましい。よってその好適範囲は負極活物質100重量部あたり0.5〜25重量部である。またいったん形成した活物質層を、加熱またはプラズマなどによって焼結することも、活物質層の構造維持の観点から望ましい。   When the negative electrode 12 is formed by a coating method, the negative electrode active material is granular, and the particle size is preferably 0.1 μm or more and 50 μm or less. For the binder and the thickener, an electrochemically inactive material can be selected in a potential range where the nonaqueous electrolyte secondary battery operates. For example, in addition to PVDF, styrene-butylene copolymer rubber (SBR), polyacrylic acid, polyethylene, polyurethane, polymethyl methacrylate, polytetrafluoroethylene, carboxymethylcellulose (CMC), methylcellulose and the like can be selected. These may be used alone or in combination. The amount of the binder added is preferably as large as possible from the viewpoint of maintaining the structure of the active material layer, but is preferably as small as possible from the viewpoint of improving battery capacity and discharge characteristics. Therefore, the suitable range is 0.5-25 weight part per 100 weight part of negative electrode active materials. It is also desirable from the viewpoint of maintaining the structure of the active material layer that the active material layer once formed is sintered by heating or plasma.

負極12の活物質層にはさらに、黒鉛、カーボンブラックまたはカーボンナノチューブなどを代表とする炭素を主とする導電剤が含まれていることが好ましい。これらの導電剤は負極活物質と一体化している方が、膨張・収縮を繰り返しても電極構造が維持できるので好ましい。   The active material layer of the negative electrode 12 preferably further contains a conductive agent mainly composed of carbon such as graphite, carbon black, or carbon nanotube. These conductive agents are preferably integrated with the negative electrode active material because the electrode structure can be maintained even after repeated expansion and contraction.

負極12の活物質層の厚みは、活物質を析出させる方法や塗布後に焼結する方法に沿った場合は3〜50μmであることが好ましい。3μm未満の場合、電池中に占める集電体の体積が大きくなって容量が低下する。逆に50μmを超える場合、活物質の膨張による応力が集電体あるいは負極12全体に大きく影響を与えて変形を促すため好ましくない。
なお塗布法に沿った場合は、上下限の理由は同様であるが好適範囲が10〜100μmにスライドする。
The thickness of the active material layer of the negative electrode 12 is preferably 3 to 50 μm in accordance with a method of depositing the active material or a method of sintering after coating. When the thickness is less than 3 μm, the volume of the current collector in the battery increases and the capacity decreases. On the other hand, if the thickness exceeds 50 μm, the stress due to the expansion of the active material greatly affects the current collector or the entire negative electrode 12 and promotes deformation, which is not preferable.
When the application method is followed, the reason for the upper and lower limits is the same, but the preferred range slides to 10 to 100 μm.

負極12に用いられる集電体には、Cu箔またはCu合金箔を用いることが望ましい。Cu合金箔の場合、Cuの含有量は90重量%以上であることが電子伝導性および箔の柔軟性の観点から好ましい。集電体の強度あるいは柔軟性を向上させる観点からは、集電体にP、Ag、Cr等の元素を含ませることが有効である。また集電体の厚みは、6〜40μmであることが好ましい。厚みが6μm未満の場合、工程での取り扱いが困難である上に、集電体に必要な強度も維持しにくく、合剤層の膨張および収縮によって切れやシワが生じやすい。一方厚みが40μmを超える場合、電池中に占める集電体の体積が大きくなって容量が低下する。また分厚い集電体は曲げにくい等、取り扱いもかえって困難である。   As the current collector used for the negative electrode 12, it is desirable to use a Cu foil or a Cu alloy foil. In the case of a Cu alloy foil, the Cu content is preferably 90% by weight or more from the viewpoints of electron conductivity and foil flexibility. From the viewpoint of improving the strength or flexibility of the current collector, it is effective to include an element such as P, Ag, or Cr in the current collector. The thickness of the current collector is preferably 6 to 40 μm. When the thickness is less than 6 μm, it is difficult to handle in the process, it is difficult to maintain the strength required for the current collector, and cuts and wrinkles are likely to occur due to expansion and contraction of the mixture layer. On the other hand, when thickness exceeds 40 micrometers, the volume of the electrical power collector which occupies in a battery becomes large, and a capacity | capacitance falls. In addition, thick current collectors are difficult to handle, such as difficult to bend.

非水電解質を含む電解液は、一般的な非水電解質二次電池に用いられているものであれば、特に限定なく用いることができる。具体的は非水溶媒にリチウム塩が溶解している電解液が好ましい。非水溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート類とジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類との混合溶媒が一般的に用いられる。さらには非水溶媒にγ−ブチルラクトンやジメトキシエタンなどが混合されていても構わない。また、非水電解液中に含まれる主たる支持電解質は6フッ化リン酸リチウムであり、その濃度は0.5モル/L以上2モル/L以下であることが望ましい。6フッ化リン酸リチウムを主たる支持電解質として用いた非水電解液は他のリチウム塩を用いた場合に比較して電池特性を良好にする。さらには前記量の6フッ化リン酸リチウムに加えて他のリチウム塩、例えば4フッ化硼酸リチウムやイミド−リチウム塩が少量添加されていてもよい。   The electrolyte solution containing a non-aqueous electrolyte can be used without particular limitation as long as it is used for a general non-aqueous electrolyte secondary battery. Specifically, an electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent is preferable. As the non-aqueous solvent, a mixed solvent of cyclic carbonates such as ethylene carbonate and propylene carbonate and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is generally used. Furthermore, γ-butyl lactone, dimethoxyethane, or the like may be mixed in a non-aqueous solvent. The main supporting electrolyte contained in the nonaqueous electrolytic solution is lithium hexafluorophosphate, and the concentration is desirably 0.5 mol / L or more and 2 mol / L or less. The non-aqueous electrolyte using lithium hexafluorophosphate as the main supporting electrolyte improves battery characteristics as compared with the case where other lithium salts are used. Furthermore, in addition to the above-mentioned amount of lithium hexafluorophosphate, a small amount of other lithium salt, such as lithium tetrafluoroborate or imide-lithium salt, may be added.

セパレータ13は、適度なイオン伝導性を有し、かつ正極11と負極12との電気的絶縁を保てるものであれば任意に選択できる。具体的にはポリエチレン、ポリプロピレン等からなる微多孔性フィルムが好適であり、厚みは10〜30μmが好適である。   The separator 13 can be arbitrarily selected as long as it has appropriate ionic conductivity and can maintain electrical insulation between the positive electrode 11 and the negative electrode 12. Specifically, a microporous film made of polyethylene, polypropylene or the like is preferable, and the thickness is preferably 10 to 30 μm.

本発明は円筒型、扁平型、コイン型、角形等の様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。本発明は、金属製の電池缶やラミネートフィルム製のケースに、電極、電解液等の発電要素を収容した電池を含め、様々な封止形態の電池に適用可能であり、電池の封止形態は特に限定されない。   The present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited. INDUSTRIAL APPLICABILITY The present invention can be applied to batteries of various sealing forms, including batteries that contain power generation elements such as electrodes and electrolytes in metal battery cans and laminated film cases. Is not particularly limited.

次に、本発明を実施例および比較例に基づいて具体的に説明するが、下記の実施例は本発明の好ましい形態を例示するものであり、本発明は下記の実施例に限定されない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example and a comparative example, the following Example illustrates the preferable form of this invention, and this invention is not limited to the following Example.

(実施例1−1)
(1)負極前駆体の作製
負極活物質としてSiO(純度99.9%、住友チタニウム(株)製、平均粒径20μm、最大粒径45μm)および黒鉛(ティムカル社製KS4、平均粒径3μm)、導電剤としてアセチレンブラック(電気化学工業(株)製デンカブラック)を用い、これらをSiO:黒鉛:アセチレンブラック=45:52:3(重量比)となるよう混合した。さらに結着剤としてPVDF(呉羽化学(株)製KF−1320)を前記混合粉100重量部に対して5重量部加えて、分散媒であるN−メチル−2−ピロリドン(NMP)を加えながら充分に混練することで負極合剤ペーストを得た。ここで上記SiOは非晶質構造を有することを、X線回折測定から確認した。
(Example 1-1)
(1) Preparation of negative electrode precursor SiO (purity 99.9%, manufactured by Sumitomo Titanium Co., Ltd., average particle size 20 μm, maximum particle size 45 μm) and graphite (KS4 manufactured by Timcal Corporation, average particle size 3 μm) as a negative electrode active material Then, acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as a conductive agent, and these were mixed so that SiO: graphite: acetylene black = 45: 52: 3 (weight ratio). Furthermore, 5 parts by weight of PVDF (KF-1320 manufactured by Kureha Chemical Co., Ltd.) as a binder is added to 100 parts by weight of the mixed powder, and N-methyl-2-pyrrolidone (NMP) as a dispersion medium is added. By sufficiently kneading, a negative electrode mixture paste was obtained. Here, it was confirmed from X-ray diffraction measurement that the SiO has an amorphous structure.

上記負極ペーストを厚み10μmの電解銅箔(古河サーキットフォイル(株)製)から
なる集電体の両面に塗布し、乾燥後に圧延した。その結果、集電体とその両面に担持された負極合剤層(片側厚み50μm)からなる負極前駆体が得られた。ここで負極合剤層の密度は1.0g/mlであり、空孔率は55%であった。この負極前駆体を80℃下で24時間の真空乾燥を行い、露点−60℃以下のドライ雰囲気で保管した。
The negative electrode paste was applied to both sides of a current collector made of an electrolytic copper foil (Furukawa Circuit Foil Co., Ltd.) having a thickness of 10 μm, and rolled after drying. As a result, a negative electrode precursor composed of a current collector and a negative electrode mixture layer (one side thickness of 50 μm) carried on both surfaces thereof was obtained. Here, the density of the negative electrode mixture layer was 1.0 g / ml, and the porosity was 55%. This negative electrode precursor was vacuum dried at 80 ° C. for 24 hours and stored in a dry atmosphere having a dew point of −60 ° C. or lower.

(2)負極の作製
真空チャンバー内に水冷ローラを備えた真空蒸着装置を用いて、負極前駆体の上に本発明の金属リチウム粒子を配置し、負極を作製した。
(2) Production of negative electrode Using a vacuum vapor deposition apparatus equipped with a water-cooled roller in a vacuum chamber, metallic lithium particles of the present invention were placed on the negative electrode precursor to produce a negative electrode.

まず負極前駆体を水冷ローラに貼り付け、水冷ローラの直下にTa製の蒸発ボート(フルウチ化学製)を配置し、このボート中に金属リチウム(本荘ケミカル製)を載せた。また蒸発ボートと水冷ローラとの間には余剰なリチウムの付着を防ぐために、ローラの回転方向に10mmの開口部を有するSUS製の遮蔽板を配置した。この遮蔽板の開口部には、蒸発温度に達するまでの蒸発・付着を防ぐためにシャッターを配置した。蒸発ボートを真空蒸着装置外に置いた直流電源と接続し、抵抗加熱法によってリチウムを真空蒸発させた。ここで真空度を3x10-3Paとし、水冷ローラ(表面温度20℃)は常時回転状態(10cm/min)にし、上記シャッターを10分間開くことにより、負極前駆体の表面に均一にリチウムが付着するようにした。蒸着終了後は大気圧に戻す必要があるため、アルゴン(日本酸素、99.999%)と同時に酸素(日本酸素、99.999%)を95:5(体積比)で導入した。この操作を表裏両面で行うことにより、負極を作製した。 First, the negative electrode precursor was attached to a water-cooled roller, a Ta evaporation boat (Furuuchi Chemical Co., Ltd.) was placed directly under the water-cooled roller, and metallic lithium (Honjo Chemical Co., Ltd.) was placed in this boat. Further, in order to prevent excessive lithium from adhering between the evaporation boat and the water cooling roller, a SUS shielding plate having an opening of 10 mm in the rotation direction of the roller was disposed. In order to prevent evaporation / adhesion until the evaporation temperature is reached, a shutter is disposed at the opening of the shielding plate. The evaporation boat was connected to a direct current power source placed outside the vacuum deposition apparatus, and lithium was evaporated in a vacuum by a resistance heating method. Here, the degree of vacuum is set to 3 × 10 −3 Pa, the water cooling roller (surface temperature 20 ° C.) is always rotated (10 cm / min), and the shutter is opened for 10 minutes, so that lithium uniformly adheres to the surface of the negative electrode precursor. I tried to do it. Since it was necessary to return to atmospheric pressure after completion of vapor deposition, oxygen (Japan oxygen, 99.999%) was introduced at 95: 5 (volume ratio) simultaneously with argon (Japan oxygen, 99.999%). The negative electrode was produced by performing this operation on both front and back sides.

