JP2004220911A - Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode - Google Patents

Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode Download PDF

Info

Publication number
JP2004220911A
JP2004220911A JP2003006638A JP2003006638A JP2004220911A JP 2004220911 A JP2004220911 A JP 2004220911A JP 2003006638 A JP2003006638 A JP 2003006638A JP 2003006638 A JP2003006638 A JP 2003006638A JP 2004220911 A JP2004220911 A JP 2004220911A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
carbon
fluorine
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006638A
Other languages
Japanese (ja)
Inventor
Yusuke Watarai
祐介 渡会
Akio Mizuguchi
暁夫 水口
Kanji Hisayoshi
完治 久芳
Shuhin Cho
守斌 張
Hiroyuki Imai
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003006638A priority Critical patent/JP2004220911A/en
Publication of JP2004220911A publication Critical patent/JP2004220911A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material capable of improving cycle characteristics by controlling the stress accompanying the storing and releasing reaction of lithium ion at charge and discharge, and capable of improving high rate charge and discharge characteristics by making lithium ion storing and releasing reaction accompanying charging and discharging smoothly proceed, and to provide a negative electrode using the negative electrode material, and a lithium ion battery and a lithium polymer battery capable of heightening the energy density of the battery. <P>SOLUTION: The negative electrode material contains inorganic particles 11 containing at least one element chosen from Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co, and Mn, a carbon material 12, and a resin binding agent 10. The carbon material has a carbon nanofiber 13 as a main component, and the carbon nanofiber 13 has an average diameter of 20 to 500 nm, the length of not less than 1,000 nm, and an aspect ratio of not less than 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、サイクル特性及び高率充放電特性を向上させ、電池のエネルギー密度を高めることができる負極材料及びこれを用いた負極、並びにこの負極を用いたリチウムイオン電池及びリチウムポリマー電池に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコン等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応える高容量二次電池として、正極材料にLiCoO等の含リチウム複合酸化物を用い、負極活物質に炭素系材料を用いたリチウムイオン電池が商品化されている。この炭素系材料を負極に使用した場合、その理論容量は372mAh/gと金属リチウムの約1/10の容量しかなく、また理論密度が2.2g/ccと低く、実際に負極シートとした場合には、更に密度が低下する。そのため、体積当たりでより高容量な材料を負極として利用することが電池の高容量化の面から望まれている。
Al、Ge、Si、Sn、Zn、Pb等の金属又は半金属は、リチウムと合金化することが知られており、これらの金属又は半金属を負極活物質に用いた二次電池が検討されている。この材料は、高容量かつ高エネルギー密度であり、炭素系材料を用いた負極よりも多くのリチウムイオンを吸蔵、脱離できるため、これらの材料を使用することで高容量、高エネルギー密度な電池を作製することができると考えられている。しかし、炭素系材料に比べてサイクル特性に劣るため未だ実用化には至っていない。
【0003】
このような上記問題点を解決する技術として、負極が2種の元素から構成される六方最密充填構造で、かつNiIn型構造を有する合金を含む非水電解質二次電池が開示されている(例えば、特許文献1参照。)。この二次電池では、上記結晶構造をとる合金を負極材料に用いることにより、過剰なリチウムイオンの吸蔵を制御するので、サイクル劣化の主要因であるリチウムの吸蔵、脱離に伴う膨張収縮のストレスを抑制できる。従って、高容量かつ優れた充放電サイクル特性が得られる。
また、Al、Ge、Pb、Si、Sn、Znの元素群から選ばれる少なくとも1種以上の元素と、上記元素群以外の金属ないしは半金属との金属間化合物を用いた二次電池が開示されている(例えば、特許文献2参照。)。リチウムと合金化する元素の周りにリチウムと合金化しにくい他の元素が存在することで、微結晶化、微粉化が抑制されるため、優れたサイクル特性を得ることができる。
【0004】
【特許文献1】
特開2001−250541号公報
【特許文献2】
特開平10−223221号公報
【0005】
【発明が解決しようとする課題】
しかし、負極材料としてシリコンやスズ等の無機質の粒子をそのままリチウム吸蔵、脱離物質として用いた場合には、次のような課題を有している。負極活物質中に含まれる無機質粒子は充電によりリチウムを吸蔵すると、その体積は大きく膨張する(図12(a),(b))。そして放電によりリチウムを脱離すると無機質粒子1は収縮する。このサイクルを繰返すと、負極活物質2が無機質粒子の大きな体積変化に対応できなくなって、図12(c)に示すように、無機質粒子1と負極活物質2との間に空孔3を生じさせてしまい、導電性が悪くなったり、負極集電体4から負極活物質2が剥離してサイクル特性が低下する等の問題を生じる。なお、図中の短破線で示される符号6は無機質粒子が体積膨張したときの大きさを示す。
上記特許文献1及び2にそれぞれ示された二次電池においても、上記問題と同様の現象が起きており、充放電によるリチウムの挿入、脱離に伴う無機質粒子の膨張、収縮を起因とするストレスを十分に緩衝できてはおらず、実用可能なサイクル寿命が得られていないのが実情である。
【0006】
また、無機質粒子とともに、従来用いられてきたケッチェンブラックのような炭素系材料を混合した負極材料では、図13(a)に示すように、炭素系材料7は無機質粒子1の周りに付着した形で存在する。活物質中に含まれる無機質粒子は充電によりリチウムを吸蔵すると、その体積は大きく膨張する(図13(b))。無機質粒子1の体積膨張によりその表面積は大きくなるので、炭素系材料7は大きくなった表面の広がるようにその位置を移動する。そして放電によりリチウムを脱離すると無機質粒子1は収縮する(図13(c))。無機質粒子が収縮すると、表面積も元に戻るため、表面積に広がった炭素系材料7もその位置を本来あった場所に戻ろうとする。このサイクルを繰返すと、無機質粒子1がその周りに存在している炭素系材料7から圧迫されてクラック8を生じ、サイクル特性が低下するおそれがある。
【0007】
本発明の目的は、充放電のリチウムイオンの挿入、脱離反応に伴うストレスを制御し、サイクル特性を向上できる、負極材料及びこれを用いた負極を提供することにある。
本発明の別の目的は、充放電に伴うリチウムイオンの挿入、脱離反応がスムーズに進行し、高率充放電特性が向上する、負極材料及びこれを用いた負極を提供することにある。
本発明の更に別の目的は、電池のエネルギー密度を高めることができる、リチウムイオン電池及びリチウムポリマー電池を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素を含む無機質粒子11と、カーボン材料12と、樹脂結着剤10とを含み、カーボン材料12がカーボンナノファイバ13を主成分とし、カーボンナノファイバ13が20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有する負極材料である。
請求項1に係る発明では、20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバ13と樹脂結着剤10とが無機質粒子11,11間を繋ぐ役割をするため、高い導電性が得られる。またカーボンナノファイバ13と樹脂結着剤10とが無機質粒子11に絡みつくように存在することで、充放電によるリチウムの吸蔵、脱離に伴う無機質粒子11の体積変化に起因する無機質粒子の脱落や、電極の剥離等を防止し、サイクル特性を向上する。また、カーボンナノファイバ13は従来より負極材料として用いられてきた炭素系材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、樹脂結着剤10がフッ素含有樹脂18を変性物質19により変性させて得られる変性フッ素含有高分子化合物24を含む負極材料である。
請求項3に係る発明は、請求項2に係る発明であって、変性フッ素含有高分子化合物15がフッ素含有樹脂を幹重合体18とし、幹重合体18を変性物質19によりグラフト変性させて得られる高分子化合物である負極材料である。
請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、樹脂結着剤10が負極材料全体に対して1重量%〜30重量%の割合で含まれる負極材料である。
【0010】
請求項5に係る発明は、請求項3に係る発明であって、変性フッ素含有高分子化合物15を構成する幹重合体18が、ポリフッ化ビニリデン(以下、PVdFという。)、ポリフッ化ビニル(以下、PVFという。)、4フッ化エチレンポリマー、3フッ化エチレンポリマー、2フッ化エチレンポリマー、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(以下、VdF−HFP共重合体という。)、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−6フッ化プロピレン共重合体、3フッ化塩化エチレンポリマー及びポリテトラフルオロエチレンからなる群より選ばれた少なくとも1種のフッ素含有樹脂を含む負極材料である。
請求項5に係る発明では、VdF−HFP共重合体、PVdFが電解液への耐久性が高いため好ましい。
【0011】
請求項6に係る発明は、請求項3に係る発明であって、変性フッ素含有高分子化合物15を構成する変性物質19が、アクリル酸、アクリル酸メチル、メタクリル酸及びメタクリル酸メチルの少なくとも1種である負極材料である。
請求項6に係る発明では、上記変性物質を用いることにより樹脂結着剤は無機質粒子と良好な密着性を得ることができる。
【0012】
請求項7に係る発明は、請求項5に係る発明であって、変性フッ素含有高分子化合物15の幹重合体18がフッ化ビニリデンであるとき、フッ化ビニリデンが変性フッ素含有高分子化合物15に95重量%〜60重量%の割合で含まれる負極材料である。
請求項8に係る発明は、請求項3に係る発明であって、変性フッ素含有高分子化合物15はフッ素含有樹脂18と変性物質19が放射線照射処理によってグラフト化される負極材料である。
請求項9に係る発明は、請求項8に係る発明であって、フッ素含有樹脂18への放射線照射処理はγ線照射によって行われ、フッ素含有樹脂のγ線の吸収線量が10〜90kGyである負極材料である。
【0013】
請求項10に係る発明は、請求項1に係る発明であって、無機質粒子11はSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金又は化合物、単体とリチウムとの合金又は化合物、及びこれらの金属、リチウムを含む多元合金又は化合物で構成される負極材料である。
請求項11に係る発明は、請求項1又は10に係る発明であって、無機質粒子11の平均粒径が0.1〜50μmである負極材料である。
請求項12に係る発明は、請求項1、10又は11いずれか1項に係る発明であって、無機質粒子11とカーボン材料12との混合割合が重量比(無機質粒子/カーボン材料)で95/5〜30/70である負極材料である。
【0014】
請求項13に係る発明は、請求項1に係る発明であって、図2に示すように、カーボンナノファイバ13が複数の平面状グラファイト網14を積層して形成され、グラファイト網14がファイバ軸に対して実質的に垂直である構造を有する負極材料である。
この請求項13に係る発明では、グラファイト網14がファイバ軸に対して実質的に垂直である構造を有するカーボンナノファイバ13を用いることで、このファイバ自身も高いリチウム吸蔵、脱離能を有するため、負極材料全体のエネルギー密度が向上する。
【0015】
請求項14に係る発明は、請求項1に係る発明であって、図5に示すように、カーボンナノファイバ13が複数の筒状グラファイト網16を同心円状にかつ各軸がファイバ軸平行に配置して形成した負極材料である。
