JP2006083377A - Electrically conductive adhesive and method for producing article utilizing the electrically conductive adhesive - Google Patents

Electrically conductive adhesive and method for producing article utilizing the electrically conductive adhesive Download PDF

Info

Publication number
JP2006083377A
JP2006083377A JP2005237302A JP2005237302A JP2006083377A JP 2006083377 A JP2006083377 A JP 2006083377A JP 2005237302 A JP2005237302 A JP 2005237302A JP 2005237302 A JP2005237302 A JP 2005237302A JP 2006083377 A JP2006083377 A JP 2006083377A
Authority
JP
Japan
Prior art keywords
conductive adhesive
metal
conductive
amount
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005237302A
Other languages
Japanese (ja)
Other versions
JP4828178B2 (en
Inventor
Takehisa Osako
雄久 大迫
Naoto Shioi
直人 塩井
Daisuke Ito
大輔 伊東
Hideyuki Goto
英之 後藤
Yorishige Matsuba
頼重 松葉
Kazuki Tateyama
和樹 舘山
Yasunari Ukita
康成 浮田
Masao Segawa
雅雄 瀬川
Takuo Kikuchi
拓雄 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Harima Chemical Inc
Original Assignee
Toshiba Corp
Harima Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Harima Chemical Inc filed Critical Toshiba Corp
Priority to JP2005237302A priority Critical patent/JP4828178B2/en
Publication of JP2006083377A publication Critical patent/JP2006083377A/en
Application granted granted Critical
Publication of JP4828178B2 publication Critical patent/JP4828178B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrically conductive adhesive capable of solvent dilution for giving good coating workability, capable of preventing a gas from forming, when a binder resin is heated and cured after mounting of parts, and capable of forming an electrically conductive joint excellent in both of thermal conductivity and electrical conductivity. <P>SOLUTION: This electrically conductive adhesive contains an electrically conductive medium, a thermosetting resin as a binder resin component, and a solvent for adjusting a liquid viscosity as essential components, wherein 100 pts.wt. of a silver powder having an average particle diameter of a micrometer size is, for example, used as a main component, together with 1-10 pts.wt. of silver fine particles having an average particle diameter of a nanometer size, in the electrically conductive medium, and further 5-15 pts.wt. of the thermosetting resin and 10 pts.wt. or less of the solvent are together used in the adhesive. The adhesive having a mixing ratio of the components thus selected avoids formation of gas components, when the thermosetting resin is heated/cured, and therefore prevents formation of voids, and further realizes preparation of the electrically conductive joint excellent in the thermal conductivity and the electrical conductivity at the same time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、導電性媒体とする金属成分と、接着剤成分とする熱硬化性樹脂とを主要構成成分とする導電性接着剤、ならびに、該導電性接着剤を利用する導電性接合操作を含む組み立て工程を有する物品の製造方法に関する。特に、本発明は、リードフレーム上への半導体チップ部品のマウントなどにおける、導電性接合に好適に利用可能な導電性接着剤、ならびに、リードフレーム上への半導体チップ部品のマウント工程に該導電性接着剤を利用する半導体装置の製造方法に関する。   The present invention includes a conductive adhesive mainly comprising a metal component as a conductive medium and a thermosetting resin as an adhesive component, and a conductive bonding operation using the conductive adhesive. The present invention relates to a method for manufacturing an article having an assembly process. In particular, the present invention relates to a conductive adhesive that can be suitably used for conductive bonding in mounting a semiconductor chip component on a lead frame and the like, and the conductivity in the mounting step of the semiconductor chip component on a lead frame. The present invention relates to a method for manufacturing a semiconductor device using an adhesive.

二つの導電性部材間を電気的かつ物理的に接続する、所謂、導電性接合法として、ロウ付けの手法が広く利用されている。例えば、リードフレーム上に半導体チップ部品をマウントして、半導体装置を製造する際、半導体チップの裏面に設ける裏面電極層と、リードフレーム表面のパッド部との導電性接合には、ハンダ接合が広く利用されてきた。具体的には、錫合金ハンダ材、特に、錫/鉛合金ハンダ材は、低融点合金であり、半導体チップのダイマウントにおける導電性接合部材として、広く利用されてきた。また。例えば、半導体レーザのように、導電性接合される裏面電極面を通過する電流の面密度が大きな半導体装置では、導電性接合部自体の抵抗がシリーズ抵抗の主要な構成成分ともなり、導電性接合部材自体、その体積固有抵抗率が低いことが要求される。一方、半導体チップ表面に素子の動作領域が構成され、裏面電極自体は、用いる半導体基板の電位を一定に保持するため、所定の電圧が印加される、例えば、接地されるが、本質的には、この裏面電極面を通過する電流は存在しない構成を有する半導体装置では、導電性接合部材自体の体積固有抵抗率の大小は特に問題とはされない。但し、半導体チップ表面に設ける、素子動作領域で発生する熱を放散し、素子自体の動作温度の上昇を抑制するため、半導体基板、その裏面に設ける裏面電極、さらに、導電性接合部を介して、リードフレームへと熱放散を図る過程において、導電性接合部における熱抵抗を低く抑えることが要求される。   As a so-called conductive bonding method for electrically and physically connecting two conductive members, a brazing method is widely used. For example, when a semiconductor device is manufactured by mounting a semiconductor chip component on a lead frame, solder bonding is widely used for conductive bonding between a back electrode layer provided on the back surface of the semiconductor chip and a pad portion on the lead frame surface. Has been used. Specifically, a tin alloy solder material, particularly a tin / lead alloy solder material, is a low melting point alloy and has been widely used as a conductive bonding member in a die mount of a semiconductor chip. Also. For example, in a semiconductor device having a large surface density of current passing through the back electrode surface to be conductively bonded, such as a semiconductor laser, the resistance of the conductive junction itself is a main component of the series resistance. The member itself is required to have a low volume resistivity. On the other hand, an operating region of the element is formed on the surface of the semiconductor chip, and the back electrode itself is applied with a predetermined voltage, for example, grounded in order to keep the potential of the semiconductor substrate to be used constant. In a semiconductor device having a configuration in which no current passes through the back electrode surface, the volume specific resistivity of the conductive bonding member itself is not particularly problematic. However, in order to dissipate the heat generated in the element operating area provided on the semiconductor chip surface and suppress the increase in the operating temperature of the element itself, the semiconductor substrate, the back electrode provided on the back surface, and further through the conductive junction In the process of dissipating heat to the lead frame, it is required to keep the thermal resistance at the conductive joint portion low.

この種の半導体チップのダイマウント工程に、錫/鉛合金ハンダを利用する導電性接合を用いる際、ハンダ溶融を行う加熱温度は250℃〜300℃程度であり、この程度の加熱温度によって、半導体チップ表面に設ける、素子動作領域に及ぼされる熱的影響は極限定されたものである。なお、半導体装置の製造工程では、このダイマウント工程以降、ワイヤ・ボンド工程など、半導体チップをマウントしたリードフレーム全体の加熱を要する工程が実施されるが、かかる錫/鉛合金ハンダ層で構成される導電性接合部に、前述の熱履歴に由来するダメージが及ぶことを回避するため、利用する錫/鉛合金ハンダとしては、その融解温度が250℃以上の鉛含有比率の高いハンダ材が利用されている。   When conductive bonding using tin / lead alloy solder is used in the die mounting process of this type of semiconductor chip, the heating temperature for performing solder melting is about 250 ° C. to 300 ° C., and this level of heating temperature causes the semiconductor to be melted. The thermal influence on the element operating area provided on the chip surface is extremely limited. In the semiconductor device manufacturing process, after this die mounting process, a process that requires heating of the entire lead frame on which the semiconductor chip is mounted, such as a wire bonding process, is carried out, and it is composed of such a tin / lead alloy solder layer. In order to avoid the damage caused by the above-mentioned thermal history to the conductive joint, the tin / lead alloy solder to be used is a solder material having a melting point of 250 ° C. or higher and a high lead content ratio. Has been.

このように導電性接合部材として、機能上は好適な錫/鉛合金ハンダは、含まれている鉛自体は、種々の鉛化合物、例えば、酸化鉛となると、高い毒性を示すため、将来的には、その使用を回避することが、必須の課題とされている。現状、錫/鉛合金ハンダに代えて、鉛を含有しない錫合金ハンダ、所謂、鉛フリーハンダの開発と、使用拡大が進められている。現状開発が進められている鉛フリーハンダの大半は、錫を主成分とする低融点型の鉛フリーハンダであり、残念ながら、現段階では、上述する半導体チップのダイマウント用途に適合する、融解温度が250℃以上300℃以下の範囲に設定された鉛フリーハンダに関しては、未だ開発の途上にある。   As described above, a tin / lead alloy solder that is suitable in terms of function as a conductive bonding member is highly toxic when contained in various lead compounds, for example, lead oxide. Therefore, avoiding its use is an essential issue. Currently, instead of tin / lead alloy solder, development and expansion of use of tin alloy solder not containing lead, so-called lead-free solder, has been promoted. Most lead-free solders currently under development are low-melting-point lead-free solders mainly composed of tin, and unfortunately, at this stage, they are compatible with the above-mentioned semiconductor chip die mounting applications. The lead-free solder whose temperature is set in the range of 250 ° C. or more and 300 ° C. or less is still under development.

錫合金ハンダを利用する導電性接合法以外に、半導体チップの裏面電極に対して電気的な接合を形成する導電性接合部に由来するシリーズ抵抗、ならびに、熱抵抗が必ずしも低い必要がない素子では、導電性ペースト型の導電性接着剤を利用する導電性接合法も利用されている。この導電性ペースト型の導電性接着剤は、熱硬化性樹脂成分中に、導電性媒体に利用する、金属粉を金属フィラー(金属充填材)として、均一に分散させたものであり、キュア処理によって、樹脂成分を熱硬化させ、この樹脂硬化物をバインダー樹脂として利用し、金属フィラー相互に緻密な、物理的接触を形成している。この硬化物層は、含まれる金属フィラー相互の緻密な、物理的接触によって、全体として、導電性の層を構成しており、硬化物層表面に緻密に存在している金属フィラーと、接合対象の金属面との間における物理的接触によって、接合対象の金属面と硬化物層の界面でも、電気的な流路が形成されている。硬化物層を形成しているバインダー樹脂の接着特性を利用することで、硬化物層の接合対象の金属面への接着、固定が達成され、金属フィラーと、接合対象の金属面との間における物理的接触による電流流路が保持されている。また、この緻密に形成される金属フィラー相互の接触網で構成される電流流路は、同時に、熱の流路としても機能する結果、硬化物層自体は、相当に良好な熱伝導性を発揮するものとなる。   In addition to the conductive bonding method using tin alloy solder, the series resistance derived from the conductive junction that forms an electrical bond to the back electrode of the semiconductor chip, and the element that does not necessarily have a low thermal resistance A conductive bonding method using a conductive paste type conductive adhesive is also used. This conductive paste type conductive adhesive is obtained by uniformly dispersing metal powder used as a conductive medium in a thermosetting resin component as a metal filler (metal filler). Thus, the resin component is thermally cured, and the cured resin is used as a binder resin to form a dense physical contact between the metal fillers. This hardened material layer forms a conductive layer as a whole due to the dense physical contact between the metal fillers contained therein, and the metal filler present on the hardened material layer surface and the object to be joined An electrical flow path is also formed at the interface between the metal surface to be bonded and the cured product layer by physical contact with the metal surface. By using the adhesive properties of the binder resin that forms the cured product layer, adhesion and fixation of the cured product layer to the metal surface to be joined is achieved, and between the metal filler and the metal surface to be joined. A current flow path by physical contact is maintained. In addition, the current flow path constituted by the densely formed metal filler mutual contact network functions as a heat flow path at the same time. As a result, the cured product layer itself exhibits a considerably good thermal conductivity. To be.

また、導電性媒体として、平均粒子径が数μm程度の金属フィラーを利用する従来型の導電性金属ペーストと比較して、得られる硬化物層自体の導電特性、ならびに、熱伝導特性を向上させる提案もなされている。例えば、導電性金属ペーストに利用する導電性媒体として、平均粒子径が数μm程度の金属粉に加えて、平均粒子径は100nm以下、例えば、20nm以下の金属超微粒子を少量配合し、緻密に形成される金属粉相互の接触網に加えて、隣接する金属粉相互の狭い隙間に金属超微粒子の充填領域を設け、加熱処理を施す際、この充填領域中の金属超微粒子を低温焼結することで、格段に向上された導電特性を発揮する、ハイブリッド型の導電性金属ペーストも開発されている(特許文献1参照)。このハイブリッド型の導電性金属ペーストは、主に導電性金属ペーストを利用して、微細な配線パターンを作製することを目的として、開発されているものであるが、硬化物層自体に優れた導電特性をもたらす、金属超微粒子の低温焼結体により、隣接する金属粉相互の狭い隙間を充填した構造は、同時に、優れた熱伝導特性を与えている。
国際公開第02/035554号パンフレット
In addition, the conductive property of the obtained cured product layer itself and the heat conduction property are improved as compared with a conventional conductive metal paste using a metal filler having an average particle diameter of about several μm as a conductive medium. Proposals have also been made. For example, as a conductive medium used for the conductive metal paste, in addition to metal powder having an average particle diameter of about several μm, an average particle diameter is 100 nm or less, for example, a small amount of metal ultrafine particles having a diameter of 20 nm or less. In addition to the contact network between the metal powders to be formed, a metal ultrafine particle filling region is provided in a narrow gap between adjacent metal powders, and when heat treatment is performed, the metal ultrafine particles in this filling region are sintered at a low temperature. Thus, a hybrid conductive metal paste that exhibits significantly improved conductive properties has also been developed (see Patent Document 1). This hybrid type conductive metal paste has been developed mainly for the purpose of producing a fine wiring pattern using the conductive metal paste, but it has excellent conductivity for the cured product layer itself. The structure in which the narrow gaps between adjacent metal powders are filled by the low-temperature sintered body of ultrafine metal particles, which provides the characteristics, at the same time gives excellent heat conduction characteristics.
International Publication No. 02/035554 Pamphlet

導電性ペースト型の導電性接着剤は、利用されている熱硬化性樹脂の熱硬化温度が、一般に250℃以下であり、通常、200℃程度の加熱温度でも十分なキュア処理が可能である。この利点から、半導体チップのダイマウント工程において、錫/鉛合金ハンダによる導電性接合で利用される加熱処理温度と同程度の温度において、導電性接合を達成しようとする際、導電性ペースト型の導電性接着剤の幅広い利用が検討されている。導電性ペースト型の導電性接着剤の組成は、その硬化物層において、導電性媒体として機能する、金属粉などの金属フィラー成分を、熱硬化性樹脂からなるバインダー樹脂の接着性能を利用して、金属フィラー成分が互いに緻密な接触をした電流流路網に形成、固定化を図るため、金属フィラー成分の隙間空間を満たす上で適する量の熱硬化性樹脂成分を配合したものである。一方、半導体チップのダイマウント工程に際して、接合面全体に塗布充填するため、液粘度を適正に調整する必要があり、通常、粘度調整用の溶剤が添加されている。この溶剤が添加されている状態の導電性ペースト型の導電性接着剤は、例えば、リードフレーム表面のパッド部に適量塗布した上で、半導体チップをダイマウントする際、半導体チップの裏面に設ける裏面電極層全面と接し、同時に、均一な塗布液層厚となるように、押し拡げられる。ついで、キュア処理、すなわち、配合されている溶剤を蒸散、除去した後、熱硬化性樹脂成分の熱硬化処理を行って、バインダー樹脂による接合面との接着と、硬化物層自体の形成がなされる。   In the conductive paste type conductive adhesive, the thermosetting temperature of the thermosetting resin used is generally 250 ° C. or lower, and sufficient curing treatment is possible even at a heating temperature of about 200 ° C. Because of this advantage, in the die mounting process of a semiconductor chip, when attempting to achieve conductive bonding at a temperature comparable to the heat treatment temperature used for conductive bonding with tin / lead alloy solder, Wide use of conductive adhesives is being studied. The composition of the conductive paste type conductive adhesive uses a metal filler component such as metal powder that functions as a conductive medium in the cured product layer, utilizing the adhesive performance of a binder resin made of a thermosetting resin. In order to form and fix in the current channel network in which the metal filler components are in close contact with each other, an amount of a thermosetting resin component suitable for filling the gap space of the metal filler component is blended. On the other hand, in the die mounting process of the semiconductor chip, in order to apply and fill the entire bonding surface, it is necessary to appropriately adjust the liquid viscosity, and a viscosity adjusting solvent is usually added. The conductive paste type conductive adhesive to which the solvent is added is applied to the pad portion on the surface of the lead frame, for example, and the back surface provided on the back surface of the semiconductor chip when the semiconductor chip is die mounted. The electrode layer is in contact with the entire surface, and at the same time, it is expanded so as to have a uniform coating liquid layer thickness. Then, after the curing process, that is, the mixed solvent is evaporated and removed, the thermosetting resin component is subjected to the thermosetting process to bond the binder resin to the bonding surface and form the cured product layer itself. The

ダイマウントされる半導体チップのサイズ、特に、チップ面積が小さな場合には、含有されている溶剤の蒸散、除去は速やかに進行するが、チップ面積が大きくなるとともに、半導体チップの中央部に位置する導電性ペースト型の導電性接着剤塗布層から、その薄い層厚の間隙を介して、塗布層の外周へと溶剤が染み出し、蒸散するに要する時間は長くなる。従って、蒸散性が劣る溶剤を利用すると、半導体チップの中央部に位置する塗布層には、溶剤が僅かに残留し、その後、熱硬化性樹脂成分の熱硬化処理を行うと、残余する僅かな量の溶剤は、固液分離に伴って、硬化層の上部に集められる。最終的に、硬化物層上面と半導体チップの裏面電極層の界面、特に、その中央領域に凝集し、残余する僅かな量の溶剤が気化すると、ボイドを形成する現象が見られる。この硬化物層上面と半導体チップの裏面電極層の界面に形成されるボイド領域では、硬化物層と裏面電極層との直接的な接触が達成できない状態となる。そのため、電流流路、ならびに、熱の流路の形成に必要な、裏面電極層と金属フィラーとの接触は、このボイド領域では達成できず、換言するならば、形成される導電性接合の電気抵抗、ならびに熱抵抗を上昇させる要因となる。   When the size of the semiconductor chip to be die-mounted, particularly when the chip area is small, evaporation and removal of the contained solvent proceeds rapidly, but the chip area increases and is located at the center of the semiconductor chip. The time required for the solvent to ooze out from the conductive paste type conductive adhesive coating layer to the outer periphery of the coating layer through the gap of the thin layer thickness and to evaporate becomes long. Therefore, when a solvent with poor transpiration is used, a slight amount of solvent remains in the coating layer located at the center of the semiconductor chip. After that, when the thermosetting treatment of the thermosetting resin component is performed, a small amount remains. The amount of solvent is collected on top of the cured layer with solid-liquid separation. Eventually, a phenomenon occurs in which a void is formed when an agglomeration occurs at the interface between the upper surface of the cured product layer and the back electrode layer of the semiconductor chip, particularly at the central region, and a small amount of remaining solvent is vaporized. In the void region formed at the interface between the upper surface of the cured product layer and the back electrode layer of the semiconductor chip, direct contact between the cured product layer and the back electrode layer cannot be achieved. For this reason, the contact between the back electrode layer and the metal filler necessary for forming the current flow path and the heat flow path cannot be achieved in this void region. It becomes a factor which raises resistance and thermal resistance.

本発明者らは、この僅かに残留する溶剤以外にも、例えば、バインダー樹脂成分として配合されている熱硬化性樹脂に対する、熱硬化反応を目的とする加熱処理を実施すると、この加熱下で起こる副次的な反応により、幾つかの副反応生成物が生成することに気がついた。これらの副反応生成物のうち、ガス化して散逸する「ガス状または揮発性副反応生成物」の量が相当比率で含まれると、接合部界面への「ガス状または揮発性副反応生成物」の集積が引き起こされ、やはり、ボイド発生を引き起こすことを見出した。すなわち、仮に、溶剤の残留量を皆無としても、前記バインダー樹脂成分として配合されている熱硬化性樹脂に対する、熱硬化反応を目的とする加熱処理に付随して、この加熱下で起こる副次的な反応が原因となる、「内因性」の「ガス状または揮発性副反応生成物」に由来するボイド発生を抑制することも、解決すべき新たな課題として発見した。   In addition to this slightly remaining solvent, the present inventors, for example, when a heat treatment for thermosetting reaction is performed on a thermosetting resin blended as a binder resin component, occurs under this heating. It was noticed that some side reaction products were formed by the side reaction. Among these side reaction products, if the amount of "gaseous or volatile side reaction products" that are dissipated by gasification is included in a considerable ratio, the "gaseous or volatile side reaction products" to the joint interface It has been found that the accumulation of "" is caused, and it also causes void generation. That is, even if there is no residual amount of solvent, there is a secondary that occurs under this heating accompanying the heat treatment for the thermosetting reaction on the thermosetting resin blended as the binder resin component. It has also been discovered as a new problem to be solved to suppress the generation of voids originating from “endogenous” “gaseous or volatile side reaction products” caused by a complex reaction.

本発明は前記の課題を解決するもので、本発明の目的は、従来の錫/鉛合金ハンダを利用する導電性接合と同程度の加熱処理温度で、高い作業効率、再現性で導電性接合が実施でき、得られる導電性接合部は、その導電性接合層の層厚に対して、導電性接合面積が相対的に大きくなった際にも、導電性接合部全体に均一で、良好な熱伝導特性が達成できる、新規な導電性ペースト型の導電性接着剤を提供することにある。加えて、本発明の更なる目的は、かかる新規な導電性ペースト型の導電性接着剤を利用して、導電性接合を実施する物品の製造方法を提供することにある。   The present invention solves the above-mentioned problems, and the object of the present invention is to conduct conductive bonding with high work efficiency and reproducibility at the same heat treatment temperature as conventional conductive bonding using tin / lead alloy solder. The conductive joint obtained is uniform and good over the entire conductive joint even when the conductive joint area is relatively large relative to the thickness of the conductive joint layer. It is an object of the present invention to provide a novel conductive paste type conductive adhesive capable of achieving thermal conductivity characteristics. In addition, a further object of the present invention is to provide a method for producing an article for conducting conductive bonding using such a novel conductive paste type conductive adhesive.

本発明者らは、上記の課題を解決すべく、鋭意研究を進めた結果、以下の知見を得た。先ず、国際公開第02/035554号パンフレットに開示されているハイブリッド型の導電性金属ペーストでは、導電性金属ペーストに利用する導電性媒体として、平均粒子径が数μm程度の金属粉に加えて、平均粒子径は100nm以下、例えば、20nm以下の金属超微粒子を少量配合し、緻密に形成される金属粉相互の接触網に加えて、隣接する金属粉相互の狭い隙間に金属超微粒子の充填領域を設け、加熱処理を施す際、この充填領域中の金属超微粒子を低温焼結することで、格段に向上された導電特性を発揮するとともに、優れた熱伝導性をも有する硬化物層の作製に適していることが確認された。この特長は、目的とする導電性金属ペースト型の導電性接着剤に適合するものであり、残る問題は、例えば、半導体チップのダイ・マウンティング工程に応用する際、得られる硬化物層上面と半導体チップの裏面電極層の界面でのボイド形成を如何に回避するかに集約されることが判明した。引き続き、検討を進めたところ、前述するハイブリッド型の導電性金属ペーストにおいて、平均粒子径が0.5〜30μmの範囲に選択されている金属粉に対して、平均粒子径が1〜20nmの範囲に選択される金属超微粒子の金属表面に有機化合物による被覆層を有する超微粒子を一定比率で併用する形態とし、一方、熱硬化性樹脂の配合比率、ならびに、液粘度調整用に添加される溶剤の添加比率を一定の範囲に選択すると、導電性接合形成のため、キュア処理を施し、硬化物層を形成する際、溶剤の残留を回避可能であり、同時に、前記バインダー樹脂成分として配合されている熱硬化性樹脂に対する、熱硬化反応を目的とする加熱処理に付随して、この加熱下で起こる副次的な反応が原因となる、「内因性」の「ガス状または揮発性副反応生成物」の総量も抑制することが可能となることを見出した。実際、前記の特定の組成に調合される、導電性金属ペースト型の導電性接着剤を利用すると、得られる硬化物層上面と半導体チップの裏面電極層の界面でのボイド形成が実際に回避でき、その結果、得られる導電性接合部の熱伝導特性は、見かけの熱伝導率に換算した際、例えば、従来の錫/鉛合金ハンダ材を利用する導電性接合における熱伝導率よりは、若干劣るものの、最終目的物の半導体装置において、必要とされる導電性接合部の熱伝導特性の水準は、十分な余裕をもって上回ることを確認した。本発明者らは、前記の検証を含め、一連の知見に基づき、以下に示す本発明を完成するに至った。   As a result of diligent research to solve the above problems, the present inventors have obtained the following knowledge. First, in the hybrid type conductive metal paste disclosed in the pamphlet of International Publication No. 02/035554, in addition to the metal powder having an average particle diameter of about several μm as a conductive medium used for the conductive metal paste, An average particle size of 100 nm or less, for example, 20 nm or less is mixed with a small amount of metal ultrafine particles, and in addition to a densely formed contact network between metal powders, a filling region of metal ultrafine particles in a narrow gap between adjacent metal powders When the heat treatment is performed, the ultrafine metal particles in this filling region are sintered at low temperature to produce a hardened material layer that exhibits significantly improved electrical conductivity and also has excellent thermal conductivity It was confirmed that it was suitable for. This feature is compatible with the intended conductive metal paste type adhesive, and the remaining problems are, for example, the top surface of the cured product layer and the semiconductor obtained when applied to the die mounting process of a semiconductor chip. It has been found out that how to avoid void formation at the interface of the back electrode layer of the chip can be summarized. Subsequently, as a result of further investigation, in the above-described hybrid conductive metal paste, the average particle size is in the range of 1 to 20 nm with respect to the metal powder selected in the range of 0.5 to 30 μm in average particle size. The ultrafine particles having a coating layer made of an organic compound on the metal surface of the ultrafine metal particles selected in the above are used together in a certain ratio, while the mixing ratio of the thermosetting resin and the solvent added for adjusting the liquid viscosity When the addition ratio is selected within a certain range, it is possible to avoid residual solvent when forming a cured product layer by performing a curing process for forming a conductive bond, and at the same time, blended as the binder resin component. "Intrinsic" "gaseous or volatile" due to side reactions that occur under this heating associated with heat treatment for thermosetting resin The total amount of the reaction product "is also found that it is possible to suppress. In fact, when a conductive metal paste type conductive adhesive formulated to the above specific composition is used, void formation at the interface between the upper surface of the obtained cured product layer and the back electrode layer of the semiconductor chip can actually be avoided. As a result, when the thermal conductivity characteristics of the obtained conductive joint are converted into the apparent thermal conductivity, for example, the thermal conductivity in the conductive joint using the conventional tin / lead alloy solder material is slightly Although it is inferior, it was confirmed that the required level of the heat conduction characteristic of the conductive junction in the semiconductor device as the final object exceeded with a sufficient margin. The present inventors have completed the present invention shown below based on a series of findings including the above-described verification.

すなわち、本発明にかかる第一の形態の導電性接着剤は、
導電性媒体とする金属成分と、接着剤成分とする熱硬化性樹脂とを主要構成成分とする導電性接着剤であって、
該導電性接着剤は、
(A)銀、銅、金、白金、ニッケル、亜鉛、ビスマス、タングステンからなる群から選択される、少なくとも1種以上の金属材料で形成され、その平均粒子径が0.5〜30μmの範囲に選択されている金属粉、
(B)銀、銅、金、白金、ニッケル、亜鉛、ビスマスからなる群から選択される、少なくとも1種以上の金属材料で形成され、平均粒子径が1〜20nmの範囲に選択される金属超微粒子の金属表面に有機化合物による被覆層を有する超微粒子、
(C)熱硬化性樹脂、
(D)溶剤
を必須成分として含有し、
該導電性接着剤中における、前記必須成分の配合量比率は、
前記金属粉の配合量Aを100質量部としたとき
前記超微粒子の配合量Bを、1〜10質量部の範囲に、
前記熱硬化性樹脂の配合量Cを、5〜15質量部の範囲に、
前記溶剤の配合量Dを、10質量部以下の範囲に、
それぞれ選択してなる配合組成である導電性接着剤である。
That is, the conductive adhesive of the first form according to the present invention is
A conductive adhesive mainly comprising a metal component as a conductive medium and a thermosetting resin as an adhesive component,
The conductive adhesive is
(A) It is formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, bismuth and tungsten, and has an average particle diameter in the range of 0.5 to 30 μm. Selected metal powder,
(B) A metal superstructure formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, and bismuth and having an average particle diameter of 1 to 20 nm. Ultrafine particles having a coating layer of an organic compound on the metal surface of the fine particles,
(C) thermosetting resin,
(D) contains a solvent as an essential component,
In the conductive adhesive, the blending ratio of the essential components is:
When the blending amount A of the metal powder is 100 parts by mass, the blending amount B of the ultrafine particles is in the range of 1 to 10 parts by mass.
The blending amount C of the thermosetting resin is in the range of 5 to 15 parts by mass,
The amount D of the solvent is in the range of 10 parts by mass or less,
It is the conductive adhesive which is the compounding composition formed by selecting each.

特には、前記配合組成を有する導電性接着剤において、
100質量部となる量Wの導電性接着剤に対して、不活性ガス雰囲気下、150℃以上、300℃以下の範囲に設定される温度において、所定時間加熱処理し、前記溶剤の蒸散、および、前記熱硬化性樹脂の硬化を施す際、
前記加熱処理に伴い、気相中への散逸成分に起因する総質量減少量E、
前記量Wの導電性接着剤中に含まれ、蒸散される前記溶剤の量D1
前記量Wの導電性接着剤中に含まれる、前記金属粉の量A1
前記量Wの導電性接着剤中に含まれる、前記超微粒子の量B1
前記量Wの導電性接着剤中に含まれる、前記熱硬化性樹脂の量C1
と定義し、
気相中への散逸成分に起因する総質量減少量E中、蒸散される前記溶剤の量D1を除く、質量減少量αを、
式1: α≡E−D1
と定義し、溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を、
式2: F≡{α/(A1+B1+C1)}×100
と定義する際、
該質量損失率F(%)は、3質量%以下である
ことを特徴とする導電性接着剤である。
In particular, in a conductive adhesive having the above composition,
A heat treatment for a predetermined time at a temperature set in a range of 150 ° C. or more and 300 ° C. or less in an inert gas atmosphere with respect to the conductive adhesive of an amount W to be 100 parts by mass, transpiration of the solvent, and When curing the thermosetting resin,
Along with the heat treatment, the total mass loss E due to the dissipative component into the gas phase,
The amount of solvent D 1 contained in the amount W of conductive adhesive and evaporated;
The amount A 1 of the metal powder contained in the conductive adhesive of the amount W;
The amount B 1 of the ultrafine particles contained in the conductive adhesive of the amount W;
The amount C 1 of the thermosetting resin contained in the conductive adhesive of the amount W;
And define
In the total mass reduction amount E due to the components dissipated into the gas phase, the mass reduction amount α, excluding the amount D 1 of the solvent to be evaporated,
Formula 1: α≡ED 1
And the mass loss rate F (%) due to gas generation other than solvent transpiration,
Formula 2: F≡ {α / (A 1 + B 1 + C 1 )} × 100
When defining
The mass loss rate F (%) is 3% by mass or less, and is a conductive adhesive.

また、本発明にかかる第二の形態の導電性接着剤は、
導電性媒体とする金属成分と、接着剤成分とする熱硬化性樹脂とを主要構成成分とする導電性接着剤であって、
該導電性接着剤は、
(A)銀、銅、金、白金、ニッケル、亜鉛、ビスマス、タングステンからなる群から選択される、少なくとも1種以上の金属材料で形成され、その平均粒子径が0.5〜30μmの範囲に選択されている金属粉、
(B)銀、銅、金、白金、ニッケル、亜鉛、ビスマスからなる群から選択される、少なくとも1種以上の金属材料で形成され、その平均粒子径が1〜20nmの範囲に選択される金属超微粒子の金属表面に有機化合物による被覆層を有する超微粒子、
(C)熱硬化性樹脂、
(D)溶剤
を必須成分として含有し、
該導電性接着剤中における、前記必須成分の配合量比率は、
金属粉の配合量Aを、74.0質量部〜94.3質量部の範囲に、
前記超微粒子の配合量Bを、0.9質量部〜8.7質量部の範囲に、
前記熱硬化性樹脂の配合量Cを、4.0質量部〜12.9質量部の範囲に、
前記溶剤の配合量Dを、8.6質量部以下の範囲に、
それぞれ選択してなる配合組成である導電性接着剤である。
Moreover, the conductive adhesive of the second form according to the present invention is
A conductive adhesive mainly comprising a metal component as a conductive medium and a thermosetting resin as an adhesive component,
The conductive adhesive is
(A) It is formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, bismuth and tungsten, and has an average particle diameter in the range of 0.5 to 30 μm. Selected metal powder,
(B) A metal formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, and bismuth, and having an average particle diameter of 1 to 20 nm. Ultrafine particles having a coating layer of an organic compound on the metal surface of the ultrafine particles,
(C) thermosetting resin,
(D) contains a solvent as an essential component,
In the conductive adhesive, the blending ratio of the essential components is:
The blending amount A of the metal powder is in the range of 74.0 parts by mass to 94.3 parts by mass,
The blending amount B of the ultrafine particles is in the range of 0.9 parts by mass to 8.7 parts by mass,
The amount C of the thermosetting resin is in the range of 4.0 parts by mass to 12.9 parts by mass,
The solvent content D is in the range of 8.6 parts by mass or less,
It is the conductive adhesive which is the compounding composition formed by selecting each.

特には、前記配合組成を有する導電性接着剤において、
100質量部となる量Wの導電性接着剤に対して、不活性ガス雰囲気下、150℃以上、300℃以下の範囲に設定される温度において、所定時間加熱処理し、前記溶剤の蒸散、および、前記熱硬化性樹脂の硬化を施す際、
前記加熱処理に伴い、気相中への散逸成分に起因する総質量減少量E、
前記量Wの導電性接着剤中に含まれ、蒸散される前記溶剤の量D1
前記量Wの導電性接着剤中に含まれる、前記金属粉の量A1
前記量Wの導電性接着剤中に含まれる、前記超微粒子の量B1
前記量Wの導電性接着剤中に含まれる、前記熱硬化性樹脂の量C1
と表記し、
気相中への散逸成分に起因する総質量減少量E中、蒸散される前記溶剤の量D1を除く、質量減少量αを、
式1: α≡E−D1
と定義し、溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を、
式2: F≡{α/(A1+B1+C1)}×100
と定義する際、
該質量損失率F(%)は、3質量%以下である
ことを特徴とする導電性接着剤である。
In particular, in a conductive adhesive having the above composition,
A heat treatment for a predetermined time at a temperature set in a range of 150 ° C. or more and 300 ° C. or less in an inert gas atmosphere with respect to the conductive adhesive of an amount W to be 100 parts by mass, transpiration of the solvent, and When curing the thermosetting resin,
Along with the heat treatment, the total mass loss E due to the dissipative component into the gas phase,
The amount of solvent D 1 contained in the amount W of conductive adhesive and evaporated;
The amount A 1 of the metal powder contained in the conductive adhesive of the amount W;
The amount B 1 of the ultrafine particles contained in the conductive adhesive of the amount W;
The amount C 1 of the thermosetting resin contained in the conductive adhesive of the amount W;
And
In the total mass reduction amount E due to the components dissipated into the gas phase, the mass reduction amount α, excluding the amount D 1 of the solvent to be evaporated,
Formula 1: α≡ED 1
And the mass loss rate F (%) due to gas generation other than solvent transpiration,
Formula 2: F≡ {α / (A 1 + B 1 + C 1 )} × 100
When defining
The mass loss rate F (%) is 3% by mass or less, and is a conductive adhesive.

その際、本発明にかかる導電性接着剤においては、
前記(A)金属粉として、(A−1)球状の金属粉と(A−2)フレーク状の金属粉との混合物を用い、
該(A−1)球状の金属粉と(A−2)フレーク状の金属粉の混合比率は、質量比率として、(A−1)球状の金属粉:(A−2)フレーク状の金属粉=99:1〜50:50の範囲に選択されていることが好ましい。
At that time, in the conductive adhesive according to the present invention,
As the (A) metal powder, a mixture of (A-1) spherical metal powder and (A-2) flaky metal powder is used,
The mixing ratio of the (A-1) spherical metal powder and (A-2) flaky metal powder is, as a mass ratio, (A-1) spherical metal powder: (A-2) flaky metal powder It is preferably selected in the range of 99: 1 to 50:50.

一方、前記(B)超微粒子中の金属超微粒子の金属表面に存在する、前記被覆層を構成する有機化合物は、
前記(C)熱硬化性樹脂の樹脂構成成分のいずれかと反応して、前記熱硬化性樹脂の一部となる有機化合物が用いられていることが望ましい。
On the other hand, the organic compound constituting the coating layer, which is present on the metal surface of the ultrafine metal particles (B) in the ultrafine particles,
It is desirable to use an organic compound that reacts with any of the resin components of the (C) thermosetting resin and becomes a part of the thermosetting resin.

特には、前記(C)熱硬化性樹脂は、
樹脂構成成分として、エポキシ樹脂とその硬化剤のほか、
カップリング剤を含む熱硬化性樹脂組成物であると、より好ましいものとなる。
In particular, the (C) thermosetting resin is
In addition to epoxy resins and their curing agents,
It will become more preferable in it being a thermosetting resin composition containing a coupling agent.

一方、前記(D)溶剤は、
エポキシ樹脂に対する反応性を示さない有機溶媒であって、
1013hPa(1気圧)の大気中における、沸点が少なくとも160℃以上、260℃未満、望ましくは、180℃以上、210℃未満である有機溶媒から選択されていると、より好ましいものとなる。
On the other hand, the (D) solvent is
An organic solvent that does not exhibit reactivity with an epoxy resin,
More preferably, the organic solvent is selected from organic solvents having a boiling point of at least 160 ° C. and less than 260 ° C., desirably 180 ° C. and less than 210 ° C. in the atmosphere of 1013 hPa (1 atm).

加えて、本発明は、上述する本発明にかかる導電性接着剤の用途の発明として、本発明にかかる導電性接着剤を利用して、物品を製造する方法の発明を併せて提供しており、例えば、少なくとも、導電性接合によって連結されてなる第一の部材と第二の部材とを構成要素として含む物品を製造する際に、本発明にかかる導電性接着剤を利用して、導電性接合を形成する方法の発明を提供する。   In addition, the present invention also provides an invention of a method for producing an article using the conductive adhesive according to the present invention as an invention of the use of the conductive adhesive according to the present invention described above. For example, when manufacturing an article including at least a first member and a second member that are connected by conductive bonding as constituent elements, the conductive adhesive according to the present invention is used to provide conductivity. An invention of a method of forming a bond is provided.

すなわち、本発明にかかる物品の製造方法は、
導電性接合体と、この導電性接合体によって連結されている第一の部材と第二の部材とを含む物品を製造する方法であって、
前記第一の部材と第二の部材とを、上記の構成を有する本発明にかかる導電性接着剤を介して、保持し、
前記導電性接着剤を加熱することによって前記導電性接合体を得て、連結する工程を有する
ことを特徴とする物品の製造方法である。
That is, the method for manufacturing an article according to the present invention includes:
A method of manufacturing an article including a conductive joined body, and a first member and a second member connected by the conductive joined body,
Holding the first member and the second member via the conductive adhesive according to the present invention having the above-described configuration,
A method for producing an article comprising a step of obtaining and connecting the conductive joined body by heating the conductive adhesive.

特に、半導体装置の製造へと適用する形態を選択する、本発明にかかる半導体装置の製造方法は、
上記構成を有する本発明にかかる導電性接着剤を、リードフレーム上にダイマウント材として供給する工程;
前記ダイマウント材に半導体素子をマウントする工程;
前記ダイマウント材を加熱硬化し、導電性接合体を形成する工程;
前記半導体素子とリードフレームとの間を、金属ワイヤで接続する工程;
前記リードフレームの少なくとも一部、ダイマウント材、半導体素子、金属ワイヤを封止する工程とを具備する
ことを特徴とする半導体装置の製造方法である。
In particular, a method for manufacturing a semiconductor device according to the present invention, which selects a form to be applied to the manufacture of a semiconductor device,
Supplying the conductive adhesive according to the present invention having the above configuration as a die mount material on a lead frame;
Mounting a semiconductor element on the die mount material;
Heat-curing the die mount material to form a conductive joined body;
Connecting the semiconductor element and the lead frame with a metal wire;
And a step of sealing at least a part of the lead frame, a die mount material, a semiconductor element, and a metal wire.

例えば、樹脂モールド型半導体装置の製造へ適用すると、
少なくとも、導電性接合によってリードフレーム上にダイマウントされた半導体素子と、該リードフレームとの間で、金属ワイヤによる接続を形成後、樹脂モールドが施されている、樹脂モールド型半導体装置を製造する方法であって、
該製造プロセスは、導電性接合によるダイマウント材として、導電性接着剤を利用し、
本発明にかかる導電性接着剤を、リードフレーム上にダイマウント材として供給する工程;
前記ダイマウント材に半導体素子をマウントする工程;
前記ダイマウント材を加熱硬化し、導電性接合体を形成する工程;
前記半導体素子とリードフレームとの間を、金属ワイヤで接続する工程;
前記リードフレームの少なくとも一部、ダイマウント材、半導体素子、金属ワイヤを樹脂封止する工程とを具備することを特徴とする樹脂モールド型半導体装置の製造方法である。
For example, when applied to the manufacture of a resin mold type semiconductor device,
A resin mold type semiconductor device in which a resin mold is applied after forming a connection by a metal wire between a semiconductor element die-mounted on a lead frame by conductive bonding and the lead frame is manufactured. A method,
The manufacturing process uses a conductive adhesive as a die mount material by conductive bonding,
Supplying the conductive adhesive according to the present invention as a die mount material on a lead frame;
Mounting a semiconductor element on the die mount material;
Heat-curing the die mount material to form a conductive joined body;
Connecting the semiconductor element and the lead frame with a metal wire;
And a step of resin-sealing at least part of the lead frame, a die mount material, a semiconductor element, and a metal wire.

本発明にかかる導電性接着剤を利用すると、液粘度の調整目的で添加される溶剤の蒸散を予め行った後、バインダー樹脂成分として配合されている熱硬化性樹脂に対する、熱硬化反応を目的とする加熱処理を実施すると、この加熱下で起こる副次的な反応により生成する副反応生成物のうち、ガス化して散逸する「ガス状または揮発性副反応生成物」の量が少なく、従って、接合部界面への「ガス状または揮発性副反応生成物」の集積に起因するボイド発生が回避でき、また、剥離を誘起する要因も少なくなっている。特に、ボイド発生、界面での剥離が抑制されると、導電性接合層と接合対象との接触面積が保持され、熱伝導性に優れた接合部を得ることができる。加えて、作製される導電性接合部に、ボイドや界面での剥離がないものとすることで、例えば、その後、温度サイクルが加わる間に、次第に、界面での剥離が拡大することも抑制されるため、接合部の長期信頼性も向上する。   When the conductive adhesive according to the present invention is used, after the evaporation of the solvent added for the purpose of adjusting the liquid viscosity is performed in advance, the purpose is a thermosetting reaction to the thermosetting resin blended as the binder resin component. When the heat treatment is performed, the amount of “gaseous or volatile side reaction products” that are gasified and dissipated among the side reaction products generated by the side reaction that occurs under this heating is small. The generation of voids due to the accumulation of “gaseous or volatile side reaction products” at the joint interface can be avoided, and the factors that induce peeling are reduced. In particular, when generation of voids and separation at the interface are suppressed, the contact area between the conductive bonding layer and the bonding target is maintained, and a bonded portion having excellent thermal conductivity can be obtained. In addition, by making the manufactured conductive joints free from voids and separation at the interface, for example, it is also suppressed that the separation at the interface gradually increases during the subsequent temperature cycle. Therefore, the long-term reliability of the joint is also improved.

以上に述べたように、国際公開第02/035554号パンフレットに開示されているハイブリッド型の導電性金属ペーストは、主に導電性金属ペーストを利用して、微細な配線パターンを作製することを目的として、開発されてものであるものの、それから作製される硬化物層自体に優れた導電特性をもたらす、金属超微粒子の低温焼結体により、隣接する金属粉相互の狭い隙間を充填した構造は、同時に、優れた熱伝導特性を与えている点に着目し、更なる改良、具体的には、導電性接着剤の用途に適合するように、組成の最適化を進めた結果、本発明にかかる導電性接着剤が完成されたものである。従って、国際公開第02/035554号パンフレットに開示されているハイブリッド型の導電性金属ペーストを特徴付ける、基本的な構成を具え、その組成は、特に、半導体チップのダイ・マウンティング工程に応用する際、得られる硬化物層上面と半導体チップの裏面電極層の界面でのボイド形成を回避するという新規な目的に、適合する配合比率に選択されたものである。   As described above, the hybrid type conductive metal paste disclosed in the pamphlet of International Publication No. 02/035554 is intended to produce a fine wiring pattern mainly using the conductive metal paste. Although it has been developed, a structure filled with a narrow gap between adjacent metal powders by a low-temperature sintered body of metal ultrafine particles, which provides excellent conductive properties to the cured product layer itself produced therefrom, At the same time, focusing on the point of giving excellent heat conduction characteristics, further improvement, specifically, optimization of the composition to suit the use of the conductive adhesive, as a result of the present invention A conductive adhesive is completed. Accordingly, the basic structure characterizing the hybrid type conductive metal paste disclosed in the pamphlet of International Publication No. 02/035554 is provided, and the composition thereof is particularly applied to a die mounting process of a semiconductor chip. The blending ratio was selected so as to meet the novel purpose of avoiding void formation at the interface between the upper surface of the obtained cured product layer and the back electrode layer of the semiconductor chip.

以下に、本発明にかかる導電性接着剤について、より詳しく説明する。   Hereinafter, the conductive adhesive according to the present invention will be described in more detail.

まず、本発明にかかる導電性接着剤の構成は、互いに実質的に等価な技術思想を有する、以下に記載する二種の形態として表記することが可能である。   First, the configuration of the conductive adhesive according to the present invention can be expressed as the following two forms having technical ideas substantially equivalent to each other.

この二種の形態のうち、本発明の第一の形態にかかる導電性接着剤は、
導電性媒体とする金属成分と、接着剤成分とする熱硬化性樹脂とを主要構成成分とする導電性接着剤であって、
該導電性接着剤は、
(A)銀、銅、金、白金、ニッケル、亜鉛、ビスマス、タングステンからなる群から選択される、少なくとも1種以上の金属材料で形成され、その平均粒子径が0.5〜30μmの範囲に選択されている金属粉、
(B)銀、銅、金、白金、ニッケル、亜鉛、ビスマスからなる群から選択される、少なくとも1種以上の金属材料で形成され、その平均粒子径が1〜20nmの範囲に選択される金属超微粒子に対して、該金属超微粒子の金属表面に有機化合物による被覆層を設けてなる超微粒子、
(C)熱硬化性樹脂、
(D)溶剤
を必須成分として含有し、
該導電性接着剤中における、前記必須成分の(A)金属粉、(B)超微粒子、(C)熱硬化性樹脂、(D)溶剤の配合量比率は、
前記金属粉の配合量Aを100質量部としたとき、
前記超微粒子の配合量Bを、1〜10質量部の範囲に、
前記熱硬化性樹脂の配合量Cを、5〜15質量部の範囲に、
前記溶剤の配合量Dを、10質量部以下の範囲に、
それぞれ選択してなる配合組成である導電性接着剤である。
Of these two forms, the conductive adhesive according to the first form of the present invention is
A conductive adhesive mainly comprising a metal component as a conductive medium and a thermosetting resin as an adhesive component,
The conductive adhesive is
(A) It is formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, bismuth and tungsten, and has an average particle diameter in the range of 0.5 to 30 μm. Selected metal powder,
(B) A metal formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, and bismuth, and having an average particle diameter of 1 to 20 nm. Ultrafine particles obtained by providing a coating layer of an organic compound on the metal surface of the ultrafine metal particles,
(C) thermosetting resin,
(D) contains a solvent as an essential component,
In the conductive adhesive, the mixing ratio of the essential components (A) metal powder, (B) ultrafine particles, (C) thermosetting resin, and (D) solvent is as follows:
When the amount A of the metal powder is 100 parts by mass,
The amount B of the ultrafine particles is in the range of 1 to 10 parts by mass,
The blending amount C of the thermosetting resin is in the range of 5 to 15 parts by mass,
The amount D of the solvent is in the range of 10 parts by mass or less,
It is the conductive adhesive which is the compounding composition formed by selecting each.

特には、前記配合組成を有する導電性接着剤において、
100質量部となる量Wの導電性接着剤に対して、不活性ガス雰囲気下、150℃以上、300℃以下の範囲に設定される温度において、所定時間加熱処理し、前記溶剤の蒸散、および、前記熱硬化性樹脂の硬化を施す際、
前記加熱処理に伴い、気相中への散逸成分に起因する総質量減少量E、
前記量Wの導電性接着剤中に含まれ、蒸散される前記溶剤の量D1
前記量Wの導電性接着剤中に含まれる、前記金属粉の量A1
前記量Wの導電性接着剤中に含まれる、前記超微粒子の量B1
前記量Wの導電性接着剤中に含まれる、前記熱硬化性樹脂の量C1
と表記し、
気相中への散逸成分に起因する総質量減少量E中、蒸散される前記溶剤の量D1を除く、質量減少量αを、
式1: α≡E−D1
と定義し、前記溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を、
式2: F≡{α/(A1+B1+C1)}×100
と定義する際、
該質量損失率F(%)は、3質量%以下である
ことを特徴とする導電性接着剤である。
In particular, in a conductive adhesive having the above composition,
A heat treatment for a predetermined time at a temperature set in a range of 150 ° C. or more and 300 ° C. or less in an inert gas atmosphere with respect to the conductive adhesive of an amount W to be 100 parts by mass, transpiration of the solvent, and When curing the thermosetting resin,
Along with the heat treatment, the total mass loss E due to the dissipative component into the gas phase,
The amount of solvent D 1 contained in the amount W of conductive adhesive and evaporated;
The amount A 1 of the metal powder contained in the conductive adhesive of the amount W;
The amount B 1 of the ultrafine particles contained in the conductive adhesive of the amount W;
The amount C 1 of the thermosetting resin contained in the conductive adhesive of the amount W;
And
In the total mass reduction amount E due to the components dissipated into the gas phase, the mass reduction amount α, excluding the amount D 1 of the solvent to be evaporated,
Formula 1: α≡ED 1
And the mass loss rate F (%) due to gas generation other than the evaporation of the solvent,
Formula 2: F≡ {α / (A 1 + B 1 + C 1 )} × 100
When defining
The mass loss rate F (%) is 3% by mass or less, and is a conductive adhesive.

一方、前記本発明の第一の形態にかかる導電性接着剤と、実質的に等価な技術思想を別の表現法に従って記述する、本発明の第二の形態にかかる導電性接着剤は、
導電性媒体とする金属成分と、接着剤成分とする熱硬化性樹脂とを主要構成成分とする導電性接着剤であって、
該導電性接着剤は、
(A)銀、銅、金、白金、ニッケル、亜鉛、ビスマス、タングステンからなる群から選択される、少なくとも1種以上の金属材料で形成され、その平均粒子径が0.5〜30μmの範囲に選択されている金属粉、
(B)銀、銅、金、白金、ニッケル、亜鉛、ビスマスからなる群から選択される、少なくとも1種以上の金属材料で形成され、平均粒子径が1〜20nmの範囲に選択される金属超微粒子の金属表面に有機化合物による被覆層を有する超微粒子、
(C)熱硬化性樹脂、
(D)溶剤
を必須成分として含有し、
該導電性接着剤中における、前記必須成分の配合量比率は、
金属粉の配合量Aを、74.0質量部〜94.3質量部の範囲に、
前記超微粒子の配合量Bを、0.9質量部〜8.7質量部の範囲に、
前記熱硬化性樹脂の配合量Cを、4.0質量部〜12.9質量部の範囲に、
前記溶剤の配合量Dを、8.6質量部以下の範囲に、
それぞれ選択してなる配合組成である導電性接着剤である。
On the other hand, the conductive adhesive according to the second embodiment of the present invention, which describes the technical idea substantially equivalent to the conductive adhesive according to the first embodiment of the present invention according to another expression,
A conductive adhesive mainly comprising a metal component as a conductive medium and a thermosetting resin as an adhesive component,
The conductive adhesive is
(A) It is formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, bismuth and tungsten, and has an average particle diameter in the range of 0.5 to 30 μm. Selected metal powder,
(B) A metal superstructure formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, and bismuth and having an average particle diameter of 1 to 20 nm. Ultrafine particles having a coating layer of an organic compound on the metal surface of the fine particles,
(C) thermosetting resin,
(D) contains a solvent as an essential component,
In the conductive adhesive, the blending ratio of the essential components is:
The blending amount A of the metal powder is in the range of 74.0 parts by mass to 94.3 parts by mass,
The blending amount B of the ultrafine particles is in the range of 0.9 parts by mass to 8.7 parts by mass,
The amount C of the thermosetting resin is in the range of 4.0 parts by mass to 12.9 parts by mass,
The solvent content D is in the range of 8.6 parts by mass or less,
It is the conductive adhesive which is the compounding composition formed by selecting each.

特には、前記配合組成を有する導電性接着剤において、
100質量部となる量Wの導電性接着剤に対して、不活性ガス雰囲気下、150℃以上、300℃以下の範囲に設定される温度において、所定時間加熱処理し、前記溶剤の蒸散、および、前記熱硬化性樹脂の硬化を施す際、
前記加熱処理に伴い、気相中への散逸成分に起因する総質量減少量E、
前記量Wの導電性接着剤中に含まれ、蒸散される前記溶剤の量D1
前記量Wの導電性接着剤中に含まれる、前記金属粉の量A1
前記量Wの導電性接着剤中に含まれる、前記超微粒子の量B1
前記量Wの導電性接着剤中に含まれる、前記熱硬化性樹脂の量C1
と表記し、
気相中への散逸成分に起因する総質量減少量E中、蒸散される前記溶剤の量D1を除く、質量減少量αを、
式1: α≡E−D1
と定義し、前記溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を、
式2: F≡{α/(A1+B1+C1)}×100
と定義する際、
該質量損失率F(%)は、3質量%以下である
ことを特徴とする導電性接着剤である。
In particular, in a conductive adhesive having the above composition,
A heat treatment for a predetermined time at a temperature set in a range of 150 ° C. or more and 300 ° C. or less in an inert gas atmosphere with respect to the conductive adhesive of an amount W to be 100 parts by mass, transpiration of the solvent, and When curing the thermosetting resin,
Along with the heat treatment, the total mass loss E due to the dissipative component into the gas phase,
The amount of solvent D 1 contained in the amount W of conductive adhesive and evaporated;
The amount A 1 of the metal powder contained in the conductive adhesive of the amount W;
The amount B 1 of the ultrafine particles contained in the conductive adhesive of the amount W;
The amount C 1 of the thermosetting resin contained in the conductive adhesive of the amount W;
And
In the total mass reduction amount E due to the components dissipated into the gas phase, the mass reduction amount α, excluding the amount D 1 of the solvent to be evaporated,
Formula 1: α≡ED 1
And the mass loss rate F (%) due to gas generation other than the evaporation of the solvent,
Formula 2: F≡ {α / (A 1 + B 1 + C 1 )} × 100
When defining
The mass loss rate F (%) is 3% by mass or less, and is a conductive adhesive.

すなわち、本発明の第一の形態にかかる導電性接着剤、本発明の第二の形態にかかる導電性接着剤、ともに、導電性媒体として、配合される金属成分は、主成分の(A)平均粒子径が0.5〜30μmの範囲に選択されている金属粉に対して、少量の(B)平均粒子径が1〜20nmの範囲に選択される金属超微粒子の金属表面に有機化合物による被覆層を有する超微粒子を併用している。硬化物を形成する際、導電性接着剤塗布液層中に含まれる、前記平均粒子径が数μm程度の金属粉が、先ず沈積して、金属粉相互が積み重なって構成される、電流流路網の基本となる積層構造が構成される。この電流流路網の基本となる積層構造中では、その金属粉相互が接触している部位自体の接触面積は大きくなく、その周囲には、狭い隙間が存在しているが、溶剤が蒸散するとともに、この狭い隙間を埋め込むように、平均粒子径が1〜20nmの金属超微粒子が充密されて、金属超微粒子の充填領域が形成される。加熱処理を施し、金属超微粒子を被覆している有機化合物による被覆層を除去すると、平均粒子径が1〜20nmの範囲に選択される金属超微粒子は、その金属面を互いに接触させ、金属ナノ粒子に特有の低温焼結現象を進行させる。前記狭い隙間を埋め込む、金属超微粒子の充填領域では、生成される金属超微粒子の焼結体は、金属粉表面とも密に接触する形態となる。結果的に、金属粉相互が接触している部位自体の接触面積に加えて、この金属粉相互の狭い隙間を埋め込む、金属超微粒子の焼結体を介した接触の寄与も加わり、前記積層構造で構成される電流流路網において、金属粉相互の接触部位の実効的な接触面積は格段に大きくなる。なお、硬化物層中に形成される電流流路網において、その全体の抵抗値は、個々の金属粉自体に起因する抵抗と、金属粉相互が接触している部位における接触抵抗とで構成されるが、平均粒子径が数μm程度の金属粉を用いる場合、接触抵抗の占める比率が支配的になる。本発明にかかる導電性接着剤によって作製される硬化物層では、前記金属粉相互の接触部位の実効的な接触面積の拡大に伴い、接触抵抗が大幅に低減され、結果として、見掛けの体積固有抵抗率の大幅な低下が達成される。また、硬化物層自体の熱伝導性に関しても、バインダー樹脂自体の熱伝導性は、金属材料と比較すると、桁違いに小さく、前記金属粉相互が積み重なって構成される、熱流流路網が、主要な熱伝導経路となっている。従って、熱抵抗に関しても、本発明にかかる導電性接着剤によって作製される硬化物層では、前記金属粉相互の接触部位の実効的な接触面積の拡大に伴い、接触抵抗が大幅に低減され、結果として、見掛けの熱伝導率の大幅な向上が達成される。   That is, both of the conductive adhesive according to the first aspect of the present invention and the conductive adhesive according to the second aspect of the present invention, the metal component to be blended as the conductive medium is the main component (A) With respect to the metal powder selected in the range of 0.5 to 30 μm in average particle size, a small amount of (B) the metal surface of the ultrafine metal particles selected in the range of 1 to 20 nm depends on the organic compound. Ultrafine particles having a coating layer are used in combination. When forming a cured product, the current flow path is configured by first depositing the metal powder having an average particle diameter of about several μm contained in the conductive adhesive coating liquid layer and stacking the metal powders. A layered structure that is the basis of the net is formed. In the laminated structure that is the basis of this current channel network, the contact area of the part itself in contact with the metal powder is not large, and there is a narrow gap around it, but the solvent evaporates. At the same time, the ultrafine metal particles having an average particle diameter of 1 to 20 nm are packed so as to fill the narrow gap, and a filled region of the ultrafine metal particles is formed. When the heat treatment is performed and the coating layer made of the organic compound covering the metal ultrafine particles is removed, the metal ultrafine particles having an average particle diameter of 1 to 20 nm are brought into contact with each other, and the metal nanoparticle is brought into contact with each other. The low-temperature sintering phenomenon peculiar to particles is advanced. In the filling region of the ultrafine metal particles, which fills the narrow gap, the generated ultrafine metal particle sintered body is in close contact with the metal powder surface. As a result, in addition to the contact area of the portion where the metal powders are in contact with each other, the contribution of contact through the sintered body of ultrafine metal particles that embeds a narrow gap between the metal powders is also added, and the laminated structure In the current channel network constituted by the above, the effective contact area of the contact portion between the metal powders is remarkably increased. In the current channel network formed in the cured product layer, the overall resistance value is composed of the resistance caused by the individual metal powder itself and the contact resistance at the part where the metal powders are in contact with each other. However, when metal powder having an average particle size of about several μm is used, the ratio of contact resistance becomes dominant. In the cured product layer produced by the conductive adhesive according to the present invention, as the effective contact area of the contact area between the metal powders increases, the contact resistance is greatly reduced, and as a result, the apparent volume inherent A significant reduction in resistivity is achieved. In addition, regarding the thermal conductivity of the cured product layer itself, the thermal conductivity of the binder resin itself is orders of magnitude smaller than that of a metal material, and the heat flow channel network configured by stacking the metal powders together, It is the main heat conduction path. Therefore, with regard to the thermal resistance, in the cured product layer produced by the conductive adhesive according to the present invention, the contact resistance is greatly reduced as the effective contact area of the contact area between the metal powders increases. As a result, a significant improvement in apparent thermal conductivity is achieved.

また、本発明にかかる導電性接着剤によって作製される硬化物層は、かかる導電性接着剤自体が流動性を示すため、通常、接合対象の二つの導電性部材表面、例えば、金属面を上下に配置し、その間に挿入される形状に形成される。従って、作製される硬化物層は、下側に配置される金属面に対して、当然に密着する状態となり、特には、本発明にかかる導電性接着剤中に含まれる金属粉と、金属面とが接触する部位においても、その周囲に狭い隙間が存在している。この下側の金属面と金属粉との間の接触部位においても、かかる狭い隙間を埋め込む、金属超微粒子の充填領域ができ、その後、生成される金属超微粒子の焼結体は、金属粉と下側の金属面表面とも密に接触する形態となる。   Further, the cured product layer produced by the conductive adhesive according to the present invention usually has two conductive member surfaces to be joined, for example, metal surfaces up and down because the conductive adhesive itself exhibits fluidity. And is formed in a shape inserted between them. Therefore, the cured product layer to be produced naturally comes into close contact with the metal surface disposed on the lower side, and in particular, the metal powder contained in the conductive adhesive according to the present invention and the metal surface There is also a narrow gap around the part where the contact is made. Even in the contact portion between the lower metal surface and the metal powder, a filling region of the ultrafine metal particles is formed to fill in such a narrow gap. The lower metal surface is in close contact with the surface.

一方、金属粉相互が積み重なって構成される、電流流路網の基本となる積層構造が構成される際、その積層構造上面に位置する金属粉と、上方に配置される金属面との接触が達成できるように、本発明にかかる導電性接着剤中におけるバインダー樹脂成分の含有比率を適正に選択している。すなわち、溶剤が蒸散すると、金属粉相互が積み重なって構成される、電流流路網の基本となる積層構造中に存在する隙間空間を、金属超微粒子と熱硬化性樹脂成分が満たす状態となるが、仮に、熱硬化性樹脂成分の含有量が不必要に多いと、前記隙間空間内より溢れ出す熱硬化性樹脂成分によって、上面に、実質的に熱硬化性樹脂成分のみからなる層が構成される。本発明にかかる導電性接着剤では、配合される金属粉の総量に対して、金属超微粒子の含有量に加えて、熱硬化性樹脂成分の含有量を過剰とならない範囲に選択することで、上面に、実質的に熱硬化性樹脂成分のみからなる層が生成することを回避している。その結果、本発明にかかる導電性接着剤によって作製される硬化物層中に形成される、金属粉相互が積み重なって構成される電流流路網と、上方に配置される金属面との緻密な接触が可能な状態とされている。同時に、溶剤が蒸散する際、前記積層構造上面に位置する金属粉と上方に配置される金属面との接触部位においても、その周囲に狭い隙間が形成されるが、かかる狭い隙間を埋め込む、金属超微粒子の充填領域ができ、その後、生成される金属超微粒子の焼結体は、金属粉と上方の金属面とも密に接触する形態となる。   On the other hand, when the laminated structure that is the basis of the current flow path network configured by stacking metal powders is configured, the metal powder located on the upper surface of the laminated structure is in contact with the metal surface disposed above. In order to achieve this, the content ratio of the binder resin component in the conductive adhesive according to the present invention is appropriately selected. That is, when the solvent evaporates, the metal ultrafine particles and the thermosetting resin component fill the gap space that exists in the laminated structure that is the basis of the current channel network, which is configured by stacking metal powders. If the content of the thermosetting resin component is unnecessarily large, a layer consisting essentially of the thermosetting resin component is formed on the upper surface by the thermosetting resin component overflowing from the gap space. The In the conductive adhesive according to the present invention, in addition to the content of the metal ultrafine particles, the content of the thermosetting resin component is selected within a range that does not become excessive, with respect to the total amount of the metal powder to be blended. The formation of a layer consisting essentially of only a thermosetting resin component on the upper surface is avoided. As a result, the current path network formed by stacking metal powders formed in the cured product layer produced by the conductive adhesive according to the present invention and the dense metal surface disposed above Contact is possible. At the same time, when the solvent evaporates, a narrow gap is formed around the metal powder located on the upper surface of the laminated structure and the metal surface disposed above, but the metal is embedded in the narrow gap. The ultrafine particle filling region is formed, and then the sintered body of the ultrafine metal particles is in a form in close contact with the metal powder and the upper metal surface.

なお、金属粉相互が積み重なって構成される、前記積層構造において、金属粉相互の接触をより緻密に達成する上では、利用される金属粉として、(A−1)球状の金属粉と(A−2)フレーク状の金属粉との混合物を用いることが好ましい。具体的には、球状の金属粉に対して、フレーク状の金属粉を少量併用すると、球状の金属粉で構成する積層構造内部に、楔状にフレーク状の金属粉が配置される結果、金属粉相互の接触点の密度増加が図られる。その際、(A−1)球状の金属粉と(A−2)フレーク状の金属粉の混合比率は、質量比率として、(A−1)球状の金属粉:(A−2)フレーク状の金属粉=99:1〜50:50の範囲に選択することがより好ましい。例えば、(A−1)球状の金属粉と(A−2)フレーク状の金属粉の平均的な粒子径が同程度である場合には、質量比率として、(A−1)球状の金属粉:(A−2)フレーク状の金属粉=95:5〜70:30の範囲に選択することがより好ましい。   In addition, in the laminated structure configured by stacking metal powders, in order to achieve more precise contact between the metal powders, (A-1) spherical metal powder and (A -2) It is preferable to use a mixture with flaky metal powder. Specifically, when a small amount of a flaky metal powder is used in combination with a spherical metal powder, the flaky metal powder is arranged in a wedge shape inside the laminated structure composed of the spherical metal powder. The density of mutual contact points can be increased. At that time, the mixing ratio of (A-1) spherical metal powder and (A-2) flaky metal powder is (A-1) spherical metal powder: (A-2) flaky metal powder as a mass ratio. The metal powder is more preferably selected in the range of 99: 1 to 50:50. For example, when the average particle diameters of (A-1) spherical metal powder and (A-2) flaky metal powder are about the same, (A-1) spherical metal powder as the mass ratio : (A-2) It is more preferable to select in the range of flaky metal powder = 95: 5-70: 30.

例えば、金属粉相互が積み重なって構成される積層構造において、仮に、同一粒子径の球状金属粉が最密充填状態を達成する際には、その隙間空間と金属粉との占める体積比は、25:75程度であり、一方、立方格子状に同一粒子径の球状金属粉が積層される際には、その隙間空間と金属粉との占める体積比は、50:50程度である。一般的に、種々の粒子形状、粒子径分布を有する金属粉相互が積み重なって構成される積層構造では、その隙間空間と金属粉との占める体積比は、15:85〜66:34の範囲となる。本発明にかかる導電性接着剤では、これらの隙間空間を金属超微粒子と熱硬化性樹脂成分とが充填し、その際、金属超微粒子の含有比率は、金属粉相互が接触する部位などの狭い隙間を占めるに適する量に選択している。すなわち、主成分の(A)平均粒子径が0.5〜30μmの範囲に選択されている金属粉100質量部に対して、副次的な成分(B)平均粒子径が1〜20nmの範囲に選択される金属超微粒子の金属表面に有機化合物による被覆層を有する超微粒子の配合量は、少なくとも、1質量部以上とする。一方、金属粉に対する、該超微粒子の配合比率を必要以上に高くすると、相対的にバインダー樹脂の占める比率が低くなり、形成される硬化物層全体の機械的強度を保持するバインダー樹脂のバインド機能が不足するため、金属粉100質量部に対して、超微粒子の配合量の上限は、10質量部を超えない範囲とする。より好ましくは、金属粉100質量部に対して、超微粒子の配合量を、1質量部〜6質量部の範囲に選択する。   For example, in a laminated structure in which metal powders are stacked, when a spherical metal powder having the same particle diameter achieves the closest packed state, the volume ratio occupied by the gap space and the metal powder is 25. On the other hand, when spherical metal powders having the same particle diameter are stacked in a cubic lattice shape, the volume ratio occupied by the gap space and the metal powder is about 50:50. In general, in a laminated structure in which metal powders having various particle shapes and particle size distributions are stacked, the volume ratio occupied by the gap space and the metal powder is in the range of 15:85 to 66:34. Become. In the conductive adhesive according to the present invention, these gap spaces are filled with the metal ultrafine particles and the thermosetting resin component, and at that time, the content ratio of the metal ultrafine particles is narrow such as a portion where the metal powders are in contact with each other. An amount suitable for occupying the gap is selected. That is, the secondary component (B) has an average particle size of 1 to 20 nm with respect to 100 parts by mass of the metal powder selected as the main component (A) having an average particle size of 0.5 to 30 μm. The blending amount of the ultrafine particles having a coating layer of an organic compound on the metal surface of the ultrafine metal particles selected for is at least 1 part by mass. On the other hand, if the blending ratio of the ultrafine particles to the metal powder is increased more than necessary, the ratio of the binder resin is relatively reduced, and the binder resin binding function that maintains the mechanical strength of the entire cured product layer formed. Therefore, the upper limit of the blending amount of the ultrafine particles is set to a range not exceeding 10 parts by mass with respect to 100 parts by mass of the metal powder. More preferably, the blending amount of the ultrafine particles is selected in the range of 1 to 6 parts by mass with respect to 100 parts by mass of the metal powder.

また、(C)熱硬化性樹脂から生成されるバインダー樹脂の接着性能を利用して、金属粉相互の接触ならびに硬化物層全体の機械的強度を保持する目的から、金属粉100質量部に対して、少なくとも、熱硬化性樹脂の配合量を5質量部以上に選択する。なお、金属粉相互が積み重なって構成される積層構造で予測される、前記隙間空間の比率を超える、過大なバインダー樹脂の含有比率となることを回避するため、金属粉100質量部に対する、熱硬化性樹脂の配合量の上限は、15質量部を超えない範囲とする。より好ましくは、金属粉100質量部に対して、熱硬化性樹脂の配合量を、6質量部〜10質量部の範囲に選択する。   In addition, for the purpose of maintaining the contact between metal powders and the mechanical strength of the entire cured product layer using the adhesive performance of the binder resin generated from (C) thermosetting resin, Then, at least the blending amount of the thermosetting resin is selected to be 5 parts by mass or more. In addition, in order to avoid becoming an excessive binder resin content ratio exceeding the gap space ratio, which is predicted in a laminated structure in which metal powders are stacked, thermosetting is performed on 100 parts by mass of the metal powder. The upper limit of the compounding amount of the conductive resin is set to a range not exceeding 15 parts by mass. More preferably, the compounding quantity of a thermosetting resin is selected in the range of 6 mass parts-10 mass parts with respect to 100 mass parts of metal powder.

(D)溶剤は、本発明にかかる導電性接着剤においては、主として、その液粘度調節用に添加されるものである。すなわち、本発明にかかる導電性接着剤は、接合対象の二つの導電性部材表面、例えば、金属面を上下に配置し、その間に均一な液厚で挿入される形状とする際、必要な流動性を達成する役割を有している。本発明にかかる導電性接着剤において、液相成分は、(C)熱硬化性樹脂と(D)溶剤とで構成されるため、(C)熱硬化性樹脂と(D)溶剤の合計体積が、固相成分の(A)金属粉と(B)超微粒子の合計体積に対して、一定比率の範囲となるように、(D)溶剤の添加量を選択する。換言するならば、(A)金属粉100質量部に対して、(C)熱硬化性樹脂と(D)溶剤の配合量合計が、多くとも、25質量部を超えない範囲、より好ましくは、20質量部を超えない範囲、例えば、15質量部程度に選択する。従って、本発明にかかる導電性接着剤においては、(A)金属粉100質量部に対して、(D)溶剤の添加量は、多くとも、10質量部を超えない範囲に選択する。前記の範囲において、導電性接着剤の液粘度が、好ましくは、10Pa・s(25℃)〜50Pa・s(25℃)の範囲となるように、(D)溶剤の添加量を調整することが望ましい。場合によっては、(D)溶剤の添加量を0としても、所望の液粘度範囲となることもある。一方、本発明にかかる導電性接着剤を均一に塗布する際の操作性を考慮すると、若干量の(D)溶剤を添加することが一般に好ましい。すなわち、(A)金属粉100質量部に対して、(D)溶剤の添加量を少なくとも0.1質量部以上に選択することが好ましい。例えば、(C)熱硬化性樹脂と(D)溶剤の配合量比;(C)熱硬化性樹脂:(D)溶剤が、10:1〜10:7の範囲となる希釈比率を選択することで、塗布する際、良好な操作性を示すものとすることができる。   (D) In the conductive adhesive concerning this invention, a solvent is mainly added for the liquid viscosity adjustment. That is, the conductive adhesive according to the present invention has a flow that is necessary when two conductive member surfaces to be joined, for example, metal surfaces are arranged vertically and inserted between them with a uniform liquid thickness. Has the role of achieving gender. In the conductive adhesive according to the present invention, since the liquid phase component is composed of (C) a thermosetting resin and (D) a solvent, the total volume of (C) the thermosetting resin and (D) the solvent is The addition amount of the solvent (D) is selected so as to be within a certain range with respect to the total volume of the solid phase component (A) metal powder and (B) ultrafine particles. In other words, with respect to 100 parts by weight of (A) metal powder, the total amount of (C) thermosetting resin and (D) solvent is not more than 25 parts by weight, more preferably, A range not exceeding 20 parts by mass, for example, about 15 parts by mass is selected. Therefore, in the conductive adhesive according to the present invention, the amount of (D) the solvent added is at most 10 mass parts per 100 mass parts of (A) metal powder. Within the above range, the amount of the solvent (D) is adjusted so that the liquid viscosity of the conductive adhesive is preferably in the range of 10 Pa · s (25 ° C.) to 50 Pa · s (25 ° C.). Is desirable. In some cases, even if the addition amount of the solvent (D) is 0, the desired liquid viscosity range may be obtained. On the other hand, in consideration of the operability when uniformly applying the conductive adhesive according to the present invention, it is generally preferable to add a slight amount of the solvent (D). That is, it is preferable to select the amount of (D) the solvent added to at least 0.1 parts by mass with respect to (A) 100 parts by mass of the metal powder. For example, the mixing ratio of (C) thermosetting resin and (D) solvent; (C) thermosetting resin: (D) selecting the dilution ratio that the solvent is in the range of 10: 1 to 10: 7. Thus, good operability can be exhibited when coating.

(D)溶剤は、本発明にかかる導電性接着剤を加熱処理し、硬化物層を形成する際、蒸散・除去されるものを利用する。すなわち、(D)溶剤自体は、(C)熱硬化性樹脂、例えば、熱硬化性エポキシ樹脂を構成する樹脂構成用に必須な成分(例えば、エポキシ樹脂とその硬化剤)に対して、かかる加熱処理において、反応性を示さない有機溶媒が好適に利用できる。同時に、硬化物層を形成する際、200℃〜300℃の範囲に選択する温度、好ましくは、200℃〜250℃程度の温度で加熱処理を行う際、(D)溶剤は既に蒸散・除去された状態とすることが必要であり、1気圧(1013hPa)の大気中における沸点が、260℃未満、通常、210℃未満である有機溶媒を利用することが好ましい。換言すると、添加量によっては、沸点が前記熱硬化処理温度より10℃以上高い、例えば、260℃以上(あるいは、210℃以上)の有機溶媒を利用すると、(C)熱硬化性樹脂の硬化が進む時点まで、相当量の溶剤が残余し、最終的に、樹脂硬化物と溶剤成分との間で、固液相の分離がなされた後、かかる溶剤の気化が進行し、ボイドを形成する場合もある。なお、熱硬化性エポキシ樹脂の硬化に先立ち、含まれる(D)溶剤の蒸散・除去を行う工程では、例えば、100℃程度の温度で予備加熱を施すが、その際、予備加熱温度よりも沸点が低い場合、微細な気泡形成が起こることもある。この微細な気泡形成を回避する上では、1気圧(1013hPa)の大気中における沸点が、前記予備加熱温度よりも有意に高い有機溶媒の使用が望ましく、一般に、少なくとも160℃以上、好ましくは180℃以上である有機溶媒を利用することが望ましい。   (D) When the conductive adhesive concerning this invention is heat-processed and a hardened | cured material layer is formed, (D) solvent utilizes what is transpired and removed. That is, (D) the solvent itself is heated to (C) a thermosetting resin, for example, an essential component for the resin structure constituting the thermosetting epoxy resin (for example, an epoxy resin and its curing agent). In the treatment, an organic solvent that does not exhibit reactivity can be suitably used. At the same time, when the cured layer is formed, (D) the solvent is already evaporated and removed when the heat treatment is performed at a temperature selected in the range of 200 ° C. to 300 ° C., preferably about 200 ° C. to 250 ° C. It is preferable to use an organic solvent having a boiling point in the atmosphere of 1 atm (1013 hPa) of less than 260 ° C., usually less than 210 ° C. In other words, depending on the amount added, when an organic solvent having a boiling point higher by 10 ° C. or higher than the thermosetting temperature, for example, 260 ° C. or higher (or 210 ° C. or higher) is used, (C) the thermosetting resin is cured. When a considerable amount of solvent remains up to the point of progress, and after the solid-liquid phase is finally separated between the cured resin and the solvent component, vaporization of the solvent proceeds to form a void. There is also. In addition, in the step of evaporating and removing the contained solvent (D) prior to curing of the thermosetting epoxy resin, for example, preheating is performed at a temperature of about 100 ° C., and at that time, the boiling point is higher than the preheating temperature. If the value is low, fine bubble formation may occur. In order to avoid the formation of fine bubbles, it is desirable to use an organic solvent having a boiling point in the atmosphere of 1 atm (1013 hPa) significantly higher than the preheating temperature, generally at least 160 ° C. or more, preferably 180 ° C. It is desirable to use the above organic solvent.

本発明にかかる導電性接着剤中に配合されている(B)超微粒子は、その金属超微粒子の金属表面に有機化合物による被膜層を設け、かかる導電性接着剤の調製、保管の際、含有される金属超微粒子相互がその金属面を接触させる結果、凝集した塊が形成される事態を抑制している。なお、かかる超微粒子中の金属超微粒子の金属表面に存在する、被覆層を構成する有機化合物は、硬化物を作製するため、加熱処理を進める段階では、金属表面から離脱可能なものを利用する。また、(B)超微粒子は、金属超微粒子の金属表面に有機化合物による被膜層を設けている結果、金属超微粒子の表面には、酸化膜が実質的に存在しない状態を維持している。また、金属超微粒子の金属表面に設けられている、有機化合物による被膜層は、(C)熱硬化性樹脂と(D)溶剤とで構成される液相成分中に、(B)超微粒子を均一に分散させる分散剤としての機能をも有する。   The (B) ultrafine particles blended in the conductive adhesive according to the present invention is provided with a coating layer of an organic compound on the metal surface of the metal ultrafine particles, and is included in the preparation and storage of the conductive adhesive. As a result of the metal ultrafine particles being brought into contact with each other, the agglomerates are prevented from being formed. The organic compound constituting the coating layer present on the metal surface of the ultrafine metal particles in the ultrafine particles is a material that can be removed from the metal surface at the stage of the heat treatment in order to produce a cured product. . Further, (B) the ultrafine particles are provided with a coating layer made of an organic compound on the metal surface of the ultrafine metal particles, and as a result, the surface of the ultrafine metal particles is maintained in a state where no oxide film is substantially present. Further, the coating layer made of an organic compound provided on the metal surface of the ultrafine metal particles includes (B) ultrafine particles in a liquid phase component composed of (C) a thermosetting resin and (D) a solvent. It also has a function as a dispersant for uniform dispersion.

この金属超微粒子の金属表面に存在する、被覆層を構成する有機化合物としては、かかる金属超微粒子に含まれる金属元素と配位的な結合が可能な基として、窒素、酸素、またはイオウ原子を含む基を有する化合物が利用される。例えば、末端アミノ基を1以上有するアミン化合物一種以上により被覆された状態とする。   The organic compound constituting the coating layer existing on the metal surface of the ultrafine metal particles includes nitrogen, oxygen, or sulfur atoms as groups capable of coordinative bonding with the metal elements contained in the ultrafine metal particles. A compound having a containing group is used. For example, it is set as the state coat | covered with 1 or more types of amine compounds which have one or more terminal amino groups.

(B)超微粒子中の金属超微粒子表面の緻密な被覆に利用される化合物は、金属元素と配位的な結合を形成する際、窒素、酸素、またはイオウ原子上の孤立電子対を有する基を利用するもので、例えば、窒素原子を含む基として、アミノ基が挙げられる。また、イオウ原子を含む基としては、スルファニル基(−SH)、スルフィド型のスルファンジイル基(−S−)が挙げられる。また、酸素原子を含む基としては、ヒドロキシ基、エーテル型のオキシ基(−O−)が挙げられる。前記溶剤を蒸散させる際、例えば、100℃程度の温度に保持する間、この有機化合物による被覆層は保持され、一方、熱硬化性樹脂を加熱硬化する際、例えば、200℃程度に加熱する際には、速やかに、超微粒子の金属超微粒子表面から離脱することが可能であることが必要である。従って、この被覆層に利用される有機化合物は、沸点は、好ましくは、100℃以上、300℃を超えない範囲、通常、250℃以下の範囲であることが好ましい。   (B) A compound used for dense coating on the surface of ultrafine metal particles in ultrafine particles is a group having a lone electron pair on a nitrogen, oxygen, or sulfur atom when forming a coordinate bond with a metal element. For example, an amino group is mentioned as a group containing a nitrogen atom. Examples of the group containing a sulfur atom include a sulfanyl group (—SH) and a sulfide type sulfanediyl group (—S—). Examples of the group containing an oxygen atom include a hydroxy group and an ether type oxy group (—O—). When evaporating the solvent, for example, the organic compound covering layer is maintained while maintaining the temperature at about 100 ° C., while, on the other hand, when thermosetting the resin, for example, when heating to about 200 ° C. For this, it is necessary to be able to quickly detach from the surface of the ultrafine metal particles. Therefore, the organic compound used for this coating layer preferably has a boiling point in a range not lower than 100 ° C. and not higher than 300 ° C., usually in a range not higher than 250 ° C.

例えば、アミン化合物を利用する際には、例えば、アルキルアミンとして、そのアルキル基は、C4〜C20が用いられ、さらに好ましくはC8〜C18の範囲に選択され、アルキル鎖の末端にアミノ基を有するものが用いられる。一般に、かかる配位的な結合を形成する上では、第一級アミン型のものがより高い結合能を示し好ましいが、第二級アミン型、ならびに、第三級アミン型の化合物も利用可能である。また、1,2−ジアミン型、1,3−ジアミン型など、近接する二以上のアミノ基が結合に関与する化合物も利用可能である。また、ポリオキシアルキレンアミンも好適に用いることもできる。   For example, when an amine compound is used, for example, as an alkylamine, the alkyl group is selected from C4 to C20, more preferably C8 to C18, and has an amino group at the end of the alkyl chain. Things are used. In general, in forming such a coordination bond, the primary amine type is preferable because it shows higher binding ability, but secondary amine type and tertiary amine type compounds can also be used. is there. In addition, compounds in which two or more adjacent amino groups are involved in bonding, such as 1,2-diamine type and 1,3-diamine type, can also be used. Moreover, polyoxyalkyleneamine can also be used suitably.

被覆層を構成する有機化合物は、金属超微粒子の金属表面に対して、少なくとも、一分子層を形成することが可能な量であることが望ましい。利用される金属超微粒子の平均粒子径が小さくなると、金属超微粒子自体の質量を基準とすると、相対的に被覆層を構成する有機化合物の総量は増加する。平均粒子径が1〜20nmの範囲に選択される金属超微粒子10質量部あたり、好ましくは、アミン化合物一種以上を総和として、0.2〜6質量部、より好ましくは、0.5〜3質量部を含有している状態とする。   The organic compound constituting the coating layer is desirably in an amount capable of forming at least a monomolecular layer on the metal surface of the ultrafine metal particles. When the average particle size of the ultrafine metal particles used is small, the total amount of organic compounds constituting the coating layer is relatively increased based on the mass of the ultrafine metal particles themselves. Per 10 parts by mass of ultrafine metal particles selected in the range of an average particle size of 1 to 20 nm, preferably 0.2 to 6 parts by mass, more preferably 0.5 to 3 parts by mass, with one or more amine compounds as a total. Part.

また、熱硬化性樹脂を加熱硬化する際、前記被覆層を構成する有機化合物は、金属超微粒子表面から離脱するとともに、この熱硬化性樹脂中に含有される樹脂構成成分のいずれかと、反応可能なものであるとより好ましい。すなわち、超微粒子の金属超微粒子表面から離脱後、熱硬化性樹脂中に存在する、樹脂構成成分、例えば、エポキシ樹脂とその硬化剤のいずれかと反応し、最終的に、形成される熱硬化性樹脂の一構成要素として、利用されることが好ましい。   In addition, when the thermosetting resin is heat-cured, the organic compound constituting the coating layer is detached from the surface of the metal ultrafine particles and can react with any of the resin components contained in the thermosetting resin. More preferable. That is, after the ultrafine particles are detached from the surface of the metal ultrafine particles, they react with a resin component present in the thermosetting resin, for example, an epoxy resin and one of its curing agents, and finally the thermosetting formed. It is preferably used as a component of the resin.

なお、熱硬化性樹脂としては、通常、熱硬化性エポキシ樹脂が利用される。その好適な組成は、樹脂構成成分である、エポキシ樹脂とその硬化剤に加えて、カップリング剤を含む熱硬化性樹脂組成物である。前記カップリング剤は、接合対象の金属表面と、形成される熱硬化性樹脂との接着特性を向上する目的で、少量添加される。金属面との密着性を向上させる目的で利用される、シランカップリング剤、チタンカップリング剤などのカップリング剤成分を接合対象に応じて、適量添加することができる。   In addition, as a thermosetting resin, a thermosetting epoxy resin is normally utilized. The preferred composition is a thermosetting resin composition containing a coupling agent in addition to an epoxy resin and its curing agent, which are resin components. The coupling agent is added in a small amount for the purpose of improving the adhesive properties between the metal surfaces to be joined and the thermosetting resin to be formed. An appropriate amount of a coupling agent component such as a silane coupling agent or a titanium coupling agent, which is used for the purpose of improving the adhesion to the metal surface, can be added depending on the object to be joined.

熱硬化性エポキシ樹脂の樹脂構成成分である、エポキシ樹脂とその硬化剤は、得られるエポキシ樹脂硬化物がバインダー樹脂として必要な機械的な強度を満足する限り、種々な組み合わせを選択することが可能である。本発明にかかる導電性接着剤を、半導体装置の製造において、半導体チップのダイマウント工程に応用する際、得られる硬化物層からなる導電性接合体は、その後のワイヤボンディング工程における加熱による、バインダー樹脂性能の劣化がないことが必要である。その観点では、エポキシ樹脂に対する硬化剤として、酸無水物を利用する形態が好適に利用される。なお、この酸無水物は、超微粒子中の金属超微粒子の金属表面に存在する、被覆層を構成する有機化合物、例えば、アミン化合物のアミノ基と反応可能であり、この点でも、好ましいものである。一方、酸無水物は、エポキシ樹脂の硬化に加えて、被覆層を構成する有機化合物との反応によっても、消費されるので、エポキシ樹脂の硬化に適する配合比率に加え、かかる有機化合物との反応による消費量を考慮して、エポキシ樹脂に対する酸無水物の配合量を調節することが好ましい。例えば、エポキシ樹脂化合物に由来するエポキシ基 1モル量に対して、二塩基酸由来の酸無水物を、0.8〜1.2モル量の範囲で配合することが望ましい。なお、上記の金属超微粒子の金属表面に存在する、被覆層を構成する有機化合物との反応に伴い、かかる二塩基酸由来の酸無水物の一部が消費されることを考慮すると、例えば、エポキシ樹脂化合物に由来するエポキシ基 1モル量に対して、二塩基酸由来の酸無水物を、0.9〜1.2モル量の範囲で配合することがより望ましい。   Various combinations of epoxy resin and its curing agent, which are resin components of thermosetting epoxy resin, can be selected as long as the obtained epoxy resin cured product satisfies the mechanical strength required as a binder resin. It is. When the conductive adhesive according to the present invention is applied to a die mounting process of a semiconductor chip in the manufacture of a semiconductor device, the resulting conductive bonded body made of a cured product layer is a binder by heating in the subsequent wire bonding process. It is necessary that the resin performance does not deteriorate. From that viewpoint, a form using an acid anhydride is suitably used as a curing agent for the epoxy resin. This acid anhydride can react with an organic compound constituting the coating layer, for example, an amino group of an amine compound, present on the metal surface of the ultrafine metal particle in the ultrafine particle. is there. On the other hand, the acid anhydride is consumed by the reaction with the organic compound constituting the coating layer in addition to the curing of the epoxy resin, so in addition to the compounding ratio suitable for the curing of the epoxy resin, the reaction with the organic compound It is preferable to adjust the blending amount of the acid anhydride with respect to the epoxy resin in consideration of the amount consumed by the epoxy resin. For example, it is desirable to mix an acid anhydride derived from a dibasic acid in a range of 0.8 to 1.2 moles with respect to 1 mole of epoxy groups derived from an epoxy resin compound. In view of the fact that a part of the acid anhydride derived from the dibasic acid is consumed with the reaction with the organic compound constituting the coating layer present on the metal surface of the ultrafine metal particles, for example, It is more desirable to blend an acid anhydride derived from a dibasic acid in a range of 0.9 to 1.2 moles with respect to 1 mole of epoxy groups derived from the epoxy resin compound.

また、エポキシ樹脂に対する硬化剤の機能に加えて、被覆層を構成する有機化合物、例えば、アミン化合物との反応も行え、好適に利用できる有機の酸無水物もしくは酸無水物の誘導体として、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水ベンゾフェノンテトラカルボン酸、エチレングリコールビス(アンヒドロトリメリテート)、グリセロールトリス(アンヒドロトリメリテート)などの芳香族酸無水物、無水マレイン酸、無水コハク酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、アルキル無水コハク酸、アルケニル無水コハク酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルシクロヘキセンテトラカルボン酸無水物などの環状脂肪族酸無水物、ポリアジピン酸無水物、ポリアゼライン酸無水物、ポリセバシン酸無水物などの脂肪族酸無水物を挙げることができる。   In addition to the function of a curing agent for the epoxy resin, it can also react with an organic compound constituting the coating layer, for example, an amine compound, and can be suitably used as an organic acid anhydride or acid anhydride derivative. Acid, trimellitic anhydride, pyromellitic anhydride, benzophenone tetracarboxylic anhydride, ethylene glycol bis (anhydro trimellitate), aromatic anhydrides such as glycerol tris (anhydro trimellitate), maleic anhydride, Succinic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, alkyl succinic anhydride, alkenyl succinic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylcyclohexene tetracarboxylic anhydride, etc. Of cycloaliphatic acid anhydrides, Riajipin acid anhydride, polyazelaic acid anhydride, and aliphatic acid anhydrides such as polysebacic acid anhydride.

本発明にかかる導電性接着剤を、半導体装置の製造において、半導体チップのダイマウント工程に応用する際、導電性接合体として利用される硬化物層の厚さは、対象の半導体チップ部品における半導体基板部の厚さを基準として、その3%〜20%の範囲、より好ましくは、5%〜15%の範囲に選択される。すなわち、半導体基板部の厚さバラツキ、あるいは、リードフレーム表面に微細な凹凸が存在する場合があり、これらの接合対象面の凹凸に起因する変動幅を吸収可能な硬化物層の厚さとして、半導体チップ部品のサイズに応じて、2〜100μm程度の範囲、場合によっては、10〜100μm程度の範囲に設定される。この目標の硬化物層の厚さに対して、本発明にかかる導電性接着剤に利用される、主成分の(A)金属粉の平均粒子径を、0.5〜30μmの範囲のなかで、適当な値に選択する。具体的には、目標の硬化物層の厚さに対して、使用する金属粉の平均粒子径が、その1/3〜1/20の範囲となるように、0.5〜30μmの範囲で適宜選択することが好ましい。更には、使用する金属粉は、その平均粒子径を中心として、一定の分布を有しており、目標の硬化物層の厚さに対して、使用する金属粉の平均粒子径を、その1/5〜1/20の範囲となるように選択すると、積層される金属粉の粒子径分布に起因する硬化物層の厚さバラツキの平均化がより容易になされる。例えば、目標の硬化物層の厚さに対して、使用する金属粉の平均粒子径が1/10程度とすることで、金属粉の平均粒子径自体の分布や、半導体基板部の厚さバラツキ、あるいは、リードフレーム表面に微細な凹凸が存在しても、金属粉の積層構造は、半導体チップの裏面とリードフレーム表面の双方に緻密な接触を達成しつつ、その平均的な硬化物層の厚さは、目標の厚さとすることが容易にできる。   When the conductive adhesive according to the present invention is applied to the die mounting process of a semiconductor chip in the manufacture of a semiconductor device, the thickness of the cured product layer used as the conductive bonded body is determined by the semiconductor in the target semiconductor chip component. On the basis of the thickness of the substrate portion, it is selected in the range of 3% to 20%, more preferably in the range of 5% to 15%. In other words, the thickness variation of the semiconductor substrate portion, or there may be fine irregularities on the lead frame surface, as the thickness of the cured product layer that can absorb the fluctuation width due to the irregularities of these bonding target surfaces, Depending on the size of the semiconductor chip component, it is set in the range of about 2 to 100 μm, and in some cases in the range of about 10 to 100 μm. With respect to the thickness of the target cured product layer, the average particle size of the main component (A) metal powder used in the conductive adhesive according to the present invention is in the range of 0.5 to 30 μm. Select an appropriate value. Specifically, with respect to the thickness of the target cured product layer, the average particle diameter of the metal powder to be used is in the range of 0.5 to 30 μm so that the average particle diameter is in the range of 1/3 to 1/20. It is preferable to select appropriately. Furthermore, the metal powder to be used has a certain distribution centering on the average particle diameter, and the average particle diameter of the metal powder to be used is 1 for the target thickness of the cured product layer. When it is selected to be in the range of / 5 to 1/20, the thickness variation of the cured product layer due to the particle size distribution of the laminated metal powder is more easily averaged. For example, by setting the average particle diameter of the metal powder to be used to about 1/10 of the target cured product layer thickness, the distribution of the average particle diameter of the metal powder itself and the thickness variation of the semiconductor substrate portion Or, even if there are fine irregularities on the surface of the lead frame, the laminated structure of the metal powder achieves close contact with both the back surface of the semiconductor chip and the surface of the lead frame, while maintaining the average cured product layer. The thickness can easily be a target thickness.

本発明にかかる導電性接着剤では、上述する組成の適正化を行うことで、導電性接合形成のため、キュア処理を施し、硬化物層を生成する際、溶剤の残留を回避可能であり、同時に、前記バインダー樹脂成分として配合されている熱硬化性樹脂に対する、熱硬化反応を目的とする加熱処理に付随して、この加熱下で起こる副次的な反応が原因となる、「内因性」の「ガス状または揮発性副反応生成物」の総量も抑制することが可能となっている。   In the conductive adhesive according to the present invention, by performing the above-described optimization of the composition, it is possible to avoid the residue of the solvent when performing the curing process for forming the conductive bond and generating the cured product layer, At the same time, with respect to the thermosetting resin that is blended as the binder resin component, accompanying the heat treatment for the purpose of thermosetting reaction, due to the side reaction that occurs under this heating, "endogenous" The total amount of “gaseous or volatile side reaction products” can be suppressed.

前記「内因性」の「ガス状または揮発性副反応生成物」としては、例えば、(B)超微粒子中の金属超微粒子の金属表面において、被覆層を構成する有機化合物のうち、前記酸無水物との反応を起こさず、未反応の有機化合物として残留しているもの、あるいは、エポキシ樹脂と反応した酸無水物が、カルボキシ基を生成するが、このカルボキシ基から脱炭酸によって生成するCO2などが想定される。上記のように、配合量の適正化を行うことで、これら「内因性」の「ガス状または揮発性副反応生成物」の生成量が抑制できる結果、上記式2によって定義される、溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を多くとも3%を超えない範囲に留めることが可能である。更には、本発明にかかる導電性接着剤では、各構成成分について、上記の好適な配合量範囲を選択すると、多くの場合、上記式2によって定義される、溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を2.5%、より好ましくは2%を超えない範囲に留めることも可能となる。 Examples of the “endogenous” “gaseous or volatile side reaction product” include (B) the acid anhydride of the organic compound constituting the coating layer on the metal surface of the ultrafine metal particles in the ultrafine particles. without causing a reaction between the object, those remaining as the organic compound unreacted or anhydride reacted with epoxy resins, CO 2 is to generate a carboxy group, produced by decarboxylation from the carboxy group Etc. are assumed. As described above, by optimizing the blending amount, the production amount of these “endogenous” “gaseous or volatile side reaction products” can be suppressed. The mass loss rate F (%) caused by gas generation other than transpiration can be kept within a range not exceeding 3% at most. Furthermore, in the conductive adhesive according to the present invention, when the above-mentioned preferable blending amount range is selected for each constituent component, in many cases, gas generation other than the evaporation of the solvent defined by the above equation 2 occurs. It is possible to keep the resulting mass loss rate F (%) in a range not exceeding 2.5%, more preferably not exceeding 2%.

前記の「内因性」の「ガス状または揮発性副反応生成物」は、熱硬化性樹脂の硬化が進行する過程で発生するため、液相中を拡散して、上下を接合対象の金属面で閉じられた、薄い層間を抜けて、側面から効果的に放散できない場合、中央部にボイドを形成する要因ともなる。その総量は、前記溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)に相当するが、この量を抑制する結果、ボイドの形成を回避できる、あるいは、ボイドの形成程度を大幅に抑制できる。特に、これらガス状成分に起因するボイドの形成は、上方の半導体チップの裏面と硬化物層の上面との界面に限定された現象であり、硬化物層中の金属粉の積層構造に基づく熱流流路と、半導体チップの裏面との接触を妨げるが、本発明にかかる導電性接着剤を利用すると、この現象を回避できる。   The “endogenous” “gaseous or volatile side reaction product” is generated in the course of curing of the thermosetting resin. If it can not be effectively dissipated from the side surface after passing through a thin layer closed at, it becomes a factor for forming a void in the central part. The total amount corresponds to the mass loss rate F (%) due to gas generation other than the evaporation of the solvent, but as a result of suppressing this amount, formation of voids can be avoided or the degree of formation of voids can be greatly increased. Can be suppressed. In particular, the formation of voids due to these gaseous components is a phenomenon limited to the interface between the back surface of the upper semiconductor chip and the top surface of the cured product layer, and the heat flow based on the laminated structure of the metal powder in the cured product layer. Although the contact between the flow path and the back surface of the semiconductor chip is hindered, this phenomenon can be avoided by using the conductive adhesive according to the present invention.

なお、本発明にかかる導電性接着剤で利用する金属粉は、上述するように、形成される導電性接合部の硬化物層中において、電流流路ならびに主要な熱流流路の構成に利用されており、銀、銅、金、白金、ニッケル、亜鉛、ビスマス、タングステンからなる群から選択される、少なくとも1種以上の金属材料が利用される。通常、併用される金属超微粒子も、対応する金属材料を、銀、銅、金、白金、ニッケル、亜鉛、ビスマスからなる群から選択することが望ましい。なかでも、銀、銅、金、白金は、電気伝導率と熱伝導率ともに特に優れた金属材料であり、これらを利用することがより好ましい。   As described above, the metal powder used in the conductive adhesive according to the present invention is used for the configuration of the current channel and the main heat flow channel in the cured product layer of the formed conductive joint. At least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, bismuth and tungsten is used. Usually, it is desirable that the metal ultrafine particles used in combination are selected from the group consisting of silver, copper, gold, platinum, nickel, zinc and bismuth. Among these, silver, copper, gold, and platinum are metal materials that are particularly excellent in both electrical conductivity and thermal conductivity, and it is more preferable to use them.

一方、本発明にかかる物品の製造方法は、上述する本発明にかかる導電性接着剤で利用する導電性接合の利点を応用するものであり、一般的には、
導電性接合体と、該導電性接合体によって連結されている第一の部材と第二の部材とを含む物品を製造する方法であって、
前記第一の部材と第二の部材とを、本発明にかかる導電性接着剤を介して保持し、
前記導電性接着剤を加熱することによって前記導電性接合体を得て、連結する工程を有する
ことを特徴とする物品の製造方法である。
On the other hand, the manufacturing method of the article according to the present invention applies the advantages of the conductive bonding utilized in the above-described conductive adhesive according to the present invention.
A method of manufacturing an article comprising a conductive joined body, and a first member and a second member connected by the conductive joined body,
Holding the first member and the second member via the conductive adhesive according to the present invention,
A method for producing an article comprising a step of obtaining and connecting the conductive joined body by heating the conductive adhesive.

特に、本発明にかかる物品の製造方法は、前記第一の部材として、半導体チップ、第二の部材として、リードフレームを選択する形態、すなわち、リードフレーム上への半導体チップのダイマウント工程に、上記本発明にかかる導電性接着剤を利用する形態として、実施すると、より好ましい結果を与える。   In particular, the method for manufacturing an article according to the present invention includes a semiconductor chip as the first member and a lead frame as the second member, that is, a die mounting step of the semiconductor chip on the lead frame. When it implements as a form using the conductive adhesive concerning the above-mentioned present invention, a more desirable result is given.

この半導体装置の製造へ適用する形態の代表的な一例は、樹脂モールド型半導体装置の製造プロセス中、リードフレーム上への半導体チップのダイマウント工程において、両者を導電性接合によって連結するダイマウント材として、本発明にかかる導電性接着剤を利用する形態である。一般に、この種の樹脂モールド型半導体装置の製造プロセスは、
リードフレーム上にダイマウント材を供給する工程;
ダイマウント材に半導体素子をマウントする工程;
ダイマウント材を加熱硬化し、導電性接合体を形成する工程;
半導体素子とリードフレームとの間を、金属ワイヤで接続する工程;
リードフレームの少なくとも一部、ダイマウント材、半導体素子、金属ワイヤを樹脂封止する工程とを具備しているが、このダイマウント材として、上記の構成を有する本発明にかかる導電性接着剤を利用することで、良好な電気伝導性と熱伝導性を示す導電性接合が可能となる。
A typical example of the form applied to the manufacture of this semiconductor device is a die mount material for connecting the two by conductive bonding in the die mounting process of the semiconductor chip on the lead frame during the manufacturing process of the resin mold type semiconductor device. As an embodiment, the conductive adhesive according to the present invention is used. In general, the manufacturing process of this type of resin-molded semiconductor device is:
Supplying a die mount material on the lead frame;
Mounting a semiconductor element on a die mount material;
Heat-curing the die mount material to form a conductive joined body;
Connecting the semiconductor element and the lead frame with a metal wire;
A step of resin-sealing at least a part of the lead frame, a die mount material, a semiconductor element, and a metal wire. As the die mount material, the conductive adhesive according to the present invention having the above-described configuration is used. By using it, it is possible to perform conductive bonding that exhibits good electrical conductivity and thermal conductivity.

また、ダイマウント材として利用する、本発明にかかる導電性接着剤のキュア処理温度は、配合されている熱硬化性樹脂の種類に応じて、190℃〜320℃の範囲、より好ましくは、190℃〜310℃の範囲に設定することができる。その際、少なくとも、キュア処理温度を190℃以上に設定することで、良好な電気伝導性と熱伝導性を示す導電性接合を達成する上で主要な役割を持つ、金属超微粒子の低温焼結過程の十分な進行もなされ、好ましい加熱条件となる。一方、320℃程度の加熱温度であれば、半導体チップ表面部に形成されている半導体素子特性への影響も十分に許容される範囲である。なお、このキュア処理温度は、300℃以下、通常、250℃程度に選択することが可能であり、錫/鉛合金ハンダを利用する導電性接合を用いる際、ハンダ溶融を行う加熱温度の250℃〜300℃程度と同程度の加熱条件が利用可能となる。さらには、前記の(C)熱硬化性樹脂の熱硬化に先立ち、塗布時の操作性を満足する液粘度の調整を目的として、本発明にかかる導電性接着剤中に配合されている(D)溶剤を予め蒸散、除去するため、80℃〜130℃の範囲、好ましくは、90℃〜130℃の範囲で予備的な加熱を行う、仮硬化工程を設けることがより望ましい。   Further, the curing temperature of the conductive adhesive according to the present invention used as a die mount material is in the range of 190 ° C. to 320 ° C., more preferably 190, depending on the type of the thermosetting resin compounded. It can be set in the range of from ℃ to 310 ℃. At that time, at least the curing temperature is set to 190 ° C or higher, so that low-temperature sintering of ultrafine metal particles plays a major role in achieving conductive bonding that exhibits good electrical and thermal conductivity. Sufficient progress of the process is achieved, and preferable heating conditions are obtained. On the other hand, when the heating temperature is about 320 ° C., the influence on the characteristics of the semiconductor element formed on the surface portion of the semiconductor chip is sufficiently acceptable. The curing temperature can be selected to be 300 ° C. or less, usually about 250 ° C., and when using conductive bonding using tin / lead alloy solder, the heating temperature for melting the solder is 250 ° C. Heating conditions similar to about ~ 300 ° C can be used. Furthermore, prior to the thermosetting of the (C) thermosetting resin, it is blended in the conductive adhesive according to the present invention for the purpose of adjusting the liquid viscosity that satisfies the operability during coating (D ) In order to evaporate and remove the solvent in advance, it is more desirable to provide a temporary curing step in which preliminary heating is performed in the range of 80 ° C to 130 ° C, preferably in the range of 90 ° C to 130 ° C.

加えて、本発明にかかる導電性接着剤を利用し、前述のキュア処理温度を選択することで、例えば、形成される導電性接合部の熱伝導性は、該接合部の熱伝導率に換算した際、少なくとも、8W/mK以上、大半の場合、10W/mK以上の範囲に達するものとなる。   In addition, by using the conductive adhesive according to the present invention and selecting the above-mentioned curing temperature, for example, the thermal conductivity of the formed conductive joint is converted to the thermal conductivity of the joint. In this case, at least 8 W / mK or more, and in most cases, the range reaches 10 W / mK or more.

以下に、具体例を示し、本発明をより具体的に説明する。これらの具体例は、本発明にかかる最良の実施形態の一例ではあるものの、本発明はこれら具体例により限定を受けるものではない。   Hereinafter, the present invention will be described more specifically by showing specific examples. Although these specific examples are examples of the best mode according to the present invention, the present invention is not limited by these specific examples.

(実施例1−1〜1−8、比較例1−1〜1−3)
導電性接着剤中における、必須成分の(A)金属粉、(B)超微粒子、(C)熱硬化性樹脂、(D)溶剤の配合量比率を種々に選択し、実施例1−1〜1−8の導電性接着剤、ならびに比較例1−1〜1−3の導電性接着剤を以下の手順に従って調製する。
(Examples 1-1 to 1-8, Comparative Examples 1-1 to 1-3)
Various amounts of blending ratios of the essential components (A) metal powder, (B) ultrafine particles, (C) thermosetting resin, and (D) solvent in the conductive adhesive were selected. The conductive adhesive of 1-8 and the conductive adhesives of Comparative Examples 1-1 to 1-3 are prepared according to the following procedure.

(B)超微粒子として利用する、金属表面にポリオキシアルキレンアミンによる被覆層を有する銀超微粒子を、以下の処理によって調製する。   (B) Silver ultrafine particles having a coating layer of polyoxyalkyleneamine on the metal surface to be used as ultrafine particles are prepared by the following treatment.

市販されている銀の超微粒子分散液(商品名:独立分散超微粒子Ag1TH1(株)アルバック・コーポレートセンター)を利用し、含まれる銀超微粒子35質量部当たり、ポリオキシアルキレンアミンとして、ジェファーミンT403 6質量部、有機溶剤として、トルエン59質量部を含む、平均粒子径3nmの銀微粒子分散液を調製する。エバポレーターを用いて、前記銀超微粒子の分散液(35wt%Ag1TH1)中に含有される分散溶媒トルエンを留去し、乾燥粉体として、ポリオキシアルキレンアミンで表面が被覆された銀超微粒子を回収する。   By using a commercially available silver ultrafine particle dispersion (trade name: Independently Dispersed Ultrafine Particles Ag1TH1 ULVAC Corporate Center), per 35 parts by mass of silver ultrafine particles contained, Jeffamine T403 is used as polyoxyalkyleneamine. A silver fine particle dispersion liquid having an average particle size of 3 nm and containing 59 parts by mass of toluene as an organic solvent is prepared. Using an evaporator, the dispersion solvent toluene contained in the silver ultrafine particle dispersion (35 wt% Ag1TH1) was distilled off, and the ultrafine silver particles whose surface was coated with polyoxyalkyleneamine was recovered as a dry powder. To do.

(C)熱硬化性樹脂として、樹脂構成成分である、エポキシ樹脂と、その硬化剤の酸無水物に加えて、シランカップリング剤を含む熱硬化性エポキシ樹脂組成物を以下のように調製する。攪拌用容器中に、二塩基酸変性エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート871、エポキシ当量420g/eq)、ゴム変性エポキシ樹脂(旭電化工業(株)製、EPR1309、エポキシ当量300g/eq)、シランカップリング剤(日本ユニカー(株)製、AZ6165)、酸無水物(新日本理化製、リカッシドDDSA、酸無水物当量130g/eq)を加える。これら成分を十分に撹拌・混合して、均一な液状混合物を調製し、熱硬化性樹脂組成物として利用する。   (C) As a thermosetting resin, a thermosetting epoxy resin composition containing a silane coupling agent in addition to an epoxy resin which is a resin component and an acid anhydride of the curing agent is prepared as follows. . In a stirring vessel, dibasic acid-modified epoxy resin (Japan Epoxy Resin Co., Ltd., Epicoat 871, epoxy equivalent 420 g / eq), rubber-modified epoxy resin (Asahi Denka Kogyo Co., Ltd., EPR1309, epoxy equivalent 300 g / eq), a silane coupling agent (manufactured by Nippon Unicar Co., Ltd., AZ6165), and acid anhydride (manufactured by Shin Nippon Chemical Co., Ltd., Ricasside DDSA, acid anhydride equivalent 130 g / eq). These components are sufficiently stirred and mixed to prepare a uniform liquid mixture and used as a thermosetting resin composition.

下記する手順に従って、この熱硬化性樹脂組成物中に、導電性媒体に用いる金属成分として、(A)金属粉、(B)超微粒子を添加し、均一に混練して、銀ペースト状の混合物を調製する。(C)熱硬化性樹脂として用いる、先に調製された樹脂分に対して、(A)金属粉として、平均粒子径3μmの球状銀粉(同和鉱業(株)製、Ag−5−7A)と平均粒子径3μmの鱗片状銀粉(福田金属(株)製、AgC−239)、(B)超微粒子として、前記乾燥粉体化の処理を施した銀超微粒子を添加し、十分に撹拌・混合して、均一な銀ペースト状の混合物とする。   In accordance with the procedure described below, (A) metal powder and (B) ultrafine particles are added to the thermosetting resin composition as metal components used in the conductive medium, and the mixture is uniformly kneaded to obtain a silver paste mixture. To prepare. (C) For the previously prepared resin component used as a thermosetting resin, (A) a spherical silver powder having an average particle size of 3 μm (Ag-5-7A, Ag-5-7A) as a metal powder; Scale-like silver powder with an average particle diameter of 3 μm (AgC-239, manufactured by Fukuda Metals Co., Ltd.), (B) As ultrafine particles, the ultrafine silver particles that have been subjected to the above-mentioned dry powdering treatment are added, and sufficiently stirred and mixed. Thus, a uniform silver paste mixture is obtained.

得られる銀ペースト状の混合物に、(D)溶剤を加え、液粘度を調整し、導電性接着剤とする。ここでは、(D)溶剤として、ジエチレングリコールジエチルエーテル(沸点 188.4℃/1013hPa)を用い、銀ペースト状の混合物に所定比率で添加し、十分に撹拌・混合することにより、液粘度を20Pa・s(25℃)前後に調整する。   (D) A solvent is added to the resulting silver paste-like mixture to adjust the liquid viscosity to obtain a conductive adhesive. Here, as the solvent (D), diethylene glycol diethyl ether (boiling point: 188.4 ° C./1013 hPa) is added to the silver paste-like mixture at a predetermined ratio, and sufficiently stirred and mixed, so that the liquid viscosity is 20 Pa · Adjust to around s (25 ° C.).

表1、表2に、調製された導電性接着剤の組成を示す。   Tables 1 and 2 show the compositions of the prepared conductive adhesives.

調製される導電性接着剤について、含有される溶剤の蒸散、および、熱硬化性樹脂の硬化を行うため、所定の条件で加熱処理を施す間に、気相中への散逸成分に起因する総質量減少量を以下の評価法により測定する。   About the conductive adhesive to be prepared, in order to evaporate the contained solvent and cure the thermosetting resin, the total amount caused by the components dissipated in the gas phase during the heat treatment under the predetermined conditions. The amount of mass loss is measured by the following evaluation method.

評価対象の導電性接着剤をTg−DTAの測定用カップの底部に塗布し、測定サンプルとする。ここでは、測定用カップとして、アルミニウム製φ5mmカップを用いている。同カップ内に、所定量の導電性接着剤試料を供給し、測定カップ内壁と同径のテフロン棒、すなわちφ5mmのテフロン棒を利用して、液状の試料をカップ底部に押しつけて、その表面形状を固定する。この固定処理後、加熱処理前の導電性接着剤試料の重量を測定する。その際、加熱処理前の試料重量が、15±1mgになるように、導電性接着剤試料の供給量を調整する。   A conductive adhesive to be evaluated is applied to the bottom of a Tg-DTA measurement cup to obtain a measurement sample. Here, an aluminum φ5 mm cup is used as the measurement cup. A predetermined amount of conductive adhesive sample is supplied into the cup, and a liquid sample is pressed against the cup bottom using a Teflon rod having the same diameter as the inner wall of the measuring cup, that is, a φ5 mm Teflon rod. To fix. After this fixing treatment, the weight of the conductive adhesive sample before the heat treatment is measured. At that time, the supply amount of the conductive adhesive sample is adjusted so that the sample weight before the heat treatment is 15 ± 1 mg.

前記表面形状の固定化を行った、導電性接着剤の塗布層試料に対して、アルゴンガス(流量100ml/min)雰囲気下、30℃より昇温速度10℃/minで250℃まで昇温した後、250℃に60分保持する温度プロファイルで加熱処理を行う間、Tg−DTAを用いて、その重量変化量を測定する。   With respect to the conductive adhesive coating layer sample with the surface shape fixed, the temperature was increased from 30 ° C. to 250 ° C. at a temperature increase rate of 10 ° C./min in an argon gas (flow rate 100 ml / min) atmosphere. Then, while heat-processing with the temperature profile hold | maintained at 250 degreeC for 60 minutes, the amount of weight changes is measured using Tg-DTA.

当初の導電性接着剤試料の供給量、導電性接着剤の組成、ならびに重量変化量の測定結果に基づき、以下の定義に従って、溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を算出する。   Based on the measurement results of the initial supply amount of the conductive adhesive sample, the composition of the conductive adhesive, and the weight change amount, the mass loss rate F (%) caused by gas generation other than the evaporation of the solvent according to the following definition ) Is calculated.

ここでは、100質量部となる量Wの導電性接着剤に対して、上記の条件で加熱処理を施す際、
この加熱処理に伴い、気相中への散逸成分に起因する総質量減少量E、
量Wの導電性接着剤中に含まれ、蒸散される前記溶剤の量D1
量Wの導電性接着剤中に含まれる、前記金属粉の量A1
量Wの導電性接着剤中に含まれる、前記超微粒子の量B1
量Wの導電性接着剤中に含まれる、前記熱硬化性樹脂の量C1
と定義する際、
気相中への散逸成分に起因する総質量減少量E中、蒸散される前記溶剤の量D1を除く、質量減少量αを、
式1: α≡E−D1
と定義し、前記溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を、
式2: F≡{α/(A1+B1+C1)}×100
と定義している。
Here, when the heat treatment is performed under the above conditions for the conductive adhesive of an amount W that is 100 parts by mass,
Along with this heat treatment, the total mass loss E due to the dissipative component into the gas phase,
The amount of solvent D 1 contained in the amount W of conductive adhesive and evaporated;
The amount A 1 of the metal powder contained in the conductive adhesive of the amount W;
The amount B 1 of the ultrafine particles contained in the conductive adhesive of the amount W;
The amount C 1 of the thermosetting resin contained in the conductive adhesive of the amount W;
When defining
In the total mass reduction amount E due to the components dissipated into the gas phase, the mass reduction amount α, excluding the amount D 1 of the solvent to be evaporated,
Formula 1: α≡ED 1
And the mass loss rate F (%) due to gas generation other than the evaporation of the solvent,
Formula 2: F≡ {α / (A 1 + B 1 + C 1 )} × 100
It is defined as

この質量損失率F(%)は、(C)熱硬化性樹脂中の樹脂構成成分による熱硬化反応、ここでは、エポキシ樹脂と、その硬化剤の酸無水物の重合反応が進行する間に、副次的な反応により生成する副反応生成物のうち、ガス化して散逸する「ガス状または揮発性副反応生成物」の、得られる「熱硬化物」全体に対する割合に相当する。   This mass loss rate F (%) is (C) the thermosetting reaction by the resin component in the thermosetting resin, here, while the polymerization reaction of the epoxy resin and the acid anhydride of the curing agent proceeds. This corresponds to the ratio of the “gaseous or volatile side reaction product” that is gasified and dissipated among the side reaction products generated by the side reaction to the entire “thermoset” obtained.

Figure 2006083377
Figure 2006083377

Figure 2006083377
Figure 2006083377

(実施例1−10〜1−13)
導電性媒体として、(B)超微粒子、(A)金属粉を用い、主要成分として、(A)金属粉、(B)超微粒子、(C)熱硬化性樹脂、(D)溶剤を含む導電性接着剤を以下の手順に従って調製する。その際、球状銀粉と鱗片状銀粉との配合比率を種々に選択し、実施例1−10〜1−13の4種の導電性接着剤を作製する。
(Examples 1-10 to 1-13)
Conductive medium containing (B) ultrafine particles and (A) metal powder as the conductive medium, and (A) metal powder, (B) ultrafine particles, (C) thermosetting resin, and (D) solvent as the main components. The adhesive is prepared according to the following procedure. In that case, the blending ratio of spherical silver powder and scale-like silver powder is variously selected, and four types of conductive adhesives of Examples 1-10 to 1-13 are produced.

(C)熱硬化性樹脂として、エポキシ樹脂、その硬化剤として、酸無水物、ならびにシランカップリング剤を含む熱硬化性エポキシ樹脂組成物を以下のように調製する。攪拌用容器中に、二塩基酸変性エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート871)、ゴム変性エポキシ樹脂(旭電化工業(株)製、EPR1309)、シランカップリング剤(日本ユニカー(株)製、AZ6165)、酸無水物(新日本理化製、リカッシドDDSA)を加える。これら成分を十分に撹拌・混合して、均一な液状混合物を調製し、熱硬化性樹脂組成物として利用する。   (C) A thermosetting epoxy resin composition containing an epoxy resin as the thermosetting resin and an acid anhydride and a silane coupling agent as the curing agent is prepared as follows. In the stirring vessel, dibasic acid-modified epoxy resin (Japan Epoxy Resin Co., Ltd., Epicoat 871), rubber-modified epoxy resin (Asahi Denka Kogyo Co., Ltd., EPR1309), silane coupling agent (Nihon Unicar Co., Ltd.) ), AZ6165), and acid anhydride (manufactured by Shin Nippon Chemical Co., Ltd., Ricasside DDSA). These components are sufficiently stirred and mixed to prepare a uniform liquid mixture and used as a thermosetting resin composition.

下記する手順に従って、この熱硬化性樹脂組成物中に、導電性媒体に用いる金属成分として、(B)超微粒子と、(A)金属粉を添加し、均一に混練して、銀ペースト状の混合物を調製する。(C)熱硬化性樹脂として用いる、先に調製された樹脂分に対して、(B)超微粒子として、上記乾燥粉体化の処理を施した銀超微粒子、(A)金属粉として、平均粒子径3μmの球状銀粉(同和鉱業(株)製、Ag−5−7A)と平均粒子径3μmの鱗片状銀粉(福田金属(株)製、AgC−239)を種々の比率で添加し、十分に撹拌・混合して、均一な銀ペースト状の混合物とする。   According to the procedure described below, (B) ultrafine particles and (A) metal powder are added to the thermosetting resin composition as a metal component used in the conductive medium, and uniformly kneaded to form a silver paste. Prepare the mixture. (C) As a thermosetting resin, the above-prepared resin content is compared with (B) ultrafine silver particles subjected to the above-mentioned dry powdering treatment, and (A) metal powder as an average. Add spherical silver powder with a particle size of 3 μm (Dowa Mining Co., Ltd., Ag-5-7A) and scale-like silver powder with an average particle size of 3 μm (Fukuda Metals Co., Ltd., AgC-239) at various ratios, To obtain a uniform silver paste mixture.

得られる銀ペースト状の混合物に、(D)溶剤を加え、液粘度を調整し、導電性接着剤とする。ここでは、(D)溶剤として、ジエチレングリコールジエチルエーテル(沸点 188.4℃/1013hPa)を用い、銀ペースト状の混合物に所定比率で添加し、十分に撹拌・混合することにより、液粘度を20Pa・s(25℃)程度に調整する。   (D) A solvent is added to the resulting silver paste-like mixture to adjust the liquid viscosity to obtain a conductive adhesive. Here, as the solvent (D), diethylene glycol diethyl ether (boiling point: 188.4 ° C./1013 hPa) is added to the silver paste-like mixture at a predetermined ratio, and sufficiently stirred and mixed, so that the liquid viscosity is 20 Pa · Adjust to about s (25 ° C.).

表3に、本実施例1−10〜1−13の導電性接着剤の組成を示す。   Table 3 shows the compositions of the conductive adhesives of Examples 1-10 to 1-13.

調製される導電性接着剤について、含有される溶剤の蒸散、および、熱硬化性樹脂の硬化を行うため、所定の条件で加熱処理を施す間に、気相中への散逸成分に起因する総質量減少量を、上に記載する評価法に従って測定する。   About the conductive adhesive to be prepared, in order to evaporate the contained solvent and cure the thermosetting resin, the total amount caused by the components dissipated in the gas phase during the heat treatment under the predetermined conditions. The mass loss is measured according to the evaluation method described above.

また、当初の導電性接着剤試料の供給量、導電性接着剤の組成、ならびに重量変化量の測定結果に基づき、上述の定義に従って、前記溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を算出する。   In addition, based on the measurement results of the initial supply amount of the conductive adhesive sample, the composition of the conductive adhesive, and the amount of change in weight, the mass loss rate due to gas generation other than the evaporation of the solvent according to the above definition F (%) is calculated.

Figure 2006083377
Figure 2006083377

(比較例2−1)
導電性媒体として、(B)超微粒子を配合せず、(A)金属粉のみを用い、主要成分として、(A)金属粉、(C)熱硬化性樹脂、(D)溶剤を含む、従来型の導電性接着剤を以下の手順に従って調製する。
(Comparative Example 2-1)
Conventionally containing (B) ultrafine particles as a conductive medium, using only (A) metal powder, and containing (A) metal powder, (C) thermosetting resin, and (D) solvent as main components. A type of conductive adhesive is prepared according to the following procedure.

(C)熱硬化性樹脂として、エポキシ樹脂、その硬化剤として、酸無水物、ならびにシランカップリング剤を構成成分とする、熱硬化性エポキシ樹脂組成物を以下のように調製する。攪拌用容器中に、二塩基酸変性エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート871)、ゴム変性エポキシ樹脂(旭電化工業(株)製、EPR1309、エポキシ当量)、シランカップリング剤(日本ユニカー(株)製、AZ6165)、酸無水物(新日本理化製、リカッシドDDSA)を加える。これら成分を十分に撹拌・混合して、均一な液状混合物を調製し、熱硬化性樹脂組成物として利用する。   (C) A thermosetting epoxy resin composition containing an epoxy resin as a thermosetting resin and an acid anhydride and a silane coupling agent as constituents as a curing agent is prepared as follows. In a stirring vessel, a dibasic acid-modified epoxy resin (Japan Epoxy Resin Co., Ltd., Epicoat 871), rubber-modified epoxy resin (Asahi Denka Kogyo Co., Ltd., EPR1309, epoxy equivalent), silane coupling agent (Japan) Unicar Co., Ltd., AZ6165) and acid anhydride (Shin Nippon Rika Co., Ltd., Ricasid DDSA) are added. These components are sufficiently stirred and mixed to prepare a uniform liquid mixture and used as a thermosetting resin composition.

下記する手順に従って、この熱硬化性樹脂組成物中に、導電性媒体に用いる金属成分として、(A)金属粉のみを添加し、均一に混練して、銀ペースト状の混合物を調製する。(C)熱硬化性樹脂として用いる、先に調製された樹脂分に対して、(A)金属粉として、平均粒子径3μmの球状銀粉(同和鉱業(株)製、Ag−5−7A)と平均粒子径3μmの鱗片状銀粉(福田金属(株)製、AgC−239)を添加し、十分に撹拌・混合して、均一な銀ペースト状の混合物とする。   In accordance with the procedure described below, (A) only metal powder is added to the thermosetting resin composition as a metal component used for the conductive medium, and the mixture is uniformly kneaded to prepare a silver paste mixture. (C) For the previously prepared resin component used as a thermosetting resin, (A) a spherical silver powder having an average particle size of 3 μm (Ag-5-7A, Ag-5-7A) as a metal powder; A scaly silver powder having an average particle size of 3 μm (AgC-239, manufactured by Fukuda Metal Co., Ltd.) is added, and the mixture is sufficiently stirred and mixed to obtain a uniform silver paste-like mixture.

得られる銀ペースト状の混合物に、(D)溶剤を加え、液粘度を調整し、導電性接着剤とする。ここでは、(D)溶剤として、ジエチレングリコールジエチルエーテル(沸点 188.4℃/1013hPa)を用い、銀ペースト状の混合物に所定比率で添加し、十分に撹拌・混合することにより、液粘度を20Pa・s(25℃)程度に調整する。   (D) A solvent is added to the resulting silver paste-like mixture to adjust the liquid viscosity to obtain a conductive adhesive. Here, as the solvent (D), diethylene glycol diethyl ether (boiling point: 188.4 ° C./1013 hPa) is added to the silver paste-like mixture at a predetermined ratio, and sufficiently stirred and mixed, so that the liquid viscosity is 20 Pa · Adjust to about s (25 ° C.).

表2に、本比較例2−1の導電性接着剤の組成を示す。   Table 2 shows the composition of the conductive adhesive of Comparative Example 2-1.

調製される導電性接着剤について、含有される溶剤の蒸散、および、熱硬化性樹脂の硬化を行うため、所定の条件で加熱処理を施す間に、気相中への散逸成分に起因する総質量減少量を、上に記載する評価法に従って測定する。   About the conductive adhesive to be prepared, in order to evaporate the contained solvent and cure the thermosetting resin, the total amount caused by the components dissipated in the gas phase during the heat treatment under the predetermined conditions. The mass loss is measured according to the evaluation method described above.

また、当初の導電性接着剤試料の供給量、導電性接着剤の組成、ならびに重量変化量の測定結果に基づき、上述の定義に従って、溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を算出する。   Further, based on the measurement results of the initial supply amount of the conductive adhesive sample, the composition of the conductive adhesive, and the weight change amount, the mass loss rate F caused by gas generation other than the evaporation of the solvent according to the above-mentioned definition (%) Is calculated.

(比較例2−2)
導電性接着剤中における、必須成分の(A)金属粉、(B)超微粒子、(C)熱硬化性樹脂、(D)溶剤の配合量比率を種々に選択し、一方、(D)溶剤として、1013hPa(1気圧)の大気中における、沸点が250℃以上を示す有機溶媒である、アジピン酸ジブチルを利用して、比較例2−2の導電性接着剤を以下の手順に従って調製する。
(Comparative Example 2-2)
In the conductive adhesive, various proportions of the essential components (A) metal powder, (B) ultrafine particles, (C) thermosetting resin, and (D) solvent are selected, while (D) solvent As an example, the conductive adhesive of Comparative Example 2-2 is prepared according to the following procedure using dibutyl adipate, which is an organic solvent having a boiling point of 250 ° C. or higher in the atmosphere of 1013 hPa (1 atm).

(B)超微粒子として利用する、金属表面にポリオキシアルキレンアミンによる被覆層を有する銀超微粒子を、以下の処理によって調製する。   (B) Silver ultrafine particles having a coating layer of polyoxyalkyleneamine on the metal surface to be used as ultrafine particles are prepared by the following treatment.

市販されている銀の超微粒子分散液(商品名:独立分散超微粒子Ag1TH1(株)アルバック・コーポレートセンター)を利用し、含まれる銀超微粒子35質量部当たり、ポリオキシアルキレンアミンとして、ジェファーミンT403 6質量部、有機溶剤として、トルエン59質量部を含む、平均粒子径3nmの銀微粒子分散液を調製する。エバポレーターを用いて、前記銀超微粒子の分散液(35wt%Ag1TH1)中に含有される分散溶媒トルエンを留去し、乾燥粉体として、ポリオキシアルキレンアミンで表面が被覆された銀超微粒子を回収する。   By using a commercially available silver ultrafine particle dispersion (trade name: Independently Dispersed Ultrafine Particles Ag1TH1 ULVAC Corporate Center), per 35 parts by mass of silver ultrafine particles contained, Jeffamine T403 is used as polyoxyalkyleneamine. A silver fine particle dispersion liquid having an average particle size of 3 nm and containing 59 parts by mass of toluene as an organic solvent is prepared. Using an evaporator, the dispersion solvent toluene contained in the silver ultrafine particle dispersion (35 wt% Ag1TH1) was distilled off, and the ultrafine silver particles whose surface was coated with polyoxyalkyleneamine was recovered as a dry powder. To do.

(C)熱硬化性樹脂として、エポキシ樹脂、その硬化剤として、酸無水物、ならびにシランカップリング剤を構成成分とする、熱硬化性エポキシ樹脂組成物を以下のように調製する。攪拌用容器中に、二塩基酸変性エポキシ樹脂(ジャパンエポキシレジン(株)製、エピコート871)、ゴム変性エポキシ樹脂(旭電化工業(株)製、EPR1309、)、シランカップリング剤(日本ユニカー(株)製、AZ6165)、酸無水物(新日本理化製、リカッシドDDSA)を加える。これら成分を十分に撹拌・混合して、均一な液状混合物を調製し、熱硬化性樹脂組成物として利用する。   (C) A thermosetting epoxy resin composition containing an epoxy resin as a thermosetting resin and an acid anhydride and a silane coupling agent as constituents as a curing agent is prepared as follows. In a stirring vessel, a dibasic acid-modified epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd., Epicoat 871), a rubber-modified epoxy resin (manufactured by Asahi Denka Kogyo Co., Ltd., EPR1309), a silane coupling agent (Nihon Unicar ( Co., Ltd., AZ6165), and acid anhydride (manufactured by Shin Nippon Chemical Co., Ltd., Ricasside DDSA) are added. These components are sufficiently stirred and mixed to prepare a uniform liquid mixture and used as a thermosetting resin composition.

下記する手順に従って、この熱硬化性樹脂組成物中に、導電性媒体に用いる金属成分として、(A)金属粉、(B)超微粒子を添加し、均一に混練して、銀ペースト状の混合物を調製する。(C)熱硬化性樹脂として用いる、先に調製された樹脂分に対して、(A)金属粉として、平均粒子径3μmの球状銀粉(同和鉱業(株)製、Ag−5−7A)と平均粒子径3μmの鱗片状銀粉(福田金属(株)製、AgC−239)、(B)超微粒子として、前記乾燥粉体化の処理を施した銀超微粒子を添加し、十分に撹拌・混合して、均一な銀ペースト状の混合物とする。   In accordance with the procedure described below, (A) metal powder and (B) ultrafine particles are added to the thermosetting resin composition as metal components used in the conductive medium, and the mixture is uniformly kneaded to obtain a silver paste mixture. To prepare. (C) For the previously prepared resin component used as a thermosetting resin, (A) a spherical silver powder having an average particle size of 3 μm (Ag-5-7A, Ag-5-7A) as a metal powder; Scale-like silver powder with an average particle diameter of 3 μm (AgC-239, manufactured by Fukuda Metals Co., Ltd.), (B) As ultrafine particles, the ultrafine silver particles that have been subjected to the above-mentioned dry powdering treatment are added, and sufficiently stirred and mixed. Thus, a uniform silver paste mixture is obtained.

得られる銀ペースト状の混合物に、(D)溶剤を加え、液粘度を調整し、導電性接着剤とする。ここでは、(D)溶剤として、アジピン酸ジブチル(沸点 305℃/1013hPa)を用い、銀ペースト状の混合物に所定比率で添加し、十分に撹拌・混合することにより、液粘度を20Pa・s(25℃)程度に調整する。   (D) A solvent is added to the resulting silver paste-like mixture to adjust the liquid viscosity to obtain a conductive adhesive. Here, (D) Dibutyl adipate (boiling point 305 ° C./1013 hPa) is used as a solvent, added to a silver paste mixture at a predetermined ratio, and sufficiently stirred and mixed, the liquid viscosity is 20 Pa · s ( 25 ° C.)

表4に、調製された比較例2−2の導電性接着剤の組成を示す。   Table 4 shows the composition of the prepared conductive adhesive of Comparative Example 2-2.

Figure 2006083377
Figure 2006083377

(実施例2)
上述する導電性接着剤中における、必須成分の(A)金属粉、(B)超微粒子、(C)熱硬化性樹脂、(D)溶剤の配合量比率を種々に選択して調製される、実施例1−1〜1−8の導電性接着剤、実施例1−10〜1−13の導電性接着剤、ならびに比較例1−1〜1−3の導電性接着剤、比較例2−1、比較例2−2の導電性接着剤について、これら導電性接着剤を使用する導電性接合における接合状態、接合面におけるボイド発生の有無、かかる導電性接合部の熱伝導率の評価結果と、これら導電性接着剤自体に対して評価された質量損失率Fの評価結果とを纏めて、表5、表6、表7、表8に示す。
(Example 2)
In the conductive adhesive described above, it is prepared by variously selecting the blending ratio of the essential components (A) metal powder, (B) ultrafine particles, (C) thermosetting resin, (D) solvent, The conductive adhesives of Examples 1-1 to 1-8, the conductive adhesives of Examples 1-10 to 1-13, and the conductive adhesives of Comparative Examples 1-1 to 1-3, Comparative Example 2- 1. Regarding the conductive adhesive of Comparative Example 2-2, the bonding state in conductive bonding using these conductive adhesives, the presence or absence of voids on the bonding surface, and the evaluation results of the thermal conductivity of the conductive bonding portion Table 5, Table 6, Table 7, and Table 8 collectively show the evaluation results of the mass loss rate F evaluated for these conductive adhesives themselves.

なお、表8に示す評価結果には、類似する組成を有する実施例1−11の導電性接着剤と比較例2−2の導電性接着剤における接合体性能の評価結果を対比して示す。比較例2−2の導電性接着剤を用いた際には、ボイド発生、界面での剥離の頻度が大きく、また、その程度のバラツキも甚だしく、レーザフラッシュ法による熱伝導率の評価は実施できていない。   The evaluation results shown in Table 8 are shown by comparing the evaluation results of the joined body performance of the conductive adhesive of Example 1-11 and the conductive adhesive of Comparative Example 2-2 having similar compositions. When the conductive adhesive of Comparative Example 2-2 was used, the frequency of void generation and peeling at the interface was large, and the degree of variation was so great that the thermal conductivity evaluation by the laser flash method could be performed. Not.

前記導電性接合性能の評価用サンプルとして、下記の手順に従って、Cu板上に、裏面に接合用の金蒸着膜層を設けたSiチップを、導電性接着剤を介して接合したサンプルを作製する。   As a sample for evaluating the conductive bonding performance, a sample in which a Si chip having a gold deposition film layer for bonding on the back surface is bonded on a Cu plate via a conductive adhesive is prepared according to the following procedure. .

予め、10mm(L)×10mm(W)×1mm(T)のサイズに加工したCu板上に、所定液量の導電性接着剤をディスペンサで供給する。チップサイズ 8.5mm(L)×8.5mm(W)×0.3mm(T)、裏面に接合用の金蒸着膜層を設けた矩形Siチップを、ダイボンダを使用して、前記導電性接着剤の塗布部上にマウントする。その後、恒温槽中、不活性ガス雰囲気下(窒素ガス雰囲気下)、サンプルを、仮硬化処理工程として、90℃、1時間保持し、導電性接着剤中に含有される溶剤の揮発・蒸散処理を施し、引き続き、本硬化処理工程として、200℃に昇温し、その温度で1時間保持し、導電性接着剤に含まれる熱硬化性樹脂の硬化処理を行う。   A predetermined amount of conductive adhesive is supplied by a dispenser onto a Cu plate that has been previously processed to a size of 10 mm (L) × 10 mm (W) × 1 mm (T). Chip size 8.5 mm (L) x 8.5 mm (W) x 0.3 mm (T), a rectangular Si chip provided with a gold vapor deposition film layer for bonding on the back side, using a die bonder, the conductive bonding Mount on the agent application part. Then, the sample is kept at 90 ° C. for 1 hour as a temporary curing treatment step in an inert gas atmosphere (in a nitrogen gas atmosphere) in a thermostatic bath, and the solvent contained in the conductive adhesive is volatilized and evaporated. Then, as the main curing process, the temperature is raised to 200 ° C. and held at that temperature for 1 hour, and the thermosetting resin contained in the conductive adhesive is cured.

この仮硬化処理工程においては、溶剤の蒸散が徐々に進むと、導電性接着剤中に分散されている金属粉の積層がなされ、Cu板表面、ならびに、Siチップ裏面の金蒸着膜面と、積層構造の金属粉層との物理的な接触がなされる。次いで、本硬化処理工程において、熱硬化性樹脂の硬化に伴い、Cu板表面、ならびに、Siチップ裏面の金蒸着膜面に対して、生成する樹脂硬化物による接着がなされ、同時に、キュアされる熱硬化性樹脂は、積層構造の金属粉層に対して、その内部の金属粉相互の密な接触状況を達成するバインダー樹脂成分として機能する。   In this temporary curing process, when the transpiration of the solvent gradually proceeds, the metal powder dispersed in the conductive adhesive is laminated, the Cu plate surface, and the gold vapor deposition film surface on the back surface of the Si chip, Physical contact is made with the metal powder layer of the laminated structure. Next, in the main curing process, as the thermosetting resin is cured, the resulting cured resin is adhered to the Cu plate surface and the gold vapor deposition film surface on the back surface of the Si chip, and is cured at the same time. The thermosetting resin functions as a binder resin component that achieves a close contact state between metal powders inside the metal powder layer having a laminated structure.

次いで、前記硬化処理済のサンプルについて、透過X線装置によって、接合部におけるボイド発生の有無を観察し、また、断面観察によって、導電性接着剤の硬化物とSiチップ裏面の金蒸着膜面との界面領域の接合状態、特に、剥離の有無を確認する。加えて、この導電性接合により、低熱抵抗な接合部が形成されているか、否かを確認するために、レーザフラッシュ法により熱伝導率を測定する。   Next, with respect to the cured sample, the presence or absence of voids in the joint is observed by a transmission X-ray apparatus, and the cured product of the conductive adhesive and the gold vapor deposition film surface on the back surface of the Si chip are observed by cross-sectional observation. The bonding state of the interfacial region, particularly the presence or absence of peeling is confirmed. In addition, thermal conductivity is measured by a laser flash method in order to confirm whether or not a low thermal resistance junction is formed by this conductive bonding.

Figure 2006083377
Figure 2006083377

Figure 2006083377
Figure 2006083377

Figure 2006083377
Figure 2006083377

Figure 2006083377
Figure 2006083377

表5〜表8に示す評価結果から、本発明にかかる導電性接着剤は、仮硬化処理時に、含有される溶剤の蒸散がなされ、その後、熱硬化反応を目的とする本硬化処理を行う際、副次的な反応により生成する副反応生成物のうち、ガス化して散逸する「ガス状または揮発性副反応生成物」の量が少なく、従って、接合部界面への「ガス状または揮発性副反応生成物」の集積に起因するボイド発生、また、剥離を誘起する要因が少なくなっている。特に、ボイド発生、界面での剥離が抑制されると、熱伝導性が優れた接合部を得ることができる。加えて、作製される導電性接合部に、ボイドや界面での剥離がないものとすることで、例えば、その後、温度サイクルが加わる間に、次第に、界面での剥離が拡大することも抑制されるため、接合部の長期信頼性も向上する。   From the evaluation results shown in Tables 5 to 8, when the conductive adhesive according to the present invention undergoes transpiration of the solvent contained during the temporary curing process, and then performs the main curing process for the purpose of a thermosetting reaction. The amount of “gaseous or volatile side reaction products” that are gasified and dissipated among the side reaction products generated by the side reaction is small, and therefore, “gaseous or volatile to the joint interface”. The generation of voids due to the accumulation of “side reaction products” and the factors that induce peeling are reduced. In particular, when generation of voids and peeling at the interface are suppressed, a joint having excellent thermal conductivity can be obtained. In addition, by making the manufactured conductive joints free from voids and separation at the interface, for example, it is also suppressed that the separation at the interface gradually increases during the subsequent temperature cycle. Therefore, the long-term reliability of the joint is also improved.

(実施例3)
上記実施例1−2、実施例1−7ならびに実施例1−13の導電性接着剤を利用し、半導体チップのリードフレーム上へのダイボンディング工程を実施し、金線ワイヤボンディング後、樹脂モールドを施した樹脂モールド型半導体装置を作製した上で、主として、半導体チップ裏面からリードフレームへの、導電性接合部を介する熱伝導特性を反映する、パッケージ状態における熱抵抗、ならびに、温度サイクル試験後における、かかる熱抵抗の変動を、以下のように評価する。
(Example 3)
Using the conductive adhesives of Example 1-2, Example 1-7 and Example 1-13, a die bonding process on the lead frame of the semiconductor chip was performed, and after gold wire bonding, resin mold After manufacturing a resin-molded semiconductor device that has been subjected to heat resistance in a package state that mainly reflects the heat conduction characteristics from the backside of the semiconductor chip to the lead frame through the conductive joint, and after the temperature cycle test The fluctuation of the thermal resistance is evaluated as follows.

ここで用いる樹脂モールド型半導体装置の組み立て工程の概要を、図1に示す。先ず、リードフレーム1に対して、半導体チップ2をダイマウントする領域に、所定量の導電性接着剤を塗布する。次いで、ダイボンダにより、半導体チップ2を前記導電性接着剤塗布部にマウントし、接合面となる半導体チップ2の裏面と導電性接着剤塗布層を密着させる。加熱処理を施し、導電性接着剤のキュアを行い、ダイボンディングを完了する。マウントされた半導体チップ2上面の電極パッドと、リードフレーム1上のボンディング・パッド間を、例えば、ボンディングワイヤ5として金線を用いて、ワイヤボンディングを行う。最終的に、リードフレーム1のリード部を除き、リードフレーム1のダイマウント領域、半導体チップ2、ボンディングワイヤ5の全面を樹脂モールド6で被覆するため、モールド用の熱硬化性樹脂を利用して、トランスファモールディングを施す。   An outline of the assembly process of the resin mold type semiconductor device used here is shown in FIG. First, a predetermined amount of conductive adhesive is applied to the lead frame 1 in a region where the semiconductor chip 2 is die mounted. Next, the semiconductor chip 2 is mounted on the conductive adhesive application portion by a die bonder, and the back surface of the semiconductor chip 2 serving as a bonding surface is adhered to the conductive adhesive application layer. Heat treatment is performed, the conductive adhesive is cured, and die bonding is completed. Wire bonding is performed between the electrode pads on the upper surface of the mounted semiconductor chip 2 and the bonding pads on the lead frame 1 using, for example, a gold wire as the bonding wire 5. Finally, except for the lead portion of the lead frame 1, the die mount region of the lead frame 1, the entire surface of the semiconductor chip 2 and the bonding wire 5 are covered with the resin mold 6, so that a thermosetting resin for molding is used. Apply transfer molding.

本実施例において使用するリードフレームは、厚さ0.1〜1mm程度の銅のコア材からなり、銅コア材の表面には、電気メッキにより銀メッキ膜が形成されている。この表面メッキ膜の膜厚は、通常、3〜20μm程度に選択される。なお、リードフレームのコア材に利用する銅が、前記の各工程において実施される熱処理に際して、酸化を受けることを防止するため、金や銀を利用する表面メッキ膜で被覆している。   The lead frame used in this embodiment is made of a copper core material having a thickness of about 0.1 to 1 mm, and a silver plating film is formed on the surface of the copper core material by electroplating. The thickness of the surface plating film is usually selected to be about 3 to 20 μm. The copper used for the core material of the lead frame is covered with a surface plating film using gold or silver in order to prevent oxidation during the heat treatment performed in each of the above steps.

但し、前記リードフレームの表面を被覆するメッキ膜の材質は、リードフレーム表面への酸化被膜形成を防止する機能を満たす限り、金、銀以外の金属材料を利用することも可能である。すなわち、かかるメッキ膜は、コア材の銅表面を緻密に被覆し、また、メッキ膜を構成する金属材料自体の表面酸化被膜形成が、金や銀メッキ膜と同程度に抑制されるならば、種々の金属材料のメッキ膜が利用可能である。更には、半導体装置の組み立てプロセスの各工程において、リードフレームのコア材の銅表面に形成される酸化被膜が特に問題とならない場合には、かかる表面酸化防止用のメッキ膜を設ける必要はない。   However, as the material of the plating film covering the surface of the lead frame, a metal material other than gold or silver can be used as long as it satisfies the function of preventing the formation of an oxide film on the surface of the lead frame. That is, such a plating film densely covers the copper surface of the core material, and if the surface oxide film formation of the metal material itself constituting the plating film is suppressed to the same extent as gold or silver plating film, Plating films of various metal materials can be used. Further, in each step of the assembly process of the semiconductor device, when the oxide film formed on the copper surface of the core material of the lead frame is not particularly problematic, it is not necessary to provide such a surface oxidation preventing plating film.

一方、半導体チップ2は、チップサイズ 2mm角、厚さ0.3mm、上面には、半導体素子が形成され、裏面には、金属の蒸着膜が形成されている。この金属の蒸着膜としては、例えば、ハンダ接合への応用も可能な金属材料、金、銀、パラジウム等が利用される。本例では、半導体チップ2の裏面は、金の蒸着膜層を設けるものを利用する。   On the other hand, the semiconductor chip 2 has a chip size of 2 mm square, a thickness of 0.3 mm, a semiconductor element formed on the upper surface, and a metal vapor deposition film formed on the rear surface. As the metal deposition film, for example, a metal material that can be applied to solder bonding, gold, silver, palladium, or the like is used. In this example, the back surface of the semiconductor chip 2 is provided with a gold vapor deposition film layer.

次いで、リードフレーム1上のダイマウント領域に、導電性接着剤を、例えば、ディスペンス法を用いて、直径500μm程度、ダイマウント後の導電性接着剤層の厚さが、2〜100μm程度となる量を供給する。なお、より好ましく事例においては、10〜100μm程度となる量を供給する。ダイボンダにより、半導体チップ2をこの導電性接着剤塗布部にマウントし、接合面となる半導体チップ2の裏面と導電性接着剤塗布層とを密着させる。   Next, a conductive adhesive is applied to the die mount region on the lead frame 1 by using, for example, a dispensing method, and the diameter of the conductive adhesive layer after die mounting is about 2 to 100 μm. Supply quantity. In a more preferable case, an amount of about 10 to 100 μm is supplied. The semiconductor chip 2 is mounted on the conductive adhesive application portion by a die bonder, and the back surface of the semiconductor chip 2 serving as a bonding surface is in close contact with the conductive adhesive application layer.

さらに、半導体チップ2をマウントしたリードフレーム1を、不活性ガス雰囲気に保ち、恒温槽内で、次の条件で加熱処理する。この加熱処理条件として、実施例2と同様、仮硬化処理として、90℃で1時間保持後、昇温し、本硬化処理として、200℃で1時間保持する条件を選択している。   Furthermore, the lead frame 1 on which the semiconductor chip 2 is mounted is kept in an inert gas atmosphere and is heat-treated in the thermostatic bath under the following conditions. As this heat treatment condition, as in Example 2, the pre-curing treatment is held at 90 ° C. for 1 hour and then heated, and the main curing treatment is carried out at 200 ° C. for 1 hour.

ダイマウント完了後、マウントされた半導体チップ2上面の電極パッドと、リードフレーム1上のリード部に設けるボンディング・パッド間の電気的接続のため、ワイヤボンディングを行う。本例では、φ20μmの金ワイヤを用い、リードフレーム1を260℃〜300℃に加熱しつつ、ワイヤボンディングを行い、パッド面に対する金ワイヤの接合強度の向上を図る手法を利用する。   After the die mounting is completed, wire bonding is performed for electrical connection between the electrode pad on the upper surface of the mounted semiconductor chip 2 and the bonding pad provided on the lead portion on the lead frame 1. In this example, a method is used in which a gold wire having a diameter of 20 μm is used and wire bonding is performed while the lead frame 1 is heated to 260 ° C. to 300 ° C. to improve the bonding strength of the gold wire to the pad surface.

最終工程の樹脂モールドは、熱硬化性樹脂を用いたトランスファモールディングにより実施する。本例では、熱硬化性樹脂として、エポキシ樹脂を用い、そのモールド条件を、注入圧:10〜20MPa、加熱温度:160〜220℃、加熱時間:40〜200秒間の範囲に選択している。   The resin mold in the final process is performed by transfer molding using a thermosetting resin. In this example, an epoxy resin is used as the thermosetting resin, and the molding conditions are selected in the ranges of injection pressure: 10 to 20 MPa, heating temperature: 160 to 220 ° C., and heating time: 40 to 200 seconds.

対比のため、上記実施例1−2、実施例1−7ならびに実施例1−13の導電性接着剤に加えて、比較例2−1の導電性接着剤についても、同一条件でダイマウントを行い、他の工程は共通として、都合、四種の樹脂モールド型半導体装置を作製する。   For comparison, in addition to the conductive adhesives of Example 1-2, Example 1-7 and Example 1-13, the conductive adhesive of Comparative Example 2-1 was die-mounted under the same conditions. Other processes are common, and four types of resin mold type semiconductor devices are manufactured for convenience.

作製される四種の樹脂モールド型半導体装置に関して、作製直後、初期の半導体装置特性(初期特性)の評価を行う。特に、半導体チップ裏面からリードフレームへの、導電性接合部を介する熱伝導特性を反映する、半導体装置の熱抵抗について、評価した結果に基づき、初期の半導体装置特性(初期特性)の良否判定を行った。   With respect to the four types of resin-molded semiconductor devices to be manufactured, initial semiconductor device characteristics (initial characteristics) are evaluated immediately after manufacturing. In particular, based on the evaluation result of the thermal resistance of the semiconductor device, which reflects the thermal conduction characteristic from the back surface of the semiconductor chip to the lead frame through the conductive junction, the initial semiconductor device characteristic (initial characteristic) is judged to be good or bad. went.

さらに、半導体装置の長期信頼性評価と一つとして、下記の条件で温度サイクル試験を行い、温度サイクル後、半導体装置特性を評価する。ここでは、温度サイクル試験条件として、低温状態:−65℃で30分間保持、高温状態:150℃で30分間保持、を1サイクルとし、300サイクル繰り返す条件(TCT300 サイクル)において、評価された結果を示す。   Further, as one long-term reliability evaluation of the semiconductor device, a temperature cycle test is performed under the following conditions, and the semiconductor device characteristics are evaluated after the temperature cycle. Here, as a temperature cycle test condition, a low temperature state: held at −65 ° C. for 30 minutes, a high temperature state: held at 150 ° C. for 30 minutes as one cycle, and an evaluation result under a condition of repeating 300 cycles (TCT 300 cycles) Show.

半導体装置特性の良否判定において、半導体チップ裏面からリードフレームへの、導電性接合部を介する熱伝導特性を反映する、半導体装置の熱抵抗に関して、該接合部の熱伝導率に換算した際、8W/mK以上を良品とする。「初期の半導体装置特性(初期特性)」において、同一ロット内で作製される半導体装置から、無作為に選択する個数30において、良品比率が、100%(30/30)である際、「合格」、それを下回る際、「不合格」としている。   In the determination of the quality of the semiconductor device characteristics, when the thermal resistance of the semiconductor device reflecting the thermal conductivity characteristics from the back surface of the semiconductor chip to the lead frame through the conductive junction is converted into the thermal conductivity of the junction, 8 W / MK or more is regarded as a good product. In “initial semiconductor device characteristics (initial characteristics)”, when the proportion of non-defective products is 100% (30/30) in a randomly selected number 30 from semiconductor devices manufactured in the same lot, “pass” "When it falls below that, it is" failed ".

一方、温度サイクル試験においては、試験開始前の接合部の熱伝導率(初期値)と、試験終了後の接合部の熱伝導率(終値)とを比較し、初期値を基準として、変化量が50%以内を、「信頼性良好」、それを超えるものを、「信頼性不良」としている。   On the other hand, in the temperature cycle test, the thermal conductivity (initial value) of the joint before the test is compared with the thermal conductivity (final value) of the joint after the test, and the amount of change is based on the initial value. Of 50% or less is “reliable” and those exceeding 50% are “unreliable”.

表9に評価結果を示す。   Table 9 shows the evaluation results.

Figure 2006083377
Figure 2006083377

表9に示す評価結果から、ダイボンディング工程に本発明にかかる実施例1−2、1−7の導電性接着剤を使用し、PKG(パッケージング)化を行った際には、基準とする初期特性が達成されており、また、温度サイクル試験において、300サイクルの前後における、半導体装置の熱抵抗の変動率は、平均20%以内であり、導電性接合部について、高い信頼性を示すと判定される。ダイボンディング工程に実施例1−13の導電性接着剤を使用し、PKG(パッケージング)化を行った際には、基準とする初期特性が達成されており、また、温度サイクル試験において、300サイクルの前後における、半導体装置の熱抵抗の変動率は、平均40%以内であり、導電性接合部について、所望の信頼性を示すと判定される。一方、比較例2−1の導電性接着剤を使用し、PKGを行った際には、基準とする初期特性は、十分得られていない。さらに、温度サイクル試験において、300サイクルの前後における、半導体装置の熱抵抗の変動率は、平均70%と大きく、導電性接合部に関して、信頼性が劣ると判定される結果である。   From the evaluation results shown in Table 9, when the conductive adhesives of Examples 1-2 and 1-7 according to the present invention are used in the die bonding process and PKG (packaging) is performed, it is used as a reference. The initial characteristics have been achieved, and in the temperature cycle test, the fluctuation rate of the thermal resistance of the semiconductor device before and after 300 cycles is within 20% on average, and the conductive junction has high reliability. Determined. When the conductive adhesive of Example 1-13 was used for the die bonding process and PKG (packaging) was performed, the initial characteristics as a standard were achieved, and in the temperature cycle test, 300 The fluctuation rate of the thermal resistance of the semiconductor device before and after the cycle is within an average of 40%, and it is determined that the conductive junction exhibits desired reliability. On the other hand, when the conductive adhesive of Comparative Example 2-1 was used and PKG was performed, the initial characteristics as a reference were not sufficiently obtained. Further, in the temperature cycle test, the fluctuation rate of the thermal resistance of the semiconductor device before and after 300 cycles is as large as an average of 70%, which is a result that it is determined that the reliability is inferior for the conductive junction.

半導体装置の半導体チップ部で発生する、単位時間、単位面積当たりの熱量が大きくなるに従って、発生した熱の放散流路となる導電性接合部は、より高い熱伝導率が要求され、また、温度サイクル試験の間における、熱伝導率の低下比率もより小さなものが要求される。この導電性接合部に対する熱伝導特性に関する、より高い要求に対しては、球状金属粉:フレーク状金属粉比率を100:0〜50:50の範囲に選択する形態が望ましい。   As the amount of heat per unit time and unit area generated in the semiconductor chip portion of the semiconductor device increases, the conductive junction that becomes the heat dissipation flow path of the generated heat is required to have higher thermal conductivity and the temperature. A smaller decrease rate of the thermal conductivity during the cycle test is required. For higher demands regarding the heat conduction characteristics for this conductive joint, a form in which the ratio of spherical metal powder: flaky metal powder is selected in the range of 100: 0 to 50:50 is desirable.

なお、実施例1−13の導電性接着剤と、実施例1−7の導電性接着剤を比較すると、利用されている金属粉中の球状金属粉:フレーク状金属粉比率が、実施例1−7では、球状銀粉/鱗片状銀粉=8/2、実施例1−13では、球状銀粉/鱗片状銀粉=3/7と異なっている。球状金属粉:フレーク状金属粉比率が8/2の条件においては、得られる導電性接合部中では、フレーク状金属粉相互の間に、通常、球状金属粉が一以上存在している状況が達成されている。一方、球状金属粉:フレーク状金属粉比率が3/7の条件においては、得られる導電性接合部中では、フレーク状金属粉相互の間に、球状金属粉が一以上存在している比率は低下して、フレーク状金属粉同士が直接接している比率が大幅に増大している。また、導電性接着剤中の、樹脂成分と銀成分の比率を等しい場合、球状金属粉:フレーク状金属粉比率が8/2から3/7へとフレーク状金属粉の配合比率が増すに伴って、金属粉の配合に起因する、ペースト状組成物の粘度上昇がより顕著となる。そのため、フレーク状金属粉の配合比率の増加に付随する、ペースト状組成物の粘度上昇を相殺する目的で、添加される溶剤の配合比率を高めている。その場合でも、添加されている溶剤の大半は、仮硬化処理を施すことで蒸散され、樹脂成分中に残留している溶剤の比率は僅かなものとなっている。すなわち、液粘度を低減する機能を有する溶剤は僅かしか存在していないため、仮硬化処理済ペースト状組成物自体の流動性は、フレーク状金属粉の配合比率の増加に付随して、顕著に低下してしまう。次の本硬化処理において、加熱処理を施し、熱硬化樹脂の硬化と、金属超微粒子の低温焼結とを行う際、仮硬化処理済ペースト状組成物自体の流動性が低いほど、内部で発生する「内因性」の「ガス状または揮発性副反応生成物」の散逸が困難となり、ボイドの発生率が上昇する。ボイドの発生率が上昇する際、例えば、得られる導電性接合部と半導体チップとの界面に発生したボイドが集積すると、導電性接合部と半導体チップとの実効的な接触面積の低下が引き起こされ、見掛けの接合面積当たりの導電性接合部を介する熱伝導率が低下する。同じく、界面に発生したボイドが集積すると、導電性接合部と半導体チップとの界面に剥離を有する状態となる。また、温度サイクルを繰り返す間に、半導体チップとリードフレームの熱膨張係数の差異に起因して、導電性接合部に応力が反復して印加されることによって、界面に発生したボイドが集積している部分においては、その周囲へ剥離の拡大が進行する。その結果、導電性接合部と半導体チップとの実効的な接触面積のさらなる低下が進み、温度サイクル試験における、熱伝導率の変動率も上昇する。このフレーク状金属粉の配合比率の増加に付随して、仮硬化処理によって溶剤を蒸散させた後、本硬化処理を施す際、ペースト状組成物自体の流動性が、顕著に低下してしまう現象に起因するボイド発生率の上昇、剥離の発生を回避する上では、球状金属粉:フレーク状金属粉比率を100:0〜50:50の範囲に選択する形態が望ましい。   In addition, when the conductive adhesive of Example 1-13 and the conductive adhesive of Example 1-7 are compared, the ratio of the spherical metal powder to the flaky metal powder in the metal powder used is that of Example 1. -7 is different from spherical silver powder / flaky silver powder = 8/2, and Example 1-13 is different from spherical silver powder / flaky silver powder = 3/7. Under the condition of spherical metal powder: flaky metal powder ratio of 8/2, there is usually a situation where one or more spherical metal powders exist between the flake metal powders in the obtained conductive joint. Has been achieved. On the other hand, when the ratio of the spherical metal powder to the flaky metal powder is 3/7, the ratio in which at least one spherical metal powder exists between the flaky metal powders in the obtained conductive joint is as follows. The ratio of the flaky metal powders in direct contact with each other is greatly increased. In addition, when the ratio of the resin component and the silver component in the conductive adhesive is equal, the ratio of the spherical metal powder: flaky metal powder ratio is increased from 8/2 to 3/7 as the blending ratio of the flake metal powder increases. Thus, the increase in the viscosity of the paste-like composition due to the blending of the metal powder becomes more remarkable. Therefore, the blending ratio of the added solvent is increased for the purpose of offsetting the increase in the viscosity of the paste-like composition accompanying the increase in the blending ratio of the flaky metal powder. Even in such a case, most of the added solvent is evaporated by performing a temporary curing treatment, and the ratio of the solvent remaining in the resin component is small. That is, since there are only a few solvents having a function of reducing the liquid viscosity, the fluidity of the pre-cured paste-like composition itself is remarkably associated with an increase in the blending ratio of the flaky metal powder. It will decline. In the next main curing process, when heat treatment is performed to cure the thermosetting resin and low-temperature sintering of the ultrafine metal particles, the lower the fluidity of the temporarily cured paste-like composition itself, the more internally generated The “endogenous” “gaseous or volatile side reaction product” is difficult to dissipate, and the void generation rate increases. When the void generation rate increases, for example, if voids generated at the interface between the obtained conductive joint and the semiconductor chip are accumulated, the effective contact area between the conductive joint and the semiconductor chip is reduced. The thermal conductivity through the conductive joint per apparent joint area is reduced. Similarly, when voids generated at the interface are accumulated, the interface between the conductive junction and the semiconductor chip is peeled off. In addition, due to the difference in thermal expansion coefficient between the semiconductor chip and the lead frame during repeated temperature cycles, voids generated at the interface accumulate due to repeated application of stress to the conductive joint. In the portion where the film is present, the peeling progresses to the periphery. As a result, the effective contact area between the conductive junction and the semiconductor chip further decreases, and the variation rate of the thermal conductivity in the temperature cycle test also increases. Accompanying the increase in the blending ratio of the flaky metal powder, a phenomenon that the fluidity of the paste-like composition itself is remarkably lowered when the main curing process is performed after the solvent is evaporated by the temporary curing process. In order to avoid the increase in the void generation rate and the occurrence of peeling due to the above, a form in which the ratio of spherical metal powder: flaky metal powder is selected in the range of 100: 0 to 50:50 is desirable.

本発明にかかる導電性接着剤を利用して、例えば、リードフレーム上への半導体チップのダイマウント工程における導電性接合を行うと、液粘度の調整用に配合されている溶剤を予め低温加熱により蒸散した後、バインダー樹脂として利用する熱硬化性樹脂を硬化するため、200℃以上の温度において加熱処理する際、副次的な反応により生成する副反応生成物のうち、ガス化して散逸する「ガス状または揮発性副反応生成物」の量が少なく、従って、接合部界面への「ガス状または揮発性副反応生成物」の集積に起因するボイド発生や界面での剥離が少ないという利点を有する。このボイド発生、界面での剥離が抑制されるという利点に付随して、リードフレーム上への半導体チップのダイマウント工程へ適用した際、熱伝導性が優れた接合部を得ることができる。加えて、作製される導電性接合部に、ボイドや界面での剥離がないものとすることで、例えば、その後、温度サイクルが加わる間に、次第に、界面での剥離が拡大することも抑制されるため、接合部の長期信頼性も向上する。   For example, when conducting conductive bonding in a die mounting process of a semiconductor chip on a lead frame using the conductive adhesive according to the present invention, a solvent blended for liquid viscosity adjustment is previously heated at a low temperature. After the transpiration, the thermosetting resin used as the binder resin is cured. Therefore, when the heat treatment is performed at a temperature of 200 ° C. or higher, among the side reaction products generated by the side reaction, the gas is gasified and dissipated. The amount of `` gaseous or volatile side reaction products '' is small, and therefore there is an advantage that there is little void generation and separation at the interface due to accumulation of `` gaseous or volatile side reaction products '' at the joint interface. Have. Along with the advantage of suppressing the generation of voids and separation at the interface, a joint having excellent thermal conductivity can be obtained when applied to a die mounting process of a semiconductor chip on a lead frame. In addition, by making the manufactured conductive joints free from voids and separation at the interface, for example, it is also suppressed that the separation at the interface gradually increases during the subsequent temperature cycle. Therefore, the long-term reliability of the joint is also improved.

図1は、樹脂モールド型半導体装置の組み立て工程を模式的に示す図であり、リードフレーム上への半導体チップのダイマウント、半導体チップとリードフレーム間のワイヤボンディング、樹脂モールディングの各ステップを示す。FIG. 1 is a diagram schematically showing an assembly process of a resin mold type semiconductor device, showing steps of die mounting of a semiconductor chip on a lead frame, wire bonding between the semiconductor chip and the lead frame, and resin molding.

符号の説明Explanation of symbols

1 リードフレーム
2 半導体チップ
3 ダイマウント用導電性接着剤層
5 ボンディングワイヤ
6 モールディング用樹脂
DESCRIPTION OF SYMBOLS 1 Lead frame 2 Semiconductor chip 3 Conductive adhesive layer for die mounts 5 Bonding wire 6 Molding resin

Claims (8)

導電性媒体とする金属成分と、接着剤成分とする熱硬化性樹脂とを主要構成成分とする導電性接着剤であって、
該導電性接着剤は、
(A)銀、銅、金、白金、ニッケル、亜鉛、ビスマス、タングステンからなる群から選択される、少なくとも1種以上の金属材料で形成され、その平均粒子径が0.5〜30μmの範囲に選択されている金属粉、
(B)銀、銅、金、白金、ニッケル、亜鉛、ビスマスからなる群から選択される、少なくとも1種以上の金属材料で形成され、平均粒子径が1〜20nmの範囲に選択される金属超微粒子の金属表面に有機化合物による被覆層を設けてなる超微粒子、
(C)熱硬化性樹脂、
(D)溶剤
を必須成分として含有し、
該導電性接着剤中における、前記必須成分の配合量比率は、
前記金属粉の配合量Aを、100質量部としたとき、
前記超微粒子の配合量Bを、1〜10質量部の範囲に、
前記熱硬化性樹脂の配合量Cを、5〜15質量部の範囲に、
前記溶剤の配合量Dを、10質量部以下の範囲に、
それぞれ選択してなる配合組成である導電性接着剤。
A conductive adhesive mainly comprising a metal component as a conductive medium and a thermosetting resin as an adhesive component,
The conductive adhesive is
(A) It is formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, bismuth and tungsten, and has an average particle diameter in the range of 0.5 to 30 μm. Selected metal powder,
(B) A metal superstructure formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, and bismuth and having an average particle diameter of 1 to 20 nm. Ultrafine particles in which a coating layer of an organic compound is provided on the metal surface of the fine particles,
(C) thermosetting resin,
(D) contains a solvent as an essential component,
In the conductive adhesive, the blending ratio of the essential components is:
When the blending amount A of the metal powder is 100 parts by mass,
The amount B of the ultrafine particles is in the range of 1 to 10 parts by mass,
The blending amount C of the thermosetting resin is in the range of 5 to 15 parts by mass,
The amount D of the solvent is in the range of 10 parts by mass or less,
A conductive adhesive having a blend composition selected from each.
導電性媒体とする金属成分と、接着剤成分とする熱硬化性樹脂とを主要構成成分とする導電性接着剤であって、
該導電性接着剤は、
(A)銀、銅、金、白金、ニッケル、亜鉛、ビスマス、タングステンからなる群から選択される、少なくとも1種以上の金属材料で形成され、その平均粒子径が0.5〜30μmの範囲に選択されている金属粉、
(B)銀、銅、金、白金、ニッケル、亜鉛、ビスマスからなる群から選択される、少なくとも1種以上の金属材料で形成され、平均粒子径が1〜20nmの範囲に選択される金属超微粒子の金属表面に有機化合物による被覆層を有する超微粒子、
(C)熱硬化性樹脂、
(D)溶剤
を必須成分として含有し、
該導電性接着剤中における、前記必須成分の配合量比率は、
金属粉の配合量Aを、74.0質量部〜94.3質量部の範囲に、
前記超微粒子の配合量Bを、0.9質量部〜8.7質量部の範囲に、
前記熱硬化性樹脂の配合量Cを、4.0質量部〜12.9質量部の範囲に、
前記溶剤の配合量Dを、8.6質量部以下の範囲に、
それぞれ選択してなる配合組成である導電性接着剤。
A conductive adhesive mainly comprising a metal component as a conductive medium and a thermosetting resin as an adhesive component,
The conductive adhesive is
(A) It is formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, bismuth and tungsten, and has an average particle diameter in the range of 0.5 to 30 μm. Selected metal powder,
(B) A metal superstructure formed of at least one metal material selected from the group consisting of silver, copper, gold, platinum, nickel, zinc, and bismuth and having an average particle diameter of 1 to 20 nm. Ultrafine particles having a coating layer of an organic compound on the metal surface of the fine particles,
(C) thermosetting resin,
(D) contains a solvent as an essential component,
In the conductive adhesive, the blending ratio of the essential components is:
The blending amount A of the metal powder is in the range of 74.0 parts by mass to 94.3 parts by mass,
The blending amount B of the ultrafine particles is in the range of 0.9 parts by mass to 8.7 parts by mass,
The amount C of the thermosetting resin is in the range of 4.0 parts by mass to 12.9 parts by mass,
The solvent content D is in the range of 8.6 parts by mass or less,
A conductive adhesive having a blend composition selected from each.
100質量部となる量Wの導電性接着剤に対して、不活性ガス雰囲気下、150℃以上、300℃以下の範囲に設定される温度において、所定時間加熱処理し、前記溶剤の蒸散、および、前記熱硬化性樹脂の硬化を施す際、
前記加熱処理に伴い、気相中への散逸成分に起因する総質量減少量E、
前記量Wの導電性接着剤中に含まれ、蒸散される前記溶剤の量D 1
前記量Wの導電性接着剤中に含まれる、前記金属粉の量A 1
前記量Wの導電性接着剤中に含まれる、前記超微粒子の量B 1
前記量Wの導電性接着剤中に含まれる、前記熱硬化性樹脂の量C 1
と定義し、
気相中への散逸成分に起因する総質量減少量E中、蒸散される前記溶剤の量D 1 を除く、質量減少量αを、
式1: α≡E−D 1
と定義し、前記溶剤の蒸散以外の、ガス発生に起因する質量損失率F(%)を、
式2: F≡{α/(A 1 +B 1 +C 1 )}×100
と定義する際、
該質量損失率F(%)は、3質量%以下である
ことを特徴とする請求項1または2に記載の導電性接着剤。
A heat treatment for a predetermined time at a temperature set in a range of 150 ° C. or more and 300 ° C. or less in an inert gas atmosphere with respect to the conductive adhesive of an amount W to be 100 parts by mass, transpiration of the solvent, and When curing the thermosetting resin,
Along with the heat treatment, the total mass loss E due to the dissipative component into the gas phase,
The amount of solvent D 1 contained in the amount W of conductive adhesive and evaporated;
The amount A 1 of the metal powder contained in the conductive adhesive of the amount W;
The amount B 1 of the ultrafine particles contained in the conductive adhesive of the amount W;
The amount C 1 of the thermosetting resin contained in the conductive adhesive of the amount W;
And define
In the total mass reduction amount E due to the components dissipated into the gas phase, the mass reduction amount α, excluding the amount D 1 of the solvent to be evaporated,
Formula 1: α≡ED 1
And the mass loss rate F (%) due to gas generation other than the evaporation of the solvent,
Formula 2: F≡ {α / (A 1 + B 1 + C 1 )} × 100
When defining
The conductive adhesive according to claim 1 or 2, wherein the mass loss rate F (%) is 3 mass% or less.
前記(A)金属粉として、(A−1)球状の金属粉と(A−2)フレーク状の金属粉との混合物を用い、
該(A−1)球状の金属粉と(A−2)フレーク状の金属粉の混合比率は、質量比率として、(A−1)球状の金属粉:(A−2)フレーク状の金属粉=99:1〜50:50の範囲に選択されている
ことを特徴とする請求項1〜3のいずれかに記載の導電性接着剤。
As the (A) metal powder, a mixture of (A-1) spherical metal powder and (A-2) flaky metal powder is used,
The mixing ratio of the (A-1) spherical metal powder and (A-2) flaky metal powder is, as a mass ratio, (A-1) spherical metal powder: (A-2) flaky metal powder The conductive adhesive according to claim 1, wherein the conductive adhesive is selected in a range of 99: 1 to 50:50.
前記(B)超微粒子中の金属超微粒子の金属表面に存在する、前記被覆層を構成する有機化合物は、
前記(C)熱硬化性樹脂の樹脂構成成分のいずれかと反応して、前記熱硬化性樹脂の一部となる有機化合物である
ことを特徴とする請求項1〜4のいずれかに記載の導電性接着剤。
The organic compound constituting the coating layer, which is present on the metal surface of the ultrafine metal particles in the ultrafine particles (B),
5. The conductive compound according to claim 1, wherein the conductive compound is an organic compound that reacts with any of the resin components of the thermosetting resin (C) and becomes a part of the thermosetting resin. Adhesive.
前記(C)熱硬化性樹脂は、
樹脂構成成分として、エポキシ樹脂とその硬化剤のほか、
カップリング剤を含む熱硬化性樹脂組成物である
ことを特徴とする請求項1〜5のいずれかに記載の導電性接着剤。
The (C) thermosetting resin is
In addition to epoxy resins and their curing agents,
It is a thermosetting resin composition containing a coupling agent, The conductive adhesive in any one of Claims 1-5 characterized by the above-mentioned.
導電性接合体と、この導電性接合体によって連結されている第一の部材と第二の部材とを含む物品を製造する方法であって、
前記第一の部材と第二の部材とを、請求項1〜6のいずれかに記載の導電性接着剤を介して保持し、
前記導電性接着剤を加熱することによって、前記導電性接合体を得て連結する工程を有する
ことを特徴とする物品の製造方法。
A method of manufacturing an article including a conductive joined body, and a first member and a second member connected by the conductive joined body,
Holding the first member and the second member via the conductive adhesive according to any one of claims 1 to 6,
A method for producing an article comprising the step of obtaining and connecting the conductive joined body by heating the conductive adhesive.
請求項1〜6のいずれかに記載の導電性接着剤を、リードフレーム上にダイマウント材として供給する工程;
前記ダイマウント材に半導体素子をマウントする工程;
前記ダイマウント材を加熱硬化し、導電性接合を形成する工程;
前記半導体素子とリードフレームとの間を、金属ワイヤで接続する工程;
前記リードフレームの少なくとも一部、ダイマウント材、半導体素子、金属ワイヤを封止する工程とを具備する
ことを特徴とする半導体装置の製造方法。

Supplying the conductive adhesive according to claim 1 as a die mount material on a lead frame;
Mounting a semiconductor element on the die mount material;
Heat curing the die mount material to form a conductive bond;
Connecting the semiconductor element and the lead frame with a metal wire;
And a step of sealing at least a part of the lead frame, a die mount material, a semiconductor element, and a metal wire.

JP2005237302A 2004-08-18 2005-08-18 Conductive adhesive and method for producing article using the conductive adhesive Active JP4828178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237302A JP4828178B2 (en) 2004-08-18 2005-08-18 Conductive adhesive and method for producing article using the conductive adhesive

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004238662 2004-08-18
JP2004238662 2004-08-18
JP2005237302A JP4828178B2 (en) 2004-08-18 2005-08-18 Conductive adhesive and method for producing article using the conductive adhesive

Publications (2)

Publication Number Publication Date
JP2006083377A true JP2006083377A (en) 2006-03-30
JP4828178B2 JP4828178B2 (en) 2011-11-30

Family

ID=36162143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237302A Active JP4828178B2 (en) 2004-08-18 2005-08-18 Conductive adhesive and method for producing article using the conductive adhesive

Country Status (1)

Country Link
JP (1) JP4828178B2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009164208A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Semiconductor device and manufacturing method of semiconductor device
WO2009131101A1 (en) * 2008-04-21 2009-10-29 株式会社スリーボンド Conductive resin composition
WO2009133897A1 (en) 2008-04-30 2009-11-05 日立化成工業株式会社 Connecting material and semiconductor device
WO2010018712A1 (en) * 2008-08-13 2010-02-18 住友電気工業株式会社 Conductive adhesive and led substrate using the same
JP2010533984A (en) * 2007-07-19 2010-10-28 フライズ・メタルズ・インコーポレイテッド Mounting method and apparatus manufactured using the method
JP2011044509A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Conductive ink composition, and solar cell module formed using the composition
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition
JP2011175871A (en) * 2010-02-24 2011-09-08 Osaka Municipal Technical Research Institute Joining material, and joining method
WO2012102275A1 (en) 2011-01-28 2012-08-02 日立化成工業株式会社 Adhesive composition and semiconductor device using same
JP2013059908A (en) * 2011-09-13 2013-04-04 Toyo Tire & Rubber Co Ltd Tire vulcanizing mold
DE112011103319T5 (en) 2010-09-29 2013-07-11 Hitachi Chemical Company, Ltd. Adhesive composition and semiconductor device using the same
WO2013187518A1 (en) 2012-06-14 2013-12-19 日立化成株式会社 Adhesive composition and semiconductor device using same
WO2014038331A1 (en) 2012-09-05 2014-03-13 日立化成株式会社 Silver paste composition and semiconductor device using same
JPWO2012173187A1 (en) * 2011-06-16 2015-02-23 新日鉄住金化学株式会社 Electronic component bonding material, bonding composition, bonding method, and electronic component
JP2016054098A (en) * 2014-09-04 2016-04-14 日立化成株式会社 Silver paste, semiconductor device using the same and method for producing silver paste
JP2016065146A (en) * 2014-09-25 2016-04-28 京セラケミカル株式会社 Thermosetting resin composition, semiconductor device and electrical and electronic component
JP2016072595A (en) * 2014-09-30 2016-05-09 ニホンハンダ株式会社 Method for manufacturing light-emitting diode device
JP2017071707A (en) * 2015-10-08 2017-04-13 信越化学工業株式会社 Liquid thermally conductive resin composition and electronic component
JPWO2015151136A1 (en) * 2014-04-04 2017-04-13 京セラ株式会社 Thermosetting resin composition, semiconductor device and electric / electronic component
JP2018188602A (en) * 2017-05-11 2018-11-29 セメダイン株式会社 Two-liquid type curable composition, and product
WO2019111778A1 (en) * 2017-12-04 2019-06-13 住友ベークライト株式会社 Pasty adhesive composition and semiconductor device
CN111180318A (en) * 2020-01-06 2020-05-19 贵州振华风光半导体有限公司 Method for improving bonding quality in integrated circuit by using in-situ bonding technology
KR20200057116A (en) * 2010-11-03 2020-05-25 알파 어셈블리 솔루션스 인크. Sintering materials and attachment methods using same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430103A (en) * 1987-07-24 1989-02-01 Toshiba Chem Corp Conductive paste
JPH07192527A (en) * 1993-12-24 1995-07-28 Sumitomo Metal Mining Co Ltd Conductive resin paste
JPH07320535A (en) * 1994-05-25 1995-12-08 Asahi Chem Ind Co Ltd New conductive paste composition
JPH08199109A (en) * 1995-01-23 1996-08-06 Tokuyama Corp Copper paste and its production
JPH10312712A (en) * 1997-05-14 1998-11-24 Asahi Chem Ind Co Ltd Solderable conductive paste
JP2001297627A (en) * 2000-04-12 2001-10-26 Hitachi Chem Co Ltd Conductive material
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
JP2002322456A (en) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd Anisotropic electroconductive paste
JP2002329945A (en) * 2001-04-27 2002-11-15 Harima Chem Inc Method of forming inter-board conductivity, utilizing anisotrop conductive material
WO2004022663A1 (en) * 2002-09-04 2004-03-18 Namics Corporation Conductive adhesive and circuit comprising it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6430103A (en) * 1987-07-24 1989-02-01 Toshiba Chem Corp Conductive paste
JPH07192527A (en) * 1993-12-24 1995-07-28 Sumitomo Metal Mining Co Ltd Conductive resin paste
JPH07320535A (en) * 1994-05-25 1995-12-08 Asahi Chem Ind Co Ltd New conductive paste composition
JPH08199109A (en) * 1995-01-23 1996-08-06 Tokuyama Corp Copper paste and its production
JPH10312712A (en) * 1997-05-14 1998-11-24 Asahi Chem Ind Co Ltd Solderable conductive paste
JP2001297627A (en) * 2000-04-12 2001-10-26 Hitachi Chem Co Ltd Conductive material
WO2002035554A1 (en) * 2000-10-25 2002-05-02 Harima Chemicals, Inc. Electroconductive metal paste and method for production thereof
JP2002322456A (en) * 2001-04-23 2002-11-08 Asahi Glass Co Ltd Anisotropic electroconductive paste
JP2002329945A (en) * 2001-04-27 2002-11-15 Harima Chem Inc Method of forming inter-board conductivity, utilizing anisotrop conductive material
WO2004022663A1 (en) * 2002-09-04 2004-03-18 Namics Corporation Conductive adhesive and circuit comprising it

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10905041B2 (en) 2007-07-19 2021-01-26 Alpha Assembly Solutions Inc. Methods for attachment and devices produced using the methods
US8555491B2 (en) 2007-07-19 2013-10-15 Alpha Metals, Inc. Methods of attaching a die to a substrate
JP2013070080A (en) * 2007-07-19 2013-04-18 Frys Metals Inc Apparatus with die attached to substrate
JP2010533984A (en) * 2007-07-19 2010-10-28 フライズ・メタルズ・インコーポレイテッド Mounting method and apparatus manufactured using the method
US11699632B2 (en) 2007-07-19 2023-07-11 Alpha Assembly Solutions Inc. Methods for attachment and devices produced using the methods
KR101732444B1 (en) 2007-07-19 2017-05-04 알파 어셈블리 솔루션스 인크. Methods for attachment and devices produced using the methods
JP2009164208A (en) * 2007-12-28 2009-07-23 Mitsubishi Electric Corp Semiconductor device and manufacturing method of semiconductor device
WO2009131101A1 (en) * 2008-04-21 2009-10-29 株式会社スリーボンド Conductive resin composition
US8421247B2 (en) 2008-04-30 2013-04-16 Hitachi Chemical Company, Ltd. Connecting material having metallic particles of an oxygen state ratio and size and semiconductor device having the connecting material
JPWO2009133897A1 (en) * 2008-04-30 2011-09-01 日立化成工業株式会社 Connection material and semiconductor device
JP2016135843A (en) * 2008-04-30 2016-07-28 日立化成株式会社 Connection material and semiconductor device
JP5921808B2 (en) * 2008-04-30 2016-05-24 日立化成株式会社 Connection material and semiconductor device
KR101311681B1 (en) 2008-04-30 2013-09-25 히타치가세이가부시끼가이샤 Connecting material and semiconductor device
WO2009133897A1 (en) 2008-04-30 2009-11-05 日立化成工業株式会社 Connecting material and semiconductor device
JP2015057825A (en) * 2008-04-30 2015-03-26 日立化成株式会社 Connection material and semiconductor device
JP2010044967A (en) * 2008-08-13 2010-02-25 Sumitomo Electric Ind Ltd Conductive adhesive and led substrate using it
WO2010018712A1 (en) * 2008-08-13 2010-02-18 住友電気工業株式会社 Conductive adhesive and led substrate using the same
JP2011044509A (en) * 2009-08-20 2011-03-03 Mitsubishi Materials Corp Conductive ink composition, and solar cell module formed using the composition
JP2011100573A (en) * 2009-11-04 2011-05-19 Kyoto Elex Kk Thermosetting conductive paste composition
JP2011175871A (en) * 2010-02-24 2011-09-08 Osaka Municipal Technical Research Institute Joining material, and joining method
DE112011103319T5 (en) 2010-09-29 2013-07-11 Hitachi Chemical Company, Ltd. Adhesive composition and semiconductor device using the same
KR102531070B1 (en) 2010-11-03 2023-05-09 알파 어셈블리 솔루션스 인크. Sintering materials and attachment methods using same
KR20210118480A (en) * 2010-11-03 2021-09-30 알파 어셈블리 솔루션스 인크. Sintering materials and attachment methods using same
KR102305501B1 (en) 2010-11-03 2021-09-27 알파 어셈블리 솔루션스 인크. Sintering materials and attachment methods using same
KR20200057116A (en) * 2010-11-03 2020-05-25 알파 어셈블리 솔루션스 인크. Sintering materials and attachment methods using same
WO2012102275A1 (en) 2011-01-28 2012-08-02 日立化成工業株式会社 Adhesive composition and semiconductor device using same
JPWO2012173187A1 (en) * 2011-06-16 2015-02-23 新日鉄住金化学株式会社 Electronic component bonding material, bonding composition, bonding method, and electronic component
JP2013059908A (en) * 2011-09-13 2013-04-04 Toyo Tire & Rubber Co Ltd Tire vulcanizing mold
KR20150013717A (en) 2012-06-14 2015-02-05 히타치가세이가부시끼가이샤 Adhesive composition and semiconductor device using same
WO2013187518A1 (en) 2012-06-14 2013-12-19 日立化成株式会社 Adhesive composition and semiconductor device using same
US10174226B2 (en) 2012-06-14 2019-01-08 Hitachi Chemical Company, Ltd. Adhesive composition and semiconductor device using same
KR20150053754A (en) 2012-09-05 2015-05-18 히타치가세이가부시끼가이샤 Silver paste composition and semiconductor device using same
US10201879B2 (en) 2012-09-05 2019-02-12 Hitachi Chemical Company, Ltd. Silver paste composition and semiconductor device using same
WO2014038331A1 (en) 2012-09-05 2014-03-13 日立化成株式会社 Silver paste composition and semiconductor device using same
JPWO2015151136A1 (en) * 2014-04-04 2017-04-13 京セラ株式会社 Thermosetting resin composition, semiconductor device and electric / electronic component
JP2016054098A (en) * 2014-09-04 2016-04-14 日立化成株式会社 Silver paste, semiconductor device using the same and method for producing silver paste
JP2016065146A (en) * 2014-09-25 2016-04-28 京セラケミカル株式会社 Thermosetting resin composition, semiconductor device and electrical and electronic component
JP2016072595A (en) * 2014-09-30 2016-05-09 ニホンハンダ株式会社 Method for manufacturing light-emitting diode device
JP2017071707A (en) * 2015-10-08 2017-04-13 信越化学工業株式会社 Liquid thermally conductive resin composition and electronic component
JP2018188602A (en) * 2017-05-11 2018-11-29 セメダイン株式会社 Two-liquid type curable composition, and product
WO2019111778A1 (en) * 2017-12-04 2019-06-13 住友ベークライト株式会社 Pasty adhesive composition and semiconductor device
JPWO2019111778A1 (en) * 2017-12-04 2019-12-12 住友ベークライト株式会社 Paste adhesive composition and semiconductor device
CN111180318A (en) * 2020-01-06 2020-05-19 贵州振华风光半导体有限公司 Method for improving bonding quality in integrated circuit by using in-situ bonding technology
CN111180318B (en) * 2020-01-06 2023-08-11 贵州振华风光半导体股份有限公司 Method for improving bonding quality in integrated circuit by in-situ bonding technology

Also Published As

Publication number Publication date
JP4828178B2 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4828178B2 (en) Conductive adhesive and method for producing article using the conductive adhesive
US7262511B2 (en) Conductive adhesive agent with ultrafine particles
KR102345811B1 (en) Conductive composition and electronic component using same
WO2006030674A1 (en) Flip chip mounting method and flip chip mounting element
KR20040030441A (en) Electroconductive metal paste and method for production thereof
JP2019137920A (en) Silver paste and semiconductor device made using the same
US20120161326A1 (en) Composition for filling through silicon via (tsv), tsv filling method and substrate including tsv plug formed of the composition
TW200902673A (en) Anisotropic conductive paste
JP5802400B2 (en) Resin sheet for sealing, semiconductor device using the same, and method for manufacturing the semiconductor device
JPWO2013047137A1 (en) Bonding material, method of manufacturing electronic component, and electronic apparatus
JP4235888B2 (en) Conductive paste
US8344523B2 (en) Conductive composition
JP2014152299A (en) Thermosetting resin composition, conductive resin sheet, method for producing the same, and power module comprising the same
JP5863323B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP4412578B2 (en) Thermally conductive material, thermally conductive joined body using the same, and manufacturing method thereof
JP3093621B2 (en) Semiconductor device mounting method
TW201839780A (en) Conductive particles, conductive material, and connection structure
US11515280B2 (en) Mounting structure and nanoparticle mounting material
US20070256783A1 (en) Thermally enhanced adhesive paste
WO2024009723A1 (en) Bonding material and bonded structure
EP3536755A1 (en) A thermally conductive adhesive agent and a method for manufacturing thereof
JP3759383B2 (en) Conductive resin paste and semiconductor device
JP2013197436A (en) High thermal conduction low thermal expansion bonding material and semiconductor device
TWI744820B (en) Composition containing metal particles and conductive adhesive film
JP2006059905A (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4828178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250