この負極の表面をSEM観察したところ、図1のように負極合剤内部に多数の球状粒子(粒径0.8〜4.0μm)が確認された。この粒子を抽出し、表層を構成するリチウム化合物の厚みを透過電子顕微鏡(TEM)観察により調べたところ、2〜6nmであった。さらにX線光電子分光分析(XPS)を用い、スパッタ法によってこの粒子の表層から内部に至る組成を調べたところ、表層は主として酸化リチウムによって構成され、内部は金属リチウムであることが確認できた。(さらにこの粒子に対して示差熱天秤−質量分析(TG−MS)を行い、表層の組成を詳細に解析したところ、リチウム化合物全体の91重量%が酸化リチウムであることが確認できた。なおこの粒子は、負極活物質(SiOおよび黒鉛)の理論容量に対し30%相当量であることを、ICP発光分析でリチウム存在量を測定することで確認した。   When the surface of the negative electrode was observed with an SEM, a large number of spherical particles (particle size: 0.8 to 4.0 μm) were confirmed inside the negative electrode mixture as shown in FIG. When the particles were extracted and the thickness of the lithium compound constituting the surface layer was examined by observation with a transmission electron microscope (TEM), it was 2 to 6 nm. Further, when the composition of the particles from the surface layer to the inside was examined by a sputtering method using X-ray photoelectron spectroscopy (XPS), it was confirmed that the surface layer was mainly composed of lithium oxide and the inside was metallic lithium. (Further, differential thermal balance-mass spectrometry (TG-MS) was performed on the particles, and the composition of the surface layer was analyzed in detail. As a result, it was confirmed that 91% by weight of the entire lithium compound was lithium oxide. It was confirmed by measuring the amount of lithium present by ICP emission analysis that the particles were equivalent to 30% of the theoretical capacity of the negative electrode active material (SiO and graphite).

(3)正極の作製
正極活物質であるLiCoO2は、Li2CO3とCoCO3とを所定のモル比で混合し、950℃で加熱することによって合成した。これを45μm以下の大きさに分級したもの100重量部に対して、導電剤としてアセチレンブラックを5重量部、結着剤としてPVDFを4重量部、分散媒として適量のNMPを加えて混合し、正極合剤ペーストを得た。
(3) Preparation of positive electrode LiCoO 2 which is a positive electrode active material was synthesized by mixing Li 2 CO 3 and CoCO 3 at a predetermined molar ratio and heating at 950 ° C. 100 parts by weight of this classified to a size of 45 μm or less, 5 parts by weight of acetylene black as a conductive agent, 4 parts by weight of PVDF as a binder, and an appropriate amount of NMP as a dispersion medium are added and mixed. A positive electrode mixture paste was obtained.

正極合剤ペーストを厚み15μmのアルミニウム箔(昭和電工(株)製)からなる集電体の両面に塗布し、乾燥後に圧延した。その結果、集電体とその両面に担持された正極合剤層(片側厚み85μm)からなる正極が得られた。この正極を露点−60℃以下のドライ雰囲気において室温で保管した後、さらに80℃真空乾燥を行うことによって十分に脱水した。   The positive electrode mixture paste was applied to both surfaces of a current collector made of an aluminum foil having a thickness of 15 μm (manufactured by Showa Denko KK), and rolled after drying. As a result, a positive electrode comprising a current collector and a positive electrode mixture layer (having a thickness of one side of 85 μm) carried on both surfaces thereof was obtained. After this positive electrode was stored at room temperature in a dry atmosphere with a dew point of −60 ° C. or lower, it was further dehydrated by further vacuum drying at 80 ° C.

(4)円筒型電池の作製
図2に示すような円筒型のリチウムイオン二次電池を作製した。
(4) Production of Cylindrical Battery A cylindrical lithium ion secondary battery as shown in FIG. 2 was produced.

正極と負極とを、それぞれ所定のサイズに裁断した。正極の集電体には、アルミニウム製の正極リードの一端を接続した。負極の集電体には、ニッケル製の負極リードの一端を接続した。その後、正極と負極とを、両者より幅広で厚さ20μmのポリエチレン樹脂製
微多孔フィルムからなるセパレータを介して捲回し、電極群を構成した。この電極群を−60℃のドライ雰囲気において10時間真空乾燥し、電極群中に含まれる水分を追い出した。なお電極群の最外周はセパレータで介装した。この電極群の上下に、それぞれ上部絶縁リングおよび下部絶縁リングを配置して、電池缶の内空間に収容した。次いで電解液(エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合非水溶媒に六フッ化リン酸リチウムを1モル/Lの濃度で溶解したもの)を電池缶内に注入し、電極群に含浸させた。正極リードの他端は、周縁に絶縁パッキンが配された封口板の裏面に溶接した。負極リードの他端は、電池缶の内底面に溶接した。最後に電池缶の開口を、封口板で塞いだ。こうして、理論容量2000mAhの円筒型リチウムイオン二次電池(直径18mm、長さ50mm)を完成した。これを実施例1−1の電池とする。
The positive electrode and the negative electrode were each cut into a predetermined size. One end of an aluminum positive electrode lead was connected to the positive electrode current collector. One end of a nickel negative electrode lead was connected to the negative electrode current collector. Thereafter, the positive electrode and the negative electrode were wound through a separator made of a polyethylene resin microporous film having a width wider than that of 20 μm and constituting an electrode group. This electrode group was vacuum-dried in a dry atmosphere at −60 ° C. for 10 hours to expel moisture contained in the electrode group. The outermost periphery of the electrode group was interposed with a separator. An upper insulating ring and a lower insulating ring were arranged above and below the electrode group, respectively, and accommodated in the inner space of the battery can. Next, an electrolytic solution (a solution in which lithium hexafluorophosphate was dissolved at a concentration of 1 mol / L in a mixed nonaqueous solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1) was injected into the battery can, and an electrode group Was impregnated. The other end of the positive electrode lead was welded to the back surface of a sealing plate having an insulating packing on the periphery. The other end of the negative electrode lead was welded to the inner bottom surface of the battery can. Finally, the opening of the battery can was closed with a sealing plate. Thus, a cylindrical lithium ion secondary battery (diameter 18 mm, length 50 mm) having a theoretical capacity of 2000 mAh was completed. This is the battery of Example 1-1.

(実施例1−2〜5)
実施例1−1に対し、金属リチウム粒子の作製時にローラの回転速度を60、15、5、1cm/minとし、金属リチウム粒子の粒径を0.02〜0.08、0.1〜1.0、2.0〜5.0、5.5〜10μmとした以外は、実施例1−1と同様に作製したリチウムイオン二次電池を、実施例1−2〜5とする。
(Examples 1-2 to 5)
With respect to Example 1-1, the rotation speed of the roller was set to 60, 15, 5, 1 cm / min when the metal lithium particles were produced, and the particle size of the metal lithium particles was 0.02 to 0.08, 0.1 to 1. Except for 0.0, 2.0 to 5.0, 5.5 to 10 μm, lithium ion secondary batteries produced in the same manner as in Example 1-1 are referred to as Examples 1-2 to 5.

(実施例1−6)
実施例1−1に対し、金属リチウム粒子の作製時に真空蒸着するのではなく、負極前駆体の裏表にリチウム箔(厚み20μm、本荘ケミカル製)に裂け目を設けて引張ることによりメッシュ化したものを貼り付け、アルゴン(日本酸素、99.999%)と同時に酸素(日本酸素、99.999%)を95:5(体積比)で導入した雰囲気下で、120℃に熱した熱ローラに通すことで処理を行い、金属リチウム粒子の粒径を0.8〜4.0μmとした以外は、実施例1−1と同様に作製したリチウムイオン二次電池を、実施例1−6とする。
(Example 1-6)
For Example 1-1, instead of vacuum vapor deposition during the production of metallic lithium particles, a mesh was formed by pulling a lithium foil (thickness 20 μm, manufactured by Honjo Chemical Co., Ltd.) on both sides of the negative electrode precursor and pulling it. Pasting and passing through a heat roller heated to 120 ° C. in an atmosphere in which oxygen (Japan oxygen, 99.999%) is introduced at the same time as 95: 5 (volume ratio) with argon (Japan oxygen, 99.999%) A lithium ion secondary battery produced in the same manner as in Example 1-1 except that the treatment was performed in the above manner and the particle size of the metal lithium particles was changed to 0.8 to 4.0 μm is referred to as Example 1-6.

(比較例1−1)
実施例1−1に対し、負極前駆体をそのまま負極として用いた以外は、実施例1−1と同様に作製したリチウムイオン二次電池を、比較例1−1とする。
(Comparative Example 1-1)
A lithium ion secondary battery produced in the same manner as in Example 1-1, except that the negative electrode precursor was used as a negative electrode as it was for Example 1-1, is referred to as Comparative Example 1-1.

(比較例1−2)
実施例1−1に対し、特許文献2で記載されている手法を用いて作製した、表面が炭酸リチウムによって覆われた金属リチウム粒子(粒径5〜25μm)を、実施例1−1と同じ理論容量分だけ負極前駆体に添加した以外は、実施例1−1と同様に作製したリチウムイオン二次電池を、比較例1−2とする。
(Comparative Example 1-2)
In contrast to Example 1-1, metallic lithium particles (particle size: 5 to 25 μm) whose surface was covered with lithium carbonate, produced using the method described in Patent Document 2, were the same as in Example 1-1. A lithium ion secondary battery produced in the same manner as in Example 1-1, except that the theoretical capacity is added to the negative electrode precursor, is referred to as Comparative Example 1-2.

上述した各電池に対し、以下の評価を行った。結果を(表1)に示す。   The following evaluation was performed on each battery described above. The results are shown in (Table 1).

(放電容量測定)
20℃雰囲気下で、電池電圧が4.05Vになるまで100mAの定電流充電を行い、その後電池電圧が2.0Vになるまで100mAの定電流放電を行った。このサイクルの放電容量から各電池の定格容量を決定した。次に電池電圧が4.05Vになるまで0.2C(1Cは1時間率電流、定格容量より起算)の定電流充電を行った後に電流値が0.01Cになるまで定電圧充電を行い、その後電池電圧が2.0Vになるまで0.2Cの定電流放電を行った。このサイクルの放電容量を(表1)に示す。
(Discharge capacity measurement)
Under a 20 ° C. atmosphere, 100 mA constant current charging was performed until the battery voltage reached 4.05 V, and then 100 mA constant current discharging was performed until the battery voltage reached 2.0 V. The rated capacity of each battery was determined from the discharge capacity of this cycle. Next, after constant current charging of 0.2C (1C is 1 hour rate current, calculated from the rated capacity) until the battery voltage reaches 4.05V, constant voltage charging is performed until the current value becomes 0.01C, Thereafter, constant current discharge at 0.2 C was performed until the battery voltage reached 2.0V. The discharge capacity of this cycle is shown in (Table 1).

(保存試験)
上記の放電容量測定を経た電池に対し、20℃雰囲気下で、電池電圧が4.05Vになるまで0.2Cの定電流充電を行った後に電流値が0.01Cになるまで定電圧充電を行った。この電池を85℃雰囲気下で3日間保存し、保存後に電池電圧が2.0Vになるま
で0.2Cの定電流放電を行った。保存前の放電容量に対する保存後の放電容量の比率を回復率として、百分率で求めた。この値を(表1)に示す。
(Preservation test)
The battery subjected to the above discharge capacity measurement was charged at a constant voltage of 0.2 C until the battery voltage reached 4.05 V in a 20 ° C. atmosphere, and then charged at a constant voltage until the current value reached 0.01 C. went. This battery was stored in an atmosphere at 85 ° C. for 3 days, and after storage, a constant current discharge of 0.2 C was performed until the battery voltage became 2.0V. The ratio of the discharge capacity after storage to the discharge capacity before storage was determined as a percentage as a recovery rate. This value is shown in (Table 1).

また保存時に電池内で発生したガス量をアルキメデス法によって計測した。この値を(表1)に示す。また発生したガス種についてはガスクロマトグラフィーを用いて適宜分析した。   The amount of gas generated in the battery during storage was measured by the Archimedes method. This value is shown in (Table 1). The generated gas species were appropriately analyzed using gas chromatography.

(サイクル試験)
20℃雰囲気下で、電池電圧が4.05Vになるまで0.2Cの定電流充電を行った後に電流値が0.05Cになるまで定電圧充電を行い、その後電池電圧が2.5Vになるまで1Cの定電流放電を行った。この条件で充放電を100サイクル繰り返した。2サイクル目の放電容量に対する100サイクル目の放電容量の割合を維持率として、百分率で求めた。この値を(表1)に示す。
(Cycle test)
In a 20 ° C atmosphere, after performing constant current charging at 0.2 C until the battery voltage reaches 4.05 V, constant voltage charging is performed until the current value reaches 0.05 C, and then the battery voltage becomes 2.5 V. 1 C constant current discharge was performed. Under this condition, charging and discharging were repeated 100 cycles. The ratio of the discharge capacity at the 100th cycle to the discharge capacity at the 2nd cycle was used as a percentage, and the percentage was obtained. This value is shown in (Table 1).

Figure 0005119584
(表1)より、本発明の金属リチウム粒子を用いなかった比較例1−1は、負極活物質であるSiO自身が有する大きな不可逆容量を正極からのリチウムで補填したために放電容量が著しく低下した。また金属リチウム粒子であってもその表層が炭酸リチウムを主とする比較例1−2は、金属リチウム粒子の作用により放電容量は高レベルを維持できたものの、保存特性が著しく低下した。ここで保存時に電池内で発生したガス種を調べたところ、大半が二酸化炭素であった。このことから、比較例1−2では金属リチウム粒子に含まれる炭酸リチウムが充電状態下で電解液と反応し、電解液および/あるいは炭酸リチウムが分解して二酸化炭素が発生したものと推測される。また同様のメカニズムが20℃という低温下でも徐々に引き起こされ、電池反応が不均一化するため、100サイクル後の維持率も他の電池に比較して低くなっていると推測される。
Figure 0005119584
According to Table 1, Comparative Example 1-1 in which the metal lithium particles of the present invention were not used had a significant decrease in discharge capacity because the large irreversible capacity of SiO itself as the negative electrode active material was compensated with lithium from the positive electrode. . Moreover, even if it was a metal lithium particle, although the surface capacity of Comparative Example 1-2 whose surface layer is mainly lithium carbonate was able to maintain a high discharge capacity by the action of the metal lithium particle, the storage characteristics were significantly lowered. Here, the gas species generated in the battery during storage were examined, and most of them were carbon dioxide. From this, in Comparative Example 1-2, it is presumed that lithium carbonate contained in the metal lithium particles reacted with the electrolytic solution in a charged state, and the electrolytic solution and / or lithium carbonate was decomposed to generate carbon dioxide. . Further, the same mechanism is gradually caused even at a low temperature of 20 ° C., and the battery reaction becomes non-uniform. Therefore, it is presumed that the maintenance rate after 100 cycles is also lower than that of other batteries.

これら比較例に対し、本発明の実施例1−1〜6は、金属リチウム粒子が不可逆容量を補填する一方で、比較例1−2のような不具合(保存特性の低下)が回避できている。金属リチウム粒子の表層に配置された酸化リチウムを主体とする化合物は電解液との反応性が低いので、安定して活性な金属リチウムを保護できていることが、本発明の効果の主因であると考えられる。   In contrast to these comparative examples, in Examples 1-1 to 6 of the present invention, the metallic lithium particles compensate for the irreversible capacity, while avoiding the problem (decrease in storage characteristics) as in Comparative Example 1-2. . Since the compound mainly composed of lithium oxide arranged on the surface layer of the metal lithium particles has low reactivity with the electrolytic solution, it is possible to stably protect the active metal lithium, which is the main cause of the effect of the present invention. it is conceivable that.

ただし金属リチウム粒子が0.1μm未満である実施例1−2と、5μmを超える実施例1−5は、放電容量が余り高くない値を示した。実施例1−2では金属リチウム粒子に対する酸化リチウム(不可逆容量とはなりえない)の比率が高くなることにより、実施例1−5では金属リチウム粒子の表面積の減少により、ともに不可逆容量分のリチウムの補填が不十分であったと考えられる。また実施例1−5において保存特性が低下しているのは、金属リチウム粒子に対する酸化リチウムの比率が不足したため、保存環境下において金属リチウムが直接電解液と反応したことが原因と考えられる。以上の結果から、金属リチウム粒子の粒径は0.1〜5μmであることが好ましい。   However, Example 1-2 in which the metal lithium particles were less than 0.1 μm and Example 1-5 in which the metal lithium particles were more than 5 μm showed values that the discharge capacity was not so high. In Example 1-2, the ratio of lithium oxide (which cannot be an irreversible capacity) to the metal lithium particles is increased, and in Example 1-5, the surface area of the metal lithium particles is decreased. It is probable that the compensation was insufficient. In Example 1-5, the storage characteristics are deteriorated because the ratio of lithium oxide to metal lithium particles is insufficient, so that metal lithium directly reacts with the electrolyte in the storage environment. From the above results, the particle size of the metal lithium particles is preferably 0.1 to 5 μm.

