JP2004220910A - Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode - Google Patents

Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode Download PDF

Info

Publication number
JP2004220910A
JP2004220910A JP2003006637A JP2003006637A JP2004220910A JP 2004220910 A JP2004220910 A JP 2004220910A JP 2003006637 A JP2003006637 A JP 2003006637A JP 2003006637 A JP2003006637 A JP 2003006637A JP 2004220910 A JP2004220910 A JP 2004220910A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
inorganic particles
electrode material
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003006637A
Other languages
Japanese (ja)
Inventor
Yusuke Watarai
祐介 渡会
Akio Mizuguchi
暁夫 水口
Kanji Hisayoshi
完治 久芳
Shuhin Cho
守斌 張
Hiroyuki Imai
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003006637A priority Critical patent/JP2004220910A/en
Publication of JP2004220910A publication Critical patent/JP2004220910A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material capable of improving cycle characteristics by controlling the stress accompanying the storing-releasing reaction of lithium ion at charge and discharge, and capable of improving high rate charge and discharge characteristics by making lithium ion storing and releasing reaction accompanying charging and discharging smoothly proceed, and to provide a negative electrode using the negative electrode material, and further, a lithium ion battery and a lithium polymer battery capable of heightening the energy density of the battery. <P>SOLUTION: The negative electrode material contains inorganic particles 11 containing at least one element chosen from Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co, and Mn, and a carbon material 12. The carbon material has a carbon nanofiber 13 as a main component, and the carbon nanofiber has an average diameter of 20 to 500 nm, the length of not less than 1,000 nm, and an aspect ratio of not less than 10. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、サイクル特性及び高率充放電特性を向上させ、電池のエネルギー密度を高めることができる負極材料及びこれを用いた負極、並びにこの負極を用いたリチウムイオン電池及びリチウムポリマー電池に関する。
【0002】
【従来の技術】
近年、携帯電話やノート型パソコン等のポータブル電子機器の発達や、電気自動車の実用化等に伴い、小型軽量でかつ高容量の二次電池が必要とされるようになってきた。現在、この要求に応える高容量二次電池として、正極材料にLiCoO等の含リチウム複合酸化物を用い、負極活物質に炭素系材料を用いたリチウムイオン電池が商品化されている。この炭素系材料を負極に使用した場合、その理論容量は372mAh/gと金属リチウムの約1/10の容量しかなく、また理論密度が2.2g/ccと低く、実際に負極シートとした場合には、更に密度が低下する。そのため、体積当たりでより高容量な材料を負極として利用することが電池の高容量化の面から望まれている。
Al、Ge、Si、Sn、Zn、Pb等の金属又は半金属は、リチウムと合金化することが知られており、これらの金属又は半金属を負極活物質に用いた二次電池が検討されている。この材料は、高容量かつ高エネルギー密度であり、炭素系材料を用いた負極よりも多くのリチウムイオンを吸蔵、脱離できるため、これらの材料を使用することで高容量、高エネルギー密度な電池を作製することができると考えられている。しかし、炭素系材料に比べてサイクル特性に劣るため未だ実用化には至っていない。
【0003】
このような上記問題点を解決する技術として、負極が2種の元素から構成される六方最密充填構造で、かつNiIn型構造を有する合金を含む非水電解質二次電池が開示されている(例えば、特許文献1参照。)。この二次電池では、上記結晶構造をとる合金を負極材料に用いることにより、過剰なリチウムイオンの吸蔵を制御するので、サイクル劣化の主要因であるリチウムの吸蔵、脱離に伴う膨張収縮のストレスを抑制できる。従って、高容量かつ優れた充放電サイクル特性が得られる。
また、Al、Ge、Pb、Si、Sn、Znの元素群から選ばれる少なくとも1種以上の元素と、上記元素群以外の金属ないしは半金属との金属間化合物を用いた二次電池が開示されている(例えば、特許文献2参照。)。リチウムと合金化する元素の周りにリチウムと合金化しにくい他の元素が存在することで、微結晶化、微粉化が抑制されるため、優れたサイクル特性を得ることができる。
【0004】
【特許文献1】
特開2001−250541号公報
【特許文献2】
特開平10−223221号公報
【0005】
【発明が解決しようとする課題】
しかし、負極材料としてシリコンやスズ等の無機質の粒子をそのままリチウム吸蔵、脱離物質として用いた場合には、次のような課題を有している。負極活物質中に含まれる無機質粒子は充電によりリチウムを吸蔵すると、その体積は大きく膨張する(図11(a),(b))。そして放電によりリチウムを脱離すると無機質粒子1は収縮する。このサイクルを繰返すと、負極活物質2が無機質粒子の大きな体積変化に対応できなくなって、図11(c)に示すように、無機質粒子1と負極活物質2との間に空孔3を生じさせてしまい、導電性が悪くなったり、負極集電体4から負極活物質2が剥離してサイクル特性が低下する等の問題を生じる。なお、図中の短破線で示される符号6は無機質粒子が体積膨張したときの大きさを示す。
上記特許文献1及び2にそれぞれ示された二次電池においても、上記問題と同様の現象が起きており、充放電によるリチウムの挿入、脱離に伴う無機質粒子の膨張、収縮を起因とするストレスを十分に緩衝できてはおらず、実用可能なサイクル寿命が得られていないのが実情である。
【0006】
また、無機質粒子とともに、従来用いられてきたケッチェンブラックのような炭素系材料を混合した負極材料では、図12(a)に示すように、炭素系材料7は無機質粒子1の周りに付着した形で存在する。活物質中に含まれる無機質粒子は充電によりリチウムを吸蔵すると、その体積は大きく膨張する(図12(b))。無機質粒子1の体積膨張によりその表面積は大きくなるので、炭素系材料7は大きくなった表面の広がるようにその位置を移動する。そして放電によりリチウムを脱離すると無機質粒子1は収縮する(図12(c))。無機質粒子が収縮すると、表面積も元に戻るため、表面積に広がった炭素系材料7もその位置を本来あった場所に戻ろうとする。このサイクルを繰返すと、無機質粒子1がその周りに存在している炭素系材料7から圧迫されてクラック8を生じ、サイクル特性が低下するおそれがある。
【0007】
本発明の目的は、充放電のリチウムイオンの挿入、脱離反応に伴うストレスを制御し、サイクル特性を向上できる、負極材料及びこれを用いた負極を提供することにある。
本発明の別の目的は、充放電に伴うリチウムイオンの挿入、脱離反応がスムーズに進行し、高率充放電特性が向上する、負極材料及びこれを用いた負極を提供することにある。
本発明の更に別の目的は、電池のエネルギー密度を高めることができる、リチウムイオン電池及びリチウムポリマー電池を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、図1に示すように、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素を含む無機質粒子11と、カーボン材料12とを含み、カーボン材料12がカーボンナノファイバ13を主成分とし、カーボンナノファイバ13が20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有する負極材料である。
請求項1に係る発明では、20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバ13が無機質粒子11,11間を繋ぐ役割をするため、高い導電性が得られる。またカーボンナノファイバ13が無機質粒子11に絡みつくように存在することで、充放電によるリチウムの吸蔵、脱離に伴う無機質粒子11の体積変化に起因する無機質粒子の脱落や、電極の剥離等を防止し、サイクル特性を向上する。また、カーボンナノファイバ13は従来より負極材料として用いられてきた炭素系材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、無機質粒子11はSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金又は化合物、前記単体とリチウムとの合金又は化合物、及びこれらの金属、リチウムを含む多元合金又は化合物で構成される負極材料である。
請求項3に係る発明は、請求項1又は2に係る発明であって、無機質粒子11の平均粒径が0.1〜50μmである負極材料である。
請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、無機質粒子11とカーボン材料12との混合割合が重量比(無機質粒子/カーボン材料)で95/5〜30/70である負極材料である。
【0010】
請求項5に係る発明は、請求項1に係る発明であって、図2に示すように、カーボンナノファイバ13が複数の平面状グラファイト網14を積層して形成され、このグラファイト網14がファイバ軸に対して実質的に垂直である構造を有する負極材料である。
この請求項5に係る発明では、グラファイト網14がファイバ軸に対して実質的に垂直である構造を有するカーボンナノファイバ13を用いることで、このファイバ自身も高いリチウム吸蔵、脱離能を有するため、負極材料全体のエネルギー密度が向上する。
【0011】
請求項6に係る発明は、請求項1に係る発明であって、図5に示すように、カーボンナノファイバ13が複数の筒状グラファイト網16を同心円状にかつ各軸がファイバ軸平行に配置して形成した負極材料である。
この請求項6に係る発明では、複数の筒状グラファイト網16を同心円状にかつ各軸がファイバ軸平行に配置して形成したカーボンナノファイバ13はファイバ軸方向に高い導電性が得られるため、このファイバを用いることでより高い導電性を発揮する。
【0012】
請求項7に係る発明は、請求項1ないし6いずれか1項に係る発明であって、図7に示すように、カーボンナノファイバ13に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体17を含み、カーボンナノファイバ13が80重量%〜99.5重量%、粒子状凝集体17が0.5重量%〜20重量%の割合である負極材料である。
請求項7に係る発明では、カーボン材料に粒子状凝集体17を含むことによって主成分であるカーボンナノファイバ13,13同士の接触が良好になり、高率充放電特性が更に向上する。
【0013】
請求項8に係る発明は、請求項1ないし7いずれか1項に係る発明であって、カーボンナノファイバ13又は、カーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物のX線回折において測定されるグラファイト網平面の積層間隔d002が0.3354nm〜0.339nmである負極材料である。
請求項9に係る発明は、請求項1ないし7いずれか1項に係る発明であって、カーボンナノファイバ13の露出部又は、カーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物の露出部の少なくとも85%がグラファイト網の端部である負極材料である。
請求項10に係る発明は、請求項1ないし9いずれか1項に係る発明であって、無機質粒子11がシリコンをベースとした材料であって、シリコン粒子、シリサイド化合物、シリコンオキサイド又はシリコンオキシカーバイドである負極材料である。
【0014】
請求項11に係る発明は、請求項1ないし10いずれか1項に記載の負極材料と、結着剤とを用いて形成された負極である。
この請求項11に記載された負極では、カーボンナノファイバ13が無機質粒子11の周りに絡みつくように存在することで、充放電によるLiの吸蔵、脱離に伴う無機質粒子11の体積変化に起因する脱落や剥離を防止するため、サイクル特性の低下を抑制できる。
【0015】
請求項12に係る発明は、請求項11記載の負極を用いて形成されたリチウムイオン電池である。
請求項13に係る発明は、請求項11記載の負極を用いて形成されたリチウムポリマー電池である。
この請求項12又は13に記載されたリチウムイオン電池又はリチウムポリマー電池では、20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバが無機質粒子間を繋ぐ役割をするため、高い導電性が得られる。またカーボンナノファイバが無機質粒子に絡みつくように存在することで、充放電によるLiの吸蔵、脱離に伴う無機質粒子の体積変化に起因する無機質粒子の脱落や、電極の剥離等を防止し、サイクル特性を向上する。また、カーボンナノファイバは従来より負極材料として用いられてきた炭素材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0016】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1に示すように、リチウムイオン電池又はリチウムポリマー電池の負極は、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素を含む無機質粒子11と、カーボン材料12を含み、このカーボン材料12がカーボンナノファイバ13を主成分とする負極材料が用いられる。このカーボンナノファイバ13は20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有するように構成される。平均直径が20nm〜300nm、長さが1000nm〜6000nm、アスペクト比が20〜200を有するように構成されることが好ましい。本発明の負極材料は、20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバ13が無機質粒子11,11間を繋ぐ役割をするため、高い導電性が得られる。またカーボンナノファイバ13が無機質粒子11に絡みつくように存在することで、充放電によるリチウムの吸蔵、脱離に伴う無機質粒子11の体積変化に起因する無機質粒子の脱落や、電極の剥離等を防止し、サイクル特性を向上する。また、カーボンナノファイバ13は従来より負極材料として用いられてきた炭素系材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0017】
無機質粒子11はSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金又は化合物、単体とリチウムとの合金又は化合物、及びこれらの金属、リチウムを含む多元合金又は化合物で構成される。好ましくは無機質粒子がシリコンをベースとした材料であって、シリコン粒子、シリサイド化合物、シリコンオキサイド又はシリコンオキシカーバイドである。具体的にはシリサイド化合物としては、FeSi、SbSi、MgSi、CaSi、NiSi、シリコンオキサイドとしてはSiO、シリコンオキシカーバイドとしてはSiOC等がそれぞれ挙げられる。無機質粒子11の平均粒径は0.1〜50μmである。
【0018】
無機質粒子11とカーボン材料12との混合割合は重量比(無機質粒子/カーボン材料)で95/5〜30/70である。重量比が30/70未満、即ちカーボン材料の含有割合が大きい場合、十分に電極の容量を得られない不具合を生じる。重量比が95/5を越える、即ちカーボン材料の含有割合が小さい場合、シリコンの体積変化を十分緩和できず、サイクル劣化が早い不具合を生じる。好ましい重量比(無機質粒子/カーボン材料)は90/10〜70/30である。より好ましい重量比(無機質粒子/カーボン材料)は10/1である。
【0019】
図2に示すように、本発明のカーボンナノファイバ13は複数の平面状グラファイト網14を積層して形成され、このグラファイト網14がファイバ軸に対して実質的に垂直である構造を有する。このような構造を有するカーボンナノファイバ13を用いることで、このファイバ自身も高いリチウム吸蔵、脱離能を有するため、負極材料全体のエネルギー密度が向上する。また図4に示すように、グラファイト網14のある端部14aの一辺が別のグラファイト網の端部の一辺と接合し、更に別の端部の一辺が更に別のグラファイト網の端部の一辺と接合して形成され、各辺から折り畳んだ構造を有するカーボンナノファイバ13を用いてもよい。
【0020】
このカーボンナノファイバ13を主成分としたカーボン材料は、平面状グラファイト網14が複数積層した形状を有するため、グラファイト網14のエッジ面が多く露出しており、リチウムイオンが吸蔵、脱離反応を起こす各グラファイト網が形成する層間が多数存在する。そのため、多くのリチウムイオンがグラファイト網層間に吸蔵、脱離することができるため高率放電が可能となる。また、グラファイト網14の平均直径を20nm〜500nmの範囲内とすることで充放電に伴うリチウムイオンの吸蔵、脱離反応がスムーズに進行する。グラファイト網の平均直径が10nm未満ではリチウムを吸蔵するグラファイト網が微小であるためにリチウム吸蔵量が低くなり、エネルギー密度が低下する不具合があり、500nmを越えるとグラファイト網が形成する層間にリチウムイオンが吸蔵されても拡散し難く、充放電反応がスムーズに進行しないからである。
【0021】
図3(a)に示すように、充電時にはリチウムイオンがグラファイト網層間に吸蔵する反応が起こる。吸蔵されたリチウムイオンはグラファイト網層間で拡散する(図3(b))。放電時にはグラファイト網層間に拡散したリチウムイオンがスムーズに脱離反応を起こす(図3(c))。このように、このカーボンナノファイバ13をカーボン材料12の主成分として用いることで充放電に伴うリチウムイオンの吸蔵、脱離反応がスムーズに進行するため、高率充放電特性が向上する。また、カーボンナノファイバ13は従来より用いられてきた炭素系材料に比べて、サイズの小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
【0022】
また、図5に示すように、本発明のカーボンナノファイバ13は複数の筒状グラファイト網16を同心円状にかつ各軸がファイバ軸平行に配置して形成したファイバを用いてもよい。このカーボンナノファイバ13を用いることで、図6に示すように、ファイバ軸方向に高い導電性が得られるため、このファイバを用いることで無機質粒子11,11間の導電性がより向上する。
また本発明のカーボン材料12は図7に示すように、カーボンナノファイバ13に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体17を含む。
粒子状凝集体17はその平均粒径が0.5μm〜10μmである。カーボン材料12に粒子状凝集体17を更に含むことによって主成分であるカーボンナノファイバ13,13同士の接触が良好になり、高率充放電特性が更に向上する。カーボン材料12中のカーボンナノファイバ13の含有量は80重量%〜99.5重量%、粒子状凝集体17の含有量は0.5重量%〜20重量%の割合である。好ましくはカーボンナノファイバ13が90重量%〜99重量%、粒子状凝集体17が1重量%〜10重量%の割合である。カーボンナノファイバ13の含有量を80重量%〜99.5重量%の範囲に限定したのは、80重量%未満ではグラファイトエッジ部の露出度が下がるために高率充放電特性が低下する不具合があり、99.5重量%を越えるとカーボンナノファイバ13,13同士の接触が十分得られず、やはり高率充放電特性が低下する不具合があるからである。
【0023】
カーボンナノファイバ13又は、カーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物をX線回折において測定したとき、得られるグラファイト網14,16平面の積層間隔d002は0.3354nm〜0.339nmの範囲内である。好ましい積層間隔d002は0.3558nm〜0.338nmである。
カーボンナノファイバ13の露出部又は、カーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物の露出部の少なくとも85%がグラファイト網の端部であることが好ましい。より好ましくは90%以上である。ここでグラファイト網の端部とは図2及び図4においては符号14aで表される箇所を示す。
【0024】
次に、カーボン材料の製造方法を説明する。
先ず、カーボン材料を製造するために必要な触媒を合成する。この触媒の平均粒径は10nm〜500nmの範囲内の微粉末がカーボン材料を製造する際に好適な大きさである。触媒としてはFe系微粉末、具体的には、Fe−Ni合金、Fe−Mn合金、Cu−Ni合金、Co−Ni合金、Co−Fe合金、Co金属、Fe金属やMgO金属酸化物等が挙げられる。触媒はカーボン材料を製造する前に前処理を施し、活性化させる。触媒をHe及びHを含む混合ガス雰囲気下で加熱することにより活性化される。
【0025】
図8に本発明のカーボン材料を製造する熱処理炉20を示す。この熱処理炉20は断熱性材質からなる装置本体21から構成され、装置本体21内部は所定の間隔をあけて2枚の仕切板26により水平に仕切られる。仕切板26,26により仕切られた装置本体21内部の頂部及び底部には発熱体22がそれぞれ設置される。熱処理炉内で熱処理に用いられる発熱体22の加熱源としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が挙げられる。仕切板26,26で仕切られた空間に原料ガスを供給するように装置本体21の一方の側部には、ガス供給口24が設けられる。原料ガスとしては、CO及びHを含む混合ガスが挙げられる。COの代わりにC、C等を用いてもよい。仕切板26,26により仕切られた空間27は、微粉末の触媒をばらまいたテーブル28が収容可能な大きさを有し、装置本体21の他方の側部には系外へ熱処理炉20内に供給した原料ガスを排出するガス排出口29が設けられる。空間27内に収容されるテーブル28は取出し台31の上に載置されて、熱処理炉内に収容、搬出可能に設けられる。
【0026】
テーブル28に微粉末の触媒32を載せた後、そのテーブル28を取出し台31の上に載せて熱処理炉20まで搬送し、装置本体21の空間27内に収納する。その後、原料ガスをガス供給口24から供給し、発熱体22,22により加熱する。原料ガスの供給量は0.2L/min〜10L/min、加熱温度は500℃〜700℃に設定される。原料ガスを供給しながら加熱し、1時間〜10時間保持しておくことにより、触媒32を介してカーボンナノファイバ13及び粒子状凝集体17をそれぞれ含む混合物33が成長する。得られたカーボンナノファイバ13及び粒子状凝集体17を含む混合物33には触媒32が含まれているので、熱処理炉20内よりテーブル28を搬出して得られた混合物33を取出し、この混合物33を硝酸、塩酸、フッ酸等の酸性溶液に浸漬させて、混合物33に含まれる触媒32を除去する。なお、触媒32を混合物33中に含ませたまま、カーボン材料12として利用してもよい。
【0027】
このようにして得られたカーボン材料を用いて負極を作製する。
先ず得られたカーボン材料を有機溶媒中に分散して分散溶液を調製する。次いで、ポリフッ化ビニリデン(PVdF)等の結着剤を溶媒中に溶解し、結着剤の溶液を調製する。次に、無機質粒子を用意し、分散溶液と結着剤溶液と無機質粒子とをそれぞれ所定の割合で混合することにより負極材料を調製する。次に負極材料を負極集電体箔の上面に、スクリーン印刷法やドクターブレード法等により塗布、乾燥して負極を作製する。なお、負極スラリーをガラス基板上に塗布し乾燥した後に、ガラス基板から剥離して負極フィルムを作製し、更にこの負極フィルムを負極集電体に重ねて所定の圧力でプレス成形することにより、負極を作製してもよい。
【0028】
図9に示すように、負極集電体37上に負極活物質層38を形成して得られた本発明の負極40と、非水電解液[例えば、エチレンカーボネート(EC)とジエチレンカーボネート(DEC)からなる混合溶媒(混合重量比1:1)と過塩素酸リチウムを1モル/リットル溶解させたもの]を含む電解質層39と、正極集電体34上に結着剤、正極材料及び導電助剤からなる正極スラリーをドクターブレード法によって塗布し乾燥することにより正極活物質層36が形成された正極35とを積層することにより、リチウムイオン電池が得られる。また本発明の負極と、ポリエチレンオキシドやポリフッ化ビニリデン等からなるポリマー電解質層と、正極集電体上に結着剤、正極材料及び導電助剤からなる正極スラリーをドクターブレード法によって塗布し乾燥することにより形成された正極とを積層することにより、リチウムポリマー電池が得られる。このように製造されたリチウムイオン電池やリチウムポリマー電池では、グラファイト網が複数積層されて形成されたカーボンナノファイバによってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。また、従来より用いられてきた炭素材料に比べて、サイズの小さいカーボンナノファイバを用いているため、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
【0029】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
(1) カーボン材料の製造
先ず、平均粒径0.1μmのFe−Ni合金を触媒とし、この触媒をHe及びHを含む混合ガス雰囲気下で加熱して活性化させた。次いで活性化させた触媒をテーブル上に載せ、テーブルを熱処理炉内に収容した。次に、熱処理炉内を550℃〜630℃の温度に加熱し、COとHを含む混合ガスを原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内に供給しながら約10時間保持して複数の平面状グラファイト網を積層して形成され、グラファイト網がファイバ軸に対して実質的に垂直である構造を有するカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒を除去してカーボン材料とした。このカーボン材料をX線回折により測定したところ、カーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物のグラファイト網平面の積層間隔d002は0.3362nmであった。
【0030】
(2) 負極(作用極)の作製
上記カーボン材料をn−メチルピロリドン中に分散して分散溶液を作製した。次いで結着剤としてPVdFを用意し、この結着剤を溶媒中に溶解し、結着剤の溶液を調製した。無機質粒子として平均粒径0.5μm〜5μmのSi粒子を用意した。分散溶液と無機質粒子と結着剤溶液をカーボン材料の割合が10重量%、無機質粒子の割合が75重量%、結着剤の割合が15重量%の割合になるように混合し、ロールミル等の混合器で混合して負極材料とした。負極材料から溶媒を添加或いは除去して粘度を調製し、縦×横×厚さがそれぞれ1cm×1cm×0.1cmの正方形金属網状の負極集電体の両面にコーダーにより塗布、乾燥して負極(作用極)を作製した。負極集電体にはメッシュ状に形成された銅箔を用いた。
【0031】
<実施例2>
グラファイト網平面の積層間隔d002が0.3375nmのカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物をカーボン材料として用いた以外は実施例1と同様にして負極(作用極)を作製した。
<実施例3>
グラファイト網平面の積層間隔d002が0.3385nmのカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物をカーボン材料として用いた以外は実施例1と同様にして負極(作用極)を作製した。
【0032】
<実施例4>
カーボン材料の割合を20重量%、無機質粒子の割合を60重量%、結着剤の割合を20重量%とした以外は実施例1と同様にして負極(作用極)を作製した。
<実施例5>
グラファイト網平面の積層間隔d002が0.3375nmのカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物をカーボン材料として用いた以外は実施例4と同様にして負極(作用極)を作製した。
<実施例6>
グラファイト網平面の積層間隔d002が0.3385nmのカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物をカーボン材料として用いた以外は実施例4と同様にして負極(作用極)を作製した。
【0033】
<実施例7>
複数の筒状グラファイト網を同心円状にかつ各軸がファイバ軸平行に配置して形成したカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を合成した。このカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物のX線回折において測定されるグラファイト網平面の積層間隔d002は0.3365nmであった。このカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物をカーボン材料として用いた以外は実施例1と同様にして負極(作用極)を作製した。
【0034】
<実施例8>
グラファイト網平面の積層間隔d002が0.3379nmのカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を負極材料として用いた以外は実施例7と同様にして負極(作用極)を作製した。
<実施例9>
グラファイト網平面の積層間隔d002が0.3388nmのカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を負極材料として用いた以外は実施例7と同様にして負極(作用極)を作製した。
【0035】
<実施例10>
カーボン材料の割合を20重量%、無機質粒子の割合を60重量%、結着剤の割合を20重量%とした以外は実施例7と同様にして負極(作用極)を作製した。
<実施例11>
グラファイト網平面の積層間隔d002が0.3379nmのカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を負極材料として用いた以外は実施例10と同様にして負極(作用極)を作製した。
<実施例12>
グラファイト網平面の積層間隔d002が0.3388nmのカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を負極材料として用いた以外は実施例10と同様にして負極(作用極)を作製した。
【0036】
<比較例1>
アセチレンブラックをカーボン材料として用いた以外は実施例1と同様にして負極(作用極)を作製した。
<比較例2>
アセチレンブラックをカーボン材料として用いた以外は実施例4と同様にして負極(作用極)を作製した。
【0037】
<比較試験及び評価>
図10に示すように、実施例1〜12、比較例1及び2でそれぞれ作製した負極41(作用極)を充放電サイクル試験装置51に取付けた。この装置51は、容器52に電解液53(支持塩を有機溶媒に溶かしたもの)が貯留され、上記負極41が正極42及び参照極43とともに電解液53に浸され、更に負極41(作用極)、正極42(対極)及び参照極43がポテンシオスタット54(ポテンショメータ)にそれぞれ電気的に接続された構成となっている。支持塩であるリチウム塩には1MのLiPFを、有機溶媒にはエチレンカーボネート及びジエチルカーボネートをそれぞれ含む溶液を用いた。正極及び参照極には金属リチウムを用いた。この装置を用いて充放電サイクル試験を行い、各負極(作用極)の低率及び高率放電容量を測定した。なお、低率放電容量は50mA/gにて、高率放電容量は200mA/gにてそれぞれ測定を行い、測定電圧範囲を0V〜3.0Vとした。なお、容量は放電容量/(カーボン材料重量+無機質粒子材料重量)より算出した。実施例1〜12、比較例1及び2の電極の測定結果を表1にそれぞれ示す。なお、表1中のCNF(P)とは複数の平面状グラファイト網を積層して形成され、グラファイト網がファイバ軸に対して実質的に垂直である構造を有するカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を、CNF(T)とは複数の筒状グラファイト網を同心円状にかつ各軸がファイバ軸平行に配置して形成したカーボンナノファイバ及び粒子状凝集体をそれぞれ含む混合物を表す。
【0038】
【表1】

Figure 2004220910
【0039】
表1より明らかなように、無機質粒子とともに従来より使用されている炭素系材料であるアセチレンブラックをカーボン材料に用いた比較例1及び2では、10サイクル目における容量維持率が大きく低下しており、サイクル特性に劣る結果が得られた。また高率放電における容量維持率についても低下が著しい結果となった。これに対して本発明の無機質粒子とともにカーボンナノファイバを用いた実施例1〜12では10サイクル目における容量維持率、高率放電時容量維持率ともにそれぞれ非常に高い結果を示しており、サイクル特性、高導電性に優れることが判る。
実施例中でそれぞれを比較すると、無機質粒子の含有割合が高い実施例1〜3、実施例7〜9の方が含有割合の低い実施例4〜6、実施例10〜12に比べて1サイクル目の容量が高い結果が得られた。またCNF(P)を用いた実施例1〜6の方が、CNF(T)を用いた実施例7〜12よりも1サイクル目の容量が高く、CNF(P)がリチウムの吸蔵、脱離に大きく関与していることが判る。逆にCNF(T)を用いた実施例7〜12の方が、CNF(P)を用いた実施例1〜6よりも10サイクル目の容量維持率、高率放電時容量維持率ともに、高い数値となり、CNF(T)が高導電性に大きく寄与していることが判る。
【0040】
【発明の効果】
以上述べたように、本発明の負極材料は、Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素を含む無機質粒子と、カーボン材料とを含み、カーボン材料がカーボンナノファイバを主成分とし、カーボンナノファイバ13が20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有する。
このような形状を有するカーボンナノファイバをカーボン材料の主成分とすることにより、カーボンナノファイバが無機質粒子間を繋ぐ役割をするため、高い導電性が得られる。またカーボンナノファイバが無機質粒子に絡みつくように存在することで、充放電によるリチウムの吸蔵、脱離に伴う無機質粒子の体積変化に起因する無機質粒子の脱落や、電極の剥離等を防止し、サイクル特性を向上する。また、カーボンナノファイバは従来より負極材料として用いられてきた炭素材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【図面の簡単な説明】
【図1】本発明の無機質粒子とカーボン材料を負極活物質中に添加したときの無機質粒子の体積膨張を示す断面構成図。
【図2】本発明のカーボン材料の主成分であるグラファイト網がファイバ軸に対して実質的に垂直である構造を有するカーボンナノファイバの模式図。
【図3】グラファイト網層間にリチウムイオンが挿入、脱離する反応を示す模式図。
【図4】図2に対応する別の構造を有するカーボンナノファイバの模式図。
【図5】本発明のカーボン材料の主成分である複数の筒状グラファイト網を同心円状にかつ各軸がファイバ軸平行に配置して形成したカーボンナノファイバの模式図。
【図6】図5のカーボンナノファイバの導電方向を示す図。
【図7】図2のカーボンナノファイバと粒子状凝集体を示す模式図。
【図8】本発明のカーボンナノファイバを作製する熱処理炉の断面構成図。
【図9】本発明のリチウムイオン電池の電極体を示す部分断面構成図。
【図10】実施例及び比較例のリチウム二次電池用負極活物質の充放電サイクル試験に用いられる装置。
【図11】従来の無機質粒子のみを負極活物質中に添加したときの無機質粒子の体積膨張を示す断面構成図。
【図12】従来の無機質粒子と炭素系材料を負極活物質中に添加したときの無機質粒子の体積膨張を示す断面構成図。
【符号の説明】
11 無機質粒子
12 カーボン材料
13 カーボンナノファイバ
14 平面状グラファイト網
16 筒状グラファイト網
17 粒子状凝集体[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material capable of improving cycle characteristics and high-rate charge / discharge characteristics and increasing the energy density of a battery, a negative electrode using the same, and a lithium ion battery and a lithium polymer battery using the negative electrode.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the development of portable electronic devices such as mobile phones and notebook computers and the practical use of electric vehicles, secondary batteries of small size, light weight and high capacity have been required. At present, as a high capacity secondary battery that meets this demand, LiCoO 2 Lithium-ion batteries using a lithium-containing composite oxide such as described above and a carbon-based material as a negative electrode active material have been commercialized. When this carbon-based material is used for the negative electrode, the theoretical capacity is 372 mAh / g, which is only about 1/10 that of metallic lithium, and the theoretical density is 2.2 g / cc, which is low. , The density further decreases. Therefore, it is desired to use a material having a higher capacity per unit volume as the negative electrode from the viewpoint of increasing the capacity of the battery.
It is known that metals or metalloids such as Al, Ge, Si, Sn, Zn, and Pb are alloyed with lithium, and a secondary battery using these metals or metalloids as a negative electrode active material has been studied. ing. This material has a high capacity and a high energy density, and can absorb and desorb more lithium ions than a negative electrode using a carbon-based material. It is believed that can be produced. However, they have not yet been put to practical use because they have inferior cycle characteristics as compared with carbon-based materials.
[0003]
As a technique for solving such a problem, a negative electrode has a hexagonal close-packed structure composed of two kinds of elements, 2 A non-aqueous electrolyte secondary battery including an alloy having an In-type structure has been disclosed (for example, see Patent Document 1). In this secondary battery, the use of an alloy having the above crystal structure as a negative electrode material controls the excessive occlusion of lithium ions, so that the stress of expansion and contraction due to occlusion and desorption of lithium, which is the main cause of cycle deterioration, is obtained. Can be suppressed. Therefore, high capacity and excellent charge / discharge cycle characteristics can be obtained.
Also disclosed is a secondary battery using an intermetallic compound of at least one element selected from the group consisting of Al, Ge, Pb, Si, Sn, and Zn, and a metal or metalloid other than the above group of elements. (For example, see Patent Document 2). The presence of another element that is difficult to alloy with lithium around the element that alloys with lithium suppresses microcrystallization and pulverization, so that excellent cycle characteristics can be obtained.
[0004]
[Patent Document 1]
JP 2001-250541 A
[Patent Document 2]
JP-A-10-223221
[0005]
[Problems to be solved by the invention]
However, when inorganic particles such as silicon and tin are directly used as a negative electrode material as a lithium absorbing and desorbing substance, there are the following problems. When the inorganic particles contained in the negative electrode active material occlude lithium by charging, the volume of the particles expands greatly (FIGS. 11A and 11B). When lithium is desorbed by discharging, the inorganic particles 1 shrink. When this cycle is repeated, the negative electrode active material 2 cannot cope with a large change in volume of the inorganic particles, and pores 3 are generated between the inorganic particles 1 and the negative electrode active material 2 as shown in FIG. This causes problems such as deterioration of conductivity, separation of the negative electrode active material 2 from the negative electrode current collector 4 and deterioration of cycle characteristics. In addition, the code | symbol 6 shown by the short broken line in the figure shows the magnitude | size at the time of volume expansion of an inorganic particle.
In the secondary batteries shown in Patent Documents 1 and 2, respectively, a phenomenon similar to the above-described problem has occurred, and stress caused by expansion and contraction of inorganic particles due to insertion and desorption of lithium due to charge and discharge. Is not sufficiently buffered, and a practical cycle life is not obtained.
[0006]
In the case of a negative electrode material in which a carbon-based material such as Ketjen black, which has been conventionally used, is mixed together with the inorganic particles, the carbon-based material 7 adheres around the inorganic particles 1 as shown in FIG. Exists in form. When the inorganic particles contained in the active material occlude lithium by charging, the volume thereof expands significantly (FIG. 12B). Since the surface area of the inorganic particles 1 increases due to the volume expansion of the inorganic particles 1, the carbon-based material 7 moves its position so as to spread the enlarged surface. When lithium is desorbed by the discharge, the inorganic particles 1 shrink (FIG. 12C). When the inorganic particles shrink, the surface area also returns to its original state, so that the carbon-based material 7 having widened the surface area also attempts to return its position to its original position. When this cycle is repeated, the inorganic particles 1 are pressed from the carbon-based material 7 existing around them, and cracks 8 are generated, and the cycle characteristics may be degraded.
[0007]
An object of the present invention is to provide a negative electrode material and a negative electrode using the same, which can control the stress caused by the insertion and desorption reactions of lithium ions during charge and discharge and can improve cycle characteristics.
It is another object of the present invention to provide a negative electrode material and a negative electrode using the same, in which lithium ion insertion and desorption reactions accompanying charge and discharge smoothly proceed and high-rate charge and discharge characteristics are improved.
Still another object of the present invention is to provide a lithium ion battery and a lithium polymer battery that can increase the energy density of the battery.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 comprises Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co and Mn, as shown in FIG. An inorganic particle 11 containing at least one element selected from the group, and a carbon material 12, wherein the carbon material 12 has a carbon nanofiber 13 as a main component, and the carbon nanofiber 13 has an average diameter of 20 nm to 500 nm; A negative electrode material having a length of 1000 nm or more and an aspect ratio of 10 or more.
In the invention according to claim 1, the carbon nanofibers 13 having an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more play a role of connecting the inorganic particles 11, and therefore have high conductivity. Is obtained. In addition, since the carbon nanofibers 13 are entangled with the inorganic particles 11, the inorganic particles 11 can be prevented from falling off due to a change in volume of the inorganic particles 11 due to occlusion and desorption of lithium due to charge and discharge, and separation of electrodes. And improve the cycle characteristics. In addition, since the carbon nanofiber 13 is a material having a smaller average diameter than a carbon-based material conventionally used as a negative electrode material, when a battery electrode is manufactured, high-density charging becomes possible. Energy density.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the inorganic particles 11 include Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, At least one element selected from the group consisting of Ni, Co and Mn includes a simple substance, an alloy or a compound with an oxide or another metal, an alloy or a compound of the simple substance with lithium, and these metals and lithium. A negative electrode material composed of a multi-element alloy or compound.
A third aspect of the present invention is the negative electrode material according to the first or second aspect, wherein the average particle diameter of the inorganic particles 11 is 0.1 to 50 μm.
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the mixing ratio of the inorganic particles 11 and the carbon material 12 is 95/5 to 5% by weight (inorganic particles / carbon material). It is a 30/70 negative electrode material.
[0010]
The invention according to claim 5 is the invention according to claim 1, wherein the carbon nanofibers 13 are formed by laminating a plurality of planar graphite nets 14, as shown in FIG. A negative electrode material having a structure that is substantially perpendicular to the axis.
In the invention according to claim 5, since the carbon nanofiber 13 having a structure in which the graphite net 14 is substantially perpendicular to the fiber axis is used, the fiber itself has high lithium occlusion and desorption ability. As a result, the energy density of the entire negative electrode material is improved.
[0011]
The invention according to claim 6 is the invention according to claim 1, wherein, as shown in FIG. 5, the carbon nanofibers 13 are formed by concentrically arranging a plurality of tubular graphite nets 16 and each axis is parallel to the fiber axis. This is a negative electrode material formed by the above method.
In the invention according to claim 6, since the carbon nanofiber 13 formed by arranging a plurality of cylindrical graphite nets 16 concentrically and each axis being parallel to the fiber axis has high conductivity in the fiber axis direction, By using this fiber, higher conductivity is exhibited.
[0012]
The invention according to claim 7 is the invention according to any one of claims 1 to 6, wherein, as shown in FIG. 7, in addition to the carbon nanofibers 13, a particle comprising a carbon fine powder having a graphite structure is further provided. This is a negative electrode material including the aggregates 17, wherein the carbon nanofibers 13 are in a ratio of 80 wt% to 99.5 wt%, and the particulate aggregates 17 are in a ratio of 0.5 wt% to 20 wt%.
In the invention according to claim 7, by including the particulate aggregates 17 in the carbon material, the contact between the carbon nanofibers 13 as the main components is improved, and the high-rate charge / discharge characteristics are further improved.
[0013]
The invention according to claim 8 is the invention according to any one of claims 1 to 7, wherein the carbon nanofiber 13 or the mixture containing the carbon nanofiber 13 and the particulate aggregate 17 is measured by X-ray diffraction. Stacking distance d of graphite net plane 002 Is a negative electrode material having a thickness of 0.3354 nm to 0.339 nm.
The invention according to claim 9 is the invention according to any one of claims 1 to 7, wherein the exposed portion of the carbon nanofiber 13 or the exposed portion of the mixture containing the carbon nanofiber 13 and the particulate aggregate 17 respectively. Is a negative electrode material at least 85% of which is the end of the graphite net.
A tenth aspect of the present invention is the invention according to any one of the first to ninth aspects, wherein the inorganic particles 11 are a silicon-based material, and the silicon particles, a silicide compound, a silicon oxide, or a silicon oxycarbide. The negative electrode material is as follows.
[0014]
The invention according to claim 11 is a negative electrode formed by using the negative electrode material according to any one of claims 1 to 10 and a binder.
In the negative electrode according to the eleventh aspect, since the carbon nanofibers 13 are present so as to be entangled around the inorganic particles 11, the carbon nanofibers 13 are caused by a change in volume of the inorganic particles 11 due to occlusion and desorption of Li due to charge and discharge. In order to prevent falling off or peeling, it is possible to suppress a decrease in cycle characteristics.
[0015]
The invention according to claim 12 is a lithium ion battery formed using the negative electrode according to claim 11.
The invention according to claim 13 is a lithium polymer battery formed using the negative electrode according to claim 11.
In the lithium ion battery or lithium polymer battery according to claim 12 or 13, the carbon nanofiber having an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more connects inorganic particles. Therefore, high conductivity is obtained. In addition, the presence of carbon nanofibers entangled with the inorganic particles prevents the dropping of the inorganic particles due to the volume change of the inorganic particles due to the occlusion and desorption of Li due to charge and discharge, the separation of the electrodes, etc. Improve characteristics. In addition, since carbon nanofibers have a smaller average diameter than carbon materials that have been used as a negative electrode material in the past, when a battery electrode is manufactured, high-density charging is possible and battery energy is reduced. It leads to density improvement.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the negative electrode of a lithium ion battery or a lithium polymer battery includes Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co and The negative electrode material includes inorganic particles 11 containing at least one element selected from the group consisting of Mn, and a carbon material 12, and the carbon material 12 is mainly composed of carbon nanofibers 13. The carbon nanofiber 13 is configured to have an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more. It is preferable that the average diameter is 20 nm to 300 nm, the length is 1000 nm to 6000 nm, and the aspect ratio is 20 to 200. In the negative electrode material of the present invention, the carbon nanofibers 13 having an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more serve to connect the inorganic particles 11 with each other. can get. In addition, since the carbon nanofibers 13 are entangled with the inorganic particles 11, the inorganic particles 11 can be prevented from falling off due to a change in volume of the inorganic particles 11 due to occlusion and desorption of lithium due to charge and discharge, and separation of electrodes. And improve the cycle characteristics. In addition, since the carbon nanofiber 13 is a material having a smaller average diameter than a carbon-based material conventionally used as a negative electrode material, when a battery electrode is manufactured, high-density charging becomes possible. Energy density.
[0017]
The inorganic particles 11 include at least one element selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co, and Mn. It is composed of a simple substance, an alloy or a compound with an oxide or another metal, an alloy or a compound with a simple substance and lithium, and a multi-element alloy or a compound containing these metals and lithium. Preferably, the inorganic particles are silicon-based materials, such as silicon particles, silicide compounds, silicon oxide or silicon oxycarbide. Specifically, examples of the silicide compound include FeSi, SbSi, MgSi, CaSi, NiSi, SiO as silicon oxide, and SiOC as silicon oxycarbide. The average particle size of the inorganic particles 11 is 0.1 to 50 μm.
[0018]
The mixing ratio of the inorganic particles 11 and the carbon material 12 is 95/5 to 30/70 in weight ratio (inorganic particles / carbon material). When the weight ratio is less than 30/70, that is, when the content ratio of the carbon material is large, there occurs a problem that the capacity of the electrode cannot be sufficiently obtained. When the weight ratio exceeds 95/5, that is, when the content ratio of the carbon material is small, the change in volume of silicon cannot be sufficiently reduced, and a problem that cycle deterioration is early occurs. The preferred weight ratio (inorganic particles / carbon material) is 90/10 to 70/30. A more preferred weight ratio (inorganic particles / carbon material) is 10/1.
[0019]
As shown in FIG. 2, the carbon nanofiber 13 of the present invention is formed by laminating a plurality of planar graphite nets 14, and the graphite net 14 has a structure substantially perpendicular to the fiber axis. By using the carbon nanofiber 13 having such a structure, the fiber itself has a high lithium occlusion and desorption ability, so that the energy density of the entire negative electrode material is improved. Further, as shown in FIG. 4, one side of one end 14a of the graphite net 14 is joined to one side of the end of another graphite net, and one side of another end is one side of the end of another graphite net. The carbon nanofiber 13 formed by bonding with each other and having a structure folded from each side may be used.
[0020]
Since the carbon material mainly composed of the carbon nanofibers 13 has a shape in which a plurality of planar graphite nets 14 are stacked, many edge surfaces of the graphite net 14 are exposed, and lithium ions occlude and occlude reactions. There are a number of layers formed by each graphite network to be raised. Therefore, many lithium ions can be occluded and desorbed between the graphite network layers, so that high-rate discharge is possible. Further, by setting the average diameter of the graphite net 14 in the range of 20 nm to 500 nm, the occlusion and desorption reactions of lithium ions accompanying charge and discharge proceed smoothly. If the average diameter of the graphite network is less than 10 nm, the graphite network for storing lithium is small, so that the amount of lithium occlusion becomes low and the energy density is reduced. If the average diameter exceeds 500 nm, lithium ions are formed between the layers formed by the graphite network. Is difficult to diffuse even if occluded, and the charge / discharge reaction does not proceed smoothly.
[0021]
As shown in FIG. 3A, a reaction occurs in which lithium ions occlude between the graphite network layers during charging. The occluded lithium ions diffuse between the graphite network layers (FIG. 3B). At the time of discharge, lithium ions diffused between the graphite network layers cause a smooth elimination reaction (FIG. 3C). As described above, by using the carbon nanofibers 13 as a main component of the carbon material 12, the occlusion and desorption reactions of lithium ions accompanying charging and discharging progress smoothly, so that high-rate charging and discharging characteristics are improved. In addition, since the carbon nanofiber 13 is a material having a smaller size than conventionally used carbon-based materials, it is possible to charge the battery at a high density when the battery electrode is manufactured, thereby improving the energy density of the battery. Leads to.
[0022]
As shown in FIG. 5, the carbon nanofiber 13 of the present invention may be a fiber formed by arranging a plurality of cylindrical graphite nets 16 concentrically and each axis being parallel to the fiber axis. As shown in FIG. 6, high conductivity is obtained in the fiber axial direction by using the carbon nanofibers 13, and thus the conductivity between the inorganic particles 11 is further improved by using this fiber.
Further, as shown in FIG. 7, the carbon material 12 of the present invention further includes, in addition to the carbon nanofibers 13, a particulate aggregate 17 made of carbon fine powder having a graphite structure.
The average particle diameter of the particulate aggregate 17 is 0.5 μm to 10 μm. By further including the particulate aggregates 17 in the carbon material 12, the contact between the carbon nanofibers 13, 13 as the main components is improved, and the high-rate charge / discharge characteristics are further improved. The content of the carbon nanofibers 13 in the carbon material 12 is 80% by weight to 99.5% by weight, and the content of the particulate aggregates 17 is 0.5% by weight to 20% by weight. Preferably, the ratio of the carbon nanofibers 13 is 90% by weight to 99% by weight, and the ratio of the particulate aggregate 17 is 1% by weight to 10% by weight. The reason why the content of the carbon nanofibers 13 is limited to the range of 80% by weight to 99.5% by weight is that if the content is less than 80% by weight, the degree of exposure of the graphite edge portion is reduced, so that the high-rate charge / discharge characteristics deteriorate. If the content exceeds 99.5% by weight, sufficient contact between the carbon nanofibers 13 cannot be obtained, and the high-rate charge / discharge characteristics also deteriorate.
[0023]
When the carbon nanofiber 13 or the mixture containing each of the carbon nanofiber 13 and the particulate aggregate 17 is measured by X-ray diffraction, the stacking distance d of the obtained graphite nets 14 and 16 is obtained. 002 Is in the range of 0.3354 nm to 0.339 nm. Preferred stacking distance d 002 Is from 0.3558 nm to 0.338 nm.
It is preferable that at least 85% of the exposed portions of the carbon nanofibers 13 or the exposed portions of the mixture containing the carbon nanofibers 13 and the particulate aggregates 17 are the ends of the graphite network. It is more preferably at least 90%. Here, the end portion of the graphite net indicates a portion denoted by reference numeral 14a in FIGS.
[0024]
Next, a method for manufacturing a carbon material will be described.
First, a catalyst necessary for producing a carbon material is synthesized. The average particle size of the catalyst is in the range of 10 nm to 500 nm, and the fine powder is suitable for producing a carbon material. As the catalyst, Fe-based fine powder, specifically, Fe-Ni alloy, Fe-Mn alloy, Cu-Ni alloy, Co-Ni alloy, Co-Fe alloy, Co metal, Fe metal, MgO metal oxide, etc. No. The catalyst is pre-treated and activated before producing the carbon material. The catalyst is He and H 2 Activated by heating in a mixed gas atmosphere containing
[0025]
FIG. 8 shows a heat treatment furnace 20 for producing the carbon material of the present invention. The heat treatment furnace 20 includes an apparatus main body 21 made of a heat insulating material, and the inside of the apparatus main body 21 is horizontally partitioned by two partition plates 26 at a predetermined interval. Heating elements 22 are installed at the top and bottom inside the apparatus main body 21 separated by the partition plates 26, 26, respectively. Examples of the heat source of the heating element 22 used for the heat treatment in the heat treatment furnace include an incandescent lamp, a halogen lamp, an arc lamp, and a graphite heater. A gas supply port 24 is provided on one side of the apparatus main body 21 so as to supply the raw material gas to the space partitioned by the partition plates 26, 26. CO and H are used as source gases. 2 And a mixed gas containing: C instead of CO 2 H 2 , C 6 H 6 Etc. may be used. The space 27 divided by the partition plates 26, 26 has a size capable of accommodating the table 28 in which the fine powder catalyst is dispersed, and the other side of the apparatus main body 21 is out of the system and into the heat treatment furnace 20. A gas outlet 29 for discharging the supplied source gas is provided. The table 28 accommodated in the space 27 is placed on the take-out table 31 and is provided so as to be accommodated in and out of the heat treatment furnace.
[0026]
After placing the fine powder catalyst 32 on the table 28, the table 28 is placed on the take-out table 31, transported to the heat treatment furnace 20, and stored in the space 27 of the apparatus main body 21. After that, the raw material gas is supplied from the gas supply port 24 and heated by the heating elements 22 and 22. The supply rate of the raw material gas is set to 0.2 L / min to 10 L / min, and the heating temperature is set to 500 ° C. to 700 ° C. The mixture 33 containing the carbon nanofibers 13 and the particulate aggregates 17 is grown via the catalyst 32 by heating while supplying the raw material gas and holding the mixture for 1 hour to 10 hours. Since the obtained mixture 33 containing the carbon nanofibers 13 and the particulate aggregates 17 contains the catalyst 32, the obtained mixture 33 is taken out of the table 28 from the heat treatment furnace 20, and the obtained mixture 33 is taken out. Is immersed in an acidic solution such as nitric acid, hydrochloric acid, or hydrofluoric acid to remove the catalyst 32 contained in the mixture 33. The catalyst 32 may be used as the carbon material 12 while being contained in the mixture 33.
[0027]
A negative electrode is manufactured using the carbon material thus obtained.
First, the obtained carbon material is dispersed in an organic solvent to prepare a dispersion solution. Next, a binder such as polyvinylidene fluoride (PVdF) is dissolved in a solvent to prepare a solution of the binder. Next, a negative electrode material is prepared by preparing inorganic particles and mixing the dispersion solution, the binder solution, and the inorganic particles at a predetermined ratio. Next, a negative electrode material is applied on the upper surface of the negative electrode current collector foil by a screen printing method, a doctor blade method, or the like, and dried to produce a negative electrode. The negative electrode slurry was applied on a glass substrate, dried, and then separated from the glass substrate to produce a negative electrode film. The negative electrode film was further laminated on the negative electrode current collector and press-molded at a predetermined pressure to form the negative electrode film. May be produced.
[0028]
As shown in FIG. 9, a negative electrode 40 of the present invention obtained by forming a negative electrode active material layer 38 on a negative electrode current collector 37 and a non-aqueous electrolyte [for example, ethylene carbonate (EC) and diethylene carbonate (DEC)] ) And a mixture of 1 mol / l of lithium perchlorate dissolved therein] and a binder, a cathode material, and a conductive material on the cathode current collector 34. A positive electrode slurry comprising an auxiliary agent is applied by a doctor blade method and dried to laminate the positive electrode 35 on which the positive electrode active material layer 36 is formed, whereby a lithium ion battery is obtained. Further, the negative electrode of the present invention, a polymer electrolyte layer made of polyethylene oxide or polyvinylidene fluoride, and the like, and a positive electrode slurry made of a binder, a positive electrode material, and a conductive additive are applied on a positive electrode current collector by a doctor blade method and dried. By laminating the positive electrode thus formed, a lithium polymer battery is obtained. In the lithium ion battery or lithium polymer battery manufactured in this way, the carbon nanofibers formed by laminating a plurality of graphite nets smoothly absorb and release lithium ions, thereby improving high-rate charge / discharge characteristics. . In addition, since carbon nanofibers having a smaller size than conventionally used carbon materials are used, high-density charging becomes possible, which leads to an improvement in the energy density of the battery.
[0029]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
(1) Production of carbon materials
First, an Fe—Ni alloy having an average particle size of 0.1 μm was used as a catalyst, and this catalyst was used as He and H 2 And activated in a mixed gas atmosphere containing. Next, the activated catalyst was placed on a table, and the table was housed in a heat treatment furnace. Next, the inside of the heat treatment furnace is heated to a temperature of 550 ° C. to 630 ° C., and CO and H 2 The raw material gas is formed as a raw material gas by laminating a plurality of planar graphite nets while holding the raw material gas at a flow rate of 10 L / min into the heat treatment furnace for about 10 hours while holding the graphite net with respect to the fiber axis. And a mixture containing carbon nanofibers and particulate aggregates each having a substantially vertical structure. The obtained mixture was immersed in a nitric acid solution to remove the catalyst contained in the mixture to obtain a carbon material. When this carbon material was measured by X-ray diffraction, the stacking distance d of the graphite network plane of the mixture containing each of the carbon nanofibers and the particulate aggregates was measured. 002 Was 0.3362 nm.
[0030]
(2) Preparation of negative electrode (working electrode)
The carbon material was dispersed in n-methylpyrrolidone to prepare a dispersion solution. Next, PVdF was prepared as a binder, and the binder was dissolved in a solvent to prepare a solution of the binder. Si particles having an average particle size of 0.5 μm to 5 μm were prepared as inorganic particles. The dispersion solution, the inorganic particles, and the binder solution are mixed such that the ratio of the carbon material is 10% by weight, the ratio of the inorganic particles is 75% by weight, and the ratio of the binder is 15% by weight. The mixture was mixed in a mixer to obtain a negative electrode material. A solvent is added to or removed from the negative electrode material to adjust the viscosity, and applied to both sides of a square metal net-shaped negative electrode current collector having a length, width, and thickness of 1 cm x 1 cm x 0.1 cm by a coder and dried. (Working electrode) was produced. A copper foil formed in a mesh shape was used as the negative electrode current collector.
[0031]
<Example 2>
Lamination interval d of graphite net plane 002 A negative electrode (working electrode) was produced in the same manner as in Example 1 except that a mixture containing 0.3375 nm of carbon nanofibers and particulate aggregates was used as the carbon material.
<Example 3>
Lamination interval d of graphite net plane 002 A negative electrode (working electrode) was produced in the same manner as in Example 1 except that a mixture containing 0.3385 nm carbon nanofibers and particulate aggregates was used as the carbon material.
[0032]
<Example 4>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that the ratio of the carbon material was 20% by weight, the ratio of the inorganic particles was 60% by weight, and the ratio of the binder was 20% by weight.
<Example 5>
Lamination interval d of graphite net plane 002 A negative electrode (working electrode) was produced in the same manner as in Example 4, except that a mixture containing 0.3375 nm of carbon nanofibers and particulate aggregates was used as the carbon material.
<Example 6>
Lamination interval d of graphite net plane 002 A negative electrode (working electrode) was produced in the same manner as in Example 4, except that a mixture containing 0.3385 nm carbon nanofibers and particulate aggregates was used as the carbon material.
[0033]
<Example 7>
A mixture containing carbon nanofibers and particulate aggregates formed by arranging a plurality of cylindrical graphite networks concentrically and each axis parallel to the fiber axis was synthesized. Stacking distance d of graphite network plane measured by X-ray diffraction of a mixture containing each of the carbon nanofibers and the particulate aggregates 002 Was 0.3365 nm. A negative electrode (working electrode) was produced in the same manner as in Example 1, except that a mixture containing each of the carbon nanofibers and the particulate aggregates was used as a carbon material.
[0034]
Example 8
Lamination interval d of graphite net plane 002 A negative electrode (working electrode) was produced in the same manner as in Example 7 except that a mixture containing 0.3379 nm of carbon nanofibers and particulate aggregates was used as the negative electrode material.
<Example 9>
Lamination interval d of graphite net plane 002 A negative electrode (working electrode) was produced in the same manner as in Example 7, except that a mixture containing 0.3388 nm of carbon nanofibers and particulate aggregates was used as the negative electrode material.
[0035]
<Example 10>
A negative electrode (working electrode) was produced in the same manner as in Example 7 except that the ratio of the carbon material was 20% by weight, the ratio of the inorganic particles was 60% by weight, and the ratio of the binder was 20% by weight.
<Example 11>
Lamination interval d of graphite net plane 002 A negative electrode (working electrode) was produced in the same manner as in Example 10, except that a mixture containing 0.3379 nm carbon nanofibers and particulate aggregates was used as the negative electrode material.
<Example 12>
Lamination interval d of graphite net plane 002 A negative electrode (working electrode) was prepared in the same manner as in Example 10, except that a mixture containing 0.3388 nm of carbon nanofibers and particulate aggregates was used as the negative electrode material.
[0036]
<Comparative Example 1>
A negative electrode (working electrode) was produced in the same manner as in Example 1 except that acetylene black was used as a carbon material.
<Comparative Example 2>
A negative electrode (working electrode) was produced in the same manner as in Example 4 except that acetylene black was used as a carbon material.
[0037]
<Comparison test and evaluation>
As shown in FIG. 10, the negative electrodes 41 (working electrodes) produced in Examples 1 to 12 and Comparative Examples 1 and 2 were attached to a charge / discharge cycle test device 51. In this apparatus 51, an electrolyte 53 (a solution in which a supporting salt is dissolved in an organic solvent) is stored in a container 52, and the negative electrode 41 is immersed in the electrolyte 53 together with the positive electrode 42 and the reference electrode 43. ), Positive electrode 42 (counter electrode) and reference electrode 43 are electrically connected to potentiostat 54 (potentiometer), respectively. 1M LiPF is used as the supporting salt. 6 And a solution containing ethylene carbonate and diethyl carbonate as the organic solvent. Metallic lithium was used for the positive electrode and the reference electrode. A charge / discharge cycle test was performed using this apparatus, and the low-rate and high-rate discharge capacities of each negative electrode (working electrode) were measured. The low-rate discharge capacity was measured at 50 mA / g, and the high-rate discharge capacity was measured at 200 mA / g, and the measured voltage range was 0 V to 3.0 V. The capacity was calculated from discharge capacity / (weight of carbon material + weight of inorganic particle material). Table 1 shows the measurement results of the electrodes of Examples 1 to 12 and Comparative Examples 1 and 2, respectively. CNF (P) in Table 1 is formed by laminating a plurality of planar graphite networks, and the carbon nanofibers and the particulate aggregates have a structure in which the graphite network is substantially perpendicular to the fiber axis. And CNF (T) represent a mixture containing carbon nanofibers and particulate aggregates formed by concentrically arranging a plurality of tubular graphite networks and each axis being parallel to the fiber axis.
[0038]
[Table 1]
Figure 2004220910
[0039]
As is clear from Table 1, in Comparative Examples 1 and 2 in which acetylene black, which is a carbon-based material conventionally used together with inorganic particles, was used as the carbon material, the capacity retention at the 10th cycle was significantly reduced. Cycle characteristics were inferior. In addition, the capacity retention rate in high-rate discharge was significantly reduced. On the other hand, in Examples 1 to 12 using the carbon nanofibers together with the inorganic particles of the present invention, both the capacity retention rate at the 10th cycle and the capacity retention rate at the time of high rate discharge showed extremely high results. It turns out that it is excellent in high conductivity.
Comparing each of the examples, Examples 1 to 3 in which the content ratio of the inorganic particles is high, and Examples 7 to 9 are one cycle in comparison with Examples 4 to 6 and Examples 10 to 12 in which the content ratio is low. High eye volume results were obtained. Further, Examples 1 to 6 using CNF (P) had higher capacities in the first cycle than Examples 7 to 12 using CNF (T), and CNF (P) absorbed and desorbed lithium. You can see that he is greatly involved in Conversely, Examples 7 to 12 using CNF (T) have higher capacity retention rates at the 10th cycle and capacity retention during high-rate discharge than Examples 1 to 6 using CNF (P). Numerical values indicate that CNF (T) greatly contributes to high conductivity.
[0040]
【The invention's effect】
As described above, the negative electrode material of the present invention is composed of the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co, and Mn. Inorganic particles containing at least one selected element and a carbon material, wherein the carbon material is mainly composed of carbon nanofibers, the carbon nanofibers 13 have an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, It has an aspect ratio of 10 or more.
By using the carbon nanofiber having such a shape as a main component of the carbon material, the carbon nanofiber plays a role of connecting the inorganic particles, so that high conductivity can be obtained. In addition, the presence of carbon nanofibers entangled with the inorganic particles prevents the inorganic particles from dropping due to the volume change of the inorganic particles due to the occlusion and desorption of lithium due to charge and discharge, and the separation of the electrodes. Improve characteristics. In addition, since carbon nanofibers have a smaller average diameter than carbon materials that have been used as a negative electrode material in the past, when a battery electrode is manufactured, high-density charging is possible and battery energy is reduced. It leads to density improvement.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram showing a volume expansion of an inorganic particle when an inorganic particle and a carbon material of the present invention are added to a negative electrode active material.
FIG. 2 is a schematic view of a carbon nanofiber having a structure in which a graphite network as a main component of the carbon material of the present invention is substantially perpendicular to a fiber axis.
FIG. 3 is a schematic diagram showing a reaction in which lithium ions are inserted and desorbed between graphite network layers.
FIG. 4 is a schematic view of a carbon nanofiber having another structure corresponding to FIG. 2;
FIG. 5 is a schematic view of a carbon nanofiber formed by arranging a plurality of cylindrical graphite nets, which are main components of the carbon material of the present invention, concentrically and each axis is parallel to the fiber axis.
FIG. 6 is a view showing a conductive direction of the carbon nanofiber of FIG. 5;
FIG. 7 is a schematic diagram showing the carbon nanofibers and particulate aggregates of FIG.
FIG. 8 is a sectional configuration diagram of a heat treatment furnace for producing the carbon nanofiber of the present invention.
FIG. 9 is a partial cross-sectional configuration diagram showing an electrode body of the lithium ion battery of the present invention.
FIG. 10 shows an apparatus used for a charge / discharge cycle test of the negative electrode active materials for lithium secondary batteries of Examples and Comparative Examples.
FIG. 11 is a cross-sectional configuration diagram showing volume expansion of inorganic particles when only conventional inorganic particles are added to a negative electrode active material.
FIG. 12 is a cross-sectional configuration diagram showing volume expansion of inorganic particles when conventional inorganic particles and a carbon-based material are added to a negative electrode active material.
[Explanation of symbols]
11 inorganic particles
12 Carbon material
13 Carbon nanofiber
14. Planar graphite net
16 Cylindrical graphite net
17 Particulate aggregates

Claims (13)

Si、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素を含む無機質粒子(11)と、カーボン材料(12)とを含み、
前記カーボン材料(12)がカーボンナノファイバ(13)を主成分とし、前記カーボンナノファイバ(13)が20nm〜500nmの平均直径と、1000nm以上の長さと、10以上のアスペクト比を有する負極材料。
Inorganic particles containing at least one element selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co and Mn ( 11) and a carbon material (12),
A negative electrode material wherein the carbon material (12) has a carbon nanofiber (13) as a main component, and the carbon nanofiber (13) has an average diameter of 20 nm to 500 nm, a length of 1000 nm or more, and an aspect ratio of 10 or more.
無機質粒子(11)はSi、Ge、Mg、Sn、Pb、Ag、Al、Zn、Cd、Sb、Bi、In、Ca、Fe、Ni、Co及びMnからなる群より選ばれた少なくとも1種の元素が単体、酸化物又は他の金属との合金又は化合物、前記単体とリチウムとの合金又は化合物、及びこれらの金属、リチウムを含む多元合金又は化合物で構成される請求項1記載の負極材料。The inorganic particles (11) are at least one selected from the group consisting of Si, Ge, Mg, Sn, Pb, Ag, Al, Zn, Cd, Sb, Bi, In, Ca, Fe, Ni, Co and Mn. The negative electrode material according to claim 1, wherein the element is composed of a simple substance, an alloy or a compound of an oxide or another metal, an alloy or a compound of the simple substance and lithium, and a multi-element alloy or a compound containing these metals and lithium. 無機質粒子(11)の平均粒径が0.1〜50μmである請求項1又は2記載の負極材料。3. The negative electrode material according to claim 1, wherein the inorganic particles have an average particle size of 0.1 to 50 [mu] m. 無機質粒子(11)とカーボン材料(12)との混合割合が重量比(無機質粒子/カーボン材料)で95/5〜30/70である請求項1ないし3いずれか1項に記載の負極材料。The negative electrode material according to any one of claims 1 to 3, wherein a mixing ratio of the inorganic particles (11) and the carbon material (12) is 95/5 to 30/70 by weight (inorganic particles / carbon material). カーボンナノファイバ(13)が複数の平面状グラファイト網(14)を積層して形成され、前記グラファイト網(14)がファイバ軸に対して実質的に垂直である構造を有する請求項1記載の負極材料。The negative electrode according to claim 1, wherein the carbon nanofibers (13) are formed by laminating a plurality of planar graphite networks (14), and the graphite networks (14) have a structure substantially perpendicular to a fiber axis. material. カーボンナノファイバ(13)が複数の筒状グラファイト網(16)を同心円状にかつ各軸がファイバ軸平行に配置して形成した請求項1記載の負極材料。The negative electrode material according to claim 1, wherein the carbon nanofibers (13) are formed by arranging a plurality of cylindrical graphite nets (16) concentrically and each axis being parallel to the fiber axis. カーボンナノファイバ(13)に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体(17)を含み、
前記カーボンナノファイバ(13)が80重量%〜99.5重量%、前記粒子状凝集体(17)が0.5重量%〜20重量%の割合である請求項1ないし6いずれか1項に記載の負極材料。
In addition to the carbon nanofibers (13), it further includes a particulate aggregate (17) composed of carbon fine powder having a graphite structure,
The carbon nanofiber (13) has a ratio of 80 wt% to 99.5 wt%, and the particulate aggregate (17) has a ratio of 0.5 wt% to 20 wt%. The negative electrode material as described in the above.
カーボンナノファイバ(13)又は、カーボンナノファイバ(13)及び粒子状凝集体(17)をそれぞれ含む混合物のX線回折において測定されるグラファイト網(14,16)平面の積層間隔d002が0.3354nm〜0.339nmである請求項1ないし7いずれか1項に記載の負極材料。The stacking distance d 002 of the graphite network (14, 16) plane measured by X-ray diffraction of the carbon nanofiber (13) or the mixture containing the carbon nanofiber (13) and the particulate aggregate (17) is 0. The negative electrode material according to any one of claims 1 to 7, wherein the thickness is 3354 nm to 0.339 nm. カーボンナノファイバ(13)の露出部又は、カーボンナノファイバ(13)及び粒子状凝集体(17)をそれぞれ含む混合物の露出部の少なくとも85%がグラファイト網の端部である請求項1ないし7いずれか1項に記載の負極材料。8. The graphite net according to claim 1, wherein at least 85% of the exposed portion of the carbon nanofibers or the exposed portion of the mixture containing the carbon nanofibers and the particulate agglomerates are the ends of the graphite net. 2. The negative electrode material according to claim 1. 無機質粒子(11)がシリコンをベースとした材料であって、シリコン粒子、シリサイド化合物、シリコンオキサイド又はシリコンオキシカーバイドである請求項1ないし9いずれか1項に記載の負極材料。The negative electrode material according to any one of claims 1 to 9, wherein the inorganic particles (11) are a silicon-based material, and are silicon particles, a silicide compound, silicon oxide, or silicon oxycarbide. 請求項1ないし10いずれか1項に記載の負極材料と、結着剤とを用いて形成された負極。A negative electrode formed using the negative electrode material according to any one of claims 1 to 10 and a binder. 請求項11記載の負極を用いて形成されたリチウムイオン電池。A lithium ion battery formed using the negative electrode according to claim 11. 請求項11記載の負極を用いて形成されたリチウムポリマー電池。A lithium polymer battery formed using the negative electrode according to claim 11.
JP2003006637A 2003-01-15 2003-01-15 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode Pending JP2004220910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003006637A JP2004220910A (en) 2003-01-15 2003-01-15 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003006637A JP2004220910A (en) 2003-01-15 2003-01-15 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode

Publications (1)

Publication Number Publication Date
JP2004220910A true JP2004220910A (en) 2004-08-05

Family

ID=32896949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003006637A Pending JP2004220910A (en) 2003-01-15 2003-01-15 Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode

Country Status (1)

Country Link
JP (1) JP2004220910A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011028A1 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
JP2005310487A (en) * 2004-04-20 2005-11-04 Pionics Co Ltd Cathode active material particles for lithium secondary battery, and its manufacturing method
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
WO2006106782A1 (en) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
WO2007069562A1 (en) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007207466A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007335283A (en) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008027912A (en) * 2006-07-14 2008-02-07 Kumho Petrochem Co Ltd Anode active material for lithium secondary cell mixed with carbon nanofiber
CN100456533C (en) * 2005-11-14 2009-01-28 松下电器产业株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrol
DE102010018458A1 (en) 2009-04-28 2011-02-17 Denso Corporation, Kariya-City Non-aqueous electrolyte solution battery negative electrode and non-aqueous electrolyte solution battery with same
JP2012164631A (en) * 2011-01-20 2012-08-30 Mitsubishi Materials Corp Composite for negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery comprising the same
WO2013125761A1 (en) * 2012-02-23 2013-08-29 포항공과대학교 산학협력단 Germanium nanoparticle/carbon composite anode material using no binder for lithium-polymer battery having high capacity and high rapid charge/discharge characteristics
EP2755263A1 (en) * 2012-11-30 2014-07-16 LG Chem, Ltd. Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same
CN104916830A (en) * 2015-04-22 2015-09-16 浙江理工大学 Lithium ion battery tin-based carbon nanofiber negative electrode material and preparation method thereof
JP2015179606A (en) * 2014-03-19 2015-10-08 三菱マテリアル株式会社 Negative electrode active material for lithium ion secondary batteries, manufacturing method thereof, and lithium ion secondary battery arranged by use of negative electrode active material
CN105369475A (en) * 2015-08-27 2016-03-02 新疆大学 SnSb/carbon nanofiber active material and manufacturing method thereof
US9496548B2 (en) 2013-05-15 2016-11-15 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
JPWO2015118849A1 (en) * 2014-02-04 2017-03-23 三井化学株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, composite paste for negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same
CN110707305A (en) * 2019-10-18 2020-01-17 中南大学 Preparation method of antimony/carbon quantum dot nano composite material, product and application thereof
WO2022181151A1 (en) * 2021-02-25 2022-09-01 パナソニックIpマネジメント株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing cnt-si paste, method for manufacturing negative electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09502566A (en) * 1993-09-10 1997-03-11 ハイピリオン カタリシス インターナショナル インコーポレイテッド Lithium battery with carbon fibril-containing electrode
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JPH10121335A (en) * 1988-01-28 1998-05-12 Hyperion Catalysis Internatl Carbon fibril material
JPH1140154A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Electrode and battery using it
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2002334697A (en) * 2001-05-08 2002-11-22 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2002348741A (en) * 2001-03-21 2002-12-04 Morinobu Endo Carbon fiber by vapor-phase growth and composite material using the same
JP2003331838A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Lithium secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121335A (en) * 1988-01-28 1998-05-12 Hyperion Catalysis Internatl Carbon fibril material
JPH09502566A (en) * 1993-09-10 1997-03-11 ハイピリオン カタリシス インターナショナル インコーポレイテッド Lithium battery with carbon fibril-containing electrode
JPH1021913A (en) * 1996-07-05 1998-01-23 Hitachi Ltd Battery chargeable and dischargeable reversibly for plural times
JPH1140154A (en) * 1997-07-18 1999-02-12 Hitachi Ltd Electrode and battery using it
JP2000173612A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and negative electrode material thereof
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2002348741A (en) * 2001-03-21 2002-12-04 Morinobu Endo Carbon fiber by vapor-phase growth and composite material using the same
JP2002334697A (en) * 2001-05-08 2002-11-22 Hitachi Maxell Ltd Non-aqueous secondary battery
JP2003331838A (en) * 2002-05-14 2003-11-21 Hitachi Ltd Lithium secondary battery

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011028A1 (en) * 2003-07-28 2005-02-03 Showa Denko K.K. High density electrode and battery using the electrode
JP2005310487A (en) * 2004-04-20 2005-11-04 Pionics Co Ltd Cathode active material particles for lithium secondary battery, and its manufacturing method
WO2006068066A1 (en) * 2004-12-24 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
KR100855166B1 (en) * 2004-12-24 2008-08-29 마쯔시다덴기산교 가부시키가이샤 Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
WO2006106782A1 (en) * 2005-03-31 2006-10-12 Matsushita Electric Industrial Co., Ltd. Lithium secondary battery
JP4584307B2 (en) * 2005-03-31 2010-11-17 パナソニック株式会社 Lithium secondary battery
JPWO2006106782A1 (en) * 2005-03-31 2008-09-11 松下電器産業株式会社 Lithium secondary battery
CN100456533C (en) * 2005-11-14 2009-01-28 松下电器产业株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, non-aqueous electrolyte secondary battery having the electrode, and method for producing negative electrode for non-aqueous electrol
WO2007069562A1 (en) * 2005-12-13 2007-06-21 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US8039148B2 (en) 2005-12-13 2011-10-18 Panasonic Corporation Non-aqueous electrolyte secondary battery
KR101032254B1 (en) * 2005-12-13 2011-05-02 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
JPWO2007074654A1 (en) * 2005-12-28 2009-06-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4613953B2 (en) * 2005-12-28 2011-01-19 パナソニック株式会社 Nonaqueous electrolyte secondary battery
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP2007207466A (en) * 2006-01-31 2007-08-16 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007335283A (en) * 2006-06-16 2007-12-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008027912A (en) * 2006-07-14 2008-02-07 Kumho Petrochem Co Ltd Anode active material for lithium secondary cell mixed with carbon nanofiber
US8778541B2 (en) 2009-04-28 2014-07-15 Denso Corporation Negative electrode for nonaqueous electrolyte solution battery and nonaqueous electrolyte solution battery having the same
DE102010018458A1 (en) 2009-04-28 2011-02-17 Denso Corporation, Kariya-City Non-aqueous electrolyte solution battery negative electrode and non-aqueous electrolyte solution battery with same
JP2012164631A (en) * 2011-01-20 2012-08-30 Mitsubishi Materials Corp Composite for negative electrode of lithium ion secondary battery, and negative electrode of lithium ion secondary battery comprising the same
US20150010830A1 (en) * 2012-02-23 2015-01-08 Postech Academy-Industry Foundation Germanium nanoparticle/carbon composite anode material using no binder for lithium-polymer battery having high capacity and high rapid charge/discharge characteristics
WO2013125761A1 (en) * 2012-02-23 2013-08-29 포항공과대학교 산학협력단 Germanium nanoparticle/carbon composite anode material using no binder for lithium-polymer battery having high capacity and high rapid charge/discharge characteristics
EP2755263A1 (en) * 2012-11-30 2014-07-16 LG Chem, Ltd. Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same
EP2755263A4 (en) * 2012-11-30 2014-10-22 Lg Chemical Ltd Anode active material comprising porous silicon oxide-carbon material complex and method for preparing same
US9991509B2 (en) 2012-11-30 2018-06-05 Lg Chem, Ltd. Anode active material including porous silicon oxide-carbon material composite and method of preparing the same
US9711787B2 (en) 2012-11-30 2017-07-18 Lg Chem, Ltd. Anode active material for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
US9496548B2 (en) 2013-05-15 2016-11-15 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
US10297817B2 (en) 2014-02-04 2019-05-21 Mitsui Chemicals, Inc. Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell
JPWO2015118849A1 (en) * 2014-02-04 2017-03-23 三井化学株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, composite paste for negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2015179606A (en) * 2014-03-19 2015-10-08 三菱マテリアル株式会社 Negative electrode active material for lithium ion secondary batteries, manufacturing method thereof, and lithium ion secondary battery arranged by use of negative electrode active material
CN104916830A (en) * 2015-04-22 2015-09-16 浙江理工大学 Lithium ion battery tin-based carbon nanofiber negative electrode material and preparation method thereof
CN105369475A (en) * 2015-08-27 2016-03-02 新疆大学 SnSb/carbon nanofiber active material and manufacturing method thereof
CN105369475B (en) * 2015-08-27 2017-10-20 新疆大学 Tin antimony and carbon nano-fiber active material and preparation method thereof
CN110707305A (en) * 2019-10-18 2020-01-17 中南大学 Preparation method of antimony/carbon quantum dot nano composite material, product and application thereof
CN110707305B (en) * 2019-10-18 2022-07-08 中南大学 Preparation method of antimony/carbon quantum dot nano composite material, product and application thereof
WO2022181151A1 (en) * 2021-02-25 2022-09-01 パナソニックIpマネジメント株式会社 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing cnt-si paste, method for manufacturing negative electrode for lithium ion secondary battery, and method for manufacturing lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP2004220910A (en) Negative electrode material, negative electrode using the same, and lithium ion battery and lithium polymer battery using negative electrode
TWI254473B (en) Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
US9899674B2 (en) Positive electrode active substance, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP2004220911A (en) Negative electrode material for lithium polymer battery, negative electrode using the same, lithium ion battery and lithium polymer battery using negative electrode
EP2963706B1 (en) Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP5954345B2 (en) Method for manufacturing lithium solid state battery module
EP3026734B1 (en) Non-aqueous electrolyte secondary battery
EP2963708A1 (en) Positive electrode active material, positive electrode material, positive electrode, and non-aqueous electrolyte secondary battery
JP2017063047A (en) Stabilization of lithium ion battery negative electrode
US20160064715A1 (en) Non-aqueous electrolyte secondary battery
WO2006011290A1 (en) SiO POWDER FOR SECONDARY BATTERY AND PROCESS FOR PRODUCING THE SAME
JP2013073764A (en) Negative electrode active material for nonaqueous electrolytic secondary battery, nonaqueous electrolytic secondary battery, battery pack and method for manufacturing negative electrode active material for nonaqueous electrolytic secondary battery
WO2013065787A1 (en) Negative electrode material for sodium secondary battery and method for producing same, negative electrode for sodium secondary battery, and sodium secondary battery
JP2001148248A (en) Manufacturing method of negative electrode material and a manufacturing method of secondary battery
KR20170048184A (en) Negative electrode material for secondary battery, method for preparing the same and secondary battery having the same
JP6358470B2 (en) Method for producing negative electrode for secondary battery
JP2004335334A (en) Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same
WO2003090296A1 (en) Cell
WO2015140984A1 (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack
JP2004335335A (en) Negative electrode material for nonaqueous electrolyte secondary battery and manufacturing method thereof and nonaqueous electrolyte secondary battery using the same
JP5469979B2 (en) Lithium ion secondary battery
JP2004220909A (en) Positive electrode activator and positive electrode using the same, lithium ion battery and lithium polymer battery using positive electrode
JP6958272B2 (en) Non-aqueous electrolyte secondary battery
JP6183843B2 (en) Lithium ion battery
JP7148937B2 (en) Method for manufacturing positive electrode for lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002