JP2006131978A - SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM - Google Patents

SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM Download PDF

Info

Publication number
JP2006131978A
JP2006131978A JP2004324868A JP2004324868A JP2006131978A JP 2006131978 A JP2006131978 A JP 2006131978A JP 2004324868 A JP2004324868 A JP 2004324868A JP 2004324868 A JP2004324868 A JP 2004324868A JP 2006131978 A JP2006131978 A JP 2006131978A
Authority
JP
Japan
Prior art keywords
spherical nip
aqueous solution
spherical
nip
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004324868A
Other languages
Japanese (ja)
Other versions
JP4451760B2 (en
Inventor
Eiichiro Yuse
栄一郎 湯瀬
Tsutomu Nosaka
勉 野坂
Kagehiro Kageyama
景弘 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKITA PREF GOV SHIGEN GIJUTSU KAIHATSU KIKO
Proterial Ltd
Original Assignee
AKITA PREF GOV SHIGEN GIJUTSU KAIHATSU KIKO
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AKITA PREF GOV SHIGEN GIJUTSU KAIHATSU KIKO, Hitachi Metals Ltd filed Critical AKITA PREF GOV SHIGEN GIJUTSU KAIHATSU KIKO
Priority to JP2004324868A priority Critical patent/JP4451760B2/en
Priority to KR1020050105862A priority patent/KR100880742B1/en
Priority to TW094139054A priority patent/TWI339140B/en
Publication of JP2006131978A publication Critical patent/JP2006131978A/en
Application granted granted Critical
Publication of JP4451760B2 publication Critical patent/JP4451760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemically Coating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide spherical NiP fine particles having excellent electric conduction resistance of the particles themselves and excellent monodispersibility, to provide a method therefor, and to provide electrically conductive particles for an anisotropic electrically conductive film. <P>SOLUTION: The spherical NiP fine particle has a componential composition essentially consisting of Ni and comprising P, and is composed of a central part with a crystalline structure and a surface layer part with a structure where an NiP intermetallic compound is dispersed into an amorphous material, and the P content in the surface layer part is higher than that in the central part. Then, in the electrically conductive particle for an anisotropic electrically conductive film, the surface of the spherical NiP fine particle is coated with Au. The spherical NiP fine particle is produced, in the process where an aqueous solution of nickel salt, a mixed aqueous solution of a pH adjuster and a pH buffer, and an aqueous solution of a phosphorus-containing reducing agent are mixed, and are brought into reduction precipitation reaction, by adjusting the pH at the time when, they are mixed, and the reduction precipitation reaction is started, so as to be the alkaline one exceeding pH 7, and subjecting the spherical NiP fine particle obtained by the reduction precipitation reaction to heating treatment at ≥300°C. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、異方性導電フィルム用の導電粒子として使用される金属微小粒子と、その製造方法に関するものである。   The present invention relates to fine metal particles used as conductive particles for an anisotropic conductive film and a method for producing the same.

近年、LCD(Liquid Crystal Display)やPDP(Plasma Display Panel)などの表示装置の薄型化、高精細化に伴い、表示装置と半導体および各種基板との微細な配線の電気的な接続には、主に絶縁性樹脂接着剤中に導電粒子を均一に分散させた異方性導電フィルムが用いられている。例えば、ITO(インジウムスズ酸化物)電極とTCP(Tape Carrier Package)等を接続する異方性導電フィルムの場合、NiおよびAu等の金属を表面に被覆した導電粒子が使用されており、TCPとFPC(Flexible Printed Circuit)のように、Cu配線同士を接続する場合には、圧着時に配線へ突き刺さる効果があるとされる比較的硬いNi等の各種金属粉末が用いられてきた。   In recent years, with the thinning and high definition of display devices such as LCD (Liquid Crystal Display) and PDP (Plasma Display Panel), electrical connection of fine wiring between the display device and semiconductors and various substrates is mainly performed. An anisotropic conductive film in which conductive particles are uniformly dispersed in an insulating resin adhesive is used. For example, in the case of an anisotropic conductive film that connects an ITO (indium tin oxide) electrode and TCP (Tape Carrier Package), etc., conductive particles having a surface coated with a metal such as Ni and Au are used. When connecting Cu wirings like FPC (Flexible Printed Circuit), various hard metal powders such as Ni which are considered to have an effect of being pierced into the wiring at the time of crimping have been used.

異方性導電フィルムに一般的に用いられる、金属を表面に被覆した導電粒子は、接続時の温度や圧力によって導電粒子が弾性変形するので、配線との接触面積を大きくできるなどの特徴を持っているが、導電粒子中心部が絶縁体であるため良好な導通が取れない場合があることと、粒子への被覆には通常、めっき処理等が行われているため、高価となるばかりではなく、金属被覆層を厚くすることが困難である。   Conductive particles that are generally used for anisotropic conductive films and coated with metal have the characteristics that the conductive particles are elastically deformed by the temperature and pressure at the time of connection, so that the contact area with the wiring can be increased. However, since the conductive particle central part is an insulator, there may be cases where good conduction cannot be obtained, and the coating to the particles is usually performed by plating, etc. It is difficult to increase the thickness of the metal coating layer.

また、ガラス上のAl電極等やTCP、FPCのCu配線等のように、表面が酸化されやすく絶縁皮膜を形成する部材の接続には、その絶縁皮膜を突き破って導通を確保することができる硬さと比較的比抵抗の低い各種金属粉末を分散させた異方性導電フィルムが用いられている。金属粉末として例えばNi粉末を用いる場合には、粒径分布をシャープにするための分級処理を行なうことでコストが非常に高くなり、また、金属粉末の製法によっては、金属粉末の形状が不定形となるため、微細な接続には不適という問題点がある。   In addition, when connecting a member that easily oxidizes the surface, such as an Al electrode on glass or Cu wiring of TCP or FPC, to form an insulating film, a hard material that can penetrate the insulating film to ensure conduction. An anisotropic conductive film in which various metal powders having a relatively low specific resistance are dispersed is used. For example, when Ni powder is used as the metal powder, the cost is very high by performing a classification process for sharpening the particle size distribution, and the shape of the metal powder may be indefinite depending on the metal powder manufacturing method. Therefore, there is a problem that it is not suitable for fine connection.

そこで、比較的、粒径分布がシャープで、ほぼ均一粒径をした金属微粒子を得る方法として、無電解還元反応によりNiP微小粒子を製造する方法が提案されている(特許文献1)。また、上述の絶縁皮膜を突き破って、確実に導通を取ることができる硬さを付与するための有効な方法として、溶液中でNiを還元析出させる際に、半金属元素であるC,B,P,Si,As,Te,Ge,Sb等を共析させて非結晶構造として更に硬さを高める方法がある(特許文献2)。
特開2001−279306号公報 特開2002−363603号公報
Therefore, as a method of obtaining metal fine particles having a relatively sharp particle size distribution and a substantially uniform particle size, a method of producing NiP fine particles by an electroless reduction reaction has been proposed (Patent Document 1). Further, as an effective method for imparting hardness that can break through the above-described insulating film and reliably establish conduction, when Ni is reduced and precipitated in a solution, C, B, which are metalloid elements, There is a method in which P, Si, As, Te, Ge, Sb, etc. are co-deposited to further increase the hardness as an amorphous structure (Patent Document 2).
JP 2001-279306 A JP 2002-363603 A

特許文献1の方法は、上記の課題に一定の効果を示す有効な手法ではあるが、この種のNiP微小粒子では、実質的に非晶質構造となっているので粒子自体の抵抗が高く、また、単分散の粒子ではなく凝集体を含んでいるために解砕処理または分級処理を要するところに改善の余地があった。   Although the method of Patent Document 1 is an effective technique that exhibits a certain effect on the above-described problem, this type of NiP microparticle has a substantially amorphous structure, so the resistance of the particle itself is high, In addition, there is room for improvement in that a pulverization treatment or a classification treatment is required because it contains aggregates rather than monodispersed particles.

本発明の目的は、特に異方性導電フィルムの導電粒子に使用するのに最適で、粒子自体の導電抵抗と単分散性に優れた球状NiP微小粒子およびその製造方法を提供することである。   An object of the present invention is to provide spherical NiP microparticles that are most suitable for use as conductive particles of an anisotropic conductive film and that are excellent in the conductive resistance and monodispersity of the particles themselves, and a method for producing the same.

本発明者らは、上述したような従来の欠点を鑑みて、特許文献1で提案されている非晶質のNiP微小粒子に、別途導電性を付与するための加熱処理を行なって結晶化処理を行なうことがよく、その中心部は結晶構造を持たせることが有効であることを知見した。そして、この構造を得るには、非晶質促進元素であるPの分布を調整すること、すなわち、粒子の表層部に比して中心部のP量を低くし、そして表層部のP量を高く調整することが有効である。   In view of the conventional drawbacks as described above, the present inventors separately perform heat treatment for imparting conductivity to the amorphous NiP fine particles proposed in Patent Document 1 to perform crystallization treatment. It was found that it is effective to have a crystal structure at the center. And in order to obtain this structure, the distribution of P which is an amorphous promoting element is adjusted, that is, the amount of P in the central portion is made lower than the surface portion of the particles, and the amount of P in the surface portion is reduced. High adjustment is effective.

そして、このような特殊な構造を有するNiP微小粒子を達成するのに好ましい製造方法をも突きとめた。すなわち、NiP微小粒子の還元析出における反応開始時の混合液のpHをアルカリ性域に調整することである。この方法は、その粒子の中心部形成に相当する析出初期から、その表層部の形成にあたる析出終期に向かい、粒子にP量の濃度勾配を与えることができる。さらに、この方法によれば、得られるNiP微小粒子の粒度分布も均一に制御できる。   And the manufacturing method preferable in order to achieve the NiP microparticle which has such a special structure was also discovered. That is, the pH of the mixed solution at the start of the reaction in the reduction precipitation of NiP microparticles is adjusted to the alkaline region. This method can give a concentration gradient of P amount to the particles from the initial precipitation corresponding to the formation of the central portion of the particles toward the final precipitation corresponding to the formation of the surface layer portion. Furthermore, according to this method, the particle size distribution of the NiP microparticles obtained can be controlled uniformly.

さらに、上記によるNiP微小粒子に加熱処理を行なって、その中心部に結晶構造を持たせ、表層部には金属間化合物の析出導入による硬さの付与を行なう。更に、最表面へ高い導電性を付与するためにAuめっき等の被覆処理を施すことで、異方性導電フィルム用の導電粒子として最適なNiP微小粒子を得ることができた。   Further, the NiP microparticles as described above are subjected to heat treatment to give a crystal structure at the center, and to the surface layer, the hardness is imparted by the introduction of intermetallic compounds. Furthermore, by applying a coating treatment such as Au plating to impart high conductivity to the outermost surface, NiP fine particles that are optimal as conductive particles for an anisotropic conductive film could be obtained.

すなわち本発明は、Niを主体にPを含む成分組成であり、その構造は結晶質構造を有する中心部と、非晶質にNiP金属間化合物が分散した構造を有する表層部とからなる球状NiP微小粒子であって、その表層部のP含有量が中心部のP含有量よりも高いことを特徴とする球状NiP微小粒子である。好ましくは、粒子径がd50:1〜10μmであり、かつその粒度分布が[(d90−d10)/d50]≦1.0(d90、d10、d50:積算分布曲線において、90体積%、10体積%、50体積%を示す粒子径)である。 That is, the present invention is a component composition containing Ni as a main component and containing P, and the structure is a spherical NiP composed of a central portion having a crystalline structure and a surface layer portion having a structure in which NiP intermetallic compounds are dispersed in an amorphous state. Spherical NiP microparticles, characterized in that the P content in the surface layer portion is higher than the P content in the central portion. Preferably, the particle size is d 50 : 1 to 10 μm, and the particle size distribution is [(d 90 −d 10 ) / d 50 ] ≦ 1.0 (d 90 , d 10 , d 50 : in the integrated distribution curve. , 90% by volume, 10% by volume, and 50% by volume particle size).

そして、ニッケル塩の水溶液と、pH調整剤およびpH緩衝剤の混合水溶液と、リンを含む還元剤水溶液とを混合して還元析出反応させて、Niを主体にPを含む球状NiP微小粒子を製造する方法であって、混合して還元析出反応を開始させる時のpHが7超のアルカリ性になるように調整し、還元析出反応によって得られた球状NiP微小粒子に300℃以上の加熱処理を行なうことを特徴とする球状NiP微小粒子の製造方法である。   Then, an aqueous solution of a nickel salt, a mixed aqueous solution of a pH adjusting agent and a pH buffering agent, and a reducing agent aqueous solution containing phosphorus are mixed and subjected to a reduction precipitation reaction to produce spherical NiP fine particles mainly containing Ni and containing P. In this method, the pH when mixing and starting the reduction precipitation reaction is adjusted so that the pH becomes alkalinity exceeding 7, and the spherical NiP microparticles obtained by the reduction precipitation reaction are subjected to heat treatment at 300 ° C. or higher. This is a method for producing spherical NiP microparticles.

そして、上記の球状NiP微小粒子の表面にAuが被覆されていることを特徴とする異方性導電フィルム用導電粒子である。   And it is the electroconductive particle for anisotropic conductive films characterized by Au covering the surface of said spherical NiP microparticle.

本発明の球状NiP微小粒子はその粒子が球状となっているので粒子の凝集が少なく、異方性導電フィルムの導電粒子に使用した際に電極間のショートが抑制されるとともに、従来良好な接続信頼性が得られにくかった材質であるAlやCr電極等の酸化皮膜を形成しやすい金属電極間の接続においても、低い接続抵抗と高い接続信頼性を得ることが可能となる。   Since the spherical NiP microparticles of the present invention are spherical, there is little aggregation of the particles, and when used for conductive particles of an anisotropic conductive film, short-circuiting between electrodes is suppressed, and a good connection has been achieved in the past. It is possible to obtain a low connection resistance and a high connection reliability even in the connection between metal electrodes that easily form an oxide film, such as an Al or Cr electrode, which is a material that is difficult to obtain reliability.

上述したように本発明の重要な特徴は、Niを主体にPを含む成分組成において、表層部のP含有量が中心部のP含有量よりも高くして、その構造は結晶質構造を有する中心部と、非晶質の表層部にNiP金属間化合物が存在する球状NiP微小粒子としたところにある。更にその最表層部をAuで被覆した球状NiP微小粒子は異方性導電フィルム用の導電粒子として最適である。以下、その好ましい製造方法と共に、本発明の球状NiP微小粒子を説明する。   As described above, an important feature of the present invention is that, in the component composition mainly containing Ni and containing P, the P content in the surface layer portion is higher than the P content in the central portion, and the structure has a crystalline structure. The spherical NiP microparticles in which the NiP intermetallic compound exists in the central part and the amorphous surface layer part are present. Furthermore, the spherical NiP fine particles whose outermost layer portion is coated with Au are optimal as conductive particles for an anisotropic conductive film. Hereinafter, the spherical NiP microparticles of the present invention will be described together with the preferred production method.

先ず、本発明の球状NiP微小粒子は、Niを主体にPを含む成分組成である。上述したように、異方性導電フィルムの導電粒子として用いる場合、その硬さを付与する有効な方法として、Niに半金属元素の成分組成を用いる特許文献2があるが、その内、本発明に好適な半金属元素としては、Niと金属間化合物を形成可能なC、B、Pである。中でも、BとPは適切な温度で加熱処理をも行なうことで、Bを共析させた時にはNiBが生成され、Pを共析させた場合にはNiPが生成される。それらの金属間化合物の析出により、非常に硬く、且つ、優れた耐食性と耐磨耗性を有した微小粒子を得ることができる。また、半金属元素としてPを含む成分組成とした場合には、粒子を還元析出させる時のpH等を調整することで、結晶構造を左右するP濃度の制御が容易となり、その結晶構造の制御が可能となる。よって、本発明では、少なくともPを必須に含有した、Niを主体とする成分組成を採用する。 First, the spherical NiP microparticles of the present invention have a component composition mainly containing Ni and containing P. As described above, when used as conductive particles of an anisotropic conductive film, as an effective method for imparting the hardness, there is Patent Document 2 in which a component composition of a semi-metal element is used for Ni. Suitable metalloid elements are C, B, and P capable of forming an intermetallic compound with Ni. Among them, B and P are also subjected to heat treatment at an appropriate temperature, so that Ni 3 B is generated when B is co-deposited, and Ni 3 P is generated when P is co-deposited. By precipitation of these intermetallic compounds, fine particles that are very hard and have excellent corrosion resistance and wear resistance can be obtained. In addition, when the component composition includes P as a metalloid element, it is easy to control the P concentration that affects the crystal structure by adjusting the pH and the like when the particles are reduced and precipitated. Is possible. Therefore, in the present invention, a component composition mainly containing Ni and containing at least P as an essential component is employed.

ところで、異方性導電フィルム用の導電粒子に対する要求特性には、上述した絶縁皮膜を突き破るだけの硬さのほかに、高い導電性が挙げられる。例えば、Ni、Au等の金属を表面に薄く被覆した導電粒子を用いたフィルムは、その粒子中心部が絶縁体であるため、金属粉末と比較して高い抵抗値を示す。すなわち、電気的な導通に関与する金属部分が少ないため、良好な導通を取ることが困難となる。従って、導電フィルムに用いる導電粒子は、Al電極やCu配線などの表面に生じた絶縁皮膜を突き破って、確実に導通を確保できる硬さを有する部分と共に、良好な導電性が必要とされる。この問題に対し、導電粒子の中心部分を金属結晶質とすることで、その導電性を高めることができ、特に異方性導電フィルムの導電粒子として用いた時に接続抵抗を低くすることが可能となる。また、導電粒子の外周部分には硬さの高い金属の非晶質と金属間化合物を分散させることで、表面に高い硬度を付与することができるから、上記用途での圧着時には電極および接続配線に存在する絶縁皮膜を確実に突き破って、高い接続信頼性を確保することが可能となる。   By the way, the required characteristics for the conductive particles for the anisotropic conductive film include high conductivity in addition to the hardness sufficient to break through the above-described insulating film. For example, a film using conductive particles whose surfaces are thinly coated with a metal such as Ni or Au shows a high resistance value compared to metal powder because the center of the particle is an insulator. That is, since there are few metal parts involved in electrical conduction, it is difficult to achieve good conduction. Therefore, the conductive particles used for the conductive film are required to have good conductivity together with a portion having a hardness that can reliably ensure conduction by breaking through an insulating film formed on the surface of an Al electrode or Cu wiring. With respect to this problem, by making the central part of the conductive particles metal crystalline, it is possible to increase the conductivity, and it is possible to reduce the connection resistance particularly when used as the conductive particles of an anisotropic conductive film. Become. In addition, by dispersing a high-hardness metal amorphous and intermetallic compound in the outer peripheral portion of the conductive particles, it is possible to impart high hardness to the surface. It is possible to reliably break through the insulating film existing in the metal and secure high connection reliability.

一般に、NiPの結晶構造は、P含有量が4質量%前後と低い場合には、面心立方晶であり、P含有量が増加するに従って約7.4質量%程度から非晶質構造をとり、その非晶質構造は加熱処理を行なうことで、体心正方晶のNiPを析出し、硬さを増すことが知られている。ニッケル塩の水溶液と、pH調整剤およびpH緩衝剤の混合水溶液と、リンを含む還元剤の水溶液とを混合して還元析出反応させる際に、Pの共析は避けられないが、上述したように、球状NiP微小粒子の中心部では良好な導電性を確保するためにP含有量を低くして結晶質構造とし、その表層部においては中心部よりもP含有量を高くすることで非晶質構造として、更には加熱処理を行った時にNiPを析出させ、絶縁皮膜を突き破るだけの硬さを得ることが可能となる。なお、本発明ではNiを主体にPを含む成分組成であるとしているが、NiとP以外に、製造上不可避的に混入されるものを含んでもよいことは言うまでもない。 In general, the crystal structure of NiP is a face-centered cubic crystal when the P content is as low as about 4% by mass, and takes an amorphous structure from about 7.4% by mass as the P content increases. It is known that the amorphous structure is subjected to heat treatment to precipitate body-centered tetragonal Ni 3 P, thereby increasing the hardness. When a nickel salt aqueous solution, a mixed aqueous solution of a pH adjusting agent and a pH buffering agent, and an aqueous solution of a reducing agent containing phosphorus are mixed and subjected to a reduction precipitation reaction, the eutectoid of P is unavoidable. In addition, in order to ensure good electrical conductivity at the center of the spherical NiP fine particles, the P content is lowered to form a crystalline structure, and the surface layer is made amorphous by increasing the P content from the center. As a quality structure, it is possible to obtain a hardness sufficient to cause Ni 3 P to precipitate when the heat treatment is performed and to break through the insulating film. In the present invention, it is assumed that the composition is mainly composed of Ni and containing P. However, it goes without saying that, in addition to Ni and P, those that are inevitably mixed in production may be included.

本発明の中心部が結晶質構造で表層部が非結晶にNiP金属間化合物を分散した球状NiP微小粒子の粒子径は、d50の数値にて1〜10μmとすることが望ましい(d50:積算分布曲線において、50体積%を示す粒子径)。この粒子径が1μm未満の場合には、異方性導電フィルムとして圧着された時に、電極および配線との接触が不安定となり、接続信頼性が低下する。平均粒子径が10μmを越えると、狭ピッチ接続で隣り合う電極および配線間の絶縁性が低下し、ファインピッチ接続が困難となるばかりでなく、異方性導電フィルムの厚さを厚くしなければならない。よって、本発明の球状NiP微小粒子は、特に異方性導電フィルム用導電粒子として最適とするためにも、d50:1〜10μmの粒子径とするが、この粒子径は異方性導電フィルムで接続する電極および配線の幅およびピッチに合わせて任意に粒子径を選定することが望ましい。 Particle diameter of the spherical NiP microparticles central portion of the surface layer portion in a crystalline structure is dispersed NiP intermetallic compound in a non-crystals of the present invention, it is desirable that the 1~10μm in figures d 50 (d 50: In the cumulative distribution curve, the particle diameter is 50% by volume). When this particle diameter is less than 1 μm, the contact with the electrode and the wiring becomes unstable when the anisotropic conductive film is pressure-bonded, and the connection reliability is lowered. If the average particle diameter exceeds 10 μm, the insulation between adjacent electrodes and wirings is reduced by narrow pitch connection, and fine pitch connection becomes difficult, and the thickness of the anisotropic conductive film must be increased. Don't be. Therefore, the spherical NiP fine particles of the present invention have a particle diameter of d 50 : 1 to 10 μm in order to optimize the conductive particles especially for the anisotropic conductive film. It is desirable to arbitrarily select the particle size according to the width and pitch of the electrode and wiring to be connected.

本発明の球状NiP微小粒子の好ましい形態としては、それが均一な粒径分布を呈しているところにも特徴があり、特に異方性導電フィルムの用途に有効である。粒径分布が[(d90−d10)/d50]>1.0の場合には(d90、d10:積算分布曲線において、90体積%、10体積%を示す粒子径)、実際の接続に関与する導電粒子の数が少なくなり、その分、導電粒子を多く配合する必要が生じ、そのため球状NiP微小粒子同士が接触してショートを起こす可能性がある。この式で与えられる粒径分布はできるだけ小さい値を取ることが好ましいが、経済性の問題と接続信頼性の観点から、粒径分布の[(d90−d10)/d50]は1.0以下であることが望ましい。 The preferred form of the spherical NiP fine particles of the present invention is also characterized in that it exhibits a uniform particle size distribution, and is particularly effective for the use of anisotropic conductive films. When the particle size distribution is [(d 90 −d 10 ) / d 50 ]> 1.0 (d 90 , d 10 : particle diameters indicating 90 vol% and 10 vol% in the integrated distribution curve), the actual The number of conductive particles involved in the connection is reduced, and it is necessary to add a larger amount of conductive particles, and there is a possibility that spherical NiP fine particles come into contact with each other to cause a short circuit. The particle size distribution given by this equation is preferably as small as possible. However, from the viewpoint of economic problems and connection reliability, [(d 90 −d 10 ) / d 50 ] of the particle size distribution is 1. It is desirable that it is 0 or less.

次に、上記した本発明の球状NiP微小粒子を製造するのに好ましい製造方法を説明する。本発明の採用する製造方法は、ニッケル塩の水溶液と、pH調整剤およびpH緩衝剤の混合水溶液と、リンを含む還元剤の水溶液とを混合して還元析出反応させてNiを主体にPを含む球状NiP微小粒子を製造する方法を採用する。母相となるNiの酸化還元電位が低く溶液中での還元析出が容易であること、酸性領域からアルカリ性領域において安定な溶液が作製できること、更に、半金属元素を共析し、容易に非晶質構造が得られるという利点があるため、上記の方法を用いる。そして、この方法において重要となるのが、前述の混合して還元析出反応を開始させる時のpHの調整であって、これが7超のアルカリ性となるように調整することで球状NiP微小粒子の形成初期にあたる中心部のP濃度を低くすることが可能となる。   Next, a preferable production method for producing the above-described spherical NiP fine particles of the present invention will be described. The production method adopted by the present invention is to mix an aqueous solution of nickel salt, a mixed aqueous solution of a pH adjusting agent and a pH buffering agent, and an aqueous solution of a reducing agent containing phosphorus to cause a reductive precipitation reaction, and P is mainly composed of Ni. A method for producing spherical NiP microparticles is included. The redox potential of Ni as the matrix phase is low, and it is easy to reduce and precipitate in the solution. A stable solution can be prepared from the acidic region to the alkaline region. Furthermore, the metalloid is co-deposited and easily amorphous. Since there is an advantage that a quality structure is obtained, the above method is used. And, in this method, what is important is the adjustment of the pH when mixing and initiating the reductive precipitation reaction as described above. By adjusting the pH so that it becomes more than 7 alkaline, formation of spherical NiP fine particles It is possible to reduce the P concentration in the central portion corresponding to the initial stage.

そして、上記の還元析出反応が進行するに従って、混合液のpHは酸性に向う。すなわち、Niの還元析出速度を低下させ、中心部よりPの濃度を高くして非晶質構造の表層部を有する球状NiP微小粒子の製造が可能となる。一例を述べれば、目的とする球状NiP微小粒子の半径比で、その形成中に半径が約1/2を越えた時に混合液が酸性となるように還元反応に用いる試薬の配合を調整することで、ほぼ1/2までの半径内でP含有量を比較的低くすることが可能となる。   And as said reduction | restoration precipitation reaction advances, pH of a liquid mixture turns to acidity. That is, it is possible to produce spherical NiP microparticles having a surface layer portion having an amorphous structure by reducing the Ni precipitation rate and increasing the P concentration from the central portion. For example, the composition of the reagents used in the reduction reaction is adjusted so that the mixture becomes acidic when the radius ratio of the target spherical NiP microparticles exceeds about 1/2 during the formation. Thus, the P content can be made relatively low within a radius of approximately 1/2.

本発明では、上記した球状NiP微小粒子をそのまま異方性導電フィルムの導電粒子としても良いが、還元析出したままの状態では、粒子の硬さが不充分であるため、電極および配線の表面に生じた絶縁皮膜を突き破ることの難しい場合がある。従って、絶縁皮膜を確実に突き破るための硬さを付与することと、更に球状NiP微小粒子の中心部分を確実に結晶質構造として安定した接続信頼性を得るために、加熱処理を行なう。この時の加熱処理温度と時間は、Niの結晶化とNiの金属間化合物が析出できる条件とする。加熱処理温度が550℃を越える場合には、粒子同士が焼結して凝集体となり、300℃未満ではNiの結晶化およびNiの金属間化合物の析出が不完全となる。そこで、好ましくは300℃〜550℃で数十分から数時間の加熱処理を行なう。更に好ましくは、350℃〜450℃の範囲で加熱処理することにより、硬度の高い球状NiP微小粒子が得られる。また、その加熱処理を行なう雰囲気は、非酸化性雰囲気であれば良いが、望ましくはAr等の不活性ガス雰囲気中であり、また、水素等の還元ガス雰囲気中又は、真空雰囲気中でも良い。   In the present invention, the above-described spherical NiP microparticles may be used as the conductive particles of the anisotropic conductive film as they are. However, the particles are insufficiently hard in the state of being reduced and deposited, so that the surfaces of the electrodes and the wirings are not sufficient. It may be difficult to break through the resulting insulating film. Therefore, heat treatment is performed in order to provide hardness for reliably breaking through the insulating film and to obtain a stable connection reliability in which the central portion of the spherical NiP microparticles has a crystalline structure. The heat treatment temperature and time at this time are set so that Ni crystallization and Ni intermetallic compounds can be precipitated. When the heat treatment temperature exceeds 550 ° C., the particles are sintered to form an aggregate, and when the temperature is less than 300 ° C., Ni crystallization and Ni intermetallic compound precipitation are incomplete. Therefore, the heat treatment is preferably performed at 300 ° C. to 550 ° C. for several tens of minutes to several hours. More preferably, spherical NiP microparticles with high hardness can be obtained by heat treatment in the range of 350 ° C. to 450 ° C. The atmosphere in which the heat treatment is performed may be a non-oxidizing atmosphere, but is desirably an inert gas atmosphere such as Ar, or may be a reducing gas atmosphere such as hydrogen or a vacuum atmosphere.

そして、本発明では上記の加熱処理を施した球状NiP微小粒子を、そのまま異方性導電フィルムの導電粒子として用いることができる。しかし、その最表面へAuを被覆することが好ましい。これにより、接続抵抗を低くすることが可能となり、更に使用環境が水分等の酸化雰囲気となった場合にも球状NiP微小粒子が酸化を受ける等による状態変化が抑制され、安定した接続信頼性が確保できる。   And in this invention, the spherical NiP microparticles which gave said heat processing can be used as a conductive particle of an anisotropic conductive film as it is. However, it is preferable to coat Au on the outermost surface. As a result, the connection resistance can be lowered, and even when the usage environment is an oxidizing atmosphere such as moisture, the state change due to the oxidation of the spherical NiP microparticles is suppressed, and stable connection reliability is achieved. It can be secured.

以下の実施例で本発明を更に詳しく説明する。本発明はその範囲を越えない限り、以下の実施例に限定されるものではない。   The following examples further illustrate the present invention. The present invention is not limited to the following examples as long as the range is not exceeded.

(実施例1)
ホスフィン酸ナトリウム一水和物を純水1.5×10−2(m)に溶解し、1.8(kmol/m)の濃度のホスフィン酸ナトリウム水溶液とし、この水溶液を窒素ガス(流量0.3(m/h))でバブリングしながら343(K)に加熱保持して、リンを含む還元剤水溶液を得た。
Example 1
Sodium phosphinate monohydrate is dissolved in pure water 1.5 × 10 −2 (m 3 ) to obtain a sodium phosphinate aqueous solution having a concentration of 1.8 (kmol / m 3 ). The mixture was heated and held at 343 (K) while bubbling at 0.3 (m 3 / h) to obtain an aqueous reducing agent solution containing phosphorus.

硫酸ニッケル六水和物を1.5×10−2(m)の純水に溶解してニッケル塩の水溶液(濃度0.6(kmol/m))とし、更に、pH緩衝剤としての酢酸ナトリウムとpH調整剤としての水酸化ナトリウムを1.5×10−2(m)の純水に溶解して、pH緩衝剤1.0(kmol/m)とpH調整剤0.9(kmol/m)を含む混合水溶液とした。ニッケル塩水溶液とpH緩衝剤およびpH調整剤の混合水溶液とを十分に撹拌した後に反応容器中でこれら2つの水溶液をよく撹拌混合し、3.0×10−2(m)の金属塩水溶液とした。この金属塩水溶液を撹拌しながら、窒素ガス(流量0.3(m/h))でバブリングして反応容器内を窒素ガス雰囲気とし、343(K)に加熱保持した時にpHを測定すると7.4を示した。 Nickel sulfate hexahydrate was dissolved in 1.5 × 10 −2 (m 3 ) pure water to form an aqueous solution of nickel salt (concentration 0.6 (kmol / m 3 )), and further as a pH buffering agent. Sodium acetate and sodium hydroxide as a pH adjuster are dissolved in 1.5 × 10 −2 (m 3 ) pure water to obtain a pH buffer 1.0 (kmol / m 3 ) and a pH adjuster 0.9. A mixed aqueous solution containing (kmol / m 3 ) was obtained. After sufficiently stirring the nickel salt aqueous solution and the mixed aqueous solution of the pH buffering agent and the pH adjusting agent, these two aqueous solutions are well stirred and mixed in the reaction vessel to obtain a 3.0 × 10 −2 (m 3 ) aqueous metal salt aqueous solution. It was. While stirring this aqueous metal salt solution, bubbling with nitrogen gas (flow rate 0.3 (m 3 / h)) to make the inside of the reaction vessel a nitrogen gas atmosphere, and measuring the pH when heated to 343 (K), 7 .4.

還元剤水溶液および金属塩水溶液の温度が343±1(K)に達した時、還元剤水溶液を反応容器内に入った金属塩水溶液に徐々に加えると激しく水素ガスが発生して還元反応が起こり、生成物が析出した。水素ガスの発生が収まり、水溶液温度が343(K)となるように温度調整を行った。この還元反応が終了するまでの間、窒素ガスのバブリングを続け、混合した溶液を撹拌し続けた。なお、混合した時の溶液のpHは7.3であった。   When the temperature of the reducing agent aqueous solution and the metal salt aqueous solution reaches 343 ± 1 (K), if the reducing agent aqueous solution is gradually added to the metal salt aqueous solution in the reaction vessel, hydrogen gas is generated vigorously and a reduction reaction occurs. The product precipitated out. The temperature was adjusted so that the generation of hydrogen gas ceased and the aqueous solution temperature was 343 (K). Until the reduction reaction was completed, nitrogen gas was continuously bubbled and the mixed solution was continuously stirred. The pH of the solution when mixed was 7.3.

上記の還元反応により得られた生成物を回収して水洗した後に、323(K)で12時間の真空乾燥を行ない、粒子の形状を走査型電子顕微鏡(SEM)で観察したところ、球状の微小粒子であることが確認された。また、上記の球状微小粒子の断面構造を確認するため、収束イオンビーム加工観察装置により、球状粒子の1ケを中央部分で切断し、断面観察用試料として、透過型電子顕微鏡(TEM)で観察し、その断面のTEM写真を図1に示す。図1の縦方向中央部にあるドット5個は、TEM付属のエネルギー分散型X線装置でP濃度を分析した跡であり、最左のドットは粒子中心、左から2番目は中心から0.375μmの位置、左から3番目は中心から0.75μmの位置、左から4番目は中心から1.125μmの位置、最右端は中心から1.5μmの位置すなわち粒子表層に相当する。そのP濃度を図2に粒子の中心からの分析位置(μm)を横軸にしてグラフで示している。このデータから、粒子断面の中心部分は約2%のPを含有する微結晶からなる結晶質領域であり、半径の約1/2を境界に表層部においてはP濃度約7%前後の非晶質構造を呈していることが確認された。図1における中心部および表層部の高分解能TEM像をそれぞれ図3,4に示す。中心部を示す図3には、縞状の結晶質構造が確認できる。   The product obtained by the above reduction reaction was collected, washed with water, vacuum-dried at 323 (K) for 12 hours, and the shape of the particles was observed with a scanning electron microscope (SEM). It was confirmed to be particles. In addition, in order to confirm the cross-sectional structure of the above-mentioned spherical microparticles, one piece of spherical particles is cut at the central portion with a focused ion beam processing observation apparatus and observed with a transmission electron microscope (TEM) as a cross-sectional observation sample. A TEM photograph of the cross section is shown in FIG. The five dots at the center in the vertical direction in FIG. 1 are the traces of the P concentration analyzed by the energy dispersive X-ray apparatus attached to the TEM. The leftmost dot is the particle center, the second from the left is 0. The position at 375 μm, the third from the left corresponds to the position at 0.75 μm from the center, the fourth from the left corresponds to the position at 1.125 μm from the center, and the rightmost end corresponds to the position at 1.5 μm from the center, that is, the particle surface layer. The P concentration is shown in a graph in FIG. 2 with the horizontal axis representing the analysis position (μm) from the center of the particle. From this data, the central part of the particle cross section is a crystalline region composed of microcrystals containing about 2% of P, and an amorphous material having a P concentration of about 7% in the surface layer portion with about 1/2 of the radius as a boundary. It was confirmed to exhibit a quality structure. The high-resolution TEM images of the center part and the surface layer part in FIG. 1 are shown in FIGS. In FIG. 3 showing the center, a striped crystalline structure can be confirmed.

次に、不活性ガス(Ar)雰囲気中において673(K)で加熱処理を行った後に、レーザー回折散乱法によって粒径の分布を測定したところ、d50値が3.0μm、(d90−d10)/d50値が0.62であった。加熱処理後の断面TEM像を、その高分解能TEM像と合わせて、図5〜図7に示す。図5,図6,図7それぞれは加熱処理前のTEM写真の図1,図3,図4に対応する。図5の縦方向中央部にあるドット5個は、TEM付属のエネルギー分散型X線装置でP濃度を分析した跡であって、最右は粒子中心、右から2番目は中心から0.375μmの位置、右から3番目は中心から0.75μmの位置、右から4番目は中心から1.125μmの位置、最左端は中心から1.5μmの位置すなわち粒子表層に相当する。その断面におけるP濃度の変化を図2に合わせて示している。そして、X線回折により構造を確認したところ、図8のX線回折チャートに示すようにNi相とNiP相の構造が確認された。これらの図から、加熱処理後には表層部にNiP金属間化合物が析出しているが、P濃度の変化は加熱処理前と同様の傾向を示していることがわかる。そして、中心部を示す図6には、縞状の結晶質構造が確認できる一方で、表層部を示す図7には、非晶質構造に縞状のNiP相が析出している。 Next, after performing a heat treatment at 673 (K) in an inert gas (Ar) atmosphere, the particle size distribution was measured by a laser diffraction scattering method. As a result, the d 50 value was 3.0 μm, and (d 90 − The d 10 ) / d 50 value was 0.62. The cross-sectional TEM image after the heat treatment is shown in FIGS. 5 to 7 together with the high-resolution TEM image. 5, 6, and 7 correspond to FIGS. 1, 3, and 4 of the TEM photographs before the heat treatment. The five dots in the center in the vertical direction in FIG. 5 are traces of P concentration analyzed by an energy dispersive X-ray apparatus attached to the TEM. The rightmost is the particle center, the second from the right is 0.375 μm from the center. The third from the right corresponds to a position of 0.75 μm from the center, the fourth from the right corresponds to a position of 1.125 μm from the center, and the leftmost end corresponds to a position of 1.5 μm from the center, that is, the particle surface layer. The change of the P concentration in the cross section is also shown in FIG. Then, when the structure was confirmed by X-ray diffraction, the structures of the Ni phase and the Ni 3 P phase were confirmed as shown in the X-ray diffraction chart of FIG. From these figures, it can be seen that NiP intermetallic compounds are deposited on the surface layer portion after the heat treatment, but the change in the P concentration shows the same tendency as before the heat treatment. In FIG. 6 showing the central portion, a striped crystalline structure can be confirmed, while in FIG. 7 showing the surface layer portion, a striped Ni 3 P phase is precipitated in the amorphous structure.

これらの測定結果から、ここで得られた粒子は球状NiP微小粒子であり、その成分組成はNiを主体にPを含むことが明らかである。また、その粒子構造は中心部が結晶質で表層部が非晶質にNiP金属間化合物が分散した構造となっている。更に、表層部のP含有量が中心部のP含有量よりも高くなっている。   From these measurement results, it is clear that the particles obtained here are spherical NiP microparticles, and the composition of the components contains P mainly including Ni. The particle structure is a structure in which the central part is crystalline and the surface layer part is amorphous and the NiP intermetallic compound is dispersed. Furthermore, the P content in the surface layer portion is higher than the P content in the central portion.

続いて、ビスフェノール系エポキシ樹脂、イミダゾール系硬化剤とシランカップリング剤をトルエンに溶解してバインダ(絶縁性樹脂接着剤)溶液を作製した。その溶液に導電粒子として、上で得た球状NiP微小粒子を9体積%添加して均一に分散するように撹拌し、剥離用PETフィルム上に乾燥後の厚さが20(μm)となるように塗布してフィルム状の組成物を作製した。   Subsequently, a bisphenol epoxy resin, an imidazole curing agent, and a silane coupling agent were dissolved in toluene to prepare a binder (insulating resin adhesive) solution. 9% by volume of the spherical NiP fine particles obtained above are added as conductive particles to the solution and stirred so as to uniformly disperse, and the thickness after drying on the peeling PET film is 20 (μm). A film-like composition was prepared by applying to the film.

得られたフィルム状組成物を配線ピッチ200(μm)、電極幅75(μm)のPWB(Printed Wiring Board)とTCP(Tape Carrier Package)の間に設置し、453(K)、2(MPa)で15秒間の加圧加熱により接続をした。接続後の各端子の接続抵抗を測定したところ、平均で0.3(Ω)であり、絶縁抵抗は10(Ω)以上であった。その試験片を358(K)で85%湿度の高温高湿放置試験を500時間、233(K)〜373(K)の熱衝撃試験を500サイクル行った後に各端子の接続抵抗を測定すると、全て0.5(Ω)以下であり、良好な接続信頼性が確認された。 The obtained film composition was placed between PWB (Printed Wiring Board) having a wiring pitch of 200 (μm) and an electrode width of 75 (μm) and TCP (Tape Carrier Package), and 453 (K) and 2 (MPa). And connected by pressure heating for 15 seconds. When the connection resistance of each terminal after connection was measured, it was 0.3 (Ω) on average, and the insulation resistance was 10 8 (Ω) or more. When the connection resistance of each terminal was measured after performing a thermal shock test of 233 (K) to 373 (K) for 500 hours in a high-temperature and high-humidity test at 85% humidity at 358 (K) for 500 hours, All were 0.5 (Ω) or less, and good connection reliability was confirmed.

(実施例2)
リンを含む還元剤水溶液としてホスフィン酸ナトリウム1.8(kmol/m)の水溶液を1.5×10−2(m)作製した。硫酸ニッケル0.6(kmol/m)のニッケル塩水溶液1.5×10−2(m)を準備し、pH緩衝剤のマレイン酸0.3(kmol/m)とpH調整剤の水酸化ナトリウム1.55(kmol/m)とを含む混合水溶液1.5×10−2(m)を準備し、ニッケル塩水溶液と混合水溶液とを撹拌混合して金属塩水溶液を3.0×10−2(m)作製した。上の還元剤水溶液と金属塩水溶液を窒素ガス雰囲気下で343(K)に撹拌加熱し、実施例1と同様な方法により、加熱処理までを行ない球状NiP微小粒子を製造した。なお、混合した時のpHは7.5であった。レーザー回折散乱法により、粒径の分布を確認したところd50値が6.8μm、(d90−d10)/d50値が0.63であり、図9のSEM写真に示す球状NiP微小粒子を得た。なお、その断面構造は、結晶質構造を有する中心部と、非晶質構造を有する表層部とからなりかつ、その表層部にはNiP金属間化合物が存在していることを、確認できた。
(Example 2)
An aqueous solution of sodium phosphinate 1.8 (kmol / m 3 ) was prepared as an aqueous reducing agent solution containing phosphorus, 1.5 × 10 −2 (m 3 ). Nickel sulfate 0.6 Prepare (kmol / m 3) of aqueous nickel salt solution 1.5 × 10 -2 (m 3) , maleic acid 0.3 pH buffering agent (kmol / m 3) and the pH adjusting agent A mixed aqueous solution 1.5 × 10 −2 (m 3 ) containing sodium hydroxide 1.55 (kmol / m 3 ) was prepared, and the nickel salt aqueous solution and the mixed aqueous solution were stirred and mixed to obtain the metal salt aqueous solution 3. 0 × 10 −2 (m 3 ) was produced. The above reducing agent aqueous solution and metal salt aqueous solution were stirred and heated to 343 (K) in a nitrogen gas atmosphere, and heat treatment was performed in the same manner as in Example 1 to produce spherical NiP fine particles. The pH when mixed was 7.5. When the particle size distribution was confirmed by laser diffraction scattering, the d 50 value was 6.8 μm and the (d 90 -d 10 ) / d 50 value was 0.63, and the spherical NiP microscopic size shown in the SEM photograph of FIG. Particles were obtained. It was confirmed that the cross-sectional structure was composed of a central part having a crystalline structure and a surface layer part having an amorphous structure, and the NiP intermetallic compound was present in the surface layer part.

ここで得た球状NiP微小粒子を活性化処理液に浸漬して水洗した後に、Au含有量2(g/l)の無電解Auめっき液を用いて343(K)で置換Auめっきを行った。水洗した後に真空乾燥を行ない、Auめっきの厚さを確認すると60(nm)の皮膜が形成されていた。   The spherical NiP microparticles obtained here were immersed in an activation treatment solution and washed with water, and then substituted Au plating was performed at 343 (K) using an electroless Au plating solution having an Au content of 2 (g / l). . After washing with water and vacuum drying, the thickness of the Au plating was confirmed, and a film of 60 (nm) was formed.

次に、この表層部にAuめっきを施した球状NiP微小粒子を実施例1と同様に、ビスフェノール系エポキシ樹脂、イミダゾール系硬化剤とシランカップリング剤をトルエンに溶解してバインダ溶液に、5体積%添加して均一に分散するように撹拌し、剥離用PETフィルム上に乾燥後の厚さが20(μm)となるように塗布してフィルム状の組成物を作製した。   Next, in the same manner as in Example 1, spherical NiP microparticles with Au plating on the surface layer were dissolved in toluene with a bisphenol epoxy resin, an imidazole curing agent, and a silane coupling agent. % And stirred so as to disperse uniformly, and applied onto a peeling PET film so that the thickness after drying was 20 (μm) to prepare a film-like composition.

そして、この組成物をTCPとAl回路の形成されたガラス電極の間に設置し、448(K)、2(MPa)で20秒間の加圧加熱し接続した。接続後の各端子の接続抵抗を測定すると、平均で0.2(Ω)であり、絶縁抵抗は10(Ω)以上であった。その試験片を358(K)で85%湿度の高温高湿放置試験を750時間、233(K)〜373(K)の熱衝撃試験を750サイクル行った後に各端子の接続抵抗を測定すると、全て0.8(Ω)以下であり、良好な接続信頼性が確認された。 And this composition was installed between the glass electrode in which TCP and Al circuit were formed, and it connected by pressurizing and heating for 20 seconds at 448 (K) and 2 (MPa). When the connection resistance of each terminal after connection was measured, it was 0.2 (Ω) on average, and the insulation resistance was 10 8 (Ω) or more. When the connection resistance of each terminal was measured after 750 cycles of a thermal shock test of 233 (K) to 373 (K) for 750 hours at 358 (K) and a high-temperature and high-humidity test at 85% humidity, All were 0.8 (Ω) or less, and good connection reliability was confirmed.

(比較例1)
特許文献1に従い、ホスフィン酸ナトリウム1.8(kmol/m)水溶液と、水酸化ナトリウム0.6(kmol/m)および酢酸ナトリウム0.5(kmol/m)の混合水溶液を、それぞれ2.5×10−4(m)作製し、ウォーターバス中で加熱撹拌しながら2液を混合して還元剤水溶液とし、窒素ガスを流してバブリングを行なって、水溶液の温度が343±1(K)となるように調整した。
(Comparative Example 1)
According to Patent Document 1, an aqueous solution of sodium phosphinate 1.8 (kmol / m 3 ) and a mixed aqueous solution of sodium hydroxide 0.6 (kmol / m 3 ) and sodium acetate 0.5 (kmol / m 3 ), respectively, 2.5 × 10 −4 (m 3 ) was prepared, and the two liquids were mixed with heating and stirring in a water bath to form an aqueous reducing agent solution, and bubbling was performed by flowing nitrogen gas, so that the temperature of the aqueous solution was 343 ± 1. (K) was adjusted.

一方で、塩化ニッケル0.6(kmol/m)の金属塩水溶液2.5×10−4(m)を作製し、液温が343±1(K)となるように調整した。還元剤水溶液および金属塩水溶液の液温が目標温度に達した時、金属塩水溶液を一気に還元剤水溶液へ投入すると、反応が起こっていることを示す水素ガスが発生し、その水素ガスの発生が収まるまで撹拌を続け、液温が343(K)となるように調整した。この投入した時のpHは7.0であった。 Meanwhile, an aqueous metal salt solution of nickel chloride 0.6 (kmol / m 3 ) 2.5 × 10 −4 (m 3 ) was prepared, and the liquid temperature was adjusted to 343 ± 1 (K). When the temperature of the reducing agent aqueous solution and the metal salt aqueous solution reaches the target temperature, if the metal salt aqueous solution is poured into the reducing agent aqueous solution at once, hydrogen gas is generated to indicate that a reaction is occurring, and the generation of the hydrogen gas occurs. Stirring was continued until it settled, and the liquid temperature was adjusted to 343 (K). The pH at the time of charging was 7.0.

反応終了後、吸引ろ過により黒色の固形物を回収し、水洗して残留溶液を除去した後に、323(K)で24時間乾燥して微細粒子を得た。微細粒子を、X線回折によって構造を観察したところ、実質的に非晶質のNiP微細粒子であることが確認された。また、SEMにより微細粒子を観察すると、粒子の凝集が確認され、ジェットミルで解砕処理を行った。実施例1と同様に、粒径分布を確認したところd50値が2.9μm、(d90−d10)/d50値が1.17であった。 After completion of the reaction, a black solid was collected by suction filtration, washed with water to remove the residual solution, and then dried at 323 (K) for 24 hours to obtain fine particles. When the structure of the fine particles was observed by X-ray diffraction, it was confirmed that the fine particles were substantially amorphous NiP fine particles. Further, when the fine particles were observed with an SEM, the aggregation of the particles was confirmed, and the crushing treatment was performed with a jet mill. As in Example 1, when the particle size distribution was confirmed, the d 50 value was 2.9 μm, and the (d 90 -d 10 ) / d 50 value was 1.17.

ここで得た実質的に非結晶のNiP微細粒子を実施例1と同様に、トルエンに溶解したビスフェノール系エポキシ樹脂、イミダゾール系硬化剤とシランカップリング剤のバインダ溶液に、10体積%添加して均一に分散するように撹拌し、剥離用PETフィルム上に乾燥後の厚さが20(μm)となるように塗布してフィルム状の組成物を作製し、配線ピッチ200(μm)、電極幅75(μm)のPWBとTCPの間に置いて、453(K)、2(MPa)で15秒間の加圧加熱して接続した。   10% by volume of the substantially amorphous NiP fine particles obtained here was added to a binder solution of a bisphenol-based epoxy resin, an imidazole-based curing agent and a silane coupling agent dissolved in toluene, as in Example 1. The mixture is stirred so that it is uniformly dispersed, and coated on the PET film for peeling so that the thickness after drying is 20 (μm) to produce a film-like composition. The wiring pitch is 200 (μm), the electrode width It was placed between PWB of 75 (μm) and TCP, and connected by applying pressure heating at 453 (K) and 2 (MPa) for 15 seconds.

接続後の各端子の接続抵抗を測定したところ、平均で1.2(Ω)であり、絶縁抵抗は10(Ω)以上であった。その試験片を358(K)で85%湿度の高温高湿放置試験を500時間、233(K)〜373(K)の熱衝撃試験を500サイクル行った後に各端子の接続抵抗を測定すると、平均で32(Ω)と高い値を示した。また、絶縁抵抗は10(Ω)以上であった。 When the connection resistance of each terminal after connection was measured, it was 1.2 (Ω) on average, and the insulation resistance was 10 8 (Ω) or more. When the connection resistance of each terminal was measured after performing a thermal shock test of 233 (K) to 373 (K) for 500 hours in a high-temperature and high-humidity test at 85% humidity at 358 (K) for 500 hours, The average value was as high as 32 (Ω). Moreover, the insulation resistance was 10 8 (Ω) or more.

高い導電性と硬度、均一な粒子分布を有する本発明の球状NiP微小粒子は、異方性導電フィルムの導電粒子に加えて、同様の特性を必要とする異方性導電ペーストなどの、導電粒子としても適用できる。   The spherical NiP fine particles of the present invention having high conductivity, hardness, and uniform particle distribution are conductive particles such as anisotropic conductive pastes that require similar characteristics in addition to the conductive particles of the anisotropic conductive film. It can also be applied.

加熱処理前の球状NiP微小粒子の断面構造の一例を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows an example of the cross-sectional structure of the spherical NiP microparticles | fine-particles before heat processing. 加熱処理前の球状NiP微小粒子および、加熱処理後の本発明の球状NiP微小粒子の断面におけるP濃度の一例を示すグラフである。It is a graph which shows an example of the P density | concentration in the cross section of the spherical NiP microparticles | fine-particles before heat processing, and the spherical NiP microparticles of this invention after heat processing. 加熱処理前の球状NiP微小粒子の中心部断面構造の一例を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows an example of the center part cross-section of the spherical NiP microparticle before heat processing. 加熱処理前の球状NiP微小粒子の表層部断面構造の一例を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows an example of the surface layer part cross-section of the spherical NiP microparticle before heat processing. 加熱処理後の本発明の球状NiP微小粒子の断面構造の一例を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows an example of the cross-sectional structure of the spherical NiP microparticles | fine-particles of this invention after heat processing. 加熱処理後の本発明の球状NiP微小粒子の中心部断面構造の一例を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows an example of center part cross-section of the spherical NiP microparticles | fine-particles of this invention after heat processing. 加熱処理後の本発明の球状NiP微小粒子の表層部断面構造の一例を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows an example of the surface layer part cross-section of the spherical NiP microparticles | fine-particles of this invention after heat processing. 加熱処理後の本発明の球状NiP微小粒子の構造を示すX線回折結果の一例を示すX線回折チャートである。It is an X-ray diffraction chart which shows an example of the X-ray-diffraction result which shows the structure of the spherical NiP microparticles | fine-particles of this invention after heat processing. 本発明の球状NiP微小粒子の一例を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows an example of the spherical NiP microparticles | fine-particles of this invention.

Claims (4)

Niを主体にPを含む成分組成であり、その構造は結晶質構造を有する中心部と、非晶質にNiP金属間化合物が分散した構造を有する表層部とからなる球状NiP微小粒子であって、その表層部のP含有量が中心部のP含有量よりも高いことを特徴とする球状NiP微小粒子。 It is a component composition containing Ni as a main component and containing P, and the structure is a spherical NiP fine particle comprising a central portion having a crystalline structure and a surface layer portion having a structure in which NiP intermetallic compounds are dispersed in an amorphous state. Spherical NiP fine particles characterized in that the P content in the surface layer portion is higher than the P content in the central portion. 粒子径がd50:1〜10μmであり、かつその粒度分布が[(d90−d10)/d50]≦1.0(d90、d10、d50:積算分布曲線において、90体積%、10体積%、50体積%を示す粒子径)であることを特徴とする請求項1に記載の球状NiP微小粒子。 The particle size is d 50 : 1 to 10 μm, and the particle size distribution is [(d 90 −d 10 ) / d 50 ] ≦ 1.0 (d 90 , d 10 , d 50 : 90 volumes in the integrated distribution curve. The spherical NiP microparticles according to claim 1, wherein the particle diameter is 1%, 10% by volume, or 50% by volume. ニッケル塩の水溶液と、pH調整剤およびpH緩衝剤の混合水溶液と、リンを含む還元剤水溶液とを混合して還元析出反応させて、Niを主体にPを含む球状NiP微小粒子を製造する方法であって、混合して還元析出反応を開始させる時のpHが7超のアルカリ性になるように調整し、還元析出反応によって得られた球状NiP微小粒子に300℃以上の加熱処理を行なうことを特徴とする球状NiP微小粒子の製造方法。 A method for producing spherical NiP microparticles mainly containing Ni by mixing an aqueous solution of a nickel salt, a mixed aqueous solution of a pH adjusting agent and a pH buffering agent, and a reducing agent aqueous solution containing phosphorus to cause a reduction precipitation reaction. The mixture is adjusted so that the pH when mixed and the reduction precipitation reaction is started is alkalinity exceeding 7, and the spherical NiP microparticles obtained by the reduction precipitation reaction are subjected to heat treatment at 300 ° C. or higher. A method for producing spherical NiP fine particles. 請求項1または2に記載の球状NiP微小粒子の表面にAuが被覆されていることを特徴とする異方性導電フィルム用導電粒子。 Conductive particles for an anisotropic conductive film, wherein the surface of the spherical NiP fine particles according to claim 1 or 2 is coated with Au.
JP2004324868A 2004-11-09 2004-11-09 Method for producing spherical NiP fine particles and method for producing conductive particles for anisotropic conductive film Active JP4451760B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004324868A JP4451760B2 (en) 2004-11-09 2004-11-09 Method for producing spherical NiP fine particles and method for producing conductive particles for anisotropic conductive film
KR1020050105862A KR100880742B1 (en) 2004-11-09 2005-11-07 Spherical NiP micro-particles and producing method thereof, conductive particles for anisotropic conductive film
TW094139054A TWI339140B (en) 2004-11-09 2005-11-08 Fabricating method of ball-shaped nip micro particle and fabricating method of conductive particle for anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004324868A JP4451760B2 (en) 2004-11-09 2004-11-09 Method for producing spherical NiP fine particles and method for producing conductive particles for anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2006131978A true JP2006131978A (en) 2006-05-25
JP4451760B2 JP4451760B2 (en) 2010-04-14

Family

ID=36725787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004324868A Active JP4451760B2 (en) 2004-11-09 2004-11-09 Method for producing spherical NiP fine particles and method for producing conductive particles for anisotropic conductive film

Country Status (3)

Country Link
JP (1) JP4451760B2 (en)
KR (1) KR100880742B1 (en)
TW (1) TWI339140B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095146A (en) * 2006-10-12 2008-04-24 Akita Prefecture Spherical nickel microparticle, production method therefor, and electroconductive particle for anisotropic electroconductive film
JP2009197317A (en) * 2007-10-18 2009-09-03 Hitachi Metals Ltd REDUCTION PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND PRODUCTION METHOD THEREOF
KR20150101376A (en) 2014-02-26 2015-09-03 히다찌긴조꾸가부시끼가이사 Conductive Particle, Conductive Powder, Conductive Polymer Composition, and Anisotropic Conductive Sheet
WO2015141485A1 (en) * 2014-03-17 2015-09-24 日立金属株式会社 Catalytic pd particles, catalytic pd powder, and method for producing catalytic pd particles
WO2016063684A1 (en) * 2014-10-24 2016-04-28 日立金属株式会社 Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
WO2022210217A1 (en) * 2021-03-30 2022-10-06 日立金属株式会社 Conductive metal particle production method and conductive metal particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102612482B1 (en) * 2021-11-16 2023-12-11 덕산네오룩스 주식회사 Conductive Particles, Conductive materials, used the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474623A (en) * 1993-05-28 1995-12-12 Rhone-Poulenc Inc. Magnetically anisotropic spherical powder and method of making same
JPH10317021A (en) * 1997-05-22 1998-12-02 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko Spherical amorphous co(cobalt)-ni-p ternary alloy powder and its production
JP2001279306A (en) * 2000-03-30 2001-10-10 Akita Pref Gov Shigen Gijutsu Kaihatsu Kiko METHOD FOR MANUFACTURING SPHERICAL Ni-P AMORPHOUS METAL POWDER
JP4524727B2 (en) * 2000-04-26 2010-08-18 日立金属株式会社 Ni alloy grain for anisotropic conductive film and method for producing the same
JP4088137B2 (en) * 2002-11-13 2008-05-21 積水化学工業株式会社 Conductive fine particles and anisotropic conductive materials

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095146A (en) * 2006-10-12 2008-04-24 Akita Prefecture Spherical nickel microparticle, production method therefor, and electroconductive particle for anisotropic electroconductive film
JP2009197317A (en) * 2007-10-18 2009-09-03 Hitachi Metals Ltd REDUCTION PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND PRODUCTION METHOD THEREOF
JP2013177690A (en) * 2007-10-18 2013-09-09 Hitachi Metals Ltd REDUCTION-PRECIPITATION TYPE SPHERICAL NiP PARTICLE AND METHOD FOR PRODUCING THE SAME
KR101433799B1 (en) 2007-10-18 2014-08-25 히타치 긴조쿠 가부시키가이샤 REDUCED AND PRECIPITATED FINE NiP PARTICLES AND MANUFACTURING METHOD FOR THE SAME
KR101538012B1 (en) * 2007-10-18 2015-07-22 히타치 긴조쿠 가부시키가이샤 Anisotropic conductive film used for connecting wiring and manufacturing method for the same
KR20150101376A (en) 2014-02-26 2015-09-03 히다찌긴조꾸가부시끼가이사 Conductive Particle, Conductive Powder, Conductive Polymer Composition, and Anisotropic Conductive Sheet
WO2015141485A1 (en) * 2014-03-17 2015-09-24 日立金属株式会社 Catalytic pd particles, catalytic pd powder, and method for producing catalytic pd particles
JPWO2015141485A1 (en) * 2014-03-17 2017-04-06 日立金属株式会社 Pd particles for catalyst, Pd powder for catalyst, and method for producing Pd particles for catalyst
WO2016063684A1 (en) * 2014-10-24 2016-04-28 日立金属株式会社 Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP2016084504A (en) * 2014-10-24 2016-05-19 日立金属株式会社 Conductive particle, conductive powder, conductive polymer composition and anisotropic conductive sheet
KR20170073650A (en) 2014-10-24 2017-06-28 히다찌긴조꾸가부시끼가이사 Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
WO2022210217A1 (en) * 2021-03-30 2022-10-06 日立金属株式会社 Conductive metal particle production method and conductive metal particles
JP7380947B2 (en) 2021-03-30 2023-11-15 株式会社プロテリアル Method for producing conductive metal particles and conductive metal particles

Also Published As

Publication number Publication date
KR100880742B1 (en) 2009-02-02
JP4451760B2 (en) 2010-04-14
TWI339140B (en) 2011-03-21
KR20060052506A (en) 2006-05-19
TW200616736A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
KR101301634B1 (en) Silver-copper composite powder having silver microparticule attached thereto, and method of production of the silver-copper composite powder
EP3192597A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet, each of which uses said silver-coated copper powder
KR101922575B1 (en) Conductive particle, conductive material, and method for manufacturing the conductive particle
JP5622127B2 (en) Reduction precipitation type spherical NiP fine particles and method for producing the same
JP2005314755A (en) Flake copper powder, production method therefor and conductive paste
KR100880742B1 (en) Spherical NiP micro-particles and producing method thereof, conductive particles for anisotropic conductive film
WO2006068061A1 (en) Superfine copper powder slurry and process for producing the same
EP3187279A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
JP2006225692A (en) Tin-coated copper powder and composite electrically conductive paste using the tin-coated copper powder
JP2009013449A (en) Flat silver powder, method for producing flat silver powder, and electrically conductive paste
JP4144695B2 (en) Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
KR20180132176A (en) Conductive particles, method for producing same, conductive resin composition containing same, and conductive coated material
JP4144694B2 (en) Tin-coated copper powder, method for producing the tin-coated copper powder, and conductive paste using the tin-coated copper powder
JP2003268402A (en) Highly dispersive metal powder, manufacturing method therefor and electroconductive paste containing metal powder
JP4881013B2 (en) Conductive powder, conductive paste and electrical circuit
JP2003342621A (en) Method for manufacturing copper powder and copper powder obtained thereby
JP4942090B2 (en) Method for producing spherical nickel fine particles and method for producing conductive particles for anisotropic conductive film
JP6443732B2 (en) Conductive particles, conductive powder, conductive polymer composition and anisotropic conductive sheet
JP6286852B2 (en) Conductive particles, anisotropic conductive adhesive, and method for producing conductive particles
JP2002298654A (en) Conductive powder and conductive composite
JP7041305B2 (en) Conductive particles, conductive materials and connecting structures using them
WO2021235434A1 (en) Electroconductive particles, and electroconductive material and connection structure using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100128

R150 Certificate of patent or registration of utility model

Ref document number: 4451760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250