この請求項14に係る発明では、複数の筒状グラファイト網16を同心円状にかつ各軸がファイバ軸平行に配置して形成したカーボンナノファイバ13はファイバ軸方向に高い導電性が得られるため、このファイバを用いることでより高い導電性を発揮する。
【0016】
請求項15に係る発明は、請求項1、13又は14いずれか1項に係る発明であって、図7に示すように、カーボンナノファイバ13に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体17を含み、カーボンナノファイバ13が80重量%〜99.5重量%、粒子状凝集体17が0.5重量%〜20重量%の割合である負極材料である。
請求項15に係る発明では、カーボン材料に粒子状凝集体17を含むことによって主成分であるカーボンナノファイバ13,13同士の接触が良好になり、高率充放電特性が更に向上する。
【0017】
請求項16に係る発明は、請求項1、13、14又は15いずれか1項に係る発明であって、カーボンナノファイバ13又は、カーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物のX線回折において測定されるグラファイト網14,16平面の積層間隔d002が0.3354nm〜0.339nmである負極材料である。
請求項17に係る発明は、請求項1、13、14、15又は16いずれか1項に係る発明であって、カーボンナノファイバ13の露出部又は、カーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物の露出部の少なくとも85%がグラファイト網の端部である負極材料である。
請求項18に係る発明は、請求項1、10、11又は12いずれか1項に係る発明であって、無機質粒子11がシリコンをベースとした材料であって、シリコン粒子、シリサイド化合物、シリコンオキサイド又はシリコンオキシカーバイドである負極材料である。
【0018】
請求項19に係る発明は、請求項1ないし18いずれか1項に記載の負極材料を用いて形成された負極である。
この請求項19に記載された負極では、カーボンナノファイバ13と樹脂結着剤10とが無機質粒子11の周りに絡みつくように存在することで、充放電によるLiの吸蔵、脱離に伴う無機質粒子11の体積変化に起因する脱落や剥離を防止するため、サイクル特性の低下を抑制できる。
【0019】
請求項20に係る発明は、請求項19記載の負極を用いて形成されたリチウムイオン電池である。
請求項21に係る発明は、請求項19記載の負極を用いて形成されたリチウムポリマー電池である。
この請求項20又は21に記載されたリチウムイオン電池又はリチウムポリマー電池では、20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバ13と樹脂結着剤10とが無機質粒子11,11間を繋ぐ役割をするため、高い導電性が得られる。またカーボンナノファイバ13と樹脂結着剤10とが無機質粒子11に絡みつくように存在することで、充放電によるLiの吸蔵、脱離に伴う無機質粒子の体積変化に起因する無機質粒子の脱落や、電極の剥離等を防止し、サイクル特性を向上する。また、カーボンナノファイバは従来より負極材料として用いられてきた炭素材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0020】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、リチウムイオン電池又はリチウムポリマー電池の負極は、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素を含む無機質粒子11と、カーボン材料12と樹脂結着剤10とを含み、このカーボン材料12がカーボンナノファイバ13を主成分とする負極材料が用いられる。このカーボンナノファイバ13は20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有するように構成される。平均直径が20nm〜300nm、長さが1000nm〜6000nm、アスペクト比が20〜200を有するように構成されることが好ましい。本発明の負極材料は、20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバ13と樹脂結着剤10とが無機質粒子11,11間を繋ぐ役割をするため、高い導電性が得られる。またカーボンナノファイバ13と樹脂結着剤10とが無機質粒子11に絡みつくように存在することで、充放電によるリチウムの吸蔵、脱離に伴う無機質粒子11の体積変化に起因する無機質粒子の脱落や、電極の剥離等を防止し、サイクル特性を向上する。また、カーボンナノファイバ13は従来より負極材料として用いられてきた炭素系材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0021】
樹脂結着剤10にはフッ素含有樹脂18を変性物質19により変性させて得られる変性フッ素含有高分子化合物15が含まれる。この変性フッ素含有高分子化合物15はフッ素含有樹脂を幹重合体18とし、幹重合体18を変性物質19によりグラフト変性させて得られる高分子化合物である。
ここで「変性」とは、性質が変わることを意味し、本明細書では、幹重合体である樹脂のところどころに変性物質が配列することにより、幹重合体である樹脂自身が持つ性質だけでなく、変性物質が持つ性質も併せ持ったり、両者にない性質を新たに持たせることを意味する。
【0022】
変性フッ素含有高分子化合物は変性させたことで化学的に安定性が向上するため、電解液に対して溶解されることなく活物質層の集電体からの剥がれが抑制される。また変性フッ素含有高分子化合物は変性させたことで熱的に安定性が向上するため、電池が高温下におかれても電池内溶媒に溶解することがなく電池の劣化を抑制できる。また変性させたことで電気化学的にも安定性が向上するため、劣化することがなく安定した密着力と導電性を保つ。更に電解液が変性高分子化合物中に浸透するのが困難となるため、集電体への電解液の付着がなくなる。
【0023】
負極活物質層は電池内において化学的、電気化学的、熱的に安定性が要求されるため、負極活物質層を形成する負極材料に用いられる樹脂結着剤10に含まれる高分子化合物には、分子内にフッ素を含む化合物が用いられる。
樹脂結着剤10は負極材料全体に対して1重量%〜30重量%の割合で含まれる。好ましくは負極材料全体に対して5重量%〜20重量%の割合である。下限値未満であると十分な密着力が得られず、上限値を越えると電極密度が低下し、また導電性も悪くなる。
【0024】
幹重合体18のところどころに変性物質19を枝重合体として配列して変性させるには、グラフト重合を用いる。幹重合体18には、PVdF、PVF、4フッ化エチレンポリマー、3フッ化エチレンポリマー、2フッ化エチレンポリマー、VdF−HFP共重合体、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−6フッ化プロピレン共重合体、3フッ化塩化エチレンポリマー及びポリテトラフルオロエチレンからなる群より選ばれた少なくとも1種のフッ素含有樹脂が含まれる。また変性物質19には、アクリル酸、アクリル酸メチル、メタクリル酸及びメタクリル酸メチルの少なくとも1種が挙げられる。
グラフト重合させる方法としては放射線法がある。放射線法では、幹重合体18となるフッ素含有樹脂と枝重合体となる変性物質19とを混合して、混合物に放射線を連続的又は間欠的に放射することにより重合でき、変性物質19とフッ素含有樹脂18とを接触させる前にフッ素含有樹脂18を予備放射することが好ましい。具体的には、フッ素含有樹脂18に放射線を照射した後で、前記被照射物に変性物質19を混合することにより、フッ素含有樹脂を幹重合体とし変性物質を枝重合体とした変性フッ素含有高分子化合物15を得ることができる。グラフト重合に用いる放射線にはγ線を使用する。フッ素含有樹脂18への吸収線量が1〜90kGyになるようにγ線を照射する。幹重合体となるフッ素含有樹脂に放射線を照射することにより片末端にラジカルが形成され、変性物質が重合し易くなる。
【0025】
図9(a)に示すように、変性フッ素含有高分子化合物を構成する幹重合体18は、繰返し単位Aを基本単位とする。幹重合体の基本単位は、図9(a)に示すように1種類でもよいし、図示しないが2種類以上の基本単位を用いてもよい。この基本単位は幹重合体中に50分子量%以上の割合で含まれることが好ましい。60〜100分子量%の割合で含まれるのがより好ましい。図9(b)に示すように、この幹重合体18に放射線を照射して基本単位Aの片末端のところどころにラジカル18aを形成する。図9(c)に示すように、ラジカルを形成した幹重合体18に変性物質19(図9中のC)を接触させることにより、ラジカル部分18aに変性物質19が配列して変性フッ素含有高分子化合物15が形成される。変性物質19は変性フッ素含有高分子化合物中に2〜50分子量%の割合で含まれることが好ましい。5〜30分子量%の割合で含まれるのがより好ましい。
【0026】
グラフト重合は活性化した幹重合体となる樹脂が枝重合体となる変性物質と接触している時間の長さ、放射線による予備活性の程度、枝重合体となる変性物質が幹重合体となる樹脂を透過できるまでの程度、樹脂及び変性物質が接触しているときの温度等によりそれぞれ重合生成が異なる。変性物質が酸である場合、変性物質である化合物を含有する溶液をサンプリングして、アルカリにより滴定し、残留する酸化合物濃度を測定することにより、グラフト化の程度を観測することができる。得られた組成物中のグラフト化の割合は、最終重量の2〜50分子量%が望ましい。
変性フッ素含有高分子化合物15の幹重合体18がフッ化ビニリデンであるとき、フッ化ビニリデンが変性フッ素含有高分子化合物15に95重量%〜60重量%の割合で含まれるのが好ましい。
【0027】
無機質粒子11はSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金又は化合物、単体とリチウムとの合金又は化合物、及びこれらの金属、リチウムを含む多元合金又は化合物で構成される。好ましくは無機質粒子がシリコンをベースとした材料であって、シリコン粒子、シリサイド化合物、シリコンオキサイド又はシリコンオキシカーバイドである。具体的にはシリサイド化合物としては、FeSi、SbSi、MgSi、CaSi、NiSi、シリコンオキサイドとしてはSiO、シリコンオキシカーバイドとしてはSiOC等がそれぞれ挙げられる。無機質粒子11の平均粒径は0.1〜50μmである。0.5〜5μmの範囲がより好ましい。
【0028】
無機質粒子11とカーボン材料12との混合割合は重量比(無機質粒子/カーボン材料)で95/5〜30/70である。重量比が30/70未満、即ちカーボン材料の含有割合が大きい場合、十分に電極の容量を得られない不具合を生じる。重量比が95/5を越える、即ちカーボン材料の含有割合が小さい場合、シリコンの体積変化を十分緩和できず、サイクル劣化が早い不具合を生じる。好ましい重量比(無機質粒子/カーボン材料)は90/10〜70/30である。より好ましい重量比(無機質粒子/カーボン材料)は9/1である。
【0029】
図2に示すように、本発明のカーボンナノファイバ13は複数の平面状グラファイト網14を積層して形成され、このグラファイト網14がファイバ軸に対して実質的に垂直である構造を有する。このような構造を有するカーボンナノファイバ13を用いることで、このファイバ自身も高いリチウム吸蔵、脱離能を有するため、負極材料全体のエネルギー密度が向上する。また図4に示すように、グラファイト網14のある端部14aの一辺が別のグラファイト網の端部の一辺と接合し、更に別の端部の一辺が更に別のグラファイト網の端部の一辺と接合して形成され、各辺から折り畳んだ構造を有するカーボンナノファイバ13を用いてもよい。
【0030】
このカーボンナノファイバ13を主成分としたカーボン材料は、平面状グラファイト網14が複数積層した形状を有するため、グラファイト網14のエッジ面が多く露出しており、リチウムイオンが吸蔵、脱離反応を起こす各グラファイト網が形成する層間が多数存在する。そのため、多くのリチウムイオンがグラファイト網層間に吸蔵、脱離することができるため高率放電が可能となる。また、グラファイト網14の平均直径を20nm〜500nmの範囲内とすることで充放電に伴うリチウムイオンの吸蔵、脱離反応がスムーズに進行する。グラファイト網の平均直径が10nm未満ではリチウムを吸蔵するグラファイト網が微小であるためにリチウム吸蔵量が低くなり、エネルギー密度が低下する不具合があり、500nmを越えるとグラファイト網が形成する層間にリチウムイオンが吸蔵されても拡散し難く、充放電反応がスムーズに進行しないからである。
【0031】
図3(a)に示すように、充電時にはリチウムイオンがグラファイト網層間に吸蔵する反応が起こる。吸蔵されたリチウムイオンはグラファイト網層間で拡散する(図3(b))。放電時にはグラファイト網層間に拡散したリチウムイオンがスムーズに脱離反応を起こす(図3(c))。このように、このカーボンナノファイバ13をカーボン材料12の主成分として用いることで充放電に伴うリチウムイオンの吸蔵、脱離反応がスムーズに進行するため、高率充放電特性が向上する。また、カーボンナノファイバ13は従来より用いられてきた炭素系材料に比べて、サイズの小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
また、図5に示すように、本発明のカーボンナノファイバ13は複数の筒状グラファイト網16を同心円状にかつ各軸がファイバ軸平行に配置して形成したファイバを用いてもよい。このカーボンナノファイバ13を用いることで、図6に示すように、ファイバ軸方向に高い導電性が得られるため、このファイバを用いることで無機質粒子11,11間の導電性がより向上する。
【0032】
また本発明のカーボン材料12は図7に示すように、カーボンナノファイバ13に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体17を含む。
粒子状凝集体17はその平均粒径が0.5μm〜10μmである。カーボン材料12に粒子状凝集体17を更に含むことによって主成分であるカーボンナノファイバ13,13同士の接触が良好になり、高率充放電特性が更に向上する。カーボン材料12中のカーボンナノファイバ13の含有量は80重量%〜99.5重量%、粒子状凝集体17の含有量は0.5重量%〜20重量%の割合である。好ましくはカーボンナノファイバ13が90重量%〜99重量%、粒子状凝集体17が1重量%〜10重量%の割合である。カーボンナノファイバ13の含有量を80重量%〜99.5重量%の範囲に限定したのは、80重量%未満ではグラファイトエッジ部の露出度が下がるために高率充放電特性が低下する不具合があり、99.5重量%を越えるとカーボンナノファイバ13,13同士の接触が十分得られず、やはり高率充放電特性が低下する不具合があるからである。
【0033】
カーボンナノファイバ13又は、カーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物をX線回折において測定したとき、得られるグラファイト網14,16平面の積層間隔d002は0.3354nm〜0.339nmの範囲内である。好ましい積層間隔d002は0.3558nm〜0.338nmである。
カーボンナノファイバ13の露出部又は、カーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物の露出部の少なくとも85%がグラファイト網の端部であることが好ましい。より好ましくは90%以上である。ここでグラファイト網の端部とは図2及び図4において符号14aで表される箇所を示す。
【0034】
次に、カーボン材料の製造方法を説明する。
先ず、カーボン材料を製造するために必要な触媒を合成する。この触媒の平均粒径は10nm〜500nmの範囲内の微粉末がカーボン材料を製造する際に好適な大きさである。触媒としてはFe系微粉末、具体的には、Fe−Ni合金、Fe−Mn合金、Cu−Ni合金、Co−Ni合金、Co−Fe合金、Co金属、Fe金属やMgO金属酸化物等が挙げられる。触媒はカーボン材料を製造する前に前処理を施し、活性化させる。触媒をHe及びHを含む混合ガス雰囲気下で加熱することにより活性化される。
【0035】
図8に本発明のカーボン材料を製造する熱処理炉20を示す。この熱処理炉20は断熱性材質からなる装置本体21から構成され、装置本体21内部は所定の間隔をあけて2枚の仕切板26により水平に仕切られる。仕切板26,26により仕切られた装置本体21内部の頂部及び底部には発熱体22がそれぞれ設置される。熱処理炉内で熱処理に用いられる発熱体22の加熱源としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が挙げられる。仕切板26,26で仕切られた空間に原料ガスを供給するように装置本体21の一方の側部には、ガス供給口24が設けられる。原料ガスとしては、CO及びHを含む混合ガスが挙げられる。COの代わりにC、C等を用いてもよい。仕切板26,26により仕切られた空間27は、微粉末の触媒をばらまいたテーブル28が収容可能な大きさを有し、装置本体21の他方の側部には系外へ熱処理炉20内に供給した原料ガスを排出するガス排出口29が設けられる。空間27内に収容されるテーブル28は取出し台31の上に載置されて、熱処理炉内に収容、搬出可能に設けられる。
【0036】
テーブル28に微粉末の触媒32を載せた後、そのテーブル28を取出し台31の上に載せて熱処理炉20まで搬送し、装置本体21の空間27内に収納する。その後、原料ガスをガス供給口24から供給し、発熱体22,22により加熱する。原料ガスの供給量は0.2L/min〜10L/min、加熱温度は500℃〜700℃に設定される。原料ガスを供給しながら加熱し、1時間〜10時間保持しておくことにより、触媒32を介してカーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物33が成長する。得られたカーボンナノファイバ13及び粒子状凝集体17を含む混合物33には触媒32が含まれているので、熱処理炉20内よりテーブル28を搬出して得られた混合物33を取出し、この混合物33を硝酸、塩酸、フッ酸等の酸性溶液に浸漬させて、混合物33に含まれる触媒32を除去する。なお、触媒32を混合物33中に含ませたまま、カーボン材料12として利用してもよい。
【0037】
このようにして得られたカーボン材料12と樹脂結着剤10とを用いて負極を作製する。
先ず得られたカーボン材料を有機溶媒中に分散して分散溶液を調製する。次いで、得られた樹脂結着剤を溶媒中に溶解し、樹脂結着剤の溶液を調製する。次に、無機質粒子を用意し、分散溶液と樹脂結着剤溶液と無機質粒子とをそれぞれ所定の割合で混合することにより負極材料を調製する。次に負極材料を負極集電体箔の上面に、スクリーン印刷法やドクターブレード法等により塗布、乾燥して負極を作製する。ここでドクターブレード法とは、キャリアフィルムやエンドレスベルト等のキャリア上に載せて運ばれるスリップの厚さをドクターブレードと呼ばれるナイフエッジとキャリアとの間隔を調整することによってシートの厚さを精密に制御する方法である。なお、負極スラリーをガラス基板上に塗布し乾燥した後に、ガラス基板から剥離して負極フィルムを作製し、更にこの負極フィルムを負極集電体に重ねて所定の圧力でプレス成形することにより、負極を作製してもよい。
【0038】
図10に示すように、負極集電体37上に負極活物質層38を形成して得られた本発明の負極40と、非水電解液[例えば、エチレンカーボネート(EC)とジエチレンカーボネート(DEC)からなる混合溶媒(混合重量比1:1)と過塩素酸リチウムを1モル/リットル溶解させたもの]を含む電解質層39と、正極集電体34上に結着剤、正極材料及び導電助剤からなる正極スラリーをドクターブレード法によって塗布し乾燥することにより正極活物質層36が形成された正極35とを積層することにより、リチウムイオン電池が得られる。また本発明の負極と、ポリエチレンオキシドやポリフッ化ビニリデン等からなるポリマー電解質層と、正極集電体上に結着剤、正極材料及び導電助剤からなる正極スラリーをドクターブレード法によって塗布し乾燥することにより形成された正極とを積層することにより、リチウムポリマー電池が得られる。このように製造されたリチウムイオン電池やリチウムポリマー電池では、グラファイト網が複数積層されて形成されたカーボンナノファイバによってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。また、従来より用いられてきた炭素材料に比べて、サイズの小さいカーボンナノファイバを用いているため、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
【0039】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
(1) カーボン材料の製造
先ず、平均粒径0.1μmのFe−Ni合金を触媒とし、この触媒をHe及びHを含む混合ガス雰囲気下で加熱して活性化させた。次いで活性化させた触媒をテーブル上に載せ、テーブルを熱処理炉内に収容した。次に、熱処理炉内を550℃〜630℃の温度に加熱し、COとHを含む混合ガスを原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内に供給しながら約10時間保持して複数の平面状グラファイト網を積層して形成され、グラファイト網がファイバ軸に対して実質的に垂直である構造を有するカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒を除去してカーボン材料とした。このカーボン材料をX線回折により測定したところ、カーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物のグラファイト網平面の積層間隔d002は0.3362nmであった。
【0040】
(2) 樹脂結着剤の合成
先ず、幹重合体としてPVdF粉末50gを、変性物質として15重量%アクリル酸水溶液260gをそれぞれ用意した。PVdF粉末をポリエチレン製パックに入れて真空パックし、PVdFへの吸収線量が50kGyとなるように60Coをγ線源としてγ線を照射した。γ線照射したPVdF粉末をポリエチレン製パックより取出して窒素雰囲気に移し、15重量%アクリル酸水溶液260g中にPVdF粉末を供給して80℃に保持し、アクリル酸水溶液と反応させた。反応中は反応溶液のサンプルを逐次採取し、この採取液に水酸化ナトリウムを用いて滴定を行い、PVdFと反応したアクリル酸量を算出した。アクリル酸の消耗量がPVdF重量の20.48%になった時点で反応を止めて、得られた固体状生成物を純水で洗浄して乾燥させ、変性フッ素含有高分子化合物を得た。得られた変性フッ素含有高分子化合物はアクリル酸グラフト化PVdF(Acrylic Acidgrafting PolyVinylidene Fluoride、以下、AA−g−PVdFという。)であり、この化合物中の変性物質割合は17重量%であった。
【0041】
(3) 負極(作用極)の作製
上記カーボン材料をn−メチルピロリドン中に分散して分散溶液を作製した。次いで上記樹脂結着剤を溶媒中に溶解し、樹脂結着剤の溶液を調製した。無機質粒子として平均粒径0.5μm〜1μmのSi粒子を用意した。分散溶液と無機質粒子と樹脂結着剤溶液をカーボン材料の割合が10重量%、無機質粒子の割合が75重量%、樹脂結着剤の割合が15重量%の割合になるように混合し、ロールミル等の混合器で混合して負極材料とした。負極材料から溶媒を添加或いは除去して粘度を調製し、縦×横×厚さがそれぞれ1cm×1cm×0.1cmの正方形金属網状の負極集電体の両面にコーダーにより塗布、乾燥して負極(作用極)を作製した。負極集電体にはメッシュ状に形成された銅箔を用いた。
【0042】
<実施例2>
幹重合体にPVdFを、変性物質にメタクリル酸をそれぞれ用いてメタクリル酸グラフト化PVdF(以下、MA−g−PVdFという。)を合成し、このMA−g−PVdFを樹脂結着剤として用いた以外は実施例1と同様にして負極(作用極)を作製した。
<実施例3>
幹重合体にVdF−HFPを、変性物質にアクリル酸をそれぞれ用いてアクリル酸グラフト化VdF−HFP(以下、AA−g−VdF−HFPという。)を合成し、このAA−g−VdF−HFPを樹脂結着剤として用いた以外は実施例1と同様にして負極(作用極)を作製した。
【0043】
<実施例4>
カーボン材料の割合を20重量%、無機質粒子の割合を60重量%、樹脂結着剤の割合を20重量%とした以外は実施例1と同様にして負極(作用極)を作製した。
<実施例5>
幹重合体にPVdFを、変性物質にメタクリル酸をそれぞれ用いてMA−g−PVdFを合成し、このMA−g−PVdFを樹脂結着剤として用いた以外は実施例4と同様にして負極(作用極)を作製した。
<実施例6>
幹重合体にVdF−HFPを、変性物質にアクリル酸をそれぞれ用いてAA−g−VdF−HFPを合成し、このAA−g−VdF−HFPを樹脂結着剤として用いた以外は実施例4と同様にして負極(作用極)を作製した。
【0044】
<実施例7>
複数の筒状グラファイト網を同心円状にかつ各軸がファイバ軸平行に配置して形成したカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を合成した。このカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物のX線回折において測定されるグラファイト網平面の積層間隔d002は0.3365nmであった。このカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物をカーボン材料として用いた以外は実施例1と同様にして負極(作用極)を作製した。
【0045】
<実施例8>
幹重合体にPVdFを、変性物質にメタクリル酸をそれぞれ用いてMA−g−PVdFを合成し、このMA−g−PVdFを樹脂結着剤として用いた以外は実施例7と同様にして負極(作用極)を作製した。
<実施例9>
幹重合体にVdF−HFPを、変性物質にアクリル酸をそれぞれ用いてAA−g−VdF−HFPを合成し、このAA−g−VdF−HFPを樹脂結着剤として用いた以外は実施例7と同様にして負極(作用極)を作製した。
【0046】
<実施例10>
カーボン材料の割合を20重量%、無機質粒子の割合を60重量%、樹脂結着剤の割合を20重量%とした以外は実施例7と同様にして負極(作用極)を作製した。
<実施例11>
幹重合体にPVdFを、変性物質にメタクリル酸をそれぞれ用いてMA−g−PVdFを合成し、このMA−g−PVdFを樹脂結着剤として用いた以外は実施例10と同様にして負極(作用極)を作製した。
<実施例12>
幹重合体にVdF−HFPを、変性物質にアクリル酸をそれぞれ用いてAA−g−VdF−HFPを合成し、このAA−g−VdF−HFPを樹脂結着剤として用いた以外は実施例10と同様にして負極(作用極)を作製した。
【0047】
<比較例1>
アセチレンブラックをカーボン材料として用いた以外は実施例1と同様にして負極(作用極)を作製した。
<比較例2>
アセチレンブラックをカーボン材料として用いた以外は実施例4と同様にして負極(作用極)を作製した。
【0048】
<比較試験及び評価>
図11に示すように、実施例1〜12、比較例1及び2でそれぞれ作製した負極41(作用極)を充放電サイクル試験装置51に取付けた。この装置51は、容器52に電解液53(支持塩を有機溶媒に溶かしたもの)が貯留され、上記負極41が正極42及び参照極43とともに電解液53に浸され、更に負極41(作用極)、正極42(対極)及び参照極43がポテンシオスタット54(ポテンショメータ)にそれぞれ電気的に接続された構成となっている。支持塩であるリチウム塩には1MのLiPFを、有機溶媒にはエチレンカーボネート及びジエチルカーボネートをそれぞれ含む溶液を用いた。正極及び参照極には金属リチウムを用いた。この装置を用いて充放電サイクル試験を行い、各負極(作用極)の低率及び高率放電容量を測定した。なお、低率放電容量は50mA/gにて、高率放電容量は200mA/gにてそれぞれ測定を行い、測定電圧範囲を0V〜3.0Vとした。なお、容量は放電容量/(カーボン材料重量+無機質粒子材料重量)より算出した。
【0049】
実施例1〜12、比較例1及び2の電極の配合割合を表1に、その電極の測定結果を表2にそれぞれ示す。なお、表1中のCNF(P)とは複数の平面状グラファイト網を積層して形成され、グラファイト網がファイバ軸に対して実質的に垂直である構造を有するカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を、CNF(T)とは複数の筒状グラファイト網を同心円状にかつ各軸がファイバ軸平行に配置して形成したカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を表す。また、表2中の密着性試験における記号は、◎:大変良好、○良好、×:剥がれをそれぞれ示す。
【0050】
【表1】

Figure 2004220911
【0051】
【表2】
Figure 2004220911
【0052】
表2より明らかなように、無機質粒子とともに従来より使用されている炭素系材料であるアセチレンブラックをカーボン材料に用い、かつPVdFを結着剤に用いた比較例1及び2では、10サイクル目における容量維持率が大きく低下しており、10サイクル後の密着性試験においてもすぐに剥離する結果が得られた。これに対して実施例1〜12では10サイクル目における容量維持率非常に高い結果を示しており、サイクル特性に優れることが判る。また10サイクル後の密着性試験についても全ての例において剥離がなく、強度に優れている結果が得られた。
【0053】
【発明の効果】
以上述べたように、本発明の負極材料は、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素を含む無機質粒子と、カーボン材料と樹脂結着剤とを含み、カーボン材料がカーボンナノファイバを主成分とし、カーボンナノファイバ13が20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有する。
このような形状を有するカーボンナノファイバをカーボン材料の主成分とすることにより、カーボンナノファイバと樹脂結着剤とが無機質粒子間を繋ぐ役割をするため、高い導電性が得られる。またカーボンナノファイバと樹脂結着剤とが無機質粒子に絡みつくように存在することで、充放電によるリチウムの吸蔵、脱離に伴う無機質粒子の体積変化に起因する無機質粒子の脱落や、電極の剥離等を防止し、サイクル特性を向上する。また、カーボンナノファイバは従来より負極材料として用いられてきた炭素材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【図面の簡単な説明】
【図1】本発明の無機質粒子とカーボン材料と樹脂結着剤とを負極活物質中に添加したときの無機質粒子の体積膨張を示す断面構成図。
【図2】本発明のカーボン材料の主成分であるグラファイト網がファイバ軸に対して実質的に垂直である構造を有するカーボンナノファイバの模式図。
【図3】グラファイト網層間にリチウムイオンが挿入、脱離する反応を示す模式図。
【図4】図2に対応する別の構造を有するカーボンナノファイバの模式図。
【図5】本発明のカーボン材料の主成分である複数の筒状グラファイト網を同心円状にかつ各軸がファイバ軸平行に配置して形成したカーボンナノファイバの模式図。
【図6】図5のカーボンナノファイバの導電方向を示す図。
【図7】
図2のカーボンナノファイバと粒子状凝集体を示す模式図。
【図8】
本発明のカーボンナノファイバを作製する熱処理炉の断面構成図。
【図9】
変性フッ素含有高分子化合物の合成を示す模式図。
【図10】
本発明のリチウムイオン電池の電極体を示す部分断面構成図。
【図11】
実施例及び比較例のリチウム二次電池用負極活物質の充放電サイクル試験に用いられる装置。
【図12】
従来の無機質粒子のみを負極活物質中に添加したときの無機質粒子の体積膨張を示す断面構成図。
【図13】
従来の無機質粒子と炭素系材料を負極活物質中に添加したときの無機質粒子の体積膨張を示す断面構成図。
【符号の説明】
10 樹脂結着剤
11 無機質粒子
12 カーボン材料
13 カーボンナノファイバ
14 平面状グラファイト網
15 変性フッ素含有高分子化合物
16 筒状グラファイト網
17 粒子状凝集体
18 幹重合体(フッ素含有樹脂)
18a ラジカル
19 変性物質[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material capable of improving cycle characteristics and high-rate charge / discharge characteristics and increasing the energy density of a battery, a negative electrode using the same, and a lithium ion battery and a lithium polymer battery using the negative electrode.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the development of portable electronic devices such as mobile phones and notebook computers and the practical use of electric vehicles, secondary batteries of small size, light weight and high capacity have been required. At present, a lithium ion battery using a lithium-containing composite oxide such as LiCoO 2 as a positive electrode material and a carbon-based material as a negative electrode active material has been commercialized as a high capacity secondary battery that meets this demand. When this carbon-based material is used for the negative electrode, the theoretical capacity is 372 mAh / g, which is only about 1/10 that of metallic lithium, and the theoretical density is 2.2 g / cc, which is low. , The density further decreases. Therefore, it is desired to use a material having a higher capacity per unit volume as the negative electrode from the viewpoint of increasing the capacity of the battery.
It is known that metals or metalloids such as Al, Ge, Si, Sn, Zn, and Pb are alloyed with lithium, and a secondary battery using these metals or metalloids as a negative electrode active material has been studied. ing. This material has a high capacity and a high energy density, and can absorb and desorb more lithium ions than a negative electrode using a carbon-based material. It is believed that can be produced. However, they have not yet been put to practical use because they have inferior cycle characteristics as compared with carbon-based materials.
[0003]
As a technique for solving such a problem, a nonaqueous electrolyte secondary battery in which a negative electrode has a hexagonal close-packed structure composed of two elements and includes an alloy having a Ni 2 In type structure has been disclosed. (For example, see Patent Document 1). In this secondary battery, the use of an alloy having the above crystal structure as a negative electrode material controls the excessive occlusion of lithium ions, so that the stress of expansion and contraction due to occlusion and desorption of lithium, which is the main cause of cycle deterioration, is obtained. Can be suppressed. Therefore, high capacity and excellent charge / discharge cycle characteristics can be obtained.
Also disclosed is a secondary battery using an intermetallic compound of at least one element selected from the group consisting of Al, Ge, Pb, Si, Sn, and Zn, and a metal or metalloid other than the above group of elements. (For example, see Patent Document 2). The presence of another element that is difficult to alloy with lithium around the element that alloys with lithium suppresses microcrystallization and pulverization, so that excellent cycle characteristics can be obtained.
[0004]
[Patent Document 1]
JP 2001-250541 A [Patent Document 2]
JP-A-10-223221
[Problems to be solved by the invention]
However, when inorganic particles such as silicon and tin are directly used as a negative electrode material as a lithium absorbing and desorbing substance, there are the following problems. When the inorganic particles contained in the negative electrode active material occlude lithium by charging, the volume expands significantly (FIGS. 12A and 12B). When lithium is desorbed by discharging, the inorganic particles 1 shrink. When this cycle is repeated, the negative electrode active material 2 cannot cope with a large volume change of the inorganic particles, and pores 3 are generated between the inorganic particles 1 and the negative electrode active material 2 as shown in FIG. This causes problems such as deterioration of conductivity, separation of the negative electrode active material 2 from the negative electrode current collector 4 and deterioration of cycle characteristics. In addition, the code | symbol 6 shown by the short broken line in the figure shows the magnitude | size at the time of volume expansion of an inorganic particle.
In the secondary batteries shown in Patent Documents 1 and 2, respectively, a phenomenon similar to the above-described problem has occurred, and stress caused by expansion and contraction of inorganic particles due to insertion and desorption of lithium due to charge and discharge. Is not sufficiently buffered, and a practical cycle life is not obtained.
[0006]
In the case of a negative electrode material in which a carbon-based material such as Ketjen black, which has been conventionally used, is mixed together with the inorganic particles, the carbon-based material 7 adheres around the inorganic particles 1 as shown in FIG. Exists in form. When the inorganic particles contained in the active material occlude lithium by charging, the volume of the particles expands greatly (FIG. 13B). Since the surface area of the inorganic particles 1 increases due to the volume expansion of the inorganic particles 1, the carbon-based material 7 moves its position so as to spread the enlarged surface. When lithium is desorbed by discharging, the inorganic particles 1 shrink (FIG. 13C). When the inorganic particles shrink, the surface area also returns to its original state, so that the carbon-based material 7 having widened the surface area also attempts to return its position to its original position. When this cycle is repeated, the inorganic particles 1 are pressed from the carbon-based material 7 existing around them, and cracks 8 are generated, and the cycle characteristics may be degraded.
[0007]
An object of the present invention is to provide a negative electrode material and a negative electrode using the same, which can control the stress caused by the insertion and desorption reactions of lithium ions during charge and discharge and can improve cycle characteristics.
It is another object of the present invention to provide a negative electrode material and a negative electrode using the same, in which lithium ion insertion and desorption reactions accompanying charge and discharge smoothly proceed and high-rate charge and discharge characteristics are improved.
Still another object of the present invention is to provide a lithium ion battery and a lithium polymer battery that can increase the energy density of the battery.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 comprises Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co and Mn, as shown in FIG. It includes inorganic particles 11 containing at least one element selected from the group, a carbon material 12, and a resin binder 10, wherein the carbon material 12 has a carbon nanofiber 13 as a main component, and the carbon nanofiber 13 has a thickness of 20 nm. A negative electrode material having an average diameter of about 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more.
In the invention according to claim 1, the carbon nanofibers 13 having an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more and the resin binder 10 serve to connect the inorganic particles 11 and 11. Therefore, high conductivity is obtained. Further, since the carbon nanofibers 13 and the resin binder 10 are present so as to be entangled with the inorganic particles 11, dropping of the inorganic particles due to a volume change of the inorganic particles 11 caused by occlusion and desorption of lithium due to charge and discharge, and In addition, it prevents electrode peeling and improves cycle characteristics. In addition, since the carbon nanofiber 13 is a material having a smaller average diameter than a carbon-based material conventionally used as a negative electrode material, when a battery electrode is manufactured, high-density charging becomes possible. Energy density.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the resin binder 10 is a negative electrode material containing a modified fluorine-containing polymer compound 24 obtained by modifying a fluorine-containing resin 18 with a modifying substance 19. is there.
The invention according to claim 3 is the invention according to claim 2, wherein the modified fluorine-containing polymer compound 15 is obtained by modifying the fluorine-containing resin into a trunk polymer 18 and graft-modifying the trunk polymer 18 with a modifying substance 19. The negative electrode material is a polymer compound obtained.
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the resin binder 10 is contained at a ratio of 1% by weight to 30% by weight with respect to the entire negative electrode material. It is.
[0010]
The invention according to claim 5 is the invention according to claim 3, wherein the trunk polymer 18 constituting the modified fluorine-containing polymer compound 15 is polyvinylidene fluoride (hereinafter, referred to as PVdF), polyvinyl fluoride (hereinafter, polyvinyl fluoride). , PVF), tetrafluoroethylene polymer, trifluoride ethylene polymer, difluoroethylene polymer, vinylidene fluoride-hexafluoropropylene copolymer (hereinafter referred to as VdF-HFP copolymer), ethylene-4 A negative electrode material containing at least one fluorine-containing resin selected from the group consisting of a fluorinated ethylene copolymer, a tetrafluoroethylene-6-fluoropropylene copolymer, a trifluoroethylene chloride polymer and polytetrafluoroethylene; is there.
In the invention according to claim 5, the VdF-HFP copolymer and PVdF are preferable because of their high durability to an electrolytic solution.
[0011]
The invention according to claim 6 is the invention according to claim 3, wherein the modified substance 19 constituting the modified fluorine-containing polymer compound 15 is at least one of acrylic acid, methyl acrylate, methacrylic acid, and methyl methacrylate. The negative electrode material is as follows.
In the invention according to claim 6, by using the modified substance, the resin binder can obtain good adhesion to the inorganic particles.
[0012]
The invention according to claim 7 is the invention according to claim 5, wherein when the backbone polymer 18 of the modified fluorine-containing polymer compound 15 is vinylidene fluoride, the vinylidene fluoride is converted into the modified fluorine-containing polymer compound 15. A negative electrode material contained in a proportion of 95% by weight to 60% by weight.
The invention according to claim 8 is the invention according to claim 3, wherein the modified fluorine-containing polymer compound 15 is a negative electrode material in which the fluorine-containing resin 18 and the modified substance 19 are grafted by radiation irradiation treatment.
The invention according to claim 9 is the invention according to claim 8, wherein the radiation irradiation treatment on the fluorine-containing resin 18 is performed by γ-ray irradiation, and the absorbed dose of γ-ray of the fluorine-containing resin is 10 to 90 kGy. It is a negative electrode material.
[0013]
The invention according to claim 10 is the invention according to claim 1, wherein the inorganic particles 11 include Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, At least one element selected from the group consisting of Ni, Co and Mn is a simple substance, an alloy or a compound with an oxide or another metal, an alloy or a compound with a simple substance and lithium, and a multi-element including these metals and lithium A negative electrode material composed of an alloy or a compound.
An eleventh aspect of the present invention is the negative electrode material according to the first or tenth aspect, wherein the inorganic particles 11 have an average particle size of 0.1 to 50 μm.
The invention according to claim 12 is the invention according to any one of claims 1, 10 or 11, wherein the mixing ratio of the inorganic particles 11 and the carbon material 12 is 95 / weight ratio (inorganic particles / carbon material). The negative electrode material is 5 to 30/70.
[0014]
The invention according to claim 13 is the invention according to claim 1, wherein the carbon nanofibers 13 are formed by laminating a plurality of planar graphite nets 14 as shown in FIG. Is a negative electrode material having a structure that is substantially perpendicular to the negative electrode.
In the invention according to the thirteenth aspect, by using the carbon nanofiber 13 having a structure in which the graphite network 14 is substantially perpendicular to the fiber axis, the fiber itself has a high lithium occlusion and desorption ability. As a result, the energy density of the entire negative electrode material is improved.
[0015]
The invention according to claim 14 is the invention according to claim 1, wherein, as shown in FIG. 5, the carbon nanofibers 13 are arranged such that a plurality of tubular graphite nets 16 are concentric and each axis is parallel to the fiber axis. This is a negative electrode material formed by the above method.
In the invention according to claim 14, a carbon nanofiber 13 formed by arranging a plurality of cylindrical graphite nets 16 concentrically and each axis being parallel to the fiber axis has high conductivity in the fiber axis direction. By using this fiber, higher conductivity is exhibited.
[0016]
The invention according to claim 15 is the invention according to any one of claims 1, 13 and 14, and comprises carbon fine powder having a graphite structure in addition to the carbon nanofibers 13, as shown in FIG. The negative electrode material includes the particulate aggregates 17, wherein the carbon nanofibers 13 are in a ratio of 80 wt% to 99.5 wt%, and the particulate aggregates 17 are in a ratio of 0.5 wt% to 20 wt%.
In the invention according to claim 15, by including the particulate aggregates 17 in the carbon material, the contact between the carbon nanofibers 13 as the main components is improved, and the high-rate charge / discharge characteristics are further improved.
[0017]
The invention according to claim 16 is the invention according to any one of claims 1, 13, 14 and 15, wherein the X of the carbon nanofibers 13 or the mixture containing the carbon nanofibers 13 and the particulate aggregates 17, respectively. This is a negative electrode material in which the lamination distance d 002 between the planes of the graphite nets 14 and 16 measured by line diffraction is 0.3354 nm to 0.339 nm.
The invention according to claim 17 is the invention according to any one of claims 1, 13, 14, 15, or 16, wherein the exposed portion of the carbon nanofiber 13 or the carbon nanofiber 13 and the particulate aggregate 17 are At least 85% of the exposed portions of the respective mixtures are the negative electrode materials which are the ends of the graphite network.
The invention according to claim 18 is the invention according to any one of claims 1, 10, 11, and 12, wherein the inorganic particles 11 are a silicon-based material, and include silicon particles, a silicide compound, and silicon oxide. Alternatively, the negative electrode material is silicon oxycarbide.
[0018]
The invention according to claim 19 is a negative electrode formed using the negative electrode material according to any one of claims 1 to 18.
In the negative electrode according to the nineteenth aspect, since the carbon nanofibers 13 and the resin binder 10 are present so as to be entangled around the inorganic particles 11, the inorganic particles accompanying the occlusion and desorption of Li by charge and discharge are provided. In order to prevent dropping or peeling due to the change in volume of No. 11, a decrease in cycle characteristics can be suppressed.
[0019]
The invention according to claim 20 is a lithium ion battery formed using the negative electrode according to claim 19.
The invention according to claim 21 is a lithium polymer battery formed using the negative electrode according to claim 19.
In the lithium ion battery or the lithium polymer battery according to claim 20 or 21, the carbon nanofiber 13 and the resin binder 10 having an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more. Plays a role of connecting the inorganic particles 11, 11, so that high conductivity is obtained. In addition, since the carbon nanofibers 13 and the resin binder 10 are present so as to be entangled with the inorganic particles 11, occlusion of Li due to charge and discharge, dropping of inorganic particles due to a change in volume of the inorganic particles due to desorption, Prevents peeling of electrodes and improves cycle characteristics. In addition, since carbon nanofibers have a smaller average diameter than carbon materials that have been used as a negative electrode material in the past, when a battery electrode is manufactured, high-density charging is possible and battery energy is reduced. It leads to density improvement.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the negative electrode of a lithium ion battery or a lithium polymer battery includes Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co and An inorganic particle 11 containing at least one element selected from the group consisting of Mn, a carbon material 12 and a resin binder 10, wherein the carbon material 12 is a negative electrode material mainly composed of carbon nanofibers 13. Used. The carbon nanofiber 13 is configured to have an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more. It is preferable that the average diameter is 20 nm to 300 nm, the length is 1000 nm to 6000 nm, and the aspect ratio is 20 to 200. The negative electrode material of the present invention has a role in which the carbon nanofibers 13 having an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more and the resin binder 10 connect the inorganic particles 11, 11. Therefore, high conductivity is obtained. Further, since the carbon nanofibers 13 and the resin binder 10 are present so as to be entangled with the inorganic particles 11, dropping of the inorganic particles due to a volume change of the inorganic particles 11 caused by occlusion and desorption of lithium due to charge and discharge is prevented. In addition, it prevents electrode peeling and improves cycle characteristics. In addition, since the carbon nanofiber 13 is a material having a smaller average diameter than a carbon-based material conventionally used as a negative electrode material, when a battery electrode is manufactured, high-density charging becomes possible. Energy density.
[0021]
The resin binder 10 includes a modified fluorine-containing polymer compound 15 obtained by modifying a fluorine-containing resin 18 with a modifying substance 19. This modified fluorine-containing polymer compound 15 is a polymer compound obtained by using a fluorine-containing resin as a trunk polymer 18 and graft-modifying the trunk polymer 18 with a modifying substance 19.
Here, `` modified '' means that the property changes, and in this specification, the modified substance is arranged everywhere in the resin that is the trunk polymer, so that only the property of the resin itself that is the trunk polymer is obtained. In other words, it means that the properties of the denatured substance are combined, or new properties that are not present in both are added.
[0022]
Since the modified fluorine-containing polymer compound is chemically improved by the modification, the active material layer is prevented from peeling from the current collector without being dissolved in the electrolytic solution. In addition, since the modified fluorine-containing polymer compound is thermally improved by being modified, the deterioration of the battery can be suppressed without dissolving in the battery solvent even when the battery is kept at a high temperature. In addition, since the modification improves electrochemical stability, it maintains stable adhesion and conductivity without deterioration. Further, it becomes difficult for the electrolyte to penetrate into the modified polymer compound, so that the electrolyte does not adhere to the current collector.
[0023]
Since the negative electrode active material layer is required to be chemically, electrochemically, and thermally stable in the battery, the polymer compound contained in the resin binder 10 used for the negative electrode material forming the negative electrode active material layer may be used. Is a compound containing fluorine in the molecule.
The resin binder 10 is contained at a ratio of 1% by weight to 30% by weight based on the whole negative electrode material. Preferably, the proportion is 5% by weight to 20% by weight with respect to the whole negative electrode material. If it is less than the lower limit, sufficient adhesion cannot be obtained, and if it is more than the upper limit, the electrode density decreases and the conductivity also deteriorates.
[0024]
Graft polymerization is used to modify the modified substance 19 by arranging it as a branch polymer in some places of the backbone polymer 18. The backbone polymer 18 includes PVdF, PVF, tetrafluoroethylene polymer, trifluoride ethylene polymer, difluoride ethylene polymer, VdF-HFP copolymer, ethylene tetrafluoroethylene copolymer, and tetrafluoroethylene. At least one fluorine-containing resin selected from the group consisting of -6-fluoropropylene copolymer, trifluorinated ethylene polymer and polytetrafluoroethylene is included. The modified substance 19 includes at least one of acrylic acid, methyl acrylate, methacrylic acid, and methyl methacrylate.
As a method for graft polymerization, there is a radiation method. In the radiation method, the fluorine-containing resin as the trunk polymer 18 and the modifying substance 19 as the branch polymer are mixed, and the mixture can be polymerized by continuously or intermittently irradiating radiation to the mixture. It is preferable to pre-emit the fluorine-containing resin 18 before contacting the fluorine-containing resin 18. Specifically, after irradiating the fluorine-containing resin 18 with radiation, the modified substance 19 is mixed with the object to be irradiated, so that the fluorine-containing resin is a trunk polymer and the modified substance is a branch polymer. Polymer compound 15 can be obtained. Γ-rays are used for radiation used for graft polymerization. Irradiation with gamma rays is performed so that the absorbed dose to the fluorine-containing resin 18 becomes 1 to 90 kGy. By irradiating the fluorine-containing resin serving as the backbone polymer with radiation, a radical is formed at one end, and the modified substance is easily polymerized.
[0025]
As shown in FIG. 9A, the trunk polymer 18 constituting the modified fluorine-containing polymer compound has a repeating unit A as a basic unit. The basic unit of the backbone polymer may be one type as shown in FIG. 9A, or two or more types of basic units (not shown). This basic unit is preferably contained in the backbone polymer in a proportion of at least 50 molecular weight%. More preferably, it is contained at a ratio of 60 to 100 molecular weight%. As shown in FIG. 9 (b), the radical 18 a is formed at one end of the basic unit A by irradiating the base polymer 18 with radiation. As shown in FIG. 9 (c), by bringing the modified substance 19 (C in FIG. 9) into contact with the radical polymer-formed backbone polymer 18, the modified substance 19 is arranged in the radical portion 18a and the modified fluorine content Molecular compound 15 is formed. The modified substance 19 is preferably contained in the modified fluorine-containing polymer compound at a ratio of 2 to 50 molecular weight%. More preferably, it is contained at a ratio of 5 to 30 molecular weight%.
[0026]
In graft polymerization, the length of time during which the activated stem polymer resin is in contact with the modified material that becomes a branch polymer, the degree of preliminary activity by radiation, and the modified material that becomes a branched polymer becomes the stem polymer Polymerization differs depending on the degree to which the resin can pass through, the temperature when the resin and the modified substance are in contact, and the like. When the denaturing substance is an acid, the degree of grafting can be observed by sampling a solution containing the compound as a denaturing substance, titrating the solution with an alkali, and measuring the concentration of the remaining acid compound. The proportion of grafting in the obtained composition is desirably 2 to 50 molecular weight% of the final weight.
When the backbone polymer 18 of the modified fluorine-containing polymer compound 15 is vinylidene fluoride, it is preferable that the modified fluorine-containing polymer compound 15 contains 95% by weight to 60% by weight of the modified fluorine-containing polymer compound 15.
[0027]
The inorganic particles 11 include at least one element selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co, and Mn. It is composed of a simple substance, an alloy or a compound with an oxide or another metal, an alloy or a compound with a simple substance and lithium, and a multi-element alloy or a compound containing these metals and lithium. Preferably, the inorganic particles are silicon-based materials, such as silicon particles, silicide compounds, silicon oxide or silicon oxycarbide. Specifically, examples of the silicide compound include FeSi, SbSi, MgSi, CaSi, NiSi, SiO as silicon oxide, and SiOC as silicon oxycarbide. The average particle size of the inorganic particles 11 is 0.1 to 50 μm. The range of 0.5 to 5 μm is more preferable.
[0028]
The mixing ratio of the inorganic particles 11 and the carbon material 12 is 95/5 to 30/70 in weight ratio (inorganic particles / carbon material). When the weight ratio is less than 30/70, that is, when the content ratio of the carbon material is large, there occurs a problem that the capacity of the electrode cannot be sufficiently obtained. When the weight ratio exceeds 95/5, that is, when the content ratio of the carbon material is small, the change in volume of silicon cannot be sufficiently reduced, and a problem that cycle deterioration is early occurs. The preferred weight ratio (inorganic particles / carbon material) is 90/10 to 70/30. A more preferred weight ratio (inorganic particles / carbon material) is 9/1.
[0029]
As shown in FIG. 2, the carbon nanofiber 13 of the present invention is formed by laminating a plurality of planar graphite nets 14, and the graphite net 14 has a structure substantially perpendicular to the fiber axis. By using the carbon nanofiber 13 having such a structure, the fiber itself has a high lithium occlusion and desorption ability, so that the energy density of the entire negative electrode material is improved. Further, as shown in FIG. 4, one side of one end 14a of the graphite net 14 is joined to one side of the end of another graphite net, and one side of another end is one side of the end of another graphite net. The carbon nanofiber 13 formed by bonding with each other and having a structure folded from each side may be used.
[0030]
Since the carbon material mainly composed of the carbon nanofibers 13 has a shape in which a plurality of planar graphite nets 14 are stacked, many edge surfaces of the graphite net 14 are exposed, and lithium ions occlude and occlude reactions. There are a number of layers formed by each graphite network to be raised. Therefore, many lithium ions can be occluded and desorbed between the graphite network layers, so that high-rate discharge is possible. Further, by setting the average diameter of the graphite net 14 in the range of 20 nm to 500 nm, the occlusion and desorption reactions of lithium ions accompanying charge and discharge proceed smoothly. If the average diameter of the graphite network is less than 10 nm, the graphite network for storing lithium is small, so that the amount of lithium occlusion becomes low and the energy density is reduced. If the average diameter exceeds 500 nm, lithium ions are formed between the layers formed by the graphite network. Is difficult to diffuse even if occluded, and the charge / discharge reaction does not proceed smoothly.
[0031]
As shown in FIG. 3A, a reaction occurs in which lithium ions occlude between the graphite network layers during charging. The occluded lithium ions diffuse between the graphite network layers (FIG. 3B). At the time of discharge, lithium ions diffused between the graphite network layers cause a smooth elimination reaction (FIG. 3C). As described above, by using the carbon nanofibers 13 as a main component of the carbon material 12, the occlusion and desorption reactions of lithium ions accompanying charging and discharging progress smoothly, so that high-rate charging and discharging characteristics are improved. In addition, since the carbon nanofiber 13 is a material having a smaller size than conventionally used carbon-based materials, it is possible to charge the battery at a high density when the battery electrode is manufactured, thereby improving the energy density of the battery. Leads to.
As shown in FIG. 5, the carbon nanofiber 13 of the present invention may be a fiber formed by arranging a plurality of cylindrical graphite nets 16 concentrically and each axis being parallel to the fiber axis. As shown in FIG. 6, high conductivity is obtained in the fiber axial direction by using the carbon nanofibers 13, and thus the conductivity between the inorganic particles 11 is further improved by using this fiber.
[0032]
Further, as shown in FIG. 7, the carbon material 12 of the present invention further includes, in addition to the carbon nanofibers 13, a particulate aggregate 17 made of carbon fine powder having a graphite structure.
The average particle diameter of the particulate aggregate 17 is 0.5 μm to 10 μm. By further including the particulate aggregates 17 in the carbon material 12, the contact between the carbon nanofibers 13, 13 as the main components is improved, and the high-rate charge / discharge characteristics are further improved. The content of the carbon nanofibers 13 in the carbon material 12 is 80% by weight to 99.5% by weight, and the content of the particulate aggregates 17 is 0.5% by weight to 20% by weight. Preferably, the ratio of the carbon nanofibers 13 is 90% by weight to 99% by weight, and the ratio of the particulate aggregate 17 is 1% by weight to 10% by weight. The reason why the content of the carbon nanofibers 13 is limited to the range of 80% by weight to 99.5% by weight is that if the content is less than 80% by weight, the degree of exposure of the graphite edge portion is reduced, so that the high-rate charge / discharge characteristics deteriorate. If the content exceeds 99.5% by weight, sufficient contact between the carbon nanofibers 13 cannot be obtained, and the high-rate charge / discharge characteristics also deteriorate.
[0033]
When the carbon nanofiber 13 or the mixture containing each of the carbon nanofiber 13 and the particulate aggregate 17 is measured by X-ray diffraction, the lamination distance d 002 of the obtained graphite networks 14 and 16 is 0.3354 nm to 0.339 nm. Is within the range. A preferred lamination interval d 002 is 0.3558 nm to 0.338 nm.
It is preferable that at least 85% of the exposed portions of the carbon nanofibers 13 or the exposed portions of the mixture containing the carbon nanofibers 13 and the particulate aggregates 17 are the ends of the graphite network. It is more preferably at least 90%. Here, the end of the graphite net indicates a portion indicated by reference numeral 14a in FIGS.
[0034]
Next, a method for manufacturing a carbon material will be described.
First, a catalyst necessary for producing a carbon material is synthesized. The average particle size of the catalyst is in the range of 10 nm to 500 nm, and the fine powder is suitable for producing a carbon material. As the catalyst, Fe-based fine powder, specifically, Fe-Ni alloy, Fe-Mn alloy, Cu-Ni alloy, Co-Ni alloy, Co-Fe alloy, Co metal, Fe metal, MgO metal oxide, etc. No. The catalyst is pre-treated and activated before producing the carbon material. Activated by heating the catalyst with a mixed gas atmosphere containing He and H 2.
[0035]
FIG. 8 shows a heat treatment furnace 20 for producing the carbon material of the present invention. The heat treatment furnace 20 includes an apparatus main body 21 made of a heat insulating material, and the inside of the apparatus main body 21 is horizontally partitioned by two partition plates 26 at a predetermined interval. Heating elements 22 are installed at the top and bottom inside the apparatus main body 21 separated by the partition plates 26, 26, respectively. Examples of the heat source of the heating element 22 used for the heat treatment in the heat treatment furnace include an incandescent lamp, a halogen lamp, an arc lamp, and a graphite heater. A gas supply port 24 is provided on one side of the apparatus main body 21 so as to supply the raw material gas to the space partitioned by the partition plates 26, 26. As the raw material gas, a mixed gas containing CO and H 2 can be used. C 2 H 2 , C 6 H 6 or the like may be used instead of CO. The space 27 divided by the partition plates 26, 26 has a size capable of accommodating the table 28 in which the fine powder catalyst is dispersed, and the other side of the apparatus main body 21 is out of the system and into the heat treatment furnace 20. A gas outlet 29 for discharging the supplied source gas is provided. The table 28 accommodated in the space 27 is placed on the take-out table 31 and is provided so as to be accommodated in and out of the heat treatment furnace.
[0036]
After placing the fine powder catalyst 32 on the table 28, the table 28 is placed on the take-out table 31, transported to the heat treatment furnace 20, and stored in the space 27 of the apparatus main body 21. After that, the raw material gas is supplied from the gas supply port 24 and heated by the heating elements 22 and 22. The supply rate of the raw material gas is set to 0.2 L / min to 10 L / min, and the heating temperature is set to 500 ° C. to 700 ° C. The mixture 33 containing the carbon nanofibers 13 and the particulate aggregates 17 is grown via the catalyst 32 by heating while supplying the raw material gas and holding the mixture for 1 hour to 10 hours. Since the obtained mixture 33 containing the carbon nanofibers 13 and the particulate aggregates 17 contains the catalyst 32, the obtained mixture 33 is taken out of the table 28 from the heat treatment furnace 20, and the obtained mixture 33 is taken out. Is immersed in an acidic solution such as nitric acid, hydrochloric acid, or hydrofluoric acid to remove the catalyst 32 contained in the mixture 33. The catalyst 32 may be used as the carbon material 12 while being contained in the mixture 33.
[0037]
A negative electrode is manufactured using the carbon material 12 and the resin binder 10 thus obtained.
First, the obtained carbon material is dispersed in an organic solvent to prepare a dispersion solution. Next, the obtained resin binder is dissolved in a solvent to prepare a solution of the resin binder. Next, a negative electrode material is prepared by preparing inorganic particles, and mixing the dispersion solution, the resin binder solution, and the inorganic particles at a predetermined ratio. Next, a negative electrode material is applied on the upper surface of the negative electrode current collector foil by a screen printing method, a doctor blade method, or the like, and dried to produce a negative electrode. Here, the doctor blade method precisely adjusts the sheet thickness by adjusting the gap between the knife edge and the carrier, called the doctor blade, by adjusting the thickness of the slip carried on a carrier such as a carrier film or endless belt. How to control. The negative electrode slurry was applied on a glass substrate, dried, and then separated from the glass substrate to produce a negative electrode film. The negative electrode film was further laminated on the negative electrode current collector and press-molded at a predetermined pressure to form the negative electrode film. May be produced.
[0038]
As shown in FIG. 10, a negative electrode 40 of the present invention obtained by forming a negative electrode active material layer 38 on a negative electrode current collector 37 and a nonaqueous electrolytic solution [for example, ethylene carbonate (EC) and diethylene carbonate (DEC) ) And a mixture of 1 mol / l of lithium perchlorate dissolved therein] and a binder, a cathode material, and a conductive material on the cathode current collector 34. A positive electrode slurry comprising an auxiliary agent is applied by a doctor blade method and dried to laminate the positive electrode 35 on which the positive electrode active material layer 36 is formed, whereby a lithium ion battery is obtained. Further, the negative electrode of the present invention, a polymer electrolyte layer made of polyethylene oxide or polyvinylidene fluoride, and the like, and a positive electrode slurry made of a binder, a positive electrode material, and a conductive additive are applied on a positive electrode current collector by a doctor blade method and dried. By laminating the positive electrode thus formed, a lithium polymer battery is obtained. In the lithium ion battery or lithium polymer battery manufactured in this way, the carbon nanofibers formed by laminating a plurality of graphite nets smoothly absorb and release lithium ions, thereby improving high-rate charge / discharge characteristics. . In addition, since carbon nanofibers having a smaller size than conventionally used carbon materials are used, high-density charging becomes possible, which leads to an improvement in the energy density of the battery.
[0039]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
(1) Production of Carbon Material First, a Fe—Ni alloy having an average particle diameter of 0.1 μm was used as a catalyst, and the catalyst was heated and activated in a mixed gas atmosphere containing He and H 2 . Next, the activated catalyst was placed on a table, and the table was housed in a heat treatment furnace. Next, the inside of the heat treatment furnace is heated to a temperature of 550 ° C. to 630 ° C., and a mixed gas containing CO and H 2 is used as a raw material gas, and the raw material gas is held at a flow rate of 10 L / min. Then, a mixture containing carbon nanofibers and particulate aggregates each formed by laminating a plurality of planar graphite nets and having a structure in which the graphite nets are substantially perpendicular to the fiber axis was synthesized. The obtained mixture was immersed in a nitric acid solution to remove the catalyst contained in the mixture to obtain a carbon material. When this carbon material was measured by X-ray diffraction, laminated spacing d 002 of the graphite-net plane of a mixture containing carbon nanofibers and the particulate aggregate, respectively was 0.3362Nm.
[0040]
(2) Synthesis of resin binder First, 50 g of PVdF powder was prepared as a trunk polymer, and 260 g of a 15% by weight aqueous solution of acrylic acid was prepared as a modifying substance. Vacuum-packed putting PVdF powder in a polyethylene pack, absorbed dose to PVdF was irradiated with γ-rays 60 Co as a γ-ray source such that the 50 kGy. The gamma-irradiated PVdF powder was taken out from the polyethylene pack, transferred to a nitrogen atmosphere, supplied with PVdF powder in 260 g of a 15% by weight aqueous solution of acrylic acid, kept at 80 ° C., and reacted with the aqueous solution of acrylic acid. During the reaction, samples of the reaction solution were sequentially sampled, and the sampled solution was titrated with sodium hydroxide to calculate the amount of acrylic acid reacted with PVdF. When the consumption of acrylic acid reached 20.48% of the PVdF weight, the reaction was stopped, and the obtained solid product was washed with pure water and dried to obtain a modified fluorine-containing polymer compound. The resulting modified fluorine-containing polymer compound was acrylic acid grafted PVdF (Acrylic Acidgrafting Polyvinylidene Fluoride, hereinafter referred to as AA-g-PVdF), and the ratio of the modified substance in this compound was 17% by weight.
[0041]
(3) Preparation of Negative Electrode (Working Electrode) The carbon material was dispersed in n-methylpyrrolidone to prepare a dispersion solution. Next, the resin binder was dissolved in a solvent to prepare a solution of the resin binder. Si particles having an average particle size of 0.5 μm to 1 μm were prepared as inorganic particles. The dispersion solution, the inorganic particles, and the resin binder solution are mixed so that the ratio of the carbon material is 10% by weight, the ratio of the inorganic particles is 75% by weight, and the ratio of the resin binder is 15% by weight. A negative electrode material was obtained by mixing with a mixer. A solvent is added to or removed from the negative electrode material to adjust the viscosity, and applied to both sides of a square metal net-shaped negative electrode current collector having a length, width, and thickness of 1 cm x 1 cm x 0.1 cm by a coder and dried. (Working electrode) was produced. A copper foil formed in a mesh shape was used as the negative electrode current collector.
[0042]
<Example 2>
Methacrylic acid-grafted PVdF (hereinafter, referred to as MA-g-PVdF) was synthesized using PVdF as a backbone polymer and methacrylic acid as a modifying substance, and this MA-g-PVdF was used as a resin binder. A negative electrode (working electrode) was produced in the same manner as in Example 1 except for the above.
<Example 3>
AA-g-VdF-HFP was synthesized by using VdF-HFP for the backbone polymer and acrylic acid grafted VdF-HFP (hereinafter referred to as AA-g-VdF-HFP) using acrylic acid as the modifying substance. A negative electrode (working electrode) was produced in the same manner as in Example 1 except that was used as a resin binder.
[0043]
<Example 4>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that the ratio of the carbon material was 20% by weight, the ratio of the inorganic particles was 60% by weight, and the ratio of the resin binder was 20% by weight.
<Example 5>
MA-g-PVdF was synthesized using PVdF for the backbone polymer and methacrylic acid for the modifying substance, respectively, and the negative electrode was prepared in the same manner as in Example 4 except that this MA-g-PVdF was used as a resin binder. Working electrode).
<Example 6>
Example 4 An AA-g-VdF-HFP was synthesized using VdF-HFP as the backbone polymer and acrylic acid as the modifying substance, and this AA-g-VdF-HFP was used as the resin binder. A negative electrode (working electrode) was produced in the same manner as in Example 1.
[0044]
<Example 7>
A mixture containing carbon nanofibers and particulate aggregates formed by arranging a plurality of cylindrical graphite networks concentrically and each axis parallel to the fiber axis was synthesized. Stacking spacing d 002 of the graphite-net plane is measured in the X-ray diffraction of the mixture containing the carbon nanofibers and the particulate aggregate each was 0.3365 nm. A negative electrode (working electrode) was produced in the same manner as in Example 1, except that a mixture containing each of the carbon nanofibers and the particulate aggregates was used as a carbon material.
[0045]
Example 8
MA-g-PVdF was synthesized using PVdF for the backbone polymer and methacrylic acid for the modifying substance, respectively, and the negative electrode was prepared in the same manner as in Example 7 except that this MA-g-PVdF was used as a resin binder. Working electrode).
<Example 9>
Example 7 AA-g-VdF-HFP was synthesized using VdF-HFP as the backbone polymer and acrylic acid as the modifying substance, and this AA-g-VdF-HFP was used as the resin binder. A negative electrode (working electrode) was produced in the same manner as in Example 1.
[0046]
<Example 10>
A negative electrode (working electrode) was produced in the same manner as in Example 7, except that the ratio of the carbon material was 20% by weight, the ratio of the inorganic particles was 60% by weight, and the ratio of the resin binder was 20% by weight.
<Example 11>
MA-g-PVdF was synthesized using PVdF for the backbone polymer and methacrylic acid for the modifying substance, respectively, and the negative electrode was prepared in the same manner as in Example 10 except that this MA-g-PVdF was used as a resin binder. Working electrode).
<Example 12>
Example 10 An AA-g-VdF-HFP was synthesized using VdF-HFP as the backbone polymer and acrylic acid as the modifying substance, respectively, and Example 10 was repeated except that this AA-g-VdF-HFP was used as a resin binder. A negative electrode (working electrode) was produced in the same manner as in Example 1.
[0047]
<Comparative Example 1>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that acetylene black was used as a carbon material.
<Comparative Example 2>
A negative electrode (working electrode) was produced in the same manner as in Example 4 except that acetylene black was used as a carbon material.
[0048]
<Comparison test and evaluation>
As shown in FIG. 11, the negative electrodes 41 (working electrodes) produced in Examples 1 to 12 and Comparative Examples 1 and 2 were attached to a charge / discharge cycle test device 51. In this apparatus 51, an electrolyte 53 (a solution in which a supporting salt is dissolved in an organic solvent) is stored in a container 52, and the negative electrode 41 is immersed in the electrolyte 53 together with the positive electrode 42 and the reference electrode 43. ), Positive electrode 42 (counter electrode) and reference electrode 43 are electrically connected to potentiostat 54 (potentiometer), respectively. A solution containing 1 M LiPF 6 was used for the lithium salt as the supporting salt, and a solution containing ethylene carbonate and diethyl carbonate as the organic solvent was used. Metallic lithium was used for the positive electrode and the reference electrode. A charge / discharge cycle test was performed using this apparatus, and the low-rate and high-rate discharge capacities of each negative electrode (working electrode) were measured. The low-rate discharge capacity was measured at 50 mA / g, and the high-rate discharge capacity was measured at 200 mA / g, and the measured voltage range was 0 V to 3.0 V. The capacity was calculated from discharge capacity / (weight of carbon material + weight of inorganic particle material).
[0049]
Table 1 shows the proportions of the electrodes of Examples 1 to 12 and Comparative Examples 1 and 2, and Table 2 shows the measurement results of the electrodes. CNF (P) in Table 1 is formed by laminating a plurality of planar graphite networks, and the carbon nanofibers and the particulate aggregates have a structure in which the graphite network is substantially perpendicular to the fiber axis. And CNF (T) represent a mixture containing carbon nanofibers and particulate aggregates formed by concentrically arranging a plurality of tubular graphite networks and each axis being parallel to the fiber axis. The symbols in the adhesion test in Table 2 indicate ◎: very good, 良好 good, and x: peeling, respectively.
[0050]
[Table 1]
Figure 2004220911
[0051]
[Table 2]
Figure 2004220911
[0052]
As is clear from Table 2, in Comparative Examples 1 and 2 in which acetylene black, which is a carbon-based material conventionally used together with inorganic particles, was used as the carbon material, and PVdF was used as the binder, the results were as follows. The capacity retention rate was greatly reduced, and the result of immediate peeling was obtained in the adhesion test after 10 cycles. On the other hand, Examples 1 to 12 show a very high capacity retention ratio at the tenth cycle, indicating that the cycle characteristics are excellent. In addition, in the adhesion test after 10 cycles, no peeling was observed in all the examples, and a result having excellent strength was obtained.
[0053]
【The invention's effect】
As described above, the negative electrode material of the present invention is composed of the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co, and Mn. Inorganic particles containing at least one selected element, a carbon material and a resin binder, wherein the carbon material is mainly composed of carbon nanofibers, and the carbon nanofibers 13 have an average diameter of 20 nm to 500 nm; It has an above length and an aspect ratio of 10 or more.
By using the carbon nanofiber having such a shape as a main component of the carbon material, high conductivity is obtained because the carbon nanofiber and the resin binder play a role of connecting the inorganic particles. In addition, since the carbon nanofibers and the resin binder are entangled with the inorganic particles, the inorganic particles fall off due to the volume change of the inorganic particles due to the occlusion and desorption of lithium due to charge and discharge, and the separation of the electrodes. To improve the cycle characteristics. In addition, since carbon nanofibers have a smaller average diameter than carbon materials that have been used as a negative electrode material in the past, when a battery electrode is manufactured, high-density charging is possible and battery energy is reduced. It leads to density improvement.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram showing the volume expansion of inorganic particles when the inorganic particles, carbon material, and resin binder of the present invention are added to a negative electrode active material.
FIG. 2 is a schematic view of a carbon nanofiber having a structure in which a graphite network as a main component of the carbon material of the present invention is substantially perpendicular to a fiber axis.
FIG. 3 is a schematic diagram showing a reaction in which lithium ions are inserted and desorbed between graphite network layers.
FIG. 4 is a schematic view of a carbon nanofiber having another structure corresponding to FIG. 2;
FIG. 5 is a schematic view of a carbon nanofiber formed by arranging a plurality of cylindrical graphite nets, which are main components of the carbon material of the present invention, concentrically and each axis is parallel to the fiber axis.
FIG. 6 is a view showing a conductive direction of the carbon nanofiber of FIG. 5;
FIG. 7
FIG. 3 is a schematic diagram showing the carbon nanofibers and particulate aggregates of FIG. 2.
FIG. 8
FIG. 1 is a cross-sectional configuration diagram of a heat treatment furnace for producing a carbon nanofiber of the present invention.
FIG. 9
FIG. 2 is a schematic view showing the synthesis of a modified fluorine-containing polymer compound.
FIG. 10
FIG. 2 is a partial cross-sectional configuration diagram showing an electrode body of the lithium ion battery of the present invention.
FIG. 11
An apparatus used for a charge / discharge cycle test of the negative electrode active materials for lithium secondary batteries of Examples and Comparative Examples.
FIG.
FIG. 4 is a cross-sectional configuration diagram showing volume expansion of inorganic particles when only conventional inorganic particles are added to a negative electrode active material.
FIG. 13
FIG. 3 is a cross-sectional configuration diagram showing volume expansion of inorganic particles when conventional inorganic particles and a carbon-based material are added to a negative electrode active material.
[Explanation of symbols]
REFERENCE SIGNS LIST 10 resin binder 11 inorganic particles 12 carbon material 13 carbon nanofibers 14 planar graphite network 15 modified fluorine-containing polymer compound 16 cylindrical graphite network 17 particulate aggregate 18 stem polymer (fluorine-containing resin)
18a Radical 19 Denaturing substance

Claims (21)

Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素を含む無機質粒子(11)と、カーボン材料(12)と、樹脂結着剤(10)とを含み、
前記カーボン材料(12)がカーボンナノファイバ(13)を主成分とし、前記カーボンナノファイバ(13)が20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有する負極材料。
Inorganic particles containing at least one element selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co and Mn ( 11), a carbon material (12), and a resin binder (10),
A negative electrode material wherein the carbon material (12) has a carbon nanofiber (13) as a main component, and the carbon nanofiber (13) has an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more.
樹脂結着剤(10)がフッ素含有樹脂(18)を変性物質(19)により変性させて得られる変性フッ素含有高分子化合物(15)を含む請求項1記載の負極材料。The negative electrode material according to claim 1, wherein the resin binder (10) includes a modified fluorine-containing polymer compound (15) obtained by modifying a fluorine-containing resin (18) with a modifying substance (19). 変性フッ素含有高分子化合物(15)がフッ素含有樹脂を幹重合体(18)とし、前記幹重合体(18)を変性物質(19)によりグラフト変性させて得られる高分子化合物である請求項2記載の負極材料。The modified fluorine-containing polymer compound (15) is a polymer compound obtained by using a fluorine-containing resin as a trunk polymer (18) and graft-modifying the trunk polymer (18) with a modifying substance (19). The negative electrode material as described in the above. 樹脂結着剤(10)が負極材料全体に対して1重量%〜30重量%の割合で含まれる請求項1ないし3いずれか1項に記載の負極材料。The negative electrode material according to any one of claims 1 to 3, wherein the resin binder (10) is contained in a ratio of 1% by weight to 30% by weight based on the whole negative electrode material. 変性フッ素含有高分子化合物(15)を構成する幹重合体(18)が、ポリフッ化ビニリデン、ポリフッ化ビニル、4フッ化エチレンポリマー、3フッ化エチレンポリマー、2フッ化エチレンポリマー、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、エチレン−4フッ化エチレン共重合体、4フッ化エチレン−6フッ化プロピレン共重合体、3フッ化塩化エチレンポリマー及びポリテトラフルオロエチレンからなる群より選ばれた少なくとも1種のフッ素含有樹脂を含む請求項3記載の負極材料。When the backbone polymer (18) constituting the modified fluorine-containing polymer compound (15) is polyvinylidene fluoride, polyvinyl fluoride, tetrafluoroethylene polymer, trifluoride ethylene polymer, difluoroethylene polymer, vinylidene fluoride- At least one selected from the group consisting of a hexafluoropropylene copolymer, an ethylene-4fluoroethylene copolymer, a tetrafluoroethylene-6-fluoropropylene copolymer, a trifluoroethylene chloride polymer and polytetrafluoroethylene 4. The negative electrode material according to claim 3, comprising a kind of fluorine-containing resin. 変性フッ素含有高分子化合物(15)を構成する変性物質(19)が、アクリル酸、アクリル酸メチル、メタクリル酸及びメタクリル酸メチルの少なくとも1種である請求項3記載の負極材料。The negative electrode material according to claim 3, wherein the modified substance (19) constituting the modified fluorine-containing polymer compound (15) is at least one of acrylic acid, methyl acrylate, methacrylic acid, and methyl methacrylate. 変性フッ素含有高分子化合物(15)の幹重合体(18)がフッ化ビニリデンであるとき、前記フッ化ビニリデンが変性フッ素含有高分子化合物(15)に95重量%〜60重量%の割合で含まれる請求項5記載の負極材料。When the backbone polymer (18) of the modified fluorine-containing polymer compound (15) is vinylidene fluoride, the vinylidene fluoride is contained in the modified fluorine-containing polymer compound (15) at a ratio of 95% by weight to 60% by weight. The negative electrode material according to claim 5, wherein 変性フッ素含有高分子化合物(15)はフッ素含有樹脂(18)と変性物質(19)が放射線照射処理によってグラフト化される請求項3記載の負極材料。The negative electrode material according to claim 3, wherein the modified fluorine-containing polymer compound (15) is obtained by grafting a fluorine-containing resin (18) and a modified substance (19) by radiation irradiation treatment. フッ素含有樹脂(18)への放射線照射処理はγ線照射によって行われ、前記フッ素含有樹脂のγ線の吸収線量が10〜90kGyである請求項8記載の負極材料。The negative electrode material according to claim 8, wherein the radiation irradiation treatment of the fluorine-containing resin (18) is performed by γ-ray irradiation, and the γ-ray absorption dose of the fluorine-containing resin is 10 to 90 kGy. 無機質粒子(11)はSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金又は化合物、前記単体とリチウムとの合金又は化合物、及びこれらの金属、リチウムを含む多元合金又は化合物で構成される請求項1記載の負極材料。The inorganic particles (11) are at least one selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co and Mn. The negative electrode material according to claim 1, wherein the element is composed of a simple substance, an alloy or a compound of an oxide or another metal, an alloy or a compound of the simple substance and lithium, and a multi-element alloy or a compound containing these metals and lithium. 無機質粒子(11)の平均粒径が0.1〜50μmである請求項1又は10記載の負極材料。The negative electrode material according to claim 1, wherein the inorganic particles have an average particle size of 0.1 to 50 μm. 無機質粒子(11)とカーボン材料(12)との混合割合が重量比(無機質粒子/カーボン材料)で95/5〜30/70である請求項1、10又は11いずれか1項に記載の負極材料。The negative electrode according to any one of claims 1, 10 and 11, wherein the mixing ratio of the inorganic particles (11) and the carbon material (12) is from 95/5 to 30/70 by weight (inorganic particles / carbon material). material. カーボンナノファイバ(13)が複数の平面状グラファイト網(14)を積層して形成され、前記グラファイト網(14)がファイバ軸に対して実質的に垂直である構造を有する請求項1記載の負極材料。The negative electrode according to claim 1, wherein the carbon nanofibers (13) are formed by laminating a plurality of planar graphite networks (14), and the graphite networks (14) have a structure substantially perpendicular to a fiber axis. material. カーボンナノファイバ(13)が複数の筒状グラファイト網(16)を同心円状にかつ各軸がファイバ軸平行に配置して形成した請求項1記載の負極材料。The negative electrode material according to claim 1, wherein the carbon nanofibers (13) are formed by arranging a plurality of cylindrical graphite nets (16) concentrically and each axis being parallel to the fiber axis. カーボンナノファイバ(13)に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体(17)を含み、
前記カーボンナノファイバ(13)が80重量%〜99.5重量%、前記粒子状凝集体(17)が0.5重量%〜20重量%の割合である請求項1、13又は14いずれか1項に記載の負極材料。
In addition to the carbon nanofibers (13), it further includes a particulate aggregate (17) composed of carbon fine powder having a graphite structure,
The carbon nanofiber (13) has a ratio of 80 wt% to 99.5 wt%, and the particulate aggregate (17) has a ratio of 0.5 wt% to 20 wt%. Item 7. The negative electrode material according to item 1.
カーボンナノファイバ(13)又は、カーボンナノファイバ(13)及び粒子状凝集体(17)をそれぞれ含む混合物のX線回折において測定されるグラファイト網(14,16)平面の積層間隔d002が0.3354nm〜0.339nmである請求項1、13、14又は15いずれか1項に記載の負極材料。The stacking interval d 002 of the graphite network (14, 16) plane measured by X-ray diffraction of the carbon nanofiber (13) or the mixture containing the carbon nanofiber (13) and the particulate aggregate (17) is 0. The negative electrode material according to any one of claims 1, 13, 14, and 15, wherein the thickness is 3354 nm to 0.339 nm. カーボンナノファイバ(13)の露出部又は、カーボンナノファイバ(13)及び粒子状凝集体(17)をそれぞれ含む混合物の露出部の少なくとも85%がグラファイト網の端部である請求項1、13、14、15又は16いずれか1項に記載の負極材料。At least 85% of the exposed portion of the carbon nanofiber (13) or the exposed portion of the mixture containing the carbon nanofiber (13) and the particulate aggregate (17), respectively, is an end portion of the graphite network. 17. The negative electrode material according to any one of 14, 15, and 16. 無機質粒子(11)がシリコンをベースとした材料であって、シリコン粒子、シリサイド化合物、シリコンオキサイド又はシリコンオキシカーバイドである請求項1、10、11又は12いずれか1項に記載の負極材料。The negative electrode material according to any one of claims 1, 10, 11 and 12, wherein the inorganic particles (11) are a silicon-based material and are silicon particles, a silicide compound, silicon oxide or silicon oxycarbide. 請求項1ないし18いずれか1項に記載の負極材料を用いて形成された負極。A negative electrode formed using the negative electrode material according to claim 1. 請求項19記載の負極を用いて形成されたリチウムイオン電池。A lithium ion battery formed using the negative electrode according to claim 19. 請求項19記載の負極を用いて形成されたリチウムポリマー電池。A lithium polymer battery formed using the negative electrode according to claim 19.
JP2003006638A 2003-01-15 2003-01-15 Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode Pending JP2004220911A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006638A JP2004220911A (en) 2003-01-15 2003-01-15 Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006638A JP2004220911A (en) 2003-01-15 2003-01-15 Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode

Publications (1)

Publication Number Publication Date
JP2004220911A true JP2004220911A (en) 2004-08-05

Family

ID=32896950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006638A Pending JP2004220911A (en) 2003-01-15 2003-01-15 Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode

Country Status (1)

Country Link
JP (1) JP2004220911A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
JP2006339093A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Wound type nonaqueous electrolyte secondary battery and its negative electrode
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
JP2008269827A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Electrode material of electrochemical element, its manufacturing method, electrode plate of electrode using it, and electrochemical element
CN100456533C (en) * 2005-11-14 2009-01-28 松下电器产业株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrol
JP2009026760A (en) * 2007-07-19 2009-02-05 Samsung Sdi Co Ltd Composite negative electrode active material, and negative electrode and lithium battery adopting the same
JP2009507338A (en) * 2005-09-06 2009-02-19 エルジー・ケム・リミテッド Composite binder containing carbon nanotube and lithium secondary battery using the same
US20100159331A1 (en) * 2008-12-23 2010-06-24 Samsung Electronics Co., Ltd. Negative active material, negative electrode including the same, method of manufacturing the negative electrode, and lithium battery including the negative electrode
US20100193731A1 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
US7824807B2 (en) 2004-12-10 2010-11-02 Shin-Kobe Electric Machinery Co., Ltd. Positive electrode material for lithium secondary battery and lithium secondary battery
US7886813B2 (en) 2005-06-29 2011-02-15 Intel Corporation Thermal interface material with carbon nanotubes and particles
WO2011122260A1 (en) * 2010-03-30 2011-10-06 株式会社クレハ Negative electrode mix for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2012014993A (en) * 2010-07-02 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP2012028120A (en) * 2010-07-22 2012-02-09 Toyota Motor Corp Negative electrode mixture material
WO2012073678A1 (en) * 2010-11-29 2012-06-07 Jsr株式会社 Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrodes, and all-solid-state batteries
JP2013506264A (en) * 2009-09-29 2013-02-21 ジョージア テック リサーチ コーポレイション Electrode, lithium ion battery and method for making and using the same
WO2013047870A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Electrode-forming material and use thereof
JP2013077558A (en) * 2011-09-15 2013-04-25 Nippon Zeon Co Ltd Electrode for electrochemical element
WO2013144564A1 (en) * 2012-03-26 2013-10-03 Cambridge Enterprise Limited Powder comprising carbon nanostructures and its method of production
US8697286B2 (en) 2008-12-02 2014-04-15 Samsung Electronics Co., Ltd. Anode active material, anode including the anode active material, method of manufacturing the anode, and lithium battery including the anode
CN105369475A (en) * 2015-08-27 2016-03-02 新疆大学 SnSb/carbon nanofiber active material and manufacturing method thereof
JP2016166114A (en) * 2015-03-10 2016-09-15 大阪瓦斯株式会社 Vibration absorbing material and method for producing the same
US9508987B2 (en) * 2009-04-09 2016-11-29 Samsung Electronics Co., Ltd. Composite anode active material, method of preparing the composite anode active material, and lithium battery including the composite anode active material
EP3671907A1 (en) * 2018-12-21 2020-06-24 Imertech Sas Composite particulate materials
EP3635803A4 (en) * 2017-05-15 2021-03-24 Johnson Matthey Public Limited Company Materials for lithium-ion electrochemical cells and methods of making and using same
WO2021200822A1 (en) * 2020-04-02 2021-10-07 ダイキン工業株式会社 Electrode mixture, electrode, and secondary battery

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133309A (en) * 1980-03-21 1981-10-19 Ugine Kuhlmann Polyfluorinated vinylidene copolymer and manufacture
JPH09502566A (en) * 1993-09-10 1997-03-11 ハイピリオン カタリシス インターナショナル インコーポレイテッド Lithium battery with carbon fibril-containing electrode
JPH09231977A (en) * 1996-02-27 1997-09-05 Elf Atochem Japan Kk Electrode and its manufacture
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JPH10121335A (en) * 1988-01-28 1998-05-12 Hyperion Catalysis Internatl Carbon fibril material
JPH1140154A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Electrode and battery using it
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2002334697A (en) * 2001-05-08 2002-11-22 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2002348741A (en) * 2001-03-21 2002-12-04 Morinobu Endo Carbon fiber by vapor-phase growth and composite material using the same
JP2003331838A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Lithium secondary battery

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56133309A (en) * 1980-03-21 1981-10-19 Ugine Kuhlmann Polyfluorinated vinylidene copolymer and manufacture
JPH10121335A (en) * 1988-01-28 1998-05-12 Hyperion Catalysis Internatl Carbon fibril material
JPH09502566A (en) * 1993-09-10 1997-03-11 ハイピリオン カタリシス インターナショナル インコーポレイテッド Lithium battery with carbon fibril-containing electrode
JPH09231977A (en) * 1996-02-27 1997-09-05 Elf Atochem Japan Kk Electrode and its manufacture
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JPH1140154A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Electrode and battery using it
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2002348741A (en) * 2001-03-21 2002-12-04 Morinobu Endo Carbon fiber by vapor-phase growth and composite material using the same
JP2002334697A (en) * 2001-05-08 2002-11-22 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2003331838A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Lithium secondary battery

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7824807B2 (en) 2004-12-10 2010-11-02 Shin-Kobe Electric Machinery Co., Ltd. Positive electrode material for lithium secondary battery and lithium secondary battery
KR100855166B1 (en) * 2004-12-24 2008-08-29 마쯔시다덴기산교 가부시키가이샤 Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
JP4584307B2 (en) * 2005-03-31 2010-11-17 パナソニック株式会社 Lithium secondary battery
JP2006339093A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Wound type nonaqueous electrolyte secondary battery and its negative electrode
DE112006001177B4 (en) * 2005-06-29 2013-12-24 Intel Corporation Thermal interface material, process and system
US7886813B2 (en) 2005-06-29 2011-02-15 Intel Corporation Thermal interface material with carbon nanotubes and particles
JP2009507338A (en) * 2005-09-06 2009-02-19 エルジー・ケム・リミテッド Composite binder containing carbon nanotube and lithium secondary battery using the same
CN100456533C (en) * 2005-11-14 2009-01-28 松下电器产业株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrol
JP2008269827A (en) * 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Electrode material of electrochemical element, its manufacturing method, electrode plate of electrode using it, and electrochemical element
JP2009026760A (en) * 2007-07-19 2009-02-05 Samsung Sdi Co Ltd Composite negative electrode active material, and negative electrode and lithium battery adopting the same
US8906554B2 (en) 2007-07-19 2014-12-09 Samsung Sdi Co., Ltd. Composite anode active material, anode including the same and lithium battery using the anode
KR101558535B1 (en) * 2008-12-02 2015-10-07 삼성전자주식회사 Negative active material negative electrode comrprising same method of preparing negative electrodee and lithium battery
US8697286B2 (en) 2008-12-02 2014-04-15 Samsung Electronics Co., Ltd. Anode active material, anode including the anode active material, method of manufacturing the anode, and lithium battery including the anode
US20100159331A1 (en) * 2008-12-23 2010-06-24 Samsung Electronics Co., Ltd. Negative active material, negative electrode including the same, method of manufacturing the negative electrode, and lithium battery including the negative electrode
US20100193731A1 (en) * 2009-01-30 2010-08-05 Samsung Electronics Co., Ltd. Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
US8608983B2 (en) * 2009-01-30 2013-12-17 Samsung Electronics Co., Ltd. Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
US9178212B2 (en) 2009-01-30 2015-11-03 Samsung Electronics Co., Ltd. Composite anode active material, anode including the composite anode active material, lithium battery including the anode, and method of preparing the composite anode active material
US9508987B2 (en) * 2009-04-09 2016-11-29 Samsung Electronics Co., Ltd. Composite anode active material, method of preparing the composite anode active material, and lithium battery including the composite anode active material
JP2013506264A (en) * 2009-09-29 2013-02-21 ジョージア テック リサーチ コーポレイション Electrode, lithium ion battery and method for making and using the same
EP3439082A1 (en) * 2009-09-29 2019-02-06 Georgia Tech Research Corporation Electrodes and lithium-ion batteries
US10629898B2 (en) 2009-09-29 2020-04-21 Sila Nanotechnologies Inc. Electrodes, lithium-ion batteries, and methods of making and using same
JPWO2011122260A1 (en) * 2010-03-30 2013-07-08 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
JP5697660B2 (en) * 2010-03-30 2015-04-08 株式会社クレハ Non-aqueous electrolyte secondary battery negative electrode mixture, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
WO2011122260A1 (en) * 2010-03-30 2011-10-06 株式会社クレハ Negative electrode mix for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2012014993A (en) * 2010-07-02 2012-01-19 Hitachi Maxell Energy Ltd Nonaqueous electrolyte secondary battery
JP2012028120A (en) * 2010-07-22 2012-02-09 Toyota Motor Corp Negative electrode mixture material
US9172092B2 (en) 2010-11-29 2015-10-27 Jsr Corporation Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrode, and all-solid-state battery
JP5120522B2 (en) * 2010-11-29 2013-01-16 Jsr株式会社 Binder composition for battery, slurry for battery electrode, solid electrolyte composition, electrode and all solid state battery
WO2012073678A1 (en) * 2010-11-29 2012-06-07 Jsr株式会社 Binder composition for batteries, slurry for battery electrodes, solid electrolyte composition, electrodes, and all-solid-state batteries
JPWO2012073678A1 (en) * 2010-11-29 2014-05-19 Jsr株式会社 Binder composition for battery, slurry for battery electrode, solid electrolyte composition, electrode and all solid state battery
JP2013077558A (en) * 2011-09-15 2013-04-25 Nippon Zeon Co Ltd Electrode for electrochemical element
WO2013047870A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Electrode-forming material and use thereof
WO2013144564A1 (en) * 2012-03-26 2013-10-03 Cambridge Enterprise Limited Powder comprising carbon nanostructures and its method of production
JP2016166114A (en) * 2015-03-10 2016-09-15 大阪瓦斯株式会社 Vibration absorbing material and method for producing the same
CN105369475B (en) * 2015-08-27 2017-10-20 新疆大学 Tin antimony and carbon nano-fiber active material and preparation method thereof
CN105369475A (en) * 2015-08-27 2016-03-02 新疆大学 SnSb/carbon nanofiber active material and manufacturing method thereof
EP3635803A4 (en) * 2017-05-15 2021-03-24 Johnson Matthey Public Limited Company Materials for lithium-ion electrochemical cells and methods of making and using same
EP3671907A1 (en) * 2018-12-21 2020-06-24 Imertech Sas Composite particulate materials
WO2020127669A1 (en) * 2018-12-21 2020-06-25 Imertech Sas Composite particulate materials
WO2021200822A1 (en) * 2020-04-02 2021-10-07 ダイキン工業株式会社 Electrode mixture, electrode, and secondary battery

Similar Documents

Publication Publication Date Title
JP2004220911A (en) Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
Barghamadi et al. A review on Li-S batteries as a high efficiency rechargeable lithium battery
US7351498B2 (en) Lithium ion polymer secondary battery its electrode and method for synthesizing polymer compound in binder used in adhesion layer thereof
JP2004220910A (en) Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
JP4164342B2 (en) Electrode material for lithium secondary battery, electrode structure having the electrode material, secondary battery having the electrode structure, method for producing the electrode material, method for producing the electrode structure, and production of the secondary battery Method
TWI299920B (en)
TW200421652A (en) Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
JP4634515B2 (en) Negative electrode material for silicon oxide and lithium ion secondary battery
JP2001283910A (en) Battery
WO2000013251A1 (en) Lithium secondary cell and device
WO2006011290A1 (en) SiO POWDER FOR SECONDARY BATTERY AND PROCESS FOR PRODUCING THE SAME
JP2004111076A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP6269837B2 (en) Lithium secondary battery
JPH11167919A (en) Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage
JPH11219709A (en) Positive electrode plate of nonaqueous electrolyte battery
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
KR101190026B1 (en) Negative electrode material and battery using the same
JP2004220909A (en) Positive electrode activator and positive electrode using the same, lithium ion battery and lithium polymer battery using positive electrode
JP6583993B2 (en) Lithium secondary battery charge / discharge method
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP2004031217A (en) Battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2004265832A (en) Electrolyte and battery using it
JP6853616B2 (en) Electrodes for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary batteries, and battery packs
JP2002063937A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002