また金属リチウム粒子を熱ローラにより作製した実施例1−6は、ほぼ同様の構成条件を有する実施例1−1に対して、若干ではあるが保存特性およびサイクル特性が低下している。これは酸素存在下において熱ロールを通すことにより、リチウム挿入後の負極活物質が酸化されて強固な酸化膜皮膜が形成されたことが理由と考えられる。よって本発明の金属リチウム粒子は、原材料の金属リチウムを真空中でいったん蒸発させて作製するのが好ましい。   Further, in Example 1-6 in which metallic lithium particles were produced by a heat roller, the storage characteristics and the cycle characteristics were slightly reduced as compared with Example 1-1 having substantially the same configuration conditions. This is considered to be because the negative electrode active material after lithium insertion was oxidized by passing a hot roll in the presence of oxygen to form a strong oxide film. Therefore, the metal lithium particles of the present invention are preferably produced by once evaporating the raw material metal lithium in a vacuum.

(実施例2−1)
集電体となる電解Cu箔(古河サーキットフォイル(株)製、厚さ20μm)を、実施例1−1と同様の真空蒸着装置の水冷ローラに貼り付けて固定した。その直下にSiO(純度99.999%、フルウチ化学製、インゴット)を入れた黒鉛製坩堝を配置し、電子銃を用いて真空蒸着を行った。蒸着条件は加速電圧−8kV、電流30mA、真空度は3×10-3Paとした。SiOは昇華性であるため、電子ビームが一点に集中せず、SiOのインゴット全面に分散するように走因しながら蒸着を行った。
(Example 2-1)
An electrolytic Cu foil (manufactured by Furukawa Circuit Foil Co., Ltd., thickness 20 μm) serving as a current collector was attached and fixed to a water-cooled roller of a vacuum vapor deposition apparatus similar to Example 1-1. A graphite crucible containing SiO (purity 99.999%, manufactured by Furuuchi Chemical Co., Ltd., ingot) was placed immediately below, and vacuum deposition was performed using an electron gun. Deposition conditions were an acceleration voltage of -8 kV, a current of 30 mA, and a vacuum degree of 3 × 10 −3 Pa. Since SiO is sublimable, the electron beam was not concentrated on one point, but vapor deposition was performed while running so as to be dispersed over the entire surface of the SiO ingot.

集電体の片面を蒸着した後、裏側についても同様に真空蒸着を行い、両面に活物質からなる薄膜を成膜し、負極前駆体を作製した。これらの薄膜に対し、X線回折分析を行ったところ、集電体であるCuに帰属される結晶性のピークが観察され、どの薄膜においても2θ=15−40°の位置にブロードなピークが検出された。この結果から、成膜した活物質は非晶質であることが確認できた。負極前駆体の片面あたりの活物質薄膜の厚さは約12μmであった。   After vapor-depositing one side of the current collector, vacuum deposition was performed on the back side in the same manner, and a thin film made of an active material was formed on both sides to produce a negative electrode precursor. When X-ray diffraction analysis was performed on these thin films, a crystalline peak attributed to Cu as a current collector was observed, and a broad peak was observed at 2θ = 15-40 ° in any thin film. was detected. From this result, it was confirmed that the deposited active material was amorphous. The thickness of the active material thin film per side of the negative electrode precursor was about 12 μm.

この負極前駆体に対し、実施例1−1と同様に金属リチウム粒子を配置し、負極を作製した。この金属リチウム粒子を実施例1−1と同様に調べたところ、その表層を構成するのは主に酸化リチウムであり、金属リチウム粒子の粒径は0.6〜3μmの範囲であることが確認できた。この負極を用いたこと以外は、実施例1−1と同様に作製したリチウムイオン二次電池を、実施例2−1とする。   With respect to this negative electrode precursor, metallic lithium particles were arranged in the same manner as in Example 1-1 to produce a negative electrode. When this metal lithium particle was examined in the same manner as in Example 1-1, it was confirmed that the surface layer was mainly composed of lithium oxide, and the particle size of the metal lithium particle was in the range of 0.6 to 3 μm. did it. A lithium ion secondary battery produced in the same manner as in Example 1-1 except that this negative electrode was used is referred to as Example 2-1.

(比較例2−1)
実施例2−1に対し、負極前駆体をそのまま負極として用いた以外は、実施例2−1と同様に作製したリチウムイオン二次電池を、比較例2−1とする。
(Comparative Example 2-1)
A lithium ion secondary battery produced in the same manner as in Example 2-1 except that the negative electrode precursor was directly used as the negative electrode for Example 2-1, was referred to as Comparative Example 2-1.

以上の電池に対し、実施例1と同様の評価を行った。結果を(表2)に示す。   Evaluation similar to Example 1 was performed with respect to the above battery. The results are shown in (Table 2).

Figure 0005119584
(表2)より、実施例1とは異なり集電体上に直接に活物質を堆積させた負極であっても、本発明の効果が十分に発揮されていることがわかる。
Figure 0005119584
From Table 2, it can be seen that the effect of the present invention is sufficiently exhibited even in the negative electrode in which the active material is directly deposited on the current collector, unlike Example 1.

(実施例3−1)
集電体となる電解Cu箔(古河サーキットフォイル(株)製、厚さ20μm)を、実施例1−1と同様の真空蒸着装置内の水冷ローラに貼り付けて固定した。その直下にSi(純度99.999%、フルウチ化学製、インゴット)を入れた黒鉛製坩堝を配置し、坩堝
とCu箔の間に酸素ガスを導入するノズルを設置し、酸素ガス(日本酸素製 純度99.7%)の流量を20sccm(1分間に20cm3流れる流量)に設定して真空蒸着装置内に酸素を導入した。電子銃を用いて、真空蒸着を行った。蒸着条件は加速電圧−8kV、電流150mAとした。
(Example 3-1)
An electrolytic Cu foil (made by Furukawa Circuit Foil Co., Ltd., thickness: 20 μm) serving as a current collector was attached and fixed to a water-cooled roller in the same vacuum deposition apparatus as in Example 1-1. A graphite crucible containing Si (purity 99.999%, manufactured by Furuuchi Chemical Co., Ltd., ingot) is placed immediately below, a nozzle for introducing oxygen gas is installed between the crucible and the Cu foil, and oxygen gas (manufactured by Nippon Oxygen) is installed. The flow rate of 99.7% purity was set to 20 sccm (flow rate of 20 cm 3 per minute), and oxygen was introduced into the vacuum deposition apparatus. Vacuum deposition was performed using an electron gun. The deposition conditions were an acceleration voltage of -8 kV and a current of 150 mA.

集電体の片面を蒸着した後、裏側についても同様に真空蒸着を行い、両面に活物質からなる薄膜を成膜し、負極前駆体を作製した。これらの薄膜に対し、X線回折分析を行ったところ、集電体であるCuに帰属される結晶性のピークが観察され、どの薄膜においても2θ=15−40°の位置にブロードなピークが検出された。この結果から、成膜した活物質は非晶質であることが確認できた。負極前駆体の片面あたりの活物質薄膜の厚さは約10μmであった。またこの負極に含まれる酸素量を燃焼法によって測定したところ、負極活物質はSiO0.6で示される組成になることが確認できた。 After vapor-depositing one side of the current collector, vacuum deposition was performed on the back side in the same manner, and a thin film made of an active material was formed on both sides to produce a negative electrode precursor. When X-ray diffraction analysis was performed on these thin films, a crystalline peak attributed to Cu as a current collector was observed, and a broad peak was observed at 2θ = 15-40 ° in any thin film. was detected. From this result, it was confirmed that the deposited active material was amorphous. The thickness of the active material thin film per side of the negative electrode precursor was about 10 μm. Further, when the amount of oxygen contained in the negative electrode was measured by a combustion method, it was confirmed that the negative electrode active material had a composition represented by SiO 0.6 .

この負極前駆体に対し、遮蔽板の開口部のシャッターを開く時間を8分としたこと以外は実施例1−1と同様に金属リチウム粒子を配置し、負極を作製した。この金属リチウム粒子を実施例1−1と同様に調べたところ、その表層を構成するのは主に酸化リチウムであり、金属リチウム粒子の粒径は0.6〜3μmの範囲であることが確認できた。この負極を用いたこと以外は、実施例1−1と同様に作製したリチウムイオン二次電池を、実施例3−1とする。   With respect to this negative electrode precursor, metallic lithium particles were arranged in the same manner as in Example 1-1 except that the time for opening the shutter at the opening of the shielding plate was set to 8 minutes, thereby producing a negative electrode. When this metal lithium particle was examined in the same manner as in Example 1-1, it was confirmed that the surface layer was mainly composed of lithium oxide, and the particle size of the metal lithium particle was in the range of 0.6 to 3 μm. did it. A lithium ion secondary battery produced in the same manner as in Example 1-1 except that this negative electrode was used is referred to as Example 3-1.

(実施例3−2)
実施例3−1に対し、成膜時に酸素ガスを導入しないことにより負極活物質をSiにし、遮蔽板の開口部のシャッターを開く時間を3分間として実施例3−1と同様の金属リチウム粒子を形成したこと以外は、実施例3−1と同様に作製したリチウムイオン二次電池を、実施例3−2とする。
(Example 3-2)
Compared to Example 3-1, the negative electrode active material was made Si by not introducing oxygen gas during film formation, and the time for opening the shutter of the opening of the shielding plate was 3 minutes. A lithium ion secondary battery manufactured in the same manner as in Example 3-1 except that is formed is referred to as Example 3-2.

(比較例3−1)
実施例3−1に対し、負極前駆体をそのまま負極として用いた以外は、実施例3−1と同様に作製したリチウムイオン二次電池を、比較例3−1とする。
(Comparative Example 3-1)
A lithium ion secondary battery produced in the same manner as in Example 3-1 except that the negative electrode precursor was directly used as the negative electrode for Example 3-1 was referred to as Comparative Example 3-1.

(比較例3−2)
実施例3−2に対し、負極前駆体をそのまま負極として用いた以外は、実施例3−2と同様に作製したリチウムイオン二次電池を、比較例3−2とする。
(Comparative Example 3-2)
A lithium ion secondary battery manufactured in the same manner as in Example 3-2 is referred to as Comparative Example 3-2 except that the negative electrode precursor was directly used as the negative electrode for Example 3-2.

以上の電池に対し、実施例1と同様の評価を行った。結果を(表3)に示す。   Evaluation similar to Example 1 was performed with respect to the above battery. The results are shown in (Table 3).

Figure 0005119584
(表3)より、実施例2とは異なる組成の活物質(SiO0.6、Si)を堆積させた負極であっても、本発明の効果が十分に発揮されていることがわかる。
Figure 0005119584
From Table 3, it can be seen that the effect of the present invention is sufficiently exhibited even in the negative electrode in which an active material (SiO 0.6 , Si) having a composition different from that of Example 2 is deposited.

本発明の非水電解質二次電池は、高容量材料を負極活物質に用いた場合の課題(不可逆容量の増大による放電容量低下)を解決しつつ、保存特性やサイクル特性を高次に保つも
のである。よって本発明は、全ての形態の非水電解質二次電池に適用可能であり、例えば実施例で挙げた円筒型のみでなく、コイン型、角型、扁平型などの形状を有し、かつ捲回型、積層型などの極板群構造を有する電池にも適用可能である。本発明の非水電解質二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。
The non-aqueous electrolyte secondary battery according to the present invention maintains the storage characteristics and cycle characteristics at a high level while solving the problem (a decrease in discharge capacity due to an increase in irreversible capacity) when a high-capacity material is used as the negative electrode active material. It is. Therefore, the present invention can be applied to all forms of non-aqueous electrolyte secondary batteries. For example, the present invention has not only the cylindrical shape mentioned in the examples, but also a coin shape, a square shape, a flat shape, and the like. The present invention is also applicable to a battery having an electrode plate group structure such as a revolving type or a laminated type. The nonaqueous electrolyte secondary battery of the present invention is useful as a main power source for mobile communication devices, portable electronic devices and the like.

本発明の非水電解質二次電池の負極の走査電子顕微鏡写真Scanning electron micrograph of the negative electrode of the nonaqueous electrolyte secondary battery of the present invention 本発明の非水電解質二次電池の一例を示す概略断面図Schematic sectional view showing an example of the nonaqueous electrolyte secondary battery of the present invention

符号の説明Explanation of symbols

1 活物質
2 金属リチウム粒子
11 正極
12 負極
13 セパレータ
14 正極リード
15 負極リード
16 上部絶縁リング
17 下部絶縁リング
18 電池缶
19 封口板

DESCRIPTION OF SYMBOLS 1 Active material 2 Metal lithium particle 11 Positive electrode 12 Negative electrode 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating ring 17 Lower insulating ring 18 Battery can 19 Sealing plate

Claims (1)

リチウムを電気化学的に吸蔵放出可能な正極および負極と、非水電解質とから構成される非水電解質二次電池であって、
前記負極はSiおよび/あるいはSi化合物と、酸化リチウムを主体とする表層を有する金属リチウム粒子とを含み、前記金属リチウム粒子の粒径が0.1〜5μmであることを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of electrochemically occluding and releasing lithium, and a non-aqueous electrolyte,
The negative electrode includes Si and / or a Si compound and metal lithium particles having a surface layer mainly composed of lithium oxide, and the metal lithium particles have a particle size of 0.1 to 5 μm. Secondary battery.
JP2005296289A 2005-10-11 2005-10-11 Nonaqueous electrolyte secondary battery and method for producing the negative electrode Expired - Fee Related JP5119584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005296289A JP5119584B2 (en) 2005-10-11 2005-10-11 Nonaqueous electrolyte secondary battery and method for producing the negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296289A JP5119584B2 (en) 2005-10-11 2005-10-11 Nonaqueous electrolyte secondary battery and method for producing the negative electrode

Publications (2)

Publication Number Publication Date
JP2007109423A JP2007109423A (en) 2007-04-26
JP5119584B2 true JP5119584B2 (en) 2013-01-16

Family

ID=38035148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296289A Expired - Fee Related JP5119584B2 (en) 2005-10-11 2005-10-11 Nonaqueous electrolyte secondary battery and method for producing the negative electrode

Country Status (1)

Country Link
JP (1) JP5119584B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288448B2 (en) * 2008-04-11 2013-09-11 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery
WO2013002157A1 (en) * 2011-06-27 2013-01-03 東レ・ダウコーニング株式会社 Silicon-containing carbon-based composite material in which fine lithium-coated silicon metal or silicon alloy particles are dispersed
US9774039B2 (en) 2011-10-14 2017-09-26 Kabushiki Kaisha Toyota Jidoshokki Negative electrode material for electric storage device, negative electrode for electric storage device, electric storage device, and vehicle
KR20150105648A (en) * 2013-05-24 2015-09-17 오사카 티타늄 테크놀로지스 캄파니 리미티드 Lithium-contaning silicon oxide powder
CN104241597A (en) * 2013-06-14 2014-12-24 上海绿孚新能源科技有限公司 Secondary cell and electrode used for secondary cell
KR102533760B1 (en) * 2014-01-27 2023-05-17 한양대학교 산학협력단 Method for preparing lithiated amorphous silicon oxide, lithiated amorphous silicon oxide prepared thereby, and lithium sulfur battery comprising the same
WO2017131997A1 (en) 2016-01-28 2017-08-03 Applied Materials, Inc. Integrated lithium deposition with protective layer tool
KR102148509B1 (en) * 2017-09-22 2020-08-26 주식회사 엘지화학 Negative electrode for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
JP7150012B2 (en) * 2017-10-16 2022-10-07 エルジー エナジー ソリューション リミテッド Lithium electrode and lithium secondary battery including the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186847A (en) * 1997-09-03 1999-03-30 Japan Storage Battery Co Ltd Manufacture of nonaqueous electrolyte secondary battery
JP3982230B2 (en) * 2001-10-18 2007-09-26 日本電気株式会社 Secondary battery negative electrode and secondary battery using the same
JP2003217593A (en) * 2002-01-16 2003-07-31 Sony Corp Negative electrode active material and production process thereof, and battery and production process thereof
JP4701579B2 (en) * 2002-01-23 2011-06-15 日本電気株式会社 Negative electrode for secondary battery
JP2004047416A (en) * 2002-05-23 2004-02-12 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2005063805A (en) * 2003-08-12 2005-03-10 Matsushita Electric Ind Co Ltd Anode and lithium secondary battery using it
JP2005085632A (en) * 2003-09-09 2005-03-31 Sony Corp Battery
JP4442235B2 (en) * 2004-01-28 2010-03-31 ソニー株式会社 Negative electrode for secondary battery, secondary battery, and production method thereof
KR100590096B1 (en) * 2004-04-29 2006-06-14 삼성에스디아이 주식회사 Rechargeable lithium battery

Also Published As

Publication number Publication date
JP2007109423A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP5230904B2 (en) Non-aqueous electrolyte secondary battery
JP5416128B2 (en) Non-aqueous secondary battery
KR101162794B1 (en) Method of producing a negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
TWI425703B (en) Lithium secondary battery with high energy density
JP5173181B2 (en) Lithium ion secondary battery and method for producing negative electrode plate for lithium ion secondary battery
JP4868786B2 (en) Lithium secondary battery
JP3624174B2 (en) Metal oxide electrode, method for producing the same, and lithium secondary battery using the same
JP5119584B2 (en) Nonaqueous electrolyte secondary battery and method for producing the negative electrode
KR101109285B1 (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US9780357B2 (en) Silicon-based anode active material and secondary battery comprising the same
US8334073B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US20140093761A1 (en) Lithium secondary battery
JP2003123740A (en) Negative electrode for secondary battery, and secondary battery using the same
JPWO2008029719A1 (en) Nonaqueous electrolyte secondary battery
JP2007234336A (en) Lithium secondary battery
JP5264271B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2009238663A (en) Nonaqueous secondary battery
JP5172134B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2014225324A (en) Nonaqueous electrolyte secondary cell
JP2007280926A (en) Manufacturing method of negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it
JP6509363B2 (en) ELECTRODE FOR ELECTROCHEMICAL DEVICE, METHOD FOR MANUFACTURING THE SAME, AND ELECTROCHEMICAL DEVICE INCLUDING THE SAME
JP2008234850A (en) Electrochemical element, and method and apparatus for manufacturing electrode of electrochemical element
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
CN100466340C (en) Non-aqueous electrolyte rechargeable battery
KR20180083432A (en) Negative electrode material for Li ion secondary battery and production method thereof, negative electrode for Li ion secondary battery and Li ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121008

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees