JP2003208893A - Non-aqueous secondary battery and charging method thereof - Google Patents

Non-aqueous secondary battery and charging method thereof

Info

Publication number
JP2003208893A
JP2003208893A JP2002006436A JP2002006436A JP2003208893A JP 2003208893 A JP2003208893 A JP 2003208893A JP 2002006436 A JP2002006436 A JP 2002006436A JP 2002006436 A JP2002006436 A JP 2002006436A JP 2003208893 A JP2003208893 A JP 2003208893A
Authority
JP
Japan
Prior art keywords
silicon
negative electrode
lithium
charging
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002006436A
Other languages
Japanese (ja)
Other versions
JP3771846B2 (en
Inventor
Eiyo Ka
永姚 夏
Shigeo Aoyama
青山  茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2002006436A priority Critical patent/JP3771846B2/en
Publication of JP2003208893A publication Critical patent/JP2003208893A/en
Application granted granted Critical
Publication of JP3771846B2 publication Critical patent/JP3771846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery having a high capacity and excellent cycle characteristic. <P>SOLUTION: This non-aqueous secondary battery is provided with a negative electrode, a positive electrode and the non-aqueous electrolyte. The active material of the negative electrode is silicon or the silicon compound expressed with a general formula MXSi (0≤x≤0.5, M:an element containing at least one kind of element, which forms an alloy with lithium and which does not form an intermetallic compound with silicon) and having 10-60% of crystallization degree to be computed by measuring differential scanning calorimetry, and at least one part of a surface of the silicon or silicon compound is coated with the carbonaceous material. This non-aqueous secondary battery is charged by a method of concluding charge within a range that an electric potential of the negative electrode in relation to the metal lithium is higher than 100 mV. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ケイ素又はケイ素
化合物を負極活物質とする高容量で、サイクル特性に優
れた非水二次電池とその充電方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high capacity non-aqueous secondary battery using silicon or a silicon compound as a negative electrode active material and excellent in cycle characteristics, and a charging method thereof.

【0002】[0002]

【従来の技術】リチウム二次電池に代表される非水二次
電池は、高容量で且つ高電圧、高エネルギー密度である
ことから、その技術開発に対して大きな期待が寄せられ
ている。
2. Description of the Related Art Non-aqueous secondary batteries represented by lithium secondary batteries have high capacity, high voltage, and high energy density, and therefore, there are great expectations for their technological development.

【0003】この非水二次電池では、有機溶媒にリチウ
ム塩を溶解させた有機溶媒系の電解液が用いられ、負極
活物質としてリチウム又はリチウム合金が用いられてき
たが、これらの負極活物質を用いた場合、高容量化は期
待できるが、充電時にリチウムのデンドライトが生成す
るため内部短絡を起こしやすく、また、析出したデンド
ライト状のリチウムは比表面積が大きいため反応性が高
く、その表面で電解液中の溶媒と反応して電子導電性を
欠いた界面被膜を形成し、電池の内部抵抗が高くなり、
充放電効率が低下する原因となっている。これらの理由
でリチウム又はリチウム合金を負極活物質として用いた
非水二次電池は、電池特性が低下し、また、安全性に欠
けるという問題があった。
In this non-aqueous secondary battery, an organic solvent-based electrolytic solution in which a lithium salt is dissolved in an organic solvent is used, and lithium or a lithium alloy has been used as a negative electrode active material. When using, the capacity can be expected to increase, but an internal short circuit is likely to occur due to the generation of lithium dendrites during charging, and the deposited dendrite-like lithium has a high specific surface area and is highly reactive. It reacts with the solvent in the electrolytic solution to form an interface coating lacking electronic conductivity, increasing the internal resistance of the battery,
This causes a decrease in charge / discharge efficiency. For these reasons, the non-aqueous secondary battery using lithium or a lithium alloy as a negative electrode active material has problems that battery characteristics are deteriorated and safety is poor.

【0004】そこで、リチウムやリチウム合金に代え
て、リチウムイオンをドープ・脱ドープすることが可能
なコークスやガラス状炭素等の非晶質炭素、天然又は人
造の黒鉛等の炭素質材料が負極活物質として提案されて
いる(例えば、特開平1-204361号公報、特開平
2-66856号公報、特開平4-24831号公報、特
開平5-17669公報等)。しかし、非晶質又は結晶
質のいずれの炭素質材料を用いた場合においても、単位
体積当たりの容量が十分ではなく、更なる性能の向上が
望まれている。
Therefore, instead of lithium or a lithium alloy, amorphous carbon such as coke or glassy carbon that can be doped or dedoped with lithium ions, or a carbonaceous material such as natural or artificial graphite is used as the negative electrode active material. It has been proposed as a substance (for example, JP-A-1-204361, JP-A-2-66856, JP-A-4-24831, and JP-A-5-17669). However, when either an amorphous or crystalline carbonaceous material is used, the capacity per unit volume is not sufficient, and further improvement in performance is desired.

【0005】[0005]

【発明が解決しようとする課題】このため、単位体積当
たりの容量を大きくするべく、ケイ素又はケイ素化合物
を負極活物質とする試みがされている。例えば、特開平
7-29602号公報には、LixSi(0≦x≦5)を
負極活物質として用いた非水二次電池が開示されてい
る。
Therefore, attempts have been made to use silicon or a silicon compound as the negative electrode active material in order to increase the capacity per unit volume. For example, Japanese Patent Application Laid-Open No. 7-29602 discloses a non-aqueous secondary battery using Li x Si (0 ≦ x ≦ 5) as a negative electrode active material.

【0006】しかし、上記のようなケイ素又はケイ素化
合物を負極活物質として用いた場合、充放電を繰り返す
ことによるリチウムのドープ・脱ドープにより、活物質
が膨張・収縮を繰り返して微粉末化し、負極の膨潤や電
解液の不必要な吸収を引き起し、電池特性が劣化すると
いう問題がある。その理由は以下のように考えられる。
However, when the above silicon or silicon compound is used as the negative electrode active material, the active material repeatedly expands and contracts to become a fine powder due to the doping and dedoping of lithium due to repeated charging and discharging, and the negative electrode. There is a problem that the battery characteristics are deteriorated by causing swelling of the electrolyte and unnecessary absorption of the electrolytic solution. The reason is considered as follows.

【0007】ケイ素は、その結晶学的な単位格子(立方
晶、空間群Fd−3m)に8個のケイ素原子を含んでい
る。格子定数a=0.5431nmから換算して、単位
格子体積は0.1592nm3であり、ケイ素原子1個
の占める体積(単位格子体積を単位格子中のケイ素原子
数で除した値)は0.0199nm3である。ここで、
ケイ素からなる負極を100mV以下まで充電してリチ
ウムを含有させると、リチウムを多く含む化合物である
Li15Si4やLi21Si5を生じ、容量は約4000m
Ah/gと大きくなるが、その体積膨張率が極めて大き
くなる。例えば、Li21Si5の結晶学的な単位格子
(立方晶、空間群F−43m)には83個のケイ素原子
が含まれている。その格子定数a=1.8750nmか
ら換算して、単位格子体積は6.5918nm3であ
り、ケイ素原子1個当たりの体積は0.079nm3
ある。この値は単体ケイ素の3.95倍であり、充電後
の負極活物質は極めて大きく膨張してしまう。このよう
に充電時と放電時の体積差が非常に大きいため、活物質
に大きな歪みが生じ、亀裂が発生して活物質粒子が微細
化するものと考えられる。また、この微細化した粒子間
に空間が生じ、電子伝導ネットワークが分断され、電気
化学的な反応に関与できない部分が増加し、充放電容量
が低下するものと考えられる。
Silicon contains eight silicon atoms in its crystallographic unit cell (cubic crystal, space group Fd-3m). Converted from the lattice constant a = 0.5431 nm, the unit lattice volume is 0.1592 nm 3 , and the volume occupied by one silicon atom (the value obtained by dividing the unit lattice volume by the number of silicon atoms in the unit lattice) is 0. It is 0199 nm 3 . here,
When a negative electrode made of silicon is charged to 100 mV or less to contain lithium, Li 15 Si 4 and Li 21 Si 5 , which are compounds containing a large amount of lithium, are produced, and the capacity is about 4000 m.
Although it is as large as Ah / g, its volume expansion coefficient becomes extremely large. For example, the crystallographic unit cell of Li 21 Si 5 (cubic crystal, space group F-43m) contains 83 silicon atoms. Converted from the lattice constant a = 1.750 nm, the unit lattice volume is 6.5918 nm 3 , and the volume per silicon atom is 0.079 nm 3 . This value is 3.95 times that of elemental silicon, and the negative electrode active material after charging expands extremely greatly. As described above, since the volume difference between charging and discharging is very large, it is considered that the active material is greatly distorted, cracks are generated, and the active material particles are miniaturized. In addition, it is considered that a space is generated between the finely divided particles, the electron conduction network is divided, the portion that cannot participate in the electrochemical reaction increases, and the charge / discharge capacity decreases.

【0008】更に、ケイ素からなる負極活物質の場合、
1回目の充電時には、結晶質ケイ素へのリチウムイオン
の拡散が遅いため、室温で作動させる場合には固体内で
は熱平衡状態が達成されにくく、リチウムとケイ素の合
金内部の場所ごとにリチウムの濃度が不均一になりやす
い。そのため各リチウムの濃度に相当した結晶構造、及
び体積の異なる複数の相が固体内に混在するようにな
る。その異相境界に生じる応力ひずみにより活物質が微
粉化を起こし、電気的な接触が断たれた微粉部が増える
ことで電極の容量が低下する。また、大きな電流密度で
充電する時には、負極上に金属リチウムが析出し、電池
短絡の危険性がある。
Further, in the case of a negative electrode active material made of silicon,
During the first charge, the diffusion of lithium ions into the crystalline silicon is slow, so it is difficult to achieve a thermal equilibrium state in the solid when operating at room temperature, and the lithium concentration at each location inside the lithium-silicon alloy is different. It tends to be uneven. Therefore, a plurality of phases having different crystal structures corresponding to the respective lithium concentrations and different volumes are mixed in the solid. The active material is pulverized due to the stress strain generated at the boundary of the different phases, and the fine powder portion where the electrical contact is cut off is increased, so that the capacity of the electrode is reduced. Further, when charging with a large current density, metal lithium is deposited on the negative electrode, which may cause a battery short circuit.

【0009】特開平2000−311681号公報に
は、ケイ素を含むスズを主成分とした非化学量論比組成
の非結晶質材料を負極に用いた、充放電特性に優れたリ
チウム電池が開示されているが、実用領域のサイクル寿
命の電池は実現できていない。
Japanese Unexamined Patent Publication (Kokai) No. 2000-311681 discloses a lithium battery having excellent charge / discharge characteristics, which uses, as a negative electrode, an amorphous material having a non-stoichiometric composition mainly composed of tin containing silicon. However, batteries with a cycle life in the practical range have not been realized.

【0010】また、特開平10−223221号公報で
は、Al、Ge、Pb、Si、Sn、Zn等の元素の低
結晶質又は非結晶質の金属間化合物を負極に用いた、高
容量でサイクル特性に優れた二次電池が開示されてい
る。しかし、Siの金属間化合物は熱力学的にはリチウ
ムの挿入・脱離ができないので、高容量で且つ長サイク
ル寿命の電池は実現できていない。
Further, in Japanese Unexamined Patent Publication No. 10-223221, a low-capacity or non-crystalline intermetallic compound of an element such as Al, Ge, Pb, Si, Sn, and Zn is used for a negative electrode and is cycled at a high capacity. A secondary battery having excellent characteristics is disclosed. However, since the intermetallic compound of Si is thermodynamically incapable of inserting and releasing lithium, a battery having a high capacity and a long cycle life has not been realized.

【0011】本発明は、前記従来の問題を解決するため
になされたものであり、高容量で、サイクル特性に優れ
た非水二次電池を提供することを目的とする。
The present invention has been made to solve the above conventional problems, and an object of the present invention is to provide a non-aqueous secondary battery having a high capacity and excellent cycle characteristics.

【0012】[0012]

【課題を解決するための手段】前記目的を達成するた
め、本発明の非水二次電池は、負極、正極及び非水電解
質を備えた非水二次電池であって、前記負極の活物質
が、一般式MxSi(0≦x≦0.5、M:リチウムと
合金を形成することが可能で且つケイ素と金属間化合物
を形成しない元素を少なくとも1種類含む元素)で示さ
れ、示差走査熱量測定により算出される結晶化度が10
〜60%の範囲にあるケイ素又はケイ素化合物であるこ
とを特徴とする。ケイ素又はケイ素化合物を負極活物質
として使用することにより電池が高容量化し、且つケイ
素又はケイ素化合物の結晶化度を10〜60%の範囲内
とすることにより負極活物質の膨張を抑え、サイクル特
性を大きく向上させることができる。
In order to achieve the above object, a non-aqueous secondary battery of the present invention is a non-aqueous secondary battery including a negative electrode, a positive electrode and a non-aqueous electrolyte, and the negative electrode active material. Is represented by the general formula M x Si (0 ≦ x ≦ 0.5, M: an element containing at least one element capable of forming an alloy with lithium and not forming an intermetallic compound with silicon). Crystallinity calculated by scanning calorimetry is 10
It is characterized by being silicon or a silicon compound in the range of -60%. By using silicon or a silicon compound as the negative electrode active material, the battery has a high capacity, and by controlling the crystallinity of the silicon or silicon compound within the range of 10 to 60%, expansion of the negative electrode active material is suppressed and cycle characteristics are improved. Can be greatly improved.

【0013】また、本発明の非水二次電池は、前記ケイ
素又はケイ素化合物の表面の少なくとも一部が、炭素質
材料で被覆されていることが好ましい。これにより、負
極活物質の核粒子の膨張がより一層抑えられるので、サ
イクル特性を更に向上させることができる。また、活物
質の導電性が向上するので、負荷特性を改善することも
できる。
Further, in the non-aqueous secondary battery of the present invention, it is preferable that at least a part of the surface of the silicon or silicon compound is coated with a carbonaceous material. Thereby, the expansion of the core particles of the negative electrode active material is further suppressed, so that the cycle characteristics can be further improved. Moreover, since the conductivity of the active material is improved, the load characteristics can be improved.

【0014】また、本発明の非水二次電池の充電方法
は、一般式MxSi(0≦x≦0.5、M:リチウムと
合金を形成することが可能で且つケイ素と金属間化合物
を形成しない元素を少なくとも1種類含む元素)で示さ
れ、示差走査熱量測定により算出される結晶化度が10
〜60%の範囲にあるケイ素又はケイ素化合物を負極活
物質として用いた非水二次電池の充電方法であって、金
属リチウムに対する負極の電位が100mVより高い電
位となる範囲で充電を終了することを特徴とする。これ
は、充電後の負極活物質におけるLiとSiとの原子比
率(Li/Si)がLi/Si≦2.625の範囲にな
るよう充電を制御するためである。上記範囲を越える場
合、即ち充電深度が深くなる領域まで充電を行った場合
は、負極活物質の膨張率が大きくなりすぎ、サイクル特
性が低下するからである。
The method for charging a non-aqueous secondary battery according to the present invention has the general formula M x Si (0≤x≤0.5, M: an alloy capable of forming an alloy with lithium and an intermetallic compound of silicon and silicon). Of at least one element that does not form a crystal) and has a crystallinity of 10 calculated by differential scanning calorimetry.
A method of charging a non-aqueous secondary battery using silicon or a silicon compound in the range of ˜60% as a negative electrode active material, wherein the charging is terminated within a range in which the negative electrode has a potential higher than 100 mV with respect to metallic lithium. Is characterized by. This is for controlling the charging so that the atomic ratio of Li and Si (Li / Si) in the negative electrode active material after charging is in the range of Li / Si ≦ 2.625. This is because when the content exceeds the above range, that is, when charging is performed to a region where the charging depth is deep, the expansion coefficient of the negative electrode active material becomes too large and the cycle characteristics deteriorate.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を詳細
に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described in detail below.

【0016】本発明で用いる負極活物質は、一般式Mx
Si(0≦x≦0.5)で示され、示差走査熱量測定に
より算出される結晶化度が10〜60%の範囲にあるケ
イ素又はケイ素化合物である。
The negative electrode active material used in the present invention has the general formula M x
It is a silicon or silicon compound represented by Si (0 ≦ x ≦ 0.5) and having a crystallinity calculated by differential scanning calorimetry in the range of 10 to 60%.

【0017】上記一般式MxSiにおいて、Mは、リチ
ウムと合金を形成することが可能で且つケイ素と金属間
化合物を形成しない元素(M1)を少なくとも1種類含
む元素である。リチウムと合金を形成することが可能で
且つケイ素と金属間化合物を形成しない元素(M1)と
しては、Ag、Au、Zn、Cd、Hg、Al、Ga、
In、Tl、Ge、Sn、Pb、Sb、Biからなる群
から選ばれた少なくとも1種類の元素を用いるのが好ま
しい。特にAlが最も好ましい。
In the above general formula M x Si, M is an element capable of forming an alloy with lithium and containing at least one element (M 1 ) which does not form an intermetallic compound with silicon. As the element (M 1 ) capable of forming an alloy with lithium and not forming an intermetallic compound with silicon, Ag, Au, Zn, Cd, Hg, Al, Ga,
It is preferable to use at least one element selected from the group consisting of In, Tl, Ge, Sn, Pb, Sb and Bi. Al is most preferable.

【0018】上記負極活物質の主たる構成元素であるケ
イ素は低結晶質になりにくいが、上記元素Mを含有させ
て固溶体又は合金とすることにより、示差走査熱量測定
により算出される結晶化度が10〜60%の低結晶質材
料を生成し易くなる。添加元素MのSiに対する割合と
しては、50原子%以下とする必要がある。50原子%
を超えて添加元素Mが含有されると充放電容量が小さく
なるからである。従って、前記一般式MxSiにおいて
xを0≦x≦0.5とした。
Although silicon, which is the main constituent element of the negative electrode active material, is unlikely to be low crystalline, by incorporating the element M into a solid solution or an alloy, the crystallinity calculated by differential scanning calorimetry is improved. It becomes easy to produce a low crystalline material of 10 to 60%. The ratio of the additional element M to Si needs to be 50 atomic% or less. 50 atom%
This is because if the additional element M is contained in excess of the above, the charge / discharge capacity becomes small. Therefore, in the general formula M x Si, x is set to 0 ≦ x ≦ 0.5.

【0019】更に、元素Mには、低結晶質を生成し易く
するため、上記元素M1以外にも、アルカリ土類金属元
素、遷移金属元素及び非金属元素からなる群から選択さ
れた少なくとも1種類の元素M2を添加してもよい。具
体的には、アルカリ土類金属元素としてはBe、Mg、
Ca、Sr、Ba、遷移金属元素としてはSc、Ti、
V、Cr、Mn、Fe、Co、Ni、非金属元素として
はN、P、O、S、Se、F、Cl、Br、Iを用いる
のが好ましい。しかし、上記元素M2が、Siとの金属
間化合物等の熱力学的にリチウムの挿入・脱離ができな
い化合物を形成して容量低下を招くおそれがあるので、
添加元素M2のSiに対する割合としては、10原子%
以下が好ましい。
Furthermore, the element M, to facilitate generating a low-crystallinity, other than the element M 1, an alkaline earth metal element, transition metal element and at least one selected from the group consisting of non-metal elements the type of element M 2 may be added. Specifically, as the alkaline earth metal element, Be, Mg,
Ca, Sr, Ba, as the transition metal element, Sc, Ti,
It is preferable to use V, Cr, Mn, Fe, Co, Ni, and N, P, O, S, Se, F, Cl, Br, I as the non-metal element. However, since the element M 2 may form a compound such as an intermetallic compound with Si that cannot insert / extract lithium thermodynamically, the capacity may be reduced.
The ratio of the additive element M 2 to Si is 10 atomic%
The following are preferred.

【0020】上記負極活物質は、例えば、真空蒸着法、
化学気相反応法、電解又は無電解メッキ法、液体急冷
法、メカニカルアロイング法等の方法から少なくとも一
つを用いることによって製造される。この場合、製造条
件によって負極活物質の結晶化度を制御することができ
る。製造条件としては、真空蒸着法又は化学気相反応法
における温度や蒸着速度、電解又は無電解メッキ法にお
ける電解液濃度、析出温度又は電流密度、液体急冷法に
おける冷却温度や冷却速度、メカニカルアロイング法に
おける処理時間等である。上記方法は組み合わせること
も可能である。具体的には、所定量のSi原料と、元素
1及び元素M2とを混合して高温で溶融させ、これを液
体急冷法により化合物とした後、メカニカルアロイング
法によりその化合物に機械的ストレスを加えて低結晶化
する方法等が好ましく用いられる。
The negative electrode active material is, for example, a vacuum vapor deposition method,
It is manufactured by using at least one of chemical vapor phase reaction method, electrolytic or electroless plating method, liquid quenching method, mechanical alloying method and the like. In this case, the crystallinity of the negative electrode active material can be controlled depending on the manufacturing conditions. Manufacturing conditions include temperature and vapor deposition rate in the vacuum vapor deposition method or chemical vapor phase reaction method, electrolytic solution concentration in electrolysis or electroless plating method, deposition temperature or current density, cooling temperature and cooling rate in liquid quenching method, mechanical alloying. Processing time in the law. The above methods can be combined. Specifically, a predetermined amount of the Si raw material is mixed with the elements M 1 and M 2 and melted at a high temperature, and the compound is mechanically alloyed by the mechanical alloying method after being made into a compound by the liquid quenching method. A method of applying stress to lower the crystallinity is preferably used.

【0021】上記ケイ素又はケイ素化合物の結晶化度
は、示差走査熱量測定により算出され、結晶化に起因す
る発熱ピークの面積として求められる結晶化熱から、以
下の式により求められるものである。
The crystallinity of the silicon or silicon compound is calculated by the differential scanning calorimetry, and is calculated by the following formula from the heat of crystallization calculated as the area of the exothermic peak due to crystallization.

【0022】ケイ素又はケイ素化合物の結晶化度(%)
=(Ha−Hs)÷Ha×100 (Ha:ケイ素又はケイ素化合物のアモルファス状態で
の結晶化熱、Hs:ケイ素又はケイ素化合物の測定物の
結晶化熱) 結晶化度が0になるということは、アモルファス(非晶
質)状態であることを意味する。結晶性が低下するほ
ど、即ち結晶化度が0に近づくほど、ケイ素又はケイ素
化合物にリチウムが挿入される際の膨張を低減すること
ができる。しかし、結晶性が低下するに従ってリチウム
の貯蔵性能が著しく低下してしまうため、リチウムの貯
蔵性能を維持して高容量を確保することと、リチウムの
挿入・脱離の繰り返しに伴う活物質の膨張・収縮を低減
してサイクル特性を向上させることを両立させる必要が
ある。この観点から、本発明の負極活物質の結晶化度
は、10〜60%の範囲内である必要がある。結晶化度
が10%を下回るとリチウムの貯蔵性能が低下して放電
容量が低くなるという問題がある。また、結晶化度が6
0%を超えると負極活物質の膨張を十分に抑えることが
できないという問題が生じる。
Crystallinity (%) of silicon or silicon compound
= (Ha-Hs) ÷ Ha × 100 (Ha: heat of crystallization of silicon or silicon compound in an amorphous state, Hs: heat of crystallization of a measured substance of silicon or silicon compound) It means that the degree of crystallinity is 0. , Means that it is in an amorphous state. The lower the crystallinity, that is, the closer the crystallinity is to 0, the more the expansion when lithium is inserted into silicon or a silicon compound can be reduced. However, as the crystallinity decreases, the storage performance of lithium decreases significantly. Therefore, maintaining the storage performance of lithium to ensure a high capacity and expanding the active material due to repeated insertion and desorption of lithium. -It is necessary to reduce shrinkage and improve cycle characteristics at the same time. From this viewpoint, the crystallinity of the negative electrode active material of the present invention needs to be in the range of 10 to 60%. When the crystallinity is less than 10%, there is a problem that the storage capacity of lithium is lowered and the discharge capacity is lowered. The crystallinity is 6
If it exceeds 0%, there arises a problem that the expansion of the negative electrode active material cannot be sufficiently suppressed.

【0023】上記の負極活物質を核粒子とし、炭素質材
料との混合、焼成あるいは気相処理法等により、負極活
物質の一部又は全部を炭素質材料で被覆処理することに
より、核粒子の膨張がより一層抑えられるので、サイク
ル特性を更に向上させることができる。また、核粒子が
導電性に優れた炭素質材料で被覆されるため、活物質の
導電性が向上し、負荷特性を向上させることもできる。
The above-mentioned negative electrode active material is used as a core particle, and a part or all of the negative electrode active material is coated with the carbonaceous material by mixing with a carbonaceous material, firing, or a gas phase treatment method. Since the expansion of the is further suppressed, the cycle characteristics can be further improved. Further, since the core particles are coated with the carbonaceous material having excellent conductivity, the conductivity of the active material is improved and the load characteristics can be improved.

【0024】上記炭素質材料の炭素源としては、各種樹
脂、タール又はピッチ、コークス、炭素繊維、天然黒鉛
又は人造黒鉛等が挙げられる。被覆した炭素の含有量は
設定する電池容量に応じ決定すれば良く、特に限定はさ
れないが、核粒子に対して10〜90質量%が好まし
い。
Examples of the carbon source of the above carbonaceous material include various resins, tar or pitch, coke, carbon fiber, natural graphite or artificial graphite. The content of the coated carbon may be determined according to the battery capacity to be set and is not particularly limited, but is preferably 10 to 90 mass% with respect to the core particles.

【0025】本発明に用いられる負極用導電剤は、構成
された非水二次電池において化学変化を起こさない電子
伝導性材料であればよく、特に限定されない。通常、天
然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人工黒
鉛、カーボンブラック、アセチレンブラック、ケッチェ
ンブラック、炭素繊維、金属粉(銅粉、ニッケル粉、ア
ルミニウム粉、銀粉等)、金属繊維あるいは特開昭59
−20971号公報等に記載のポリフェニレン誘導体等
の導電性材料を1種又はこれらの混合物を使用すること
ができる。
The negative electrode conductive agent used in the present invention is not particularly limited as long as it is an electron conductive material that does not chemically change in the constructed non-aqueous secondary battery. Usually, natural graphite (scaly graphite, flake graphite, earthy graphite, etc.), artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, metal powder (copper powder, nickel powder, aluminum powder, silver powder, etc.), Metal fiber or JP-A-59
One kind of a conductive material such as a polyphenylene derivative described in JP-A-20971 or the like or a mixture thereof can be used.

【0026】本発明に用いられる負極用結着剤として
は、通常、でんぷん、ポリビニルアルコール、カルボキ
シメチルセルロース、ヒドロキシプロピルセルロース、
再生セルロース、ジアセチルセルロース、ポリビニルク
ロリド、ポリビニルピロリドン、テトラフルオロエチレ
ン、ポリフッ化ビニリデン、ポリエチレン、ポリプロピ
レン、エチレン−プロピレン−ジエンターポリマー(E
PDM)、スルホン化EPDM、スチレンブタジエンゴ
ム、ブタジエンゴム、ポリブタジエン、フッ素ゴム、ポ
リエチレンオキシド等の多糖類、熱可塑性樹脂、ゴム弾
性を有するポリマーやこれらの変成体のうち少なくとも
1種又はこれらの複合物が用いられる本発明に用いられ
る正極活物質としては特に限定されることなく各種のも
のを使用することができるが、特にLixCoO2、Li
xNiO2、LixMnO2、LixCoyNi1-y2、Li
xCoy1-yz、LixNi1-yyz、LixMn
2 4、LixMn2-yy4(M:Mg、Mn、Fe、C
o、Ni、Cu、Zn、Al、Crのうち少なくとも一
種、0≦x≦1.1、0<y<1.0、2.0≦z≦
2.2)等のリチウム含有遷移金属酸化物が好適に用い
られる。
As the binder for the negative electrode used in the present invention
Is usually starch, polyvinyl alcohol, carboxy
Dimethyl cellulose, hydroxypropyl cellulose,
Regenerated cellulose, diacetyl cellulose, polyvinyl chloride
Lolid, polyvinylpyrrolidone, tetrafluoroethylene
Polyvinylidene fluoride, polyethylene, polypropylene
Ren, ethylene-propylene-diene terpolymer (E
PDM), sulfonated EPDM, styrene butadiene rubber
Rubber, butadiene rubber, polybutadiene, fluororubber,
Polysaccharides such as ethylene oxide, thermoplastic resins, rubber bullets
At least polymers with these properties and their modified forms
In the present invention, one kind or a combination thereof is used.
There are no particular restrictions on the positive electrode active material
Can be used, but especially LixCoO2, Li
xNiO2, LixMnO2, LixCoyNi1-yO2, Li
xCoyM1-yOz, LixNi1-yMyOz, LixMn
2O Four, LixMn2-yMyOFour(M: Mg, Mn, Fe, C
At least one of o, Ni, Cu, Zn, Al and Cr
Seed, 0 ≦ x ≦ 1.1, 0 <y <1.0, 2.0 ≦ z ≦
A lithium-containing transition metal oxide such as 2.2) is preferably used.
To be

【0027】本発明で使用される正極用導電剤は、用い
る正極活物質の充放電電位において化学変化を起こさな
い電子伝導性材料であれば特に限定されない。例えば、
天然黒鉛(鱗片状黒鉛等)、人造黒鉛等のグラファイト
類、アセチレンブラック、ケッチェンブラック、チャン
ネルブラック、ファーネスブラック、ランプブラック、
サーマルブラック等のカーボンブラック類、炭素繊維、
金属繊維等の導電性繊維類等を単独又はこれらの混合物
として使用することができる。これらの導電剤の中で人
造黒鉛、アセチレンブラックが特に好ましい。
The conductive agent for the positive electrode used in the present invention is not particularly limited as long as it is an electron conductive material that does not chemically change at the charge / discharge potential of the positive electrode active material used. For example,
Natural graphite (scaly graphite, etc.), graphite such as artificial graphite, acetylene black, Ketjen black, channel black, furnace black, lamp black,
Carbon black such as thermal black, carbon fiber,
Conductive fibers such as metal fibers can be used alone or as a mixture thereof. Of these conductive agents, artificial graphite and acetylene black are particularly preferable.

【0028】本発明に用いられる正極用結着剤として
は、熱可塑性樹脂、熱硬化性樹脂のいずれであってもよ
い。本発明において好ましい結着剤としては、例えば、
ポリエチレン、ポリプロピレン、ポリテトラフルオロエ
チレン(PTFE)、ポリフッ化ビニリデン(PVD
F)、スチレンブタジエンゴム、テトラフルオロエチレ
ン−ヘキサフルオロエチレン共重合体、テトラフルオロ
エチレン−ヘキサフルオロプロピレン共重合体(FE
P)、テトラフルオロエチレン−パーフルオロアルキル
ビニルエーテル共重合体(PFA)、フッ化ビニリデン
−ヘキサフルオロプロピレン共重合体、フッ化ビニリデ
ン−クロロトリフルオロエチレン共重合体、エチレン−
テトラフルオロエチレン共重合体(ETFE樹脂)を挙
げることができ、これらの材料を単独又は混合物として
用いることができる。また、これらの材料の中でより好
ましい材料は、ポリフッ化ビニリデン(PVDF)、ポ
リテトラフルオロエチレン(PTFE)である。
The positive electrode binder used in the present invention may be either a thermoplastic resin or a thermosetting resin. Examples of preferable binders in the present invention include:
Polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVD
F), styrene butadiene rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer (FE
P), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-
Tetrafluoroethylene copolymer (ETFE resin) can be mentioned, and these materials can be used alone or as a mixture. Further, among these materials, more preferable materials are polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).

【0029】本発明に用いられる非水電解質は、溶媒
と、その溶媒に溶解するリチウム塩とから構成すること
ができる。有機溶媒としては、プロピレンカーボネー
ト、エチレンカーボネート、ブチレンカーボネート、ジ
メチルカーボネート、ジエチルカーボネート、メチルエ
チルカーボネート、γ−ブチロラクトン、1,2−ジメ
トキシエタン、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、ジメチルスルフォキシド、1,3−ジオ
キソラン、ホルムアミド、ジメチルホルムアミド、ジオ
キソラン、アセトニトリル、ニトロメタン、蟻酸メチ
ル、酢酸メチル、燐酸トリエステル、トリメトキシメタ
ン、ジオキソラン誘導体、スルホラン、3−メチル−2
−オキサゾリジノン、プロピレンカーボネート誘導体、
テトラヒドロフラン誘導体、ジエチルエーテル、1,3
−プロパンサルトン等の非プロトン性有機溶媒の少なく
とも1種以上を混合した溶媒を用いることができる。ま
た、その溶媒に溶解させるリチウム塩としては、例え
ば、LiClO4、LiBF6、LiPF6、LiCF3
3、LiCF3CO2、LiAsF6、LiSbF6、L
iB1 0Cl10、低級脂肪族カルボン酸リチウム、LiA
lCl4、LiCl、LiBr、LiI、クロロボラン
リチウム、四フェニルホウ酸リチウム等の1種以上の塩
から構成されている。中でも、エチレンカーボネート又
はプロピレンカーボネートと、1,2−ジメトキシエタ
ン及び/又はジエチルカーボネート及び/又はメチルエ
チルカーボネートの混合液に、LiClO4、LiB
6、LiPF6及び/又はLiCF3SO3を含む電解質
が好ましい。これら電解質を電池内に添加する量は特に
限定されないが、活物質の量や電池のサイズによって必
要量用いることができる。支持電解質の濃度は特に限定
されないが、電解液1dm3当たり0.2〜3.0mo
lが好ましい。
The non-aqueous electrolyte used in the present invention can be composed of a solvent and a lithium salt soluble in the solvent. Examples of the organic solvent include propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3. -Dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, 3-methyl-2
-Oxazolidinone, propylene carbonate derivative,
Tetrahydrofuran derivative, diethyl ether, 1,3
-A solvent in which at least one kind of aprotic organic solvent such as propane sultone is mixed can be used. The lithium salt dissolved in the solvent may be, for example, LiClO 4 , LiBF 6 , LiPF 6 , LiCF 3 S.
O 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, L
iB 1 0 Cl 10, lower aliphatic lithium carboxylate, LiA
It is composed of at least one salt such as lCl 4 , LiCl, LiBr, LiI, lithium chloroborane, and lithium tetraphenylborate. Among them, a mixed solution of ethylene carbonate or propylene carbonate, 1,2-dimethoxyethane and / or diethyl carbonate and / or methyl ethyl carbonate, LiClO 4 , LiB
Electrolytes containing F 6 , LiPF 6 and / or LiCF 3 SO 3 are preferred. The amount of these electrolytes added to the battery is not particularly limited, but a necessary amount can be used depending on the amount of the active material and the size of the battery. The concentration of the supporting electrolyte is not particularly limited, but is 0.2 to 3.0 mo per 1 dm 3 of the electrolytic solution.
1 is preferred.

【0030】本発明の非水二次電池の形状は、コイン
型、ボタン型、シート型、積層型、円筒型、偏平型、角
型、電気自動車等に用いる大型のものなどいずれにも適
用できる。
The shape of the non-aqueous secondary battery of the present invention can be applied to any of a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, a square type, and a large type used for an electric vehicle. .

【0031】上記の負極活物質を用いた本発明の非水二
次電池を充電する際の充電方法は特に限定はされない
が、定電流又は定電流と定電圧を組み合わせた方法で行
うことが好ましい。例えば、設定電圧(E)に達するま
では一定の電流値(I)で充電する定電流充電領域と、
前記設定電圧(E)に達した後は設定電圧(E)で定電
圧充電する定電圧充電領域とを組み合わせて充電を行う
方法が好ましい。
The charging method for charging the non-aqueous secondary battery of the present invention using the above-mentioned negative electrode active material is not particularly limited, but a constant current or a method combining a constant current and a constant voltage is preferable. . For example, a constant current charging region in which a constant current value (I) is charged until the set voltage (E) is reached,
After reaching the set voltage (E), it is preferable to charge the battery by combining it with a constant voltage charging region that performs constant voltage charging at the set voltage (E).

【0032】なお、結晶質ケイ素材料を用いた場合に
は、結晶内へのリチウムイオンの拡散が遅いため、充電
電流密度を大きくした場合には、ケイ素材料の内部の場
所ごとにリチウム濃度が不均一になりやすく、複数の相
が固体内に混在するようになって、その異相境界に生じ
る応力ひずみにより粒子が微粉化を起こし、電気的な接
触が保てなくなることで電極の容量が低下する。更に、
大きな電流密度で充電する時には、負極上に金属リチウ
ムが析出し、電池短絡の危険性がある。しかし、本発明
に用いるケイ素又はケイ素化合物は、結晶に適度に歪み
が導入されていることによりリチウムイオンの拡散が速
く、上記微粉化が生じにくいため、充電電流密度を大き
くしても問題はない。
When a crystalline silicon material is used, the diffusion of lithium ions into the crystal is slow. Therefore, when the charging current density is increased, the lithium concentration is different at each location inside the silicon material. It tends to be uniform, and multiple phases are mixed in the solid, and the stress strain at the boundary of the different phases causes the particles to become fine, and the electrical contact cannot be maintained, and the electrode capacity decreases. . Furthermore,
When charging with a large current density, metallic lithium deposits on the negative electrode, which may cause a battery short circuit. However, since silicon or a silicon compound used in the present invention has a moderate strain introduced into the crystal, the diffusion of lithium ions is fast and the above-mentioned pulverization is unlikely to occur, so there is no problem even if the charging current density is increased. .

【0033】一方、充電終止電圧は、充放電の微分曲線
(対照極:金属リチウム)において、高い電位側から第
2陰極ピークが始まる前の100mVより高い電位とな
る範囲に規制することが好ましい。特に、150〜25
0mVの範囲で充電を終了させることが好ましい。金属
リチウムに対する負極の電位が100mVより高い電位
となる範囲で充電を終了させるのは、充電後の負極活物
質におけるLiとSiとの原子比率(Li/Si)がL
i/Si≦2.625の範囲になるよう充電を制御する
ためである。上記範囲を越える場合、即ち充電深度が深
くなる領域まで充電を行った場合は、負極活物質の膨張
率が大きくなりすぎ、サイクル特性が低下する。
On the other hand, the end-of-charge voltage is preferably regulated to a potential range higher than 100 mV before the second cathode peak starts from the high potential side in the charge / discharge differential curve (control electrode: metallic lithium). In particular, 150-25
It is preferable to terminate the charging within the range of 0 mV. Charging is terminated within a range where the potential of the negative electrode with respect to metallic lithium is higher than 100 mV because the atomic ratio of Li to Si (Li / Si) in the negative electrode active material after charging is L.
This is because the charging is controlled so that i / Si ≦ 2.625. When it exceeds the above range, that is, when charging is performed to a region where the charging depth is deep, the expansion coefficient of the negative electrode active material becomes too large and the cycle characteristics deteriorate.

【0034】[0034]

【実施例】以下、実施例により本発明を更に詳しく説明
する。ただし、本発明はこれらの実施例に限定されるも
のではない。
The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

【0035】(実施例1)市販の粒径10μmのケイ素
粉末と粒径5μmのアルミニウム粉末を、Si:Al=
8:2の原子比で混合したもの10gを高温熔解炉にお
いて1300℃で溶解し、液体急冷方法により、ケイ素
化合物(Si−Al固溶体)を得た。これを容積100
cm3のステンレス製ボールミルポットにステンレスボ
ールとともに投入して、遊星ボールミルを用いてミリン
グ処理を行った。ミリング処理後の化合物の形態は処理
時間によって異なるため、各々の処理時間(15時間、
40時間、100時間)でのX線回折パターンを調べ
た。図1は、ミリング処理前及びミリング処理時間がそ
れぞれ15時間、40時間、100時間において得られ
たSi−Al固溶体の粉末のX線回折図である。液体急
冷方法を用いて得られたミリング処理前のSi−Al固
溶体は、結晶質のSiとAlが残っていることがわか
る。そして、ミリング処理時間の増大に伴い、残存して
いた結晶質のSiとAlが消失し、Si−Al固溶体の
回折ピークの強度が低下するとともにその幅もブロード
になり、いわゆる結晶性が低下することがわかる。ミリ
ング処理時間が100時間を越えるとアモルファス化す
ると考えられる。
Example 1 Commercially available silicon powder having a particle size of 10 μm and aluminum powder having a particle size of 5 μm were mixed with Si: Al =
10 g of the mixture having an atomic ratio of 8: 2 was melted at 1300 ° C. in a high temperature melting furnace, and a silicon compound (Si—Al solid solution) was obtained by a liquid quenching method. Volume 100
The mixture was put into a cm 3 stainless steel ball mill pot together with stainless balls, and milled using a planetary ball mill. Since the morphology of the compound after milling depends on the treatment time, each treatment time (15 hours,
The X-ray diffraction pattern at 40 hours and 100 hours) was examined. FIG. 1 is an X-ray diffraction diagram of the powder of the Si—Al solid solution obtained before the milling treatment and at the milling treatment times of 15 hours, 40 hours, and 100 hours, respectively. It can be seen that crystalline Si and Al remain in the Si-Al solid solution before milling obtained using the liquid quenching method. Then, as the milling process time increases, the remaining crystalline Si and Al disappear, the intensity of the diffraction peak of the Si-Al solid solution decreases, and the width thereof becomes broad, so-called crystallinity decreases. I understand. It is considered that when the milling treatment time exceeds 100 hours, it becomes amorphous.

【0036】次に、ミリング処理前のケイ素化合物及び
ミリング処理時間が15時間、40時間及び100時間
のものについて、示差走査熱量測定(DSC)により、
前述の式を用いて結晶化度を求めた。即ち、上記化合物
粉末をそれぞれDSCセルに密封し、加熱速度1℃/s
で加熱を行った。いずれのサンプルにおいても800℃
を中心とするピークが測定され、この部分を積分するこ
とにより算出された結晶化熱は、ミリング処理前のもの
で0.02J/g、ミリング処理時間が15時間のもの
で0.07J/g、40時間のもので0.12J/g、
100時間のもので0.2J/gであった。X線回折測
定の結果から考えて、100時間のものがほぼアモルフ
ァス状態の結晶化熱であると仮定できることから、上記
サンプルの結晶化度を算出した。この結果、ミリング処
理前のケイ素化合物の結晶化度は90%、ミリング処理
時間が15時間のものの結晶化度は65%、40時間の
ものの結晶化度は40%となることがわかった。なお、
100時間のものの結晶化度は0%である。
Next, the silicon compound before milling and the milling treatment times of 15, 40 and 100 hours were measured by differential scanning calorimetry (DSC).
The crystallinity was determined using the above equation. That is, each of the above compound powders was sealed in a DSC cell and heated at a heating rate of 1 ° C / s.
It was heated at. 800 ℃ for all samples
The peak of crystallization was measured, and the heat of crystallization calculated by integrating this portion was 0.02 J / g before the milling treatment and 0.07 J / g after the milling treatment time was 15 hours. , 40 hours, 0.12 J / g,
It was 0.2 J / g after 100 hours. Considering the result of X-ray diffraction measurement, it can be assumed that the heat of crystallization in 100 hours is almost amorphous, and thus the crystallinity of the sample was calculated. As a result, it was found that the crystallinity of the silicon compound before the milling treatment was 90%, the crystallinity of the milling treatment time of 15 hours was 65%, and the crystallinity of the milling treatment time of 40 hours was 40%. In addition,
The crystallinity of 100 hours is 0%.

【0037】続いて、ミリング処理時間が40時間のケ
イ素化合物を用い、リチウム二次電池の負極活物質とし
ての特性を下記の方法により調べた。即ち、得られた負
極活物質90質量%に対し、導電剤である炭素粉末5質
量%と結着剤であるポリフッ化ビニリデン樹脂5質量%
を混合し、これらを脱水N−メチルピロリドンに分散さ
せてスラリーを作製し、銅箔からなる負極集電体上に塗
布し、乾燥後、圧延した。その後、これを直径16mm
の円板に切り取り、真空中で24時間乾燥させて負極を
作成した。
Then, the characteristics of the lithium secondary battery as a negative electrode active material were investigated by the following methods using a silicon compound having a milling treatment time of 40 hours. That is, with respect to 90% by mass of the obtained negative electrode active material, 5% by mass of carbon powder as a conductive agent and 5% by mass of polyvinylidene fluoride resin as a binder.
Were mixed, and these were dispersed in dehydrated N-methylpyrrolidone to prepare a slurry, which was applied onto a negative electrode current collector made of copper foil, dried, and then rolled. After that, this is 16mm in diameter
It was cut into a disk and dried in a vacuum for 24 hours to prepare a negative electrode.

【0038】上記負極を用いて、金属リチウムと組み合
わせて容量測定用のセルを試作した。電解液は、プロピ
レンカーボネートとジメチルカーボネートの体積比1:
1の混合溶媒に、六フッ化リン酸リチウムを1mol/
dm3溶解したものを用いた。電池の充放電方法は以下
のように行った。充電は電流密度0.5mA/cm2
定電流で行い、充電電圧が10mVに達した後は、10
mVの定電圧で電流密度が0.05mA/cm2に低下
するまで充電を行った。即ち、充電終了時の負極の電位
は金属リチウムに対して10mVとした。放電は電流密
度0.5mA/cm2及び2mA/cm2の定電流で行
い、放電終止電圧は2.0Vとして、前記電流密度での
2サイクル目の放電容量を測定した。
Using the above negative electrode, a cell for capacity measurement was manufactured by combining with metallic lithium. The electrolytic solution has a volume ratio of propylene carbonate and dimethyl carbonate of 1:
1 mol / liter of lithium hexafluorophosphate in the mixed solvent of 1
A dm 3 solution was used. The charging / discharging method of the battery was performed as follows. Charging is performed with a constant current having a current density of 0.5 mA / cm 2 , and after the charging voltage reaches 10 mV, 10
Charging was performed at a constant voltage of mV until the current density dropped to 0.05 mA / cm 2 . That is, the potential of the negative electrode at the end of charging was 10 mV against metallic lithium. The discharge was performed at constant currents of current densities of 0.5 mA / cm 2 and 2 mA / cm 2 , and the discharge end voltage was 2.0 V, and the discharge capacity at the second cycle at the current density was measured.

【0039】(比較例1)実施例1で製造したミリング
処理前のケイ素化合物を用いたこと以外は、実施例1と
同様にしてセルを組み立て、2サイクル目の放電容量を
測定した。
Comparative Example 1 A cell was assembled in the same manner as in Example 1 except that the silicon compound before milling produced in Example 1 was used, and the discharge capacity at the second cycle was measured.

【0040】(比較例2)ミリング処理時間が15時間
のケイ素化合物を用いたこと以外は実施例1と同様にし
てセルを組み立て、2サイクル目の放電容量を測定し
た。
Comparative Example 2 A cell was assembled in the same manner as in Example 1 except that a silicon compound having a milling treatment time of 15 hours was used, and the discharge capacity at the second cycle was measured.

【0041】(比較例3)ミリング処理時間が100時
間の非晶質ケイ素化合物を用いたこと以外は実施例1と
同様にしてセルを組み立て、2サイクル目の放電容量を
測定した。
Comparative Example 3 A cell was assembled in the same manner as in Example 1 except that an amorphous silicon compound having a milling treatment time of 100 hours was used, and the discharge capacity at the second cycle was measured.

【0042】電流密度0.5mA/cm2及び2mA/
cm2での放電容量を、ケイ素化合物1g当たりに換算
した値として表1に示した。
Current density 0.5 mA / cm 2 and 2 mA /
The discharge capacity in cm 2 is shown in Table 1 as a value converted per 1 g of the silicon compound.

【0043】また、実施例1及び比較例1〜3のセルに
対し、前記と同様の条件で充電を行い、0.5mA/c
2及び2mA/cm2の定電流で放電を行う充放電サイ
クル試験を行い、50サイクル目の放電容量を測定し
た。更に、上記サイクル試験に用いたのとは別の電池を
それぞれ用いて、充電条件を変えて充放電サイクル試験
を行った。即ち、電流密度0.5mA/cm2の定電流
で充電を行い、充電電圧が150mVに達した後は、1
50mVの定電圧で電流密度が0.05mA/cm2
低下するまで充電を行い、放電条件は前記と同様にして
充放電サイクルを繰り返した。このとき、充電終了時の
負極の電位は金属リチウムに対して150mVとした。
その2サイクル目及び50サイクル目の放電容量を測定
し、上記結果と併せて表1に示した。
The cells of Example 1 and Comparative Examples 1 to 3 were charged under the same conditions as described above to obtain 0.5 mA / c.
A charging / discharging cycle test in which discharging was performed at a constant current of m 2 and 2 mA / cm 2 was performed, and the discharge capacity at the 50th cycle was measured. Further, a charge / discharge cycle test was conducted by changing the charging conditions using batteries different from those used in the above cycle test. That is, charging was performed with a constant current having a current density of 0.5 mA / cm 2 , and after charging voltage reached 150 mV, 1
Charging was carried out at a constant voltage of 50 mV until the current density dropped to 0.05 mA / cm 2 , and the charging and discharging cycle was repeated under the same discharging conditions as described above. At this time, the potential of the negative electrode at the end of charging was 150 mV against metallic lithium.
The discharge capacities of the second cycle and the 50th cycle were measured and are shown in Table 1 together with the above results.

【0044】[0044]

【表1】 [Table 1]

【0045】表1に示すように、実施例1は、放電時の
電流密度が大きくなっても高容量であることから負荷特
性に優れ、また、充放電サイクルを繰り返しても容量低
下が少なくサイクル特性にも優れていた。特に、金属リ
チウムに対する負極の電位が100mVより高い電位範
囲で充電を終了することにより、サイクル特性を向上さ
せることができた。
As shown in Table 1, Example 1 is excellent in load characteristics because it has a high capacity even when the current density during discharge is large, and the capacity is small even when the charge / discharge cycle is repeated and the cycle is small. It was also excellent in characteristics. In particular, the cycle characteristics could be improved by ending the charging in the potential range where the potential of the negative electrode with respect to metallic lithium was higher than 100 mV.

【0046】しかし、60%より高い結晶化度を有する
ケイ素化合物を用いた比較例1及び比較例2では、負荷
特性、サイクル特性ともに劣っており、特に、金属リチ
ウムに対する負極の電位が100mVより高い電位範囲
で充電を終了した場合には、充放電がほとんどできなか
った。これは、結晶化度が高いケイ素化合物へのリチウ
ムの挿入反応が、主として金属リチウムに対して50〜
100mVの電位領域で生じるためと思われる。
However, in Comparative Example 1 and Comparative Example 2 using the silicon compound having a crystallinity higher than 60%, both the load characteristics and the cycle characteristics were inferior, and in particular, the potential of the negative electrode with respect to metallic lithium was higher than 100 mV. When charging was completed within the potential range, charging / discharging was almost impossible. This is because the insertion reaction of lithium into a silicon compound having a high crystallinity is 50 to 50 mainly with respect to metallic lithium.
It seems that this occurs because of the potential region of 100 mV.

【0047】また、10%より低い結晶化度を有する非
晶質ケイ素化合物を用いた比較例3では、サイクル特性
は優れていたものの、実施例1に比べて放電容量が低く
なった。
Further, in Comparative Example 3 using an amorphous silicon compound having a crystallinity lower than 10%, the cycle characteristics were excellent, but the discharge capacity was lower than that in Example 1.

【0048】(実施例2)実施例1において用いたミリ
ング処理時間が40時間のケイ素化合物の粒子表面を、
スパッタリングにより炭素で被覆し、粒径15μmの複
合材料(ケイ素化合物の含有量:60質量%)を作製し
た。スパッタリングは、アルゴンガスの存在下、真空度
が130Paの条件で行った。この複合材料を用いたこ
と以外は実施例1と同様にしてセルの組み立てを行っ
た。得られたセルに対し、前記充放電サイクル試験(充
電終止電圧:150mV、放電電流密度:2mA/cm
2)を行い、50サイクル目の放電容量を測定したとこ
ろ、750mAhの容量が得られた。これは容量維持率
が87%に相当する。
Example 2 The surface of the silicon compound particles used in Example 1 and having a milling treatment time of 40 hours was
A composite material (content of silicon compound: 60% by mass) having a particle diameter of 15 μm was prepared by coating with carbon by sputtering. The sputtering was performed under the condition that the degree of vacuum was 130 Pa in the presence of argon gas. A cell was assembled in the same manner as in Example 1 except that this composite material was used. For the obtained cell, the charge / discharge cycle test (charge end voltage: 150 mV, discharge current density: 2 mA / cm) was performed.
When 2 ) was performed and the discharge capacity at the 50th cycle was measured, a capacity of 750 mAh was obtained. This corresponds to a capacity retention rate of 87%.

【0049】(比較例4)比較例1において用いたミリ
ング処理前のケイ素化合物を使用したこと以外は実施例
2と同様にして複合材料を作製し、セルの組み立てを行
った。このセルについても、実施例2と同様にして充放
電サイクル試験を行い、50サイクル目の放電容量を測
定したところ、400mAhの容量が得られた。これは
容量維持率が45%に相当する。
(Comparative Example 4) A composite material was prepared and cells were assembled in the same manner as in Example 2 except that the silicon compound before milling used in Comparative Example 1 was used. A charge-discharge cycle test was performed on this cell as in Example 2, and the discharge capacity at the 50th cycle was measured. As a result, a capacity of 400 mAh was obtained. This corresponds to a capacity retention rate of 45%.

【0050】(実施例3)実施例2の複合材料を負極に
用いて、LiCoO2を用いた正極と組み合わせて、直
径18mm、高さ65mmの円筒型電池を作製した。次
に、以下の条件で充放電サイクル試験を行った。電池の
充電方法は、800mAでの定電流充電を行い、設定電
圧(4.15V)に達した後は、4.15Vでの定電圧
充電を行った。充電電流値が80mAまで低下した時点
を充電終了とした。充電終了時点での金属リチウムに対
する負極の電位は150mVであった。放電は800m
Aの定電流で、放電終止電圧を2.5Vとして行った。
放電電流1Cで2500mAhの容量が得られた。50
サイクル後は容量維持率は88%であった。
Example 3 By using the composite material of Example 2 as a negative electrode and combining it with a positive electrode using LiCoO 2 , a cylindrical battery having a diameter of 18 mm and a height of 65 mm was produced. Next, a charge / discharge cycle test was conducted under the following conditions. The battery was charged by constant current charging at 800 mA, and after reaching the set voltage (4.15 V), constant voltage charging at 4.15 V was performed. The charging was terminated when the charging current value dropped to 80 mA. The potential of the negative electrode with respect to metallic lithium at the end of charging was 150 mV. Discharge is 800m
A constant current of A was used, and the final discharge voltage was 2.5V.
With a discharge current of 1 C, a capacity of 2500 mAh was obtained. Fifty
After the cycle, the capacity retention rate was 88%.

【0051】[0051]

【発明の効果】以上の説明から明らかなように、本発明
では、負極活物質に低結晶化度のケイ素又は低結晶化度
のケイ素化合物を用いることにより、高容量で充放電の
サイクル特性の向上した非水二次電池を提供できる。
As is apparent from the above description, in the present invention, by using a low crystallinity silicon or a low crystallinity silicon compound as the negative electrode active material, it is possible to obtain a high-capacity charge / discharge cycle characteristic. An improved non-aqueous secondary battery can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】ミリング処理前及びミリング処理時間がそれぞ
れ15時間、40時間、100時間において得られたS
i−Al固溶体の粉末のX線回折図である。
FIG. 1 S obtained before and after milling treatment for 15 hours, 40 hours and 100 hours, respectively.
It is an X-ray diffraction pattern of the powder of i-Al solid solution.

フロントページの続き Fターム(参考) 5H029 AJ03 AJ05 AK03 AL11 AL12 AM02 AM03 AM04 AM05 AM07 DJ08 DJ17 EJ04 EJ12 HJ02 HJ13 HJ18 5H030 AA03 AA10 AS20 BB03 FF41 5H050 AA07 AA08 BA17 CA08 CA09 CB11 CB12 DA03 DA09 DA10 EA08 FA18 FA19 HA02 HA13 HA18 Continued front page    F-term (reference) 5H029 AJ03 AJ05 AK03 AL11 AL12                       AM02 AM03 AM04 AM05 AM07                       DJ08 DJ17 EJ04 EJ12 HJ02                       HJ13 HJ18                 5H030 AA03 AA10 AS20 BB03 FF41                 5H050 AA07 AA08 BA17 CA08 CA09                       CB11 CB12 DA03 DA09 DA10                       EA08 FA18 FA19 HA02 HA13                       HA18

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 負極、正極及び非水電解質を備えた非水
二次電池であって、前記負極の活物質が、一般式Mx
i(0≦x≦0.5、M:リチウムと合金を形成するこ
とが可能で且つケイ素と金属間化合物を形成しない元素
を少なくとも1種類含む元素)で示され、示差走査熱量
測定により算出される結晶化度が10〜60%の範囲に
あるケイ素又はケイ素化合物であることを特徴とする非
水二次電池。
1. A non-aqueous secondary battery comprising a negative electrode, a positive electrode and a non-aqueous electrolyte, wherein the active material of the negative electrode is of the general formula M x S.
i (0 ≦ x ≦ 0.5, M: element capable of forming an alloy with lithium and containing at least one element which does not form an intermetallic compound with silicon), and is calculated by differential scanning calorimetry. A non-aqueous secondary battery, which is silicon or a silicon compound having a crystallinity in the range of 10 to 60%.
【請求項2】 前記ケイ素又はケイ素化合物の表面の少
なくとも一部が、炭素質材料で被覆されている請求項1
に記載の非水二次電池。
2. A carbonaceous material is coated on at least a part of the surface of the silicon or silicon compound.
The non-aqueous secondary battery described in.
【請求項3】 一般式MxSi(0≦x≦0.5、M:
リチウムと合金を形成することが可能で且つケイ素と金
属間化合物を形成しない元素を少なくとも1種類含む元
素)で示され、示差走査熱量測定により算出される結晶
化度が10〜60%の範囲にあるケイ素又はケイ素化合
物を負極活物質として用いた非水二次電池の充電方法で
あって、金属リチウムに対する負極の電位が100mV
より高い電位となる範囲で充電を終了することを特徴と
する非水二次電池の充電方法。
3. The general formula M x Si (0 ≦ x ≦ 0.5, M:
The element is capable of forming an alloy with lithium and containing at least one element that does not form an intermetallic compound with silicon) and has a crystallinity in the range of 10 to 60% calculated by differential scanning calorimetry. A method for charging a non-aqueous secondary battery using certain silicon or a silicon compound as a negative electrode active material, wherein the potential of the negative electrode with respect to metallic lithium is 100 mV.
A method for charging a non-aqueous secondary battery, which comprises terminating charging within a range of higher potential.
JP2002006436A 2002-01-15 2002-01-15 Non-aqueous secondary battery and charging method thereof Expired - Fee Related JP3771846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002006436A JP3771846B2 (en) 2002-01-15 2002-01-15 Non-aqueous secondary battery and charging method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002006436A JP3771846B2 (en) 2002-01-15 2002-01-15 Non-aqueous secondary battery and charging method thereof

Publications (2)

Publication Number Publication Date
JP2003208893A true JP2003208893A (en) 2003-07-25
JP3771846B2 JP3771846B2 (en) 2006-04-26

Family

ID=27645204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002006436A Expired - Fee Related JP3771846B2 (en) 2002-01-15 2002-01-15 Non-aqueous secondary battery and charging method thereof

Country Status (1)

Country Link
JP (1) JP3771846B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235734A (en) * 2004-01-20 2005-09-02 Sony Corp Battery, its charge and discharge method, and its charge and discharge control element
JP2005332805A (en) * 2004-04-22 2005-12-02 Matsushita Electric Ind Co Ltd Charger of lithium secondary battery, and electronic device equipped with the charger
JP2005347076A (en) * 2004-06-02 2005-12-15 Pionics Co Ltd Negative electrode active material particle for lithium secondary battery and manufacturing method of negative electrode
CN1298065C (en) * 2003-08-22 2007-01-31 三星Sdi株式会社 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery
JP2007073334A (en) * 2005-09-07 2007-03-22 Sanyo Electric Co Ltd Lithium secondary battery
JP2008004460A (en) * 2006-06-26 2008-01-10 Nec Tokin Corp Nonaqueous electrolyte secondary battery
CN100454613C (en) * 2004-10-21 2009-01-21 松下电器产业株式会社 Negative electrode for battery and battery using same
JP2011029202A (en) * 2004-01-20 2011-02-10 Sony Corp Secondary battery, method of charging and discharging the same, and charge-discharge control device for the same
WO2011065504A1 (en) * 2009-11-27 2011-06-03 日産自動車株式会社 Si ALLOY NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRICAL DEVICE
WO2011111709A1 (en) * 2010-03-09 2011-09-15 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery
JP2012514305A (en) * 2008-12-30 2012-06-21 エルジー・ケム・リミテッド Anode active material for secondary battery
WO2016067577A1 (en) * 2014-10-29 2016-05-06 新日鐵住金株式会社 Negative electrode active material, negative electrode, and battery
JP2016189331A (en) * 2012-05-09 2016-11-04 信越化学工業株式会社 Method for producing electrode for electricity storage device
CN111837291A (en) * 2018-02-28 2020-10-27 松下知识产权经营株式会社 Method and system for charging non-aqueous electrolyte secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5975024B2 (en) 2011-05-27 2016-08-23 日本電気株式会社 Method for doping and dedoping lithium to negative electrode and method for producing negative electrode for lithium secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1298065C (en) * 2003-08-22 2007-01-31 三星Sdi株式会社 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery
JP2005235734A (en) * 2004-01-20 2005-09-02 Sony Corp Battery, its charge and discharge method, and its charge and discharge control element
US9029021B2 (en) 2004-01-20 2015-05-12 Sony Corporation Battery, method of charging and discharging the battery and charge-discharge control device for the battery
JP2011029202A (en) * 2004-01-20 2011-02-10 Sony Corp Secondary battery, method of charging and discharging the same, and charge-discharge control device for the same
JP2005332805A (en) * 2004-04-22 2005-12-02 Matsushita Electric Ind Co Ltd Charger of lithium secondary battery, and electronic device equipped with the charger
JP2005347076A (en) * 2004-06-02 2005-12-15 Pionics Co Ltd Negative electrode active material particle for lithium secondary battery and manufacturing method of negative electrode
CN100454613C (en) * 2004-10-21 2009-01-21 松下电器产业株式会社 Negative electrode for battery and battery using same
JP2007073334A (en) * 2005-09-07 2007-03-22 Sanyo Electric Co Ltd Lithium secondary battery
JP2008004460A (en) * 2006-06-26 2008-01-10 Nec Tokin Corp Nonaqueous electrolyte secondary battery
JP2012514305A (en) * 2008-12-30 2012-06-21 エルジー・ケム・リミテッド Anode active material for secondary battery
US8758939B2 (en) 2008-12-30 2014-06-24 Lg Chem, Ltd. Anode active material for secondary battery
RU2508579C2 (en) * 2009-11-27 2014-02-27 Ниссан Мотор Ко., Лтд. Active material of negative electrode based on silicone alloy for electric device
KR101399685B1 (en) 2009-11-27 2014-05-27 닛산 지도우샤 가부시키가이샤 Si ALLOY NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRICAL DEVICE
JP5387690B2 (en) * 2009-11-27 2014-01-15 日産自動車株式会社 Si alloy negative electrode active material for electrical devices
US9228249B2 (en) 2009-11-27 2016-01-05 Nissan Motor Co., Ltd. Si alloy negative electrode active material for electric device
WO2011065504A1 (en) * 2009-11-27 2011-06-03 日産自動車株式会社 Si ALLOY NEGATIVE ELECTRODE ACTIVE MATERIAL FOR ELECTRICAL DEVICE
JP4940381B2 (en) * 2010-03-09 2012-05-30 三井金属鉱業株式会社 Anode active material for non-aqueous electrolyte secondary battery
WO2011111709A1 (en) * 2010-03-09 2011-09-15 三井金属鉱業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery
CN102782907A (en) * 2010-03-09 2012-11-14 三井金属矿业株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery
US8632695B2 (en) 2010-03-09 2014-01-21 Mitsui Mining & Smelting Co., Ltd. Negative electrode active material for nonaqueous secondary battery
JP2016189331A (en) * 2012-05-09 2016-11-04 信越化学工業株式会社 Method for producing electrode for electricity storage device
WO2016067577A1 (en) * 2014-10-29 2016-05-06 新日鐵住金株式会社 Negative electrode active material, negative electrode, and battery
JPWO2016067577A1 (en) * 2014-10-29 2017-04-27 新日鐵住金株式会社 Negative electrode active material, negative electrode and battery
CN111837291A (en) * 2018-02-28 2020-10-27 松下知识产权经营株式会社 Method and system for charging non-aqueous electrolyte secondary battery
CN111837291B (en) * 2018-02-28 2024-02-02 松下知识产权经营株式会社 Method for charging nonaqueous electrolyte secondary battery and charging system for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3771846B2 (en) 2006-04-26

Similar Documents

Publication Publication Date Title
KR101147240B1 (en) Rechargeable lithium battery
US20120231341A1 (en) Positive active material, and electrode and lithium battery containing the positive active material
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
US20050208378A1 (en) Negative active material and method for production thereof, non-aqueous electrolyte secondary cell using the same
JP2003303585A (en) Battery
JP2007522619A (en) Electrode additive coated with conductive material and lithium secondary battery comprising the same
KR101211327B1 (en) Anode active material for secondary battery and method for preparing the same
US20140315089A1 (en) Positive active material, method of preparing the same, and rechargeable lithium battery including the same
KR101309149B1 (en) Method for manufacturing positive active material for rechargeable lithium battery and rechargeable lithium battery using the same
US11489192B2 (en) Lithium secondary battery
JP3771846B2 (en) Non-aqueous secondary battery and charging method thereof
JP5663567B2 (en) Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
KR20170107227A (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
JP2002083597A (en) Lithium secondary battery
EP1498966A1 (en) Cell
JP3229635B2 (en) Lithium secondary battery
JP5145994B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
US9893356B2 (en) Cathode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method of producing cathode active material for nonaqueous electrolyte secondary battery
JP3200572B2 (en) Lithium secondary battery
KR101135491B1 (en) Positive electrode for rechargeable lithium and rechargeable lithium battery comprising same
US8642216B2 (en) Composite anode active material, with intermetallic compound, method of preparing the same, and anode and lithium battery containing the material
KR101646702B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR20170140633A (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
US11670762B2 (en) Negative active material for rechargeable lithium battery and rechargeable lithium battery including same
KR20160093817A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060210

R150 Certificate of patent or registration of utility model

Ref document number: 3771846

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees