JP3449123B2 - Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film - Google Patents

Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film

Info

Publication number
JP3449123B2
JP3449123B2 JP19235696A JP19235696A JP3449123B2 JP 3449123 B2 JP3449123 B2 JP 3449123B2 JP 19235696 A JP19235696 A JP 19235696A JP 19235696 A JP19235696 A JP 19235696A JP 3449123 B2 JP3449123 B2 JP 3449123B2
Authority
JP
Japan
Prior art keywords
low
film
coating
resistance film
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19235696A
Other languages
Japanese (ja)
Other versions
JPH1036975A (en
Inventor
啓介 阿部
健二 石関
恭宏 真田
貴重 米田
剛 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP19235696A priority Critical patent/JP3449123B2/en
Publication of JPH1036975A publication Critical patent/JPH1036975A/en
Application granted granted Critical
Publication of JP3449123B2 publication Critical patent/JP3449123B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Conductive Materials (AREA)
  • Chemically Coating (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば、ブラウン
管パネル等のガラス基体表面に塗布して電磁波シールド
能を有する低抵抗膜、さらに反射防止性を有する低反射
低抵抗膜を形成しうる塗布液と、低抵抗膜、低反射低抵
抗膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating liquid which can be applied to the surface of a glass substrate such as a cathode ray tube panel to form a low resistance film having an electromagnetic wave shielding ability and a low reflection low resistance film having antireflection properties. And a method for manufacturing a low resistance film and a low reflection low resistance film.

【0002】[0002]

【従来の技術】ブラウン管は高電圧で作動するために、
起動時又は終了時にブラウン管表面に静電気が誘発され
る。この静電気により該表面に埃が付着し、表示画像の
コントラスト低下を引き起こしたり、直接手指が触れた
際に軽い電気ショックによる不快感を生じることが多
い。
2. Description of the Related Art In order to operate a cathode ray tube at a high voltage,
Static electricity is induced on the surface of the cathode ray tube at the time of startup or termination. Due to this static electricity, dust is often attached to the surface, causing a reduction in the contrast of the display image, or causing discomfort due to a slight electric shock when directly touched by a finger.

【0003】従来、上述の現象を防止するために、ブラ
ウン管パネル表面に帯電防止膜を付与する試みがかなり
なされ、例えば、ブラウン管パネル表面を350℃程度
に加熱し、CVD法により酸化スズ及び酸化インジウム
等の導電性酸化物層をパネル表面に設ける方法(特開昭
63−76247)が採用されてきた。
In order to prevent the above phenomenon, many attempts have been made to provide an antistatic film on the surface of the cathode ray tube panel. For example, the surface of the cathode ray tube panel is heated to about 350 ° C., and tin oxide and indium oxide are deposited by the CVD method. A method of providing a conductive oxide layer such as the above on the panel surface (JP-A-63-76247) has been adopted.

【0004】しかし、この方法では装置コストがかかる
ことに加え、ブラウン管表面を高温に加熱するためにブ
ラウン管内の蛍光体の脱落を生じたり、寸法精度が低下
したりする問題があった。また、上記導電層に用いる材
料としては酸化スズが一般的であるが、この場合には低
温処理では高性能な膜が得にくい欠点があった。
However, in this method, there is a problem in that in addition to the cost of the apparatus, the phosphor in the cathode ray tube is dropped and the dimensional accuracy is lowered because the surface of the cathode ray tube is heated to a high temperature. Further, tin oxide is generally used as the material for the conductive layer, but in this case, there is a drawback that it is difficult to obtain a high-performance film by low-temperature treatment.

【0005】また、近年、電磁波ノイズによる電子機器
への電波障害が社会問題となり、それらを防止するため
に規格の作成や規制が行われている。電磁波ノイズにつ
いては、人体に関してCRT上の静電気チャージによる
皮膚癌の恐れ、低周波電界(ELF)による胎児への影
響、その他、X線、紫外線等による害が各国で問題視さ
れている。このような問題は、導電性塗膜をブラウン管
表面に介在させることにより、該導電性塗膜に電磁波が
当たり、塗膜内において渦電流を誘導して、この作用で
電磁波を反射する。
In recent years, radio wave interference to electronic equipment due to electromagnetic noise has become a social problem, and standards and regulations have been created to prevent it. Regarding electromagnetic wave noise, in each country, the fear of skin cancer due to electrostatic charge on the CRT with respect to the human body, the effect on the fetus due to the low frequency electric field (ELF), and the damage due to X-rays, ultraviolet rays, etc. are regarded as problems. Such a problem is that by interposing a conductive coating film on the surface of a cathode ray tube, an electromagnetic wave hits the conductive coating film, induces an eddy current in the coating film, and this action reflects the electromagnetic wave.

【0006】しかし、このような性能を発揮するために
は、導電性被膜が高い電界強度に耐え得る良導電性であ
る必要があるが、それほどの良導電性の膜を得ることは
さらに困難であった。
However, in order to exert such performance, the conductive coating must have good conductivity capable of withstanding high electric field strength, but it is more difficult to obtain such a good conductive film. there were.

【0007】一方、低抵抗膜の製造方法に関し、例え
ば、基体に金属塩と還元剤との混合液を塗布して低抵抗
膜を形成する(特開平6−310058)ことが提案さ
れているが、この方法では金属塩溶液の安定性に乏しい
ために、該溶液と還元剤との混合後、直ちに混合液を基
体に塗布する必要があり、また、溶液自体の成膜性が乏
しいために得られる膜の外観が悪いという欠点があっ
た。
On the other hand, regarding a method for producing a low resistance film, for example, it has been proposed to apply a mixed solution of a metal salt and a reducing agent to a substrate to form a low resistance film (JP-A-6-310058). In this method, since the stability of the metal salt solution is poor, it is necessary to apply the mixed solution to the substrate immediately after mixing the solution and the reducing agent, and the solution itself is poor in film-forming property. There was a drawback that the appearance of the resulting film was poor.

【0008】また、低抵抗膜を形成するために、金属塩
と導電性酸化物微粒子とを含有する液、又は金属塩と金
属で表面が被覆された微粒子を含有する液(特開平7−
258862)が提案されているが、上記の導電性酸化
物微粒子は導電性が金属単体の場合よりも劣り、一方、
金属で表面が被覆された微粒子も金属と非金属粒子との
界面で接触抵抗が生じて膜の導電性が充分ではないとい
う課題があった。
Further, in order to form a low resistance film, a liquid containing a metal salt and conductive oxide fine particles, or a liquid containing a metal salt and fine particles whose surface is coated with a metal (Japanese Patent Laid-Open No. 7-
258862) has been proposed, the conductive oxide fine particles are inferior in conductivity to a metal alone, while
The fine particles whose surface is coated with a metal also have a problem that contact resistance occurs at the interface between the metal and the non-metal particles and the conductivity of the film is not sufficient.

【0009】また、上記と同様の目的で金属酸化物とP
d、Sn、Pt、Ag及びAuのうちの1種以上の金属
粒子を含む液を基体に塗布する(特開昭63−1601
40)ことが提案されているが、この方法では合金属微
粒子の粒径が0.01μm以下であり、金属分散液の安
定性が乏しい点に問題があった。
For the same purpose as described above, metal oxide and P
A liquid containing at least one kind of metal particles of d, Sn, Pt, Ag and Au is applied to a substrate (Japanese Patent Laid-Open No. 63-1601).
40) has been proposed, but this method has a problem in that the particle size of the fine metal particles is 0.01 μm or less and the stability of the metal dispersion is poor.

【0010】さらに、粒径が0.01μmを超える微粒
子であっても、金属の種類によってはコロイド特有の吸
収が生じ、これらのコロイドを使用して形成された膜は
透過色調がニュートラルではないという問題があった。
Further, even if the particles have a particle size of more than 0.01 μm, absorption peculiar to colloid occurs depending on the kind of metal, and the film formed by using these colloids is not neutral in transmission color tone. There was a problem.

【0011】すなわち、金属中の電子の平均自由行程が
57nmであることから、これより微小な金属微粒子を
用いた場合には、金属中の電子の平均自由行程が制限さ
れ、金属微粒子内に電荷の粗密が生じ、これを緩和する
ために金属微粒子表面にプラズマ振動が生じ、特定の波
長の光に対しては共鳴吸収が生じる。特にAg微粒子を
用いた場合には、その共鳴吸収波長が可視光領域内(4
00〜500nm)に生じ、透過色調が黄色となる点が
課題であった。
That is, since the mean free path of electrons in the metal is 57 nm, when the fine metal particles smaller than this are used, the mean free path of the electrons in the metal is limited, and the charge in the metal particles is limited. Occurs, and in order to alleviate this, plasma vibration occurs on the surface of the metal fine particles, and resonance absorption occurs for light of a specific wavelength. In particular, when Ag particles are used, the resonance absorption wavelength is within the visible light region (4
(100 to 500 nm) and the transmitted color tone becomes yellow.

【0012】また、上記の如く形成される低抵抗膜は、
従来より光学機器においてはいうまでもなく、民生用機
器、特にTV、コンピュータ端末の陰極線管(CRT)
パネル等に形成されるが、表示画像のコントラストやパ
ネル面での外光の反射等の問題があり、これらの反射光
の防止に関して数多くの検討がなされてきた。
The low resistance film formed as described above is
Not to mention conventional optical equipment, cathode ray tubes (CRTs) for consumer equipment, especially TVs and computer terminals.
Although it is formed on a panel or the like, there are problems such as the contrast of a display image and the reflection of external light on the panel surface, and many studies have been made to prevent such reflected light.

【0013】従来の反射防止方法は、例えば、ブラウン
管表面に防眩効果を持たるために表面に微細な凹凸を有
するSiO2 層を付着させたり(特開昭61−1189
31)、フッ酸により表面をエッチングして表面に凹凸
を設ける等の方法が採られてきた。
In the conventional antireflection method, for example, an SiO 2 layer having fine irregularities on the surface of a cathode ray tube for adhering an antiglare effect is attached (Japanese Patent Laid-Open No. 61-1189).
31), methods such as etching the surface with hydrofluoric acid to form irregularities on the surface have been adopted.

【0014】しかし、これらの方法は、外部光を散乱さ
せるノングレア処理と呼ばれ、本質的に低反射層を設け
る方法でなく、そのために反射率の低減には限界があ
り、また、ブラウン管等においては、解像度を低下させ
る原因ともなっている。
However, these methods are called non-glare treatments for scattering external light, and are not methods of providing a low reflection layer by nature, and therefore there is a limit to reduction of reflectance, and in cathode ray tubes and the like. Also causes a decrease in resolution.

【0015】[0015]

【発明が解決しようとする課題】本発明の目的は、従来
技術が有する前述の欠点を解消し、塗布液の状態で分散
安定性に優れており、ブラウン管フェイス面等のガラス
基体上に膜を形成する際、低温熱処理により、着色がな
く透明で導電性に優れた高性能な低抵抗膜を形成でき、
さらには反射防止効果にも優れた低反射低抵抗膜を形成
できる塗布液、及び低抵抗膜と低反射低抵抗膜の製造方
法を提供するにある。
The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to provide excellent dispersion stability in the state of a coating solution, and to form a film on a glass substrate such as the face surface of a cathode ray tube. At the time of formation, by low temperature heat treatment, it is possible to form a high-performance low resistance film that is transparent without coloration and has excellent conductivity.
Further, it is to provide a coating liquid capable of forming a low-reflection low-resistance film having an excellent antireflection effect, and a method of manufacturing the low-resistance film and the low-reflection low-resistance film.

【0016】[0016]

【課題を解決するための手段】本発明は、平均粒径が1
0nmを超えるAg微粒子とAg塩とを少なくとも含有
してなることを特徴とする低抵抗膜形成用塗布液、該塗
布液を用いる低抵抗膜の製造方法、低反射低抵抗膜の製
造方法を提供する。
The present invention has an average particle size of 1
Provided is a coating liquid for forming a low resistance film, which comprises at least Ag fine particles having a size of more than 0 nm and an Ag salt, a method for producing a low resistance film using the coating liquid, and a method for producing a low reflection low resistance film. To do.

【0017】[0017]

【0018】屈折率膜形成用塗布液は、低抵抗膜上に
低屈折率膜を形成するために用いられ、そのような構成
とすることで低反射低抵抗膜が形成される。
The low refractive index film-forming coating liquid is used to form a low refractive index film on the low-resistance film, the low-reflection low resistance film is formed by a such a configuration.

【0019】[0019]

【発明の実施の形態】本発明においては、Ag塩を用い
る。Ag塩は、1)低抵抗膜形成用塗布液に含有させ
る、及び/又は、2)低屈折率膜形成用塗布液に含有さ
せることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, an Ag salt is used. The Ag salt can be contained in 1) the coating liquid for forming a low resistance film and / or 2) in the coating liquid for forming a low refractive index film.

【0020】このようにAg塩を用いることで、Ag微
粒子自身の光プラズマ共鳴吸収に起因する膜の400〜
500nm領域での吸収を抑制でき、従来技術における
低抵抗膜の着色の問題を解決し、着色がなく透明で導電
性に優れた高性能な低抵抗膜、さらには反射防止効果に
も優れた低反射低抵抗膜を形成できる。
By using the Ag salt as described above, it is possible to obtain a film having a thickness of 400 to 400 nm due to the optical plasma resonance absorption of the Ag particles themselves.
A high-performance low-resistance film that can suppress absorption in the 500 nm region, solves the problem of coloring of low-resistance films in the prior art, is transparent without coloration and has excellent conductivity, and also has low anti-reflection effect. A reflective low resistance film can be formed.

【0021】本発明で用いるAg塩は、成膜硬化工程時
の加熱又は紫外線照射においてAgイオンとして拡散す
ることにより、膜を形成しているAg微粒子の粒成長を
促進させ、その結果としてAg微粒子自身の光プラズマ
共鳴吸収が抑制されて膜の透過色調がニュートラルにな
り、これらの膜をTV等の表示装置に適用した場合、表
示画像の色のバランスを崩すことなく、表示画像のコン
トラストを高める作用を有する。
The Ag salt used in the present invention promotes grain growth of Ag fine particles forming a film by diffusing as Ag ions during heating or ultraviolet irradiation during the film hardening process, and as a result, Ag fine particles. When the film is applied to a display device such as a TV, the transmission color tone of the film becomes neutral due to suppression of its own optical plasma resonance absorption, and the contrast of the display image is enhanced without disturbing the color balance of the display image. Have an effect.

【0022】本発明で用いるAg微粒子は、該Ag微粒
子が所定の粒子径を有するものであれば、種々の方法に
より製造できるが、特にAg化合物溶液に含まれるAg
化合物を還元しうる化合物を、Ag化合物溶液に混合し
てAg微粒子を製造することが好ましい。
The Ag microparticles used in the present invention can be produced by various methods as long as the Ag microparticles have a predetermined particle size, and especially Ag contained in the Ag compound solution.
A compound capable of reducing the compound is preferably mixed with the Ag compound solution to produce Ag fine particles.

【0023】本発明において、Ag微粒子を製造するた
めのAg塩としては、硝酸銀、亜硝酸銀、シアン化銀等
のように溶解度の高い種々のAg塩が使用でき、コスト
や安全性の点から特には硝酸銀が好ましい。また、硝酸
銀は水等の溶媒にそのまま溶解して用いることが好まし
い。
In the present invention, various Ag salts having a high solubility such as silver nitrate, silver nitrite, and silver cyanide can be used as the Ag salt for producing the Ag fine particles, and especially from the viewpoint of cost and safety. Is preferably silver nitrate. Further, silver nitrate is preferably used as it is dissolved in a solvent such as water.

【0024】硝酸銀等のAg化合物を還元してAg微粒
子を析出させうる還元性化合物としては特に限定され
ず、例えば、FeSO4 やSnSO4 等の卑金属の塩、
ホルマリン、ブドウ糖、ロッセル塩、酒石酸、チオ硫酸
ナトリウム、水素化ホウ素化合物、次亜リン酸塩等が挙
げられる。これらの化合物中で還元速度が比較的緩やか
なFeSO4 やSnSO4 等の卑金属を含む塩が好まし
い。特にFeSO4 は還元速度が緩やかで均一なAg微
粒子の分散液を作りやすいために好ましい。
The reducing compound capable of reducing Ag compounds such as silver nitrate to precipitate Ag fine particles is not particularly limited, and examples thereof include base metal salts such as FeSO 4 and SnSO 4 .
Formalin, glucose, Rossell salt, tartaric acid, sodium thiosulfate, borohydride compound, hypophosphite and the like can be mentioned. Among these compounds, salts containing a base metal such as FeSO 4 and SnSO 4 having a relatively slow reduction rate are preferable. FeSO 4 is particularly preferable because it has a slow reduction rate and can easily form a uniform dispersion liquid of Ag fine particles.

【0025】また、Ag化合物溶液に上記のような還元
性化合物を混合する前に、Ag化合物溶液にAgイオン
と錯体を形成するか、又は生成したAg微粒子表面に吸
着していわゆる保護コロイドを形成する物質を添加する
と、得られるAg微粒子分散液中のAg微粒子の粒径が
均一となるために好ましい。
Before the reducing compound as described above is mixed with the Ag compound solution, a complex with Ag ions is formed in the Ag compound solution or is adsorbed on the surface of the generated Ag fine particles to form a so-called protective colloid. It is preferable to add such a substance because the particle size of the Ag particles in the obtained Ag particle dispersion becomes uniform.

【0026】このような物質としては公知の種々の物質
が挙げられる。錯体を形成しうる物質としては、例え
ば、シュウ酸、クエン酸等のカルボン酸及びその塩、ア
ンモニア、トリエタノールアミン等が挙げられる。ま
た、Ag微粒子の表面に吸着して保護コロイドを形成し
うる物質として、例えば、ポリビニルアルコール、ポリ
ビニルピロリドン、ゼラチン、アクリル樹脂等の高分子
材料が挙げられる。これらのうちではクエン酸塩、特に
クエン酸ナトリウムを用いて得られるAg微粒子は平均
粒径の均一性が優れるため、クエン酸ナトリウムの使用
が特に好適である。
As such a substance, various known substances can be mentioned. Examples of the substance capable of forming a complex include carboxylic acids such as oxalic acid and citric acid and salts thereof, ammonia, triethanolamine and the like. Examples of the substance that can be adsorbed on the surface of the Ag particles to form a protective colloid include polymer materials such as polyvinyl alcohol, polyvinylpyrrolidone, gelatin, and acrylic resin. Among these, the use of sodium citrate is particularly preferable because the Ag fine particles obtained by using citrate, particularly sodium citrate, have excellent average particle size uniformity.

【0027】本発明で用いるAg微粒子分散液において
は、Ag微粒子の平均粒径が10nmを超えることを要
し、10nm超100nm以下の範囲が特に好ましい。
Ag微粒子の平均粒径が100nm超では、形成される
膜において可視光の散乱が増大し膜の透明度が著しく低
下する。Ag微粒子の平均粒径が10nm以下では、塗
布液中でのAg微粒子の均一分散性及び分散安定性が著
しく損なわれる。
In the Ag fine particle dispersion used in the present invention, the average particle diameter of Ag fine particles needs to exceed 10 nm, and a range of more than 10 nm and 100 nm or less is particularly preferable.
When the average particle size of the Ag particles exceeds 100 nm, visible light scattering increases in the formed film and the transparency of the film remarkably decreases. When the average particle size of the Ag particles is 10 nm or less, the uniform dispersion and dispersion stability of the Ag particles in the coating solution are significantly impaired.

【0028】本発明の低抵抗膜形成用塗布液中のAg塩
の含有量に関しては、膜外観、透過色調等を考慮して適
宜決定することが好ましいが、Ag微粒子ゾル含有液に
Ag塩を添加する場合には、該ゾルの安定性を考慮し、
5〜1000ppmの範囲の添加量が好ましい。
The content of the Ag salt in the coating liquid for forming a low resistance film of the present invention is preferably determined in consideration of the film appearance, transmission color tone, etc., but Ag salt is added to the Ag fine particle sol-containing liquid. When adding, considering the stability of the sol,
An addition amount in the range of 5 to 1000 ppm is preferable.

【0029】Ag微粒子分散液は、そのままで種々の溶
媒で希釈又は置換して低抵抗膜形成用塗布液として使用
できる。この場合に使用する溶媒としては特に限定され
ず、水以外にも種々公知の有機溶媒が採用できる。
The Ag fine particle dispersion can be used as it is as a coating liquid for forming a low resistance film by diluting or substituting it with various solvents. The solvent used in this case is not particularly limited, and various known organic solvents other than water can be used.

【0030】例えば、メタノール、エタノール、n−プ
ロパノール、イソプロパノール、n−ブタノール、イソ
ブタノール、sec−ブタノール、tert−ブタノー
ル等のアルコール類、エチレングリコール等の多価アル
コール類、エチルセロソルブ、メチルセロソルブ、ブチ
ルセロソルブ、プロピレングリコールメチルエーテル等
のエーテル類、2,4−ペンタンジオン、ジアセトンア
ルコール等のケトン類、乳酸エチル、乳酸メチル等のエ
ステル類、N−メチルピロリドン等のアミド類、ジメチ
ルスルホキシド、スルホラン等の硫黄化合物が挙げられ
る。
For example, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol and tert-butanol, polyhydric alcohols such as ethylene glycol, ethyl cellosolve, methyl cellosolve, butyl cellosolve. , Ethers such as propylene glycol methyl ether, ketones such as 2,4-pentanedione and diacetone alcohol, esters such as ethyl lactate and methyl lactate, amides such as N-methylpyrrolidone, dimethyl sulfoxide and sulfolane. Sulfur compounds may be mentioned.

【0031】低抵抗膜形成用塗布液中のAg微粒子濃度
は、0.01〜5重量%、特には0.05〜2重量%の
範囲とするのが好ましい。Ag微粒子濃度が5重量%超
では、形成される膜の透明性が著しく低下し、Ag微粒
子濃度が0.01重量%未満では、形成される膜の抵抗
が上昇するために好ましくない。
The Ag fine particle concentration in the coating liquid for forming the low resistance film is preferably in the range of 0.01 to 5% by weight, particularly 0.05 to 2% by weight. If the Ag fine particle concentration exceeds 5% by weight, the transparency of the formed film remarkably decreases, and if the Ag fine particle concentration is less than 0.01% by weight, the resistance of the formed film increases, which is not preferable.

【0032】塗布液中には、形成される膜の透過率等の
物性を変えるために、Sn、In、Sb、Zn、Al、
Ti、Si及びGaからなる群から選ばれる1種以上の
化合物を添加してもよい。添加する化合物には特に限定
はないが、SnをドープしたIn23 やSbをドープ
したSnO2 を用いると、形成される膜の抵抗を上昇さ
せずに透過率を制御できるために好ましい。
In the coating solution, Sn, In, Sb, Zn, Al, in order to change the physical properties such as the transmittance of the formed film,
One or more compounds selected from the group consisting of Ti, Si and Ga may be added. The compound to be added is not particularly limited, but it is preferable to use Sn-doped In 2 O 3 or Sb-doped SnO 2 because the transmittance can be controlled without increasing the resistance of the formed film.

【0033】また、添加剤としてSiO2 、特にケイ酸
エチル等を加水分解して得られるSiO2 ゾルを用いた
場合には、塗布液の塗布適性が向上するために好まし
い。添加剤としてTiO2 を用いた場合も塗布液の塗布
適性及び形成される膜の色調を制御できるために好まし
い。これらの添加剤は、微粒子又はアルコキシドの加水
分解物の形態で前述のAg微粒子分散液に添加してもよ
く、超音波分散機やサンドミル等の分散機により分散し
た液として添加してもよい。さらに塗布液の基体への濡
れ性を向上させるために、塗布液に種々の界面活性剤を
添加してもよい。
Further, SiO 2 as additives, particularly in the case of using a SiO 2 sol obtained by hydrolysis of the ethyl silicate and the like are preferred in order to improve coatability of the coating liquid. The use of TiO 2 as an additive is also preferable because the coating suitability of the coating liquid and the color tone of the formed film can be controlled. These additives may be added to the Ag fine particle dispersion described above in the form of fine particles or a hydrolyzate of alkoxide, or may be added as a liquid dispersed by a disperser such as an ultrasonic disperser or a sand mill. Further, in order to improve the wettability of the coating liquid on the substrate, various surfactants may be added to the coating liquid.

【0034】以上のような本発明の低抵抗膜形成用塗布
液は、それ自体で基体上への塗布液として供するため
に、該塗布液に低沸点溶媒を添加した場合には、室温下
の乾燥でも塗膜が得られるが、塗布液の溶媒として沸点
が100〜250℃にある中〜高沸点溶媒を用いる場合
には、塗膜を室温乾燥しても上記溶媒が塗膜中に残留す
るために加熱処理を行う。加熱温度の上限は、基板とし
て用いられるガラス、プラスチック等の軟化点によって
決定される。この点も考慮すると好ましい加熱温度範囲
は100〜500℃である。
The coating liquid for forming a low resistance film of the present invention as described above is provided as a coating liquid on a substrate by itself, so that when a low boiling point solvent is added to the coating liquid, it is kept at room temperature. A coating film can be obtained even by drying, but when a medium to high boiling point solvent having a boiling point of 100 to 250 ° C. is used as a solvent for the coating liquid, the solvent remains in the coating film even when the coating film is dried at room temperature. Therefore, heat treatment is performed. The upper limit of the heating temperature is determined by the softening point of glass, plastic, etc. used as the substrate. Considering this point, the preferable heating temperature range is 100 to 500 ° C.

【0035】また、本発明の膜の硬化方法として紫外線
(UV)を塗膜に照射してもよい。本発明の塗布液から
なる塗膜はAg微粒子を含有するために、Agの5sバ
ンドと5dバンドに起因する330nm付近に吸収ピー
クが存在し、硬化手段としてUVを照射した場合には、
効率よくエネルギーが吸収され、優れた膜硬化作用が発
現する。
As a method for curing the film of the present invention, the coating film may be irradiated with ultraviolet rays (UV). Since the coating film comprising the coating solution of the present invention contains Ag fine particles, there is an absorption peak near 330 nm due to the 5s band and 5d band of Ag, and when UV is irradiated as a curing means,
Energy is efficiently absorbed and an excellent film curing action is exhibited.

【0036】また、本発明においては、以上のように形
成された低抵抗膜上に、光の干渉作用を利用して低屈折
率膜を形成する。例えば、基体がガラス(屈折率n=
1.52)の場合、前記低抵抗膜の上に、低屈折率膜の
屈折率に対する低抵抗膜の屈折率の比の値が約1.23
となるような低屈折率膜を形成することにより、形成さ
れた膜の反射率を最も低減させうる。膜の反射率の低減
には、可視光領域において、特に555nmの反射率を
低減することが好ましいが、実用上は反射外観等を考慮
し、適宜決定することが好ましい。
Further, in the present invention, a low refractive index film is formed on the low resistance film formed as described above by utilizing the interference effect of light. For example, if the substrate is glass (refractive index n =
In the case of 1.52), the ratio of the refractive index of the low resistance film to the refractive index of the low resistance film is about 1.23 on the low resistance film.
By forming a low-refractive-index film that satisfies the above condition, the reflectance of the formed film can be most reduced. In order to reduce the reflectance of the film, it is preferable to reduce the reflectance of 555 nm particularly in the visible light region, but in practice, it is preferably determined in consideration of the reflection appearance and the like.

【0037】このような2層からなる低反射低抵抗膜に
おける低屈折率膜としては、ケイ素化合物を含有する塗
布液を用いて形成することが、形成される膜の硬度等の
点から好ましいが、さらに屈折率の点からは低屈折率膜
形成用塗布液にMgF2 ゾルを含ませてもよい。
The low-refractive-index film in the low-reflection low-resistance film consisting of two layers as described above is preferably formed by using a coating liquid containing a silicon compound from the viewpoint of the hardness of the formed film. Further, from the viewpoint of the refractive index, the coating liquid for forming the low refractive index film may contain MgF 2 sol.

【0038】こうした低屈折率膜形成用のケイ素化合物
としては、Siアルコキシドを含む種々のものが使用で
き、好適な材料として、例えば、Si(OR)y ・R’
4-y(yは3又は4であり、R、R’はアルキル基を示
す)で示されるSiアルコキシド又はその部分加水分解
物を含む液が挙げられる。例えば、シリコンエトキシ
ド、シリコンメトキシド、シリコンイソプロポキシド、
シリコンブトキシドのモノマー又は重合体が好ましく使
用できる。
As the silicon compound for forming such a low refractive index film, various compounds containing Si alkoxide can be used. Suitable materials include, for example, Si (OR) y · R ′.
A liquid containing a Si alkoxide represented by 4-y (y is 3 or 4, and R and R'represent an alkyl group) or a partial hydrolyzate thereof can be mentioned. For example, silicon ethoxide, silicon methoxide, silicon isopropoxide,
A monomer or polymer of silicon butoxide can be preferably used.

【0039】Siアルコキシドは、アルコール、エステ
ル、エーテル等に溶解しても使用でき、Siアルコキシ
ド溶液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイン酸、
フッ酸、又はアンモニア水溶液を添加してSiアルコキ
シドを加水分解しても使用できる。また、前記Siアル
コキシドは溶媒に対して、30重量%以下含まれている
ことが好ましい。固形分量があまり大きいと液の保存安
定性が悪くなる。
The Si alkoxide can be used by dissolving it in alcohol, ester, ether, etc., and in the Si alkoxide solution, hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid,
It can also be used by adding hydrofluoric acid or an aqueous ammonia solution to hydrolyze the Si alkoxide. The Si alkoxide is preferably contained in the solvent in an amount of 30% by weight or less. If the solid content is too large, the storage stability of the liquid will deteriorate.

【0040】また、このSiアルコキシド溶液には、形
成される膜の強度向上のためにバインダとして、Zr、
Ti、Sn、Al等のアルコキシドや、これらの部分加
水分解物を添加して、ZrO2 、TiO2 、SnO2
びAl23 の1種以上の複合物をMgF2 やSiO2
と同時に析出させてもよい。さらにSiアルコキシド溶
液の基体に対する濡れ性を向上させるために該溶液に界
面活性剤を添加してもよい。添加される界面活性剤とし
ては、直鎖アルキルベンゼンスルホン酸ナトリウムやア
ルキルエーテル硫酸エステル等が挙げられる。
Further, this Si alkoxide solution contains Zr, as a binder, for improving the strength of the formed film.
Alkoxides such as Ti, Sn, and Al, and partial hydrolysates thereof are added to convert one or more composites of ZrO 2 , TiO 2 , SnO 2, and Al 2 O 3 into MgF 2 or SiO 2.
It may be deposited at the same time. Further, in order to improve the wettability of the Si alkoxide solution with respect to the substrate, a surfactant may be added to the solution. Examples of the surfactant to be added include linear sodium alkylbenzene sulfonate and alkyl ether sulfate.

【0041】上記ケイ素化合物を含有する低屈折率膜形
成用塗布液に、前記のようなAg塩を添加できる。添加
するAg塩の添加量は、前記低抵抗膜形成用塗布液の場
合と同様である。
The Ag salt as described above can be added to the coating liquid for forming a low refractive index film containing the above silicon compound. The amount of Ag salt added is the same as in the case of the low resistance film forming coating solution.

【0042】本発明の低反射低抵抗膜は、基体上に、平
均粒径が10nmを超えるAg微粒子とAg塩とを少な
くとも含有してなる低抵抗膜形成用塗布液を塗布し、そ
の上にその上にケイ素化合物を少なくとも含有してなる
低屈折率膜形成用塗布液を塗布することにより得られ
る。
The low reflection low resistance film of the present invention comprises a base having an average particle diameter of the low-resistance film-forming coating solution was applied which comprises at least the Ag particles and Ag salt of more than 10 nm, on which Ru Moreover silicon compound obtained Ri by the applying at least comprising a low refractive index film-forming coating solution in <br/> to.

【0043】れらの成膜は、加熱及び/又は紫外線を
照射して行うことができ、少なくとも一方の膜中に存在
するAg塩に起因するAgイオンによる前記作用によっ
て、着色がなく透明で導電性に優れ、さらには反射防止
効果にも優れた低反射低抵抗膜を形成できる。
The source of the these film formation can be performed by irradiating a heating and / or UV, by the action of the Ag ions resulting from the Ag salt present in at least one of the films, colored and without clear It is possible to form a low-reflection low-resistance film having excellent conductivity and also an antireflection effect.

【0044】本発明の低反射低抵抗膜の製造方法は、多
層干渉効果による低反射低抵抗膜にも応用できる。反射
防止性能を有する多層の低屈折率膜の構成としては、反
射防止をしたい光の波長をλとして、基体側より、高屈
折率層−低屈折率層を光学厚みλ/2−λ/4、又はλ
/4−λ/4で形成した2層の低屈折率膜、基体側より
中屈折率層−高屈折率層−低屈折率層を光学厚みλ/4
−λ/2−λ/4で形成した3層の低屈折率膜、基体側
より低屈折率層−中屈折率層−高屈折率層−低屈折率層
を光学厚みλ/2−λ/2−λ/2−λ/4で形成した
4層の低屈折率膜等が典型的な例として知られている。
The method for producing a low-reflection low-resistance film of the present invention can be applied to a low-reflection low-resistance film due to the multilayer interference effect. The multilayer low-refractive index film having the antireflection property has a structure in which the wavelength of the light for which antireflection is desired is λ, and the high refractive index layer-the low refractive index layer has an optical thickness of λ / 2-λ / 4 from the substrate side. , Or λ
/ 4- [lambda] / 4, a two-layer low-refractive-index film, and a medium-refractive-index layer-high-refractive-index layer-low-refractive-index layer having an optical thickness of [lambda] / 4 from the substrate side.
-Three-layer low refractive index film formed by λ / 2-λ / 4, a low refractive index layer from the substrate side-a medium refractive index layer-a high refractive index layer-a low refractive index layer having an optical thickness of λ / 2-λ / A 4-layer low-refractive index film formed of 2-λ / 2-λ / 4 and the like are known as typical examples.

【0045】本発明の低抵抗膜形成用塗布液は、上記多
層構成膜の中〜高屈折率層の形成に使用でき、低屈折率
膜形成用塗布液は、上記多層構成膜の低屈折率層の形成
に使用できる。
The coating liquid for forming a low resistance film of the present invention can be used for forming a medium to high refractive index layer of the above-mentioned multilayer constituent film, and the coating liquid for forming a low refractive index film has a low refractive index of the above-mentioned multilayer constituent film. It can be used to form layers.

【0046】本発明における低抵抗膜又は低反射低抵抗
膜を形成する基体としては、ブラウン管パネル、複写機
用ガラス板、計算機用パネル、クリーンルーム用ガラ
ス、CRT又はLCD等の表示装置の前面板等の各種ガ
ラス、プラスチック基板等が挙げられる。
As the substrate for forming the low resistance film or the low reflection low resistance film in the present invention, a cathode ray tube panel, a glass plate for a copying machine, a computer panel, a glass for a clean room, a front plate of a display device such as a CRT or LCD, etc. Various types of glass, plastic substrates, and the like.

【0047】塗布液の基体上への塗布方法としては、ス
ピンコート、ディップコート、スプレーコート等の方法
が好適に使用できる。また、スプレーコート法を用いて
表面に凹凸を形成し、形成される膜に防眩効果を付与し
てもよく、また、その上にシリカ被膜等のハードコート
層を設けてもよい。
As a method for applying the coating liquid onto the substrate, spin coating, dip coating, spray coating and the like can be preferably used. In addition, a spray coating method may be used to form irregularities on the surface to impart an antiglare effect to the formed film, and a hard coat layer such as a silica coating may be provided thereon.

【0048】さらには、本発明の低抵抗膜をスピンコー
ト法又はスプレーコート法で形成し、その上にSiアル
コキシドを含む溶液をスプレーコートして、表面に凹凸
を有するシリカ被膜のノングレアコート層を設けてもよ
い。
Further, the low resistance film of the present invention is formed by a spin coating method or a spray coating method, and a solution containing a Si alkoxide is spray coated on the low resistance film to form a non-glare coating layer of silica coating having irregularities on the surface. It may be provided.

【0049】本発明の低抵抗膜形成用塗布液と低屈折率
膜形成用塗布液の基体に対する塗布量(膜厚)は、被塗
布基体の種類、被塗布基体の使用目的等によって一概に
は規定されないが、低抵抗膜形成用塗布液の塗布量は一
般的には硬化膜の厚みとして約5〜150nmとなる範
囲であり、低屈折率膜形成用塗布液の塗布量は一般的に
は硬化膜の厚みとして約5〜150nmとなる範囲が好
適である。
The coating amount (film thickness) of the coating liquid for forming a low resistance film and the coating liquid for forming a low refractive index film of the present invention on a substrate is generally determined depending on the type of the substrate to be coated, the purpose of use of the substrate to be coated and the like. Although not specified, the coating amount of the low resistance film forming coating liquid is generally in the range of about 5 to 150 nm as the thickness of the cured film, and the coating amount of the low refractive index film forming coating liquid is generally The thickness of the cured film is preferably in the range of about 5 to 150 nm.

【0050】形成される低抵抗膜の厚みが上記範囲未満
では膜の導電性及び2層膜又は多層膜形成時の低反射性
等の点で不充分であり、形成される低抵抗膜の厚みが上
記範囲超では膜の透過率及び2層膜形成時の低反射性等
の点で不充分である。
If the thickness of the low resistance film formed is less than the above range, the conductivity of the film and the low reflectivity at the time of forming the two-layer film or the multi-layer film are insufficient, and the thickness of the low resistance film formed. However, if it exceeds the above range, the film transmittance and the low reflectivity at the time of forming the two-layer film are insufficient.

【0051】また、形成される低屈折率膜の厚みが上記
範囲未満では膜の強度及び2層膜又は多層膜形成時の低
反射性等の点で不充分であり、形成される低屈折率膜の
厚みが上記範囲超では膜の外観及び低反射性等の点で不
充分である。
If the thickness of the low refractive index film to be formed is less than the above range, the strength of the film and the low reflectivity at the time of forming a two-layer film or a multi-layer film are insufficient, and the low refractive index to be formed. If the film thickness exceeds the above range, the film appearance and low reflectivity are insufficient.

【0052】なお、上記低抵抗膜及び低屈折率膜の上下
には、他の膜を介在させて多層構造の低反射低抵抗膜と
することもできる。
It should be noted that another film may be interposed above and below the low resistance film and the low refractive index film to form a low reflection low resistance film having a multilayer structure.

【0053】[0053]

【実施例】次に実施例(例1)及び比較例(例)を挙
げて本発明をさらに具体的に説明するが、本発明はこれ
らの実施例に限定されない。以下の実施例及び比較例に
おいて、得られたゾル中の粒子の平均粒径は透過型電子
顕微鏡によって測定した。また、得られた膜の評価方法
は次の通りである。
EXAMPLES Next, the present invention will be described more specifically with reference to Examples (Example 1) and Comparative Examples (Example 2 ), but the present invention is not limited to these Examples. In the following examples and comparative examples, the average particle size of the particles in the obtained sol was measured by a transmission electron microscope. The evaluation method of the obtained film is as follows.

【0054】1)導電性評価:ローレスタ抵抗測定器
(三菱油化製)により膜表面の表面抵抗を測定した。 2)耐擦傷性:1kg荷重下で消しゴム(ライオン製5
0−50)で膜表面を50回往復後、その表面の傷の付
き具合を目視で判断した。評価基準は、○:傷が全く付
かない、△:傷が多少つく、×:一部に膜剥離が生じ
る、とした。 3)視感反射率:GAMMA分光反射率スペクトル測定
器により膜の400〜700nmでの視感反射率を測定
した。
1) Conductivity evaluation: The surface resistance of the film surface was measured with a Loresta resistance measuring instrument (manufactured by Mitsubishi Yuka). 2) Scratch resistance: Eraser under a load of 1 kg (made by Lion 5
0-50), the film surface was reciprocated 50 times, and the degree of scratches on the surface was visually evaluated. The evaluation criteria were as follows: ◯: No scratches were found, Δ: Some scratches were found, and X: Partial film peeling occurred. 3) Luminous reflectance: The luminous reflectance of the film at 400 to 700 nm was measured by a GAMMA spectral reflectance spectrophotometer.

【0055】4)視感透過率:日立製作所製スペクトロ
フォトメータU−3500により380〜780nmで
の視感透過率を測定した。 5)透過率差及び透過色調:日立製作所製スペクトロフ
ォトメータU−3500により380〜780nmでの
透過率中の最大透過率と最小透過率の差を測定し、透過
色調を評価した。また、その透過色調を目視で判断し
た。特に透過色が認識されない場合はニュートラルと評
価した。
4) Luminous transmittance: The spectrophotometer U-3500 manufactured by Hitachi Ltd. was used to measure the luminous transmittance at 380 to 780 nm. 5) Transmittance difference and transmitted color tone: The difference between the maximum transmittance and the minimum transmittance in the transmittance at 380 to 780 nm was measured with a spectrophotometer U-3500 manufactured by Hitachi Ltd., and the transmitted color tone was evaluated. Further, the transmitted color tone was visually judged. Especially, when the transmitted color was not recognized, it was evaluated as neutral.

【0056】Ag微粒子分散液の調製」 (1)30重量%硫酸鉄水溶液20gに30重量%クエ
ン酸3ナトリウム水溶液35gを添加し、さらに12重
量%の硝酸銀水溶液25gを添加した後5分間撹拌し
た。
Preparation of Ag Fine Particle Dispersion” (1) To 20 g of 30 wt% iron sulfate aqueous solution, 35 g of 30 wt% trisodium citrate aqueous solution was added, and further 25 g of 12 wt% silver nitrate aqueous solution was added, followed by stirring for 5 minutes did.

【0057】(2)上記(1)で得られた液を遠心分離
により固液分離した後、沈殿物に純水30gを添加して
撹拌した。この液に10分間超音波照射を施した後、3
0重量%クエン酸3ナトリウム水溶液を30g添加し
た。
(2) The liquid obtained in (1) above was subjected to solid-liquid separation by centrifugation, 30 g of pure water was added to the precipitate, and the mixture was stirred. After ultrasonic irradiation of this solution for 10 minutes, 3
30 g of 0 wt% trisodium citrate aqueous solution was added.

【0058】(3)上記工程(2)を4回繰り返した
後、遠心分離により固液分離した後、純水50gを添加
し、さらに20分間の超音波照射を施した。
(3) After repeating the above step (2) four times, solid-liquid separation was carried out by centrifugation, 50 g of pure water was added, and ultrasonic irradiation was further performed for 20 minutes.

【0059】(4)上記(3)で得られた液に、陽イオ
ン交換樹脂を添加し15分間撹拌した後、陽イオン交換
樹脂を濾別し、さらに陰イオン交換樹脂を添加して15
分間撹拌した後、陰イオン交換樹脂を濾別し、Ag微粒
子分散液を得た。
(4) A cation exchange resin was added to the solution obtained in the above (3), and the mixture was stirred for 15 minutes. Then, the cation exchange resin was filtered off, and an anion exchange resin was further added to the solution.
After stirring for 1 minute, the anion exchange resin was filtered off to obtain Ag fine particle dispersion liquid.

【0060】この分散液のAg微粒子の平均粒径は27
nmであり、その固形分濃度は5重量%であった。
The average particle size of Ag fine particles in this dispersion is 27.
nm, and the solid content concentration was 5% by weight.

【0061】(5)この分散液にエタノールを添加し、
エタノール80重量%、固形分0.4重量%となるよう
に調整した(A1 液)。
(5) Add ethanol to this dispersion,
The ethanol was adjusted to 80% by weight and the solid content to 0.4% by weight (A 1 solution).

【0062】「ケイ素化合物含有液の調製」 (6)ケイ酸エチル50gをエタノール200gに溶解
し、撹拌下で濃硝酸1.5gと純水33gとの混合溶液
を滴下し、室温で2時間撹拌してSiO2 濃度4.9重
量%の液を得た(B液)。
[Preparation of Liquid Containing Silicon Compound] (6) 50 g of ethyl silicate was dissolved in 200 g of ethanol, a mixed solution of 1.5 g of concentrated nitric acid and 33 g of pure water was added dropwise with stirring, and the mixture was stirred at room temperature for 2 hours. Thus, a liquid having a SiO 2 concentration of 4.9% by weight was obtained (liquid B).

【0063】このB液を、プロピレングリコールモノメ
チルエーテル/イソプロパノール/ジアセトンアルコー
ル=50:40:10(重量比)の混合溶媒でSiO2
固形分が0.70重量%となるように希釈した(B1
液)。
This solution B was mixed with propylene glycol monomethyl ether / isopropanol / diacetone alcohol = 50: 40: 10 (weight ratio) in a mixed solvent of SiO 2
Diluted to a solid content of 0.70% by weight (B 1
liquid).

【0064】[0064]

【0065】[0065]

【0066】[0066]

【0067】 [0067]

【0068】[例1] 硝酸銀1.0gを水30gに溶解させた後、29%アン
モニア水溶液を1g添加し銀アンミン錯塩含有溶液を調
製した(C2 液)。A1 液20gにC2 液0.05gを
添加し1時間超音波分散を行った(A2 液)。
Example 1 After dissolving 1.0 g of silver nitrate in 30 g of water, 1 g of 29% aqueous ammonia solution was added to prepare a solution containing silver ammine complex salt (C 2 solution). 0.05 g of C 2 solution was added to 20 g of A 1 solution, and ultrasonic dispersion was performed for 1 hour (A 2 solution).

【0069】A2 液を表面温度40℃に加温した14イ
ンチブラウン管パネル表面にスピンコート法で硬化時の
膜厚が54nmになる塗布量で100rpm、60秒間
の条件で塗布した後、B1 液20gをA2 液塗布時と同
一のスピンコート条件で、硬化時の膜厚が72nmにな
る塗布量で塗布した後、高圧水銀灯により紫外線を30
分間照射することにより本発明の低反射低抵抗膜を得
た。
The solution A 2 was applied on the surface of a 14-inch cathode ray tube panel heated to a surface temperature of 40 ° C. by a spin coating method under the conditions of 100 rpm and 60 seconds at a coating amount such that the film thickness when cured was 54 nm, and then B 1 After applying 20 g of the solution under the same spin-coating conditions as when applying the A 2 solution, with a coating amount such that the film thickness upon curing would be 72 nm, UV light was applied 30 times with a high pressure mercury lamp.
The low-reflection low-resistance film of the present invention was obtained by irradiating for a minute.

【0070】[0070]

【0071】[0071]

【0072】 [0072]

【0073】[例] A1 液20gを、表面温度40℃に加温した14インチ
ブラウン管パネル表面にスピンコート法で、硬化時の膜
厚が40nmになる塗布量で100rpm、60秒間の
条件で塗布した後、B1 液20gをA1 液塗布時と同一
のスピンコート条件で、硬化時の膜厚が60nmになる
塗布量で塗布した後160℃で30分間加熱して比較例
の膜を形成した。
Example 2 20 g of A 1 liquid was applied to the surface of a 14-inch cathode ray tube panel heated to a surface temperature of 40 ° C. by a spin coating method under the conditions of a coating amount of 100 nm for 60 seconds at a coating thickness of 40 nm when cured. 20 g of the B 1 solution was applied under the same spin coating conditions as when the A 1 solution was applied, and at a coating amount such that the film thickness upon curing was 60 nm, and then heated at 160 ° C. for 30 minutes to obtain the film of the comparative example. Was formed.

【0074】[評価結果] 例1〜で得られた各低抵抗膜の物性を前記方法で測定
した結果を表示す。なお、表において2E2は2×
102 を意味し、他も同様である。また、透過色調のN
はニュートラルを意味する。
[Evaluation Results] Table 1 shows the results of measuring the physical properties of the low resistance films obtained in Examples 1 and 2 by the above-mentioned methods. In Table 1 , 2E2 is 2 ×
10 2 means the same as above. In addition, the transparent color N
Means neutral.

【0075】[0075]

【0076】[0076]

【表1】 [Table 1]

【0077】[0077]

【発明の効果】本発明によれば、従来技術の種々の欠点
を解消し、塗布液の状態で分散安定性に優れ、ブラウン
管フェイス面等のガラス基体上に膜を形成する際、低温
熱処理により、着色がなく透明で導電性に優れた高性能
な低抵抗膜、さらには反射防止効果にも優れた低反射低
抵抗膜を形成できる。
EFFECTS OF THE INVENTION According to the present invention, various drawbacks of the prior art are solved, dispersion stability is excellent in the state of a coating liquid, and low temperature heat treatment is used when forming a film on a glass substrate such as a cathode ray tube face surface. It is possible to form a high-performance low-resistance film that is transparent without coloration and has excellent conductivity, and a low-reflection low-resistance film that also has an excellent antireflection effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 剛 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社 中央研究所内 (56)参考文献 特開 昭63−160140(JP,A) 特開 平7−310058(JP,A) 特開 平7−258862(JP,A) 特開 平7−246679(JP,A) 特開 平7−173634(JP,A) 特開 平5−214545(JP,A) 特開 平2−15175(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 18/31 C23C 18/42 H01J 9/20 H01J 29/88 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Go Morimoto 1150 Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory (56) Reference JP-A-63-160140 (JP, A) JP-A-7 -310058 (JP, A) JP-A-7-258862 (JP, A) JP-A-7-246679 (JP, A) JP-A-7-173634 (JP, A) JP-A-5-214545 (JP, A) ) JP-A-2-15175 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 18/31 C23C 18/42 H01J 9/20 H01J 29/88

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平均粒径が10nmを超えるAg微粒子と
Ag塩とを少なくとも含有してなることを特徴とする低
抵抗膜形成用塗布液。
1. A coating liquid for forming a low resistance film, which comprises at least Ag fine particles having an average particle diameter of more than 10 nm and an Ag salt.
【請求項2】基体上に、請求項1に記載の塗布液を塗布
することを特徴とする低抵抗膜の製造方法。
2. A method for producing a low resistance film, which comprises applying the coating liquid according to claim 1 on a substrate.
【請求項3】基体上に、請求項1に記載の塗布液を塗布
し、その上にケイ素化合物を少なくとも含有してなる低
屈折率膜形成用塗布液を塗布することを特徴とする低反
射低抵抗膜の製造方法。
3. A low-reflectance coating characterized by coating the coating liquid according to claim 1 on a substrate, and then coating the coating liquid for forming a low refractive index film containing at least a silicon compound on the substrate. Method of manufacturing low resistance film.
【請求項4】ブラウン管パネル上に、請求項1に記載の
塗布液を塗布し、その上にケイ素化合物を少なくとも含
有してなる低屈折率膜形成用塗布液を塗布することを特
徴とする低反射低抵抗膜付きブラウン管パネルの製造方
法。
4. A coating liquid for coating a low-refractive-index film, which is formed by coating the coating liquid according to claim 1 on a cathode ray tube panel, and coating the coating liquid on the cathode ray tube panel for forming a low refractive index film. Manufacturing method of cathode ray tube panel with reflective low resistance film.
JP19235696A 1996-07-22 1996-07-22 Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film Expired - Fee Related JP3449123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19235696A JP3449123B2 (en) 1996-07-22 1996-07-22 Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19235696A JP3449123B2 (en) 1996-07-22 1996-07-22 Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2003139351A Division JP3979967B2 (en) 2003-05-16 2003-05-16 Manufacturing method of low reflection low resistance film

Publications (2)

Publication Number Publication Date
JPH1036975A JPH1036975A (en) 1998-02-10
JP3449123B2 true JP3449123B2 (en) 2003-09-22

Family

ID=16289925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19235696A Expired - Fee Related JP3449123B2 (en) 1996-07-22 1996-07-22 Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film

Country Status (1)

Country Link
JP (1) JP3449123B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1128824A1 (en) * 1998-11-09 2001-09-05 Ira Jay Newman Ionic silver complex
JP3310234B2 (en) * 1999-02-25 2002-08-05 シャープ株式会社 Method of manufacturing reflection plate for reflection type liquid crystal display device
JP4497491B2 (en) * 1999-12-07 2010-07-07 バンドー化学株式会社 Silver colloid aqueous solution, method for producing silver colloid aqueous solution, conductive film and method for forming conductive film
JP3881614B2 (en) * 2002-05-20 2007-02-14 株式会社大和化成研究所 Circuit pattern forming method
KR100711505B1 (en) * 2007-01-30 2007-04-27 (주)이그잭스 Silver paste for forming conductive layers

Also Published As

Publication number Publication date
JPH1036975A (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
JP3697760B2 (en) Coating liquid
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JPH11133207A (en) Optical thin film and refelction preventive article
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
JP3501942B2 (en) Paint for forming transparent conductive film, transparent conductive film, and display device
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
US6902815B2 (en) Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP3315673B2 (en) CRT with conductive film
JP3356968B2 (en) Transparent conductive film, method of manufacturing the same, and display device
JPH10147886A (en) Conductive film forming coating solution, conductive film and its production
JPH09320807A (en) Coating solution for forming low-resistance film, low-resistance film and its manufacture
JP2002003746A (en) Coating for forming transparent electroconductive film, transparent electroconductive film and display device
JP2004190142A (en) Coating liquid for forming electroconductive film, electroconductive film, and production method therefor
JP3266065B2 (en) Transparent conductive film composed of metal fine particles and composition for forming the same
JPH05190091A (en) Conductive film and low-reflection conductive film and its manufacture
JP4902048B2 (en) Substrate with transparent conductive film and display device
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JP2000153223A (en) Formation of low reflective conductive film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090711

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees