JP2004204174A - Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device - Google Patents

Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device Download PDF

Info

Publication number
JP2004204174A
JP2004204174A JP2002377717A JP2002377717A JP2004204174A JP 2004204174 A JP2004204174 A JP 2004204174A JP 2002377717 A JP2002377717 A JP 2002377717A JP 2002377717 A JP2002377717 A JP 2002377717A JP 2004204174 A JP2004204174 A JP 2004204174A
Authority
JP
Japan
Prior art keywords
transparent conductive
fine particles
film
transparent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002377717A
Other languages
Japanese (ja)
Inventor
Yuji Hiyouhaku
迫 祐 二 俵
Toshiharu Hirai
井 俊 晴 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2002377717A priority Critical patent/JP2004204174A/en
Publication of JP2004204174A publication Critical patent/JP2004204174A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide coating liquid for forming an electroconductive film, capable of being used for forming the transparent electroconductive film having a level of 10<SP>2</SP>-10<SP>8</SP>Ω/square low surface resistance, excellent in anti-static property, reflection-preventing property and electromagnetic shielding property, also having smooth surface excellent in close adhesion with a substrate and in addition excellent in contrast, the substrate with the transparent electroconductive film, and a displaying device equipped with the substrate. <P>SOLUTION: This coating liquid for forming the electroconductive film contains electroconductive fine particles, a coloring agent and a polar solvent, wherein the electroconductive fine particles are indium oxide-based fine particles selected from indium oxide or indium oxide doped with Sn or F, and the coloring agent is particles having a positive charge. An organic pigment and/or inorganic pigment is provided by coating the coloring agent with a metal oxide and having the positive charge. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の技術分野】
本発明は、新規な透明導電性被膜形成用塗布液に関する。
【0002】
【発明の技術的背景】
従来より、陰極線管、蛍光表示管、液晶表示板などの表示パネルのような透明基材の表面の帯電防止および反射防止を目的として、これらの表面に帯電防止機能および反射防止機能を有する透明被膜を形成することが行われていた。
また、陰極線管などから電磁波が放出されること知られており、従来の帯電防止、反射防止に加えてこれらの電磁波および電磁波の放出に伴って形成される電磁場を遮蔽することが望まれている。
【0003】
これらの電磁波などを遮蔽する方法の一つとして、陰極線管などの表示パネルの表面に電磁波遮断用の導電性被膜を形成する方法がある。帯電防止用導電性被膜であれば表面抵抗が少なくとも108Ω/□程度の表面抵抗を有していれば十分であるのに対し、電磁遮蔽用の導電性被膜では102〜104Ω/□のような低い表面抵抗を有することが必要であった。
【0004】
このように表面抵抗の低い導電性被膜を、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物を含む塗布液を用いて形成しようとすると、従来の帯電防止性被膜の場合よりも膜厚を厚くする必要があった。しかしながら、導電性被膜の膜厚は、10〜200nm程度にしないと反射防止効果は発現しないため、従来のSbドープ酸化錫またはSnドープ酸化インジウムのような導電性酸化物では、表面抵抗が低く、電磁波遮断性に優れるとともに、反射防止にも優れた導電性被膜を得ることが困難であるという問題があった。
【0005】
また、低表面抵抗の導電性被膜を形成する方法の一つとして、Agなどの金属微粒子を含む導電性被膜形成用塗布液を用いて基材の表面に金属微粒子含有被膜を形成する方法がある。この方法では、金属微粒子含有被膜形成用塗布液として、コロイド状の金属微粒子が極性溶媒に分散したものが用いられている。このような塗布液では、コロイド状金属微粒子の分散性を向上させるために、金属微粒子表面がポリビニルアルコール、ポリビニルピロリドンまたはゼラチンなどの有機系安定剤で表面処理されている。しかしながら、このような金属微粒子含有被膜形成用塗布液を用いて形成された導電性被膜は、被膜中で金属微粒子同士が安定剤を介して接触するため、粒界抵抗が大きく、被膜の表面抵抗が低くならないことがあった。このため、製膜後、400℃程度の高温で焼成して安定剤を分解除去する必要があるが、安定剤の分解除去をするため高温で焼成すると、金属微粒子同士の融着や凝集が起こり、導電性被膜の透明性やへーズが低下するという問題があった。また、陰極線管などの場合は、高温に晒すと劣化してしまうという問題もあった。
【0006】
また、金属微粒子は前記導電性酸化物と異なり本来光を透過しないために金属微粒子を用いて形成された導電性被膜は導電性被膜中の金属微粒子の密度や膜厚等に依存して透明性が低下する問題もあった。
さらに従来のAg等の金属微粒子を含む透明導電性被膜では、耐塩水性や耐酸化性が低く、金属が酸化されたり、イオン化による粒子成長したり、また場合によっては腐食が発生することがあり、塗膜の導電性や光透過率が低下し、表示装置が信頼性を欠くという問題があった。
【0007】
また、前記した従来の透明導電性被膜を形成するために用いられる塗布液、なかでも電磁波遮蔽性能に優れた低表面抵抗の透明導電性被膜を形成するために金属微粒子などの導電性の高い微粒子を配合した塗布液は安定性が不充分で、得られる透明導電性被膜の被膜表面は必ずしも表面が平滑でなく、筋条あるいはスポット状の外観上の欠陥ができることがあり製品の歩留まりを低下させる問題があった。さらに従来の塗布液を用いた場合は基板の清浄度の影響を受けて外観上の欠陥が派生しやすく製造信頼性に欠ける問題があった。
【0008】
上記に加えて、透明導電性被膜にはカーボン微粒子等の着色剤を配合し透過率を制御してコントラストを向上させることが行われている。
通常導電性微粒子は、正電荷を有しており、着色剤によっては、導電性微粒子と反対の粒子表面電位を有している場合は導電性微粒子と着色剤粒子が互いに付着して凝集し、このため塗布液は安定性が不充分であり、実質的に塗布液として用いることができなかった。また、導電性被膜を形成したとしても導電性が大きく低下することがあった。
【0009】
たとえば、導電性微粒子が前記した酸化インジウム系微粒子の場合はカーボン微粒子を配合することができず、このためコントラストに優れた透明導電性被膜付基材を備えた表示装置を得ることができなかった。
【0010】
【発明の目的】
本発明は、上記のような従来技術の問題点を解決し、102〜108Ω/□程度の低い表面抵抗を有し、帯電防止性、反射防止性および電磁遮蔽性に優れるとともに、表面が平滑で基材とに密着性に優れ、加えてコントラストに優れた透明導電性被膜の形成に用いることのできる透明導電性被膜形成用塗布液、透明導電性被膜付基材、および該基材を備えた表示装置を提供することを目的としている。
【0011】
【発明の概要】
本発明に係る透明導電性被膜形成用塗布液は、
導電性微粒子と着色剤と極性溶媒とを含み、
導電性微粒子が酸化インジウム、SnまたはFがドーピングされた酸化インジウムから選ばれる酸化インジウム系微粒子であり、
着色剤が正電荷を有する粒子であることを特徴としている。
【0012】
前記着色剤が、金属酸化物で被覆されて正電荷を有する有機顔料および/または無機顔料であることが好ましい。
前記塗布液の固形分濃度が0.5〜5重量%の範囲にあり、固形分中の着色剤の含有量が1〜50重量%の範囲にあることが好ましい。
本発明に係る透明導電性被膜付基材は、
基材と、
基材上の前記導電性微粒子を含む透明導電性微粒子層と、
該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなる透明導電性被膜付基材であって、
透明導電性微粒子層が導電性微粒子と着色剤とを含み、導電性微粒子が酸化インジウム、SnまたはFがドーピングされた酸化インジウムから選ばれる酸化インジウム系微粒子であることを特徴としている。
【0013】
前記透明導電性被膜の波長550nmにおける透過率は55〜95%の範囲にあることが好ましい。
本発明に係る表示装置は、前記透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されていることを特徴としている。
【0014】
【発明の具体的説明】
以下、本発明について具体的に説明する。
透明導電性被膜形成用塗布液
まず、本発明に係る透明導電性被膜形成用塗布液について説明する。
導電性微粒子
導電性微粒子としては酸化インジウム系微粒子が用いられる。
【0015】
酸化インジウム系微粒子としては、酸化インジウム、SnまたはFがドーピングされた酸化インジウムが挙げられる。
酸化インジウム系微粒子は酸化物系導電性微粒子の中でも導電性が高く、このため得られる透明導電性被膜は帯電防止性能、電磁波遮蔽性能に優れるとともに、金属微粒子を用いた透明導電性被膜と異なり透明性に優れている。
【0016】
酸化インジウム系微粒子は、平均粒子径が2〜200nm、さらには5〜150nmの範囲にあることが好ましい。
酸化インジウム系微粒子の平均粒子径が2nm未満の場合は、粒子層の表面抵抗が急激に大きくなるため、本発明の目的を達成しうる程度の低抵抗値を有する被膜を得ることができないことがある。
【0017】
酸化インジウム系微粒子の平均粒子径が200nmを越えると、粒子が大きいために粒子同士の接点が減少し充分な導電性が得られないことがあり。また膜強度や基材との密着性が低下したり、得られる透明導電性被膜のヘーズが高くなることがある。
着色剤
着色剤としては、可視光透過率を抑制でき、正電荷を有する有機顔料および/または無機顔料を用いることができる。
【0018】
正電荷を有する着色剤としては、本来正電荷を有するものであればそのまま使用することも可能であるが、通常着色剤は負電荷を有しているので、本発明では、負電荷を有する有機顔料および/または無機顔料を金属酸化物で被覆して正電荷を付与したものが好適に用いられる。
負電荷を有する有機顔料としては、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン、キナクリドン系レッド、アンスラキノンレッド、イソインドリノンイエロー、ジオキサジンバイオレット等が挙げられる。
【0019】
負電荷を有する無機顔料としては、Ti、Cr、Co、Ni、Fe、Mn、Cuから選ばれる1種または2種以上の元素の酸化物、複合酸化物等が挙げられたとえばチタンブラック等は好適に用いることができる。
上記各顔料粒子は、平均粒子径が50〜200nm、さらには80〜150nmの範囲にあることが好ましい。
【0020】
顔料粒子の平均粒子径が前記範囲内にあると、被膜を充分に着色できるとともに、透過率も制御可能であり、また外観に優れるとともに、さらに強度も高い被膜を得ることができる。なお、顔料粒子の平均粒子径が小さくなると、着色力が低下して所望の透過率に制御できないことがあり、このため所望のコントラストが得られないことがある。顔料粒子の平均粒子径が大きくするとかえって、得られる膜の透明性が低下することがあり、また膜形成性が低下し、被膜の外観や膜の強度が低下したり、ヘーズが高くなることがある。
【0021】
また、前記顔料を被覆する金属酸化物としては、酸化チタン、酸化ジルコニウム、酸化アルミニウムなどが好適である。これらの金属酸化物で顔料を被覆すると得られる着色剤に正電荷を付与できるとともに、被覆された金属酸化物粒子の分散安定性が高くなり、長期安定性に優れた塗布液を得ることができるとともに、このような着色剤を含む透明導電性被膜は導電性の低下が小さい。
【0022】
なお、シリカで被覆してもシリカゾルのように負電荷を有することになるので、正電荷を有する導電性粒子と互いに付着して凝集し、このため塗布液は安定性が不充分であり、実質的に塗布液として用いることができない。
金属酸化物で被覆した着色剤中の金属酸化物被覆量は、顔料粒子表面の被覆層の厚さが、少なくとも0.5nm以上、好ましくは1〜5nmの範囲の厚さとなるような量であればよい。このような範囲の厚さにあれば、表面全体に正電荷を付与することが可能であり、導電性粒子と配合して得られる透明導電性被膜形成用塗布液の安定性が非常に高くなる。なお、被覆層の厚さが薄いと、表面全体に正電荷を付与することができないことがあり、透明導電性被膜形成用塗布液の安定性が不充分となることがあり、また、被覆層の厚さを厚くしても、さらに正電荷が増すこともなく、また、顔料粒子の割合が低下するので透明導電性被膜の透過率を抑制する効果が低下し、着色顔料の使用量が増えたり、透明導電性被膜の強度等を低下したりすることがある。
【0023】
着色剤中の金属酸化物被覆層の割合は、顔料粒子の粒子径や比重によっても異なるが酸化物として概ね5〜50重量%、さらには10〜30重量%の範囲にあることが好ましい。
なお、負電荷を有する顔料を界面活性剤等で処理して正電荷を有する顔料に変換する方法も知られているが、この方法では理由は明らかではないが、得られる透明導電性被膜の強度が低下したり、導電性が大きく低下することがある。
【0024】
このような金属酸化物で着色顔料を被覆する方法は、特に制限はなく、たとえば以下のような方法が例示される。
まず、上記した顔料粒子の分散液を調製する。分散媒としては、メタノール、エタノール、ブタノール、アセチルアセトン等が用いられる。分散液中の顔料粒子の濃度は固形分として1〜20重量%、さらには2〜10重量%の範囲にあることが好ましい。このような分散液濃度の範囲にあれば、顔料粒子が凝集することもなく安定に分散している。また分散液の温度は、金属化合物の種類によっても異なるが10〜60℃、さらには20〜30℃の範囲に保持しておくことが好ましい。
【0025】
ついで、金属酸化物被覆用の金属化合物の水溶液または有機溶媒溶液を添加して、金属化合物を加水分解することで被覆層が形成される。この際、必要に応じて金属化合物加水分解用の触媒を、金属化合物添加前、金属化合物と同時に、あるいは金属化合物添加後に加えることができる。
上記金属化合物としては、4塩化チタン、塩化ジルコニウム、硫酸アルミニウム、Zr(OC49)4、Ti(OC37)4、[(CH3)2CHO]2Al(O369)(アルミニウムエチルアセトアセテートジイソプロピレート)等が挙げられる。
【0026】
また、有機溶媒としては、前記分散媒と同様のものを用いることができる。
触媒としては、酸またはアルカリを用いることができ、酸触媒としては、硝酸、塩酸、硫酸等が用いられ、アルカリ触媒としては、水酸化アンモニウムが好ましい。
触媒の使用量は、金属化合物を加水分解できれば特に限定されないが、概ね金属化合物1モル当たり0.01モル〜0.2モルの範囲である。
【0027】
金属化合物を添加し、加水分解を終了した後、必要に応じて熟成することがしてもよい。このときの温度は通常50〜100℃、時間は0.5〜24時間が好ましい。このような熟成を行うことによって、顔料粒子表面上にムラなく均一で緻密な金属酸化物被覆層を形成することができる。また、熟成の前または後で、洗浄することが好ましい。洗浄方法としては、限外濾過膜法、イオン交換樹脂法、遠心分離法等が挙げられる。洗浄、即ち金属化合物あるいは触媒に由来する塩、イオンを除去することによって、得られる着色剤粒子がより効率的に正に帯電し、正に帯電した導電性粒子を含む透明導電性被膜形成用塗布液は安定性に優れている。
【0028】
このようにして得られた着色剤(金属酸化物被覆顔料粒子)は正電荷を有し、ゼータ電位が0〜50mV、好ましくは5〜50mVの範囲にある。
なお、着色剤のゼータ電位が負の場合は、着色剤の配合量にもよるが導電性被膜形成用塗布液の安定性が不充分となり、得られる透明導電性被膜の表面は必ずしも平滑でなく、筋条あるいはスポット状の外観上の欠陥ができることがあり製品の歩留まりが低下し、着色剤の配合量を低減すれば所望のコントラストが得られない。
【0029】
また、着色剤のゼータ電位が50mVを越えるものは得ることが困難である。
なお、ゼータ電位の測定方法を以下に示す。
ゼータ電位測定装置(Malvern Instruments 社製:ZETASIZER 3000HSA)を用いる。着色剤粒子のアルコール分散液を所定の散乱強度になるまで蒸留水で希釈し、濃度0.1モル%の硝酸水溶液でpHを変化させ、pHは5〜3(本発明ではpH4)の範囲での電位をゼータ電位として求める。
【0030】
本発明に係る透明導電性被膜形成用塗布液は、上記導電性微粒子と着色剤を極性溶媒に分散させるか、導電性微粒子の極性溶媒分散液と着色剤の極性溶媒分散液とを混合することによって得ることができる。
本発明で用いられる極性溶媒としては、
水;メタノール、エタノール、プロパノール、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール、エチレングリコール、ヘキシレングリコール、イソプロピルグリコールなどのアルコール類;酢酸メチルエステル、酢酸エチルエステルなどのエステル類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテルなどのエーテル類;アセトン、メチルエチルケトン、アセチルアセトン、アセト酢酸エステルなどのケトン類などが挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。
【0031】
透明導電性被膜形成用塗布液中の導電性微粒子と着色剤の合計の含有量は固形分として15重量%以下、さらには0.5〜5重量%の範囲にあることが好ましい。
この範囲にあれば、一回の塗布で所望の膜厚を形成することが可能であり(二度塗りが必要なく)、透明性も高く、塗工時に、また筋やムラが発生し外観不良も発生することもなく、平滑性に優れた被膜を形成することができる。
【0032】
なお、固形分濃度が薄いと、一回の塗布で得られる被膜の膜厚が薄くなることがあり、二度塗りが必要になったり、また被膜の導電性が不足することがあり、固形分濃度を多くすると膜厚も厚くなるので、光透過率が低下して透明性が低下したり、また固形分が多いので塗工時に筋やムラが発生し外観不良を伴うことがある。
【0033】
つぎに、透明導電性被膜形成用塗布液中の固形分濃度(導電性微粒子と着色剤の総量)は、液の流動性、塗布液中の導電性微粒子などの粒状成分の分散性などの点から、15重量%以下、好ましくは0.5〜5重量%であることが好ましい。
また、固形分中の導電性微粒子の割合は50〜99重量%、さらには80〜99重量%の範囲にあることが好ましい。
【0034】
固形分中の導電性微粒子の割合前記範囲にあれば、導電性被膜の導電性が高く、このため十分な電磁波遮蔽効果を発現できる上、光透過率が55〜95%の範囲にコントロール可能であり、このためコントラストを向上することができる。なお、導電性粒子の割合が少ないと、得られる被膜の導電性が低くなり、導電性微粒子の割合が多くすると、光透過率が95%以上となりコントラストが不充分となる。
【0035】
固形分中の着色剤の割合は1〜50重量%、さらには1〜20重量%の範囲にあることが好ましい。この範囲にあれば、透明導電性被膜の導電性を大きく下げることなく透過率を調整することができ、コントラストを向上することができる。
本発明の透明導電性被膜形成用塗布液には前記酸化インジウム系微粒子以外に、Au、Ag、Pd、Pt、Rh、Ru、Cu、Fe、Ni、Co、Sn、Ti、In、Al、Ta、Sbなどの金属から選ばれる少なくとも1種の金属からなる金属微粒子が含まれていても良い。2種以上の金属からなる場合、合金であっても共晶体であってもよく、さらに混合物であってもよく、2種以上の金属の組合せとしては、Au-Cu、In-Sn、Ag-Pt、Ag-Pd、Au-Pd、Au-Rh、Pt-Pd、Pt-Rh、Fe-Ni、Ni-Pd、Fe-Co、Cu-Co、Ru-Ag、Au-Cu-Ag、Ag-Cu-Pt、Ag-Cu-Pd、Ag-Au-Pd、Au-Rh-Pd、Ag-Pt-Pd、Ag-Pt-Rh、Fe-Ni-Pd、Fe-Co-Pd、Cu-Co-Pd などが挙げられる。
【0036】
このような金属微粒子は前記酸化インジウム系微粒子の含有量が前記範囲を維持できる範囲で含まれていればよく、金属微粒子が含まれていると、導電性被膜の導電性が向上し電磁波遮蔽能が向上することに加えて、金属微粒子の使用による透過率の制御が可能であり、このためコントラストを向上することができる。また、本発明の塗布液は安定性に優れているので必ずしも必要はないが、前記したように酸化インジウム系微粒子に金属微粒子を混合して用いる場合には金属微粒子の分散性を向上させるため、透明導電性被膜形成用塗布液中に有機系安定剤が含まれていてもよい。このような有機系安定剤として具体的には、ゼラチン、ポリビニルアルコール、ポリビニルピロリドン、シュウ酸、マロン酸、コハク酸、グルタール酸、アジピン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、クエン酸などの多価カルボン酸およびその塩、あるいはこれらの混合物などが挙げられる。このような有機系安定剤は、金属微粒子1重量部に対し、0.005〜0.5重量部、好ましくは0.01〜0.2重量部含まれていればよい。有機系安定剤の量が前記範囲にあれば、金属微粒子に高い分散性を付与できるとともに、導電性を阻害することもない。
【0037】
本発明の透明導電性被膜形成用塗布液では、同じ正電荷の表面電位を有する着色剤と酸化インジウム系の導電性微粒子とが均一に混合されているために粒子が凝集したり安定性が損なわれることが無く、該塗布液を用いると緻密で基材との密着性もよく、表面が平坦で外観上の欠陥のない透明導電性被膜が得られる。
本発明に係る透明導電性被膜形成用塗布液には、被膜形成後の導電性微粒子のバインダーとして作用するマトリックス形成成分が含まれていてもよい。このようなマトリックス形成成分としては、シリカからなるものが好ましく、具体的には、アルコキシシランなどの有機ケイ素化合物の加水分解重縮合物またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重縮合物、あるいは塗料用樹脂などが挙げられる。このマトリックス形成成分は、固形分として導電性微粒子1重量部当たり、0.01〜0.5重量部、好ましくは0.03〜0.3重量部の量で含まれていればよい。
【0038】
上記したような透明導電性被膜形成用塗布液を用いれば、導電性微粒子が均一に分散しており、ポットライフが長く、得られる透明導電性被膜表面は平滑であり、筋条あるいはムラ等の外観上の欠陥が発生することがなく、透明導電性被膜付基材の製造信頼性に優れている。また、概ね102〜104Ω/□の表面抵抗を有する透明導電性微粒子層を形成することができるので、帯電を防止したり、電磁波および電磁波の放出に伴って生じる電磁場を効果的に遮蔽することができる。さらに、得られる透明導電性被膜付基材の表面は平滑であり、筋条あるいはムラ等の外観上の欠陥がなくかつ耐塩水性や耐酸化性、透明性に優れている。
【0039】
透明導電性被膜付基材
次に、本発明に係る透明導電性被膜付基材について具体的に説明する。
本発明に係る透明導電性被膜付基材では、ガラス、プラスチック、セラミックなどからなるフィルム、シートあるいはその他の成形体などの基材上に、前記した平均粒子径が1〜200nm、好ましくは2〜150nmの導電性微粒子と前記した着色剤とからなる透明導電性微粒子層と、該透明導電性微粒子層上に透明被膜が形成されている。
【0040】
導電性微粒子および着色剤としては、前記と同様のものが挙げられる。
[透明導電性微粒子層]
透明導電性微粒子層の膜厚は、5〜200nm、好ましくは10〜150nmの範囲にあることが好ましく、この範囲の膜厚であれば帯電防止性、電磁遮蔽性に優れた透明導電性被膜付基材を得ることができる。
【0041】
このような透明導電性微粒子層には、必要に応じて、金属微粒子、マトリックス成分、有機系安定剤等を含んでいてもよく、具体的には、前記と同様のものが挙げられる。
[透明被膜]
本発明に係る透明導電性被膜付基材では、前記透明導電性微粒子層の上に、前記透明導電性微粒子層よりも屈折率の低い透明被膜が形成されている。
【0042】
このときの透明被膜の膜厚は、50〜300nm、好ましくは80〜200nmの範囲にあることが好ましい。透明被膜の膜厚がこのような範囲にあれば、膜の強度が高く、反射防止性能にも優れた基材を得ることができる。透明被膜の膜厚が薄いと膜の強度が低く、このため導電性微粒子層が損傷したり、さらに反射防止性能が不足することがある。また透明被膜の膜厚を厚くしても、透明被膜にクラックが発生したり、膜の強度が低下することがあり、また膜が厚すぎて反射防止性能が不充分となることがある。
【0043】
このような透明被膜は、たとえば、シリカ、チタニア、ジルコニアなどの無機酸化物、およびこれらの複合酸化物などから形成される。本発明では、透明被膜として、特に下記式[1]で表される加水分解性有機ケイ素化合物の加水分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸重縮合物からなるシリカ系被膜が好ましい。このような透明被膜が形成された透明導電性被膜付基材は、反射防止性能に優れている。
【0044】
aSi(OR')4-a [1]
(式中、Rはビニル基、アリール基、アクリル基、炭素数1〜8のアルキル基、水素原子またはハロゲン原子であり、R'はビニル基、アリール基、アクリル基、炭系数1〜8のアルキル基、−C24OCn2n+1(n=1〜4)または水素 原子であり、aは0〜3の整数である。)
このようなアルコキシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、テトラオクチルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン、メチルトリイソプロポキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシラン、ジメチルジメトキシシランなどが挙げられる。
【0045】
前記透明被膜には、さらに平均粒子径が5〜300nm、好ましくは10〜200nmの範囲にあり屈折率が1.28〜1.42の範囲、好ましくは1.28〜1.40の範囲にある低屈折率粒子を含むことが望ましい。
使用される低屈折率粒子の平均粒子径は、形成される透明被膜の厚さに応じて適宜選択される。
【0046】
低屈折率粒子の屈折率が1.42以下であれば、得られる透明導電性被膜付基材は、ボトム反射率および視感反射率が低く、優れた反射防止性能を発揮することができる。
透明被膜中の低屈折率粒子の含有量は酸化物に換算して、10〜90重量%、好ましくは20〜80重量%の範囲にあることが望ましい。
【0047】
本発明に用いる低屈折率粒子としては、平均粒子径および屈折率が上記範囲にあれば特に制限はなく従来公知の粒子を用いることができる。たとえば本願出願人の出願による特開平7−133105号公報に開示した複合酸化物ゾル、WO00/37359号公報に開示した被覆層を有する多孔質の複合酸化物粒子は好適に用いることができる。
【0048】
さらに、上記透明被膜中には、必要に応じて、フッ化マグネシウムなどの低屈折率材料で構成された微粒子、染料、顔料などの添加剤が含まれていてもよい。
[透明導電性被膜付基材の製造方法]
次に、上記した透明導電性被膜付基材の製造方法について説明する。
上記透明導電性被膜付基材は、前記した導電性微粒子と着色剤とを含む透明導電性被膜形成用塗布液を基材上に塗布・乾燥して透明導電性微粒子層を形成し、次いで該微粒子層上に透明被膜形成用塗布液を塗布して前記透明導電性微粒子層上に該微粒子層よりも屈折率の低い透明被膜を形成することによって製造することができる。
【0049】
透明導電性微粒子層の形成
まず、上記透明導電性被膜形成用塗布液を基材上に塗布・乾燥して、透明導電性微粒子層を基材上に形成する。
透明導電性微粒子層を形成する方法としては、たとえば、透明導電性被膜形成用塗布液をディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの方法で、基材上に塗布したのち、常温〜約90℃の範囲の温度で乾燥する。
【0050】
透明導電性被膜形成用塗布液中に上記のようなマトリックス形成成分が含まれている場合には、マトリックス形成成分の硬化処理を行ってもよい。
たとえば、透明導電性被膜形成用塗布液を塗布して形成した被膜を、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このようにすると、被膜形成成分の硬化が促進され、得られる被膜の硬度が高くなる。
【0051】
透明被膜の形成
本発明では、上記のようにして形成された透明導電性微粒子層の上に、該微粒子層よりも屈折率の低い透明被膜を形成する。
透明被膜の形成方法としては、特に制限はなく、この透明被膜の材質に応じて、真空蒸発法、スパッタリング法、イオンプレーティング法などの乾式薄膜形成方法、あるいは上述したようなディッピング法、スピナー法、スプレー法、ロールコーター法、フレキソ印刷法などの湿式薄膜形成方法を採用することができる。
【0052】
上記透明被膜を湿式薄膜形成方法で形成する場合、従来公知の透明被膜形成用塗布液を用いることができる。このような透明被膜形成用塗布液としては、具体的に、シリカ、チタニア、ジルコニアなどの無機酸化物、またはこれらの複合酸化物を透明被膜形成成分として含む塗布液が用いられる。
本発明では、透明被膜形成用塗布液として加水分解性有機ケイ素化合物の加水分解重縮合物、またはアルカリ金属ケイ酸塩水溶液を脱アルカリして得られるケイ酸液を含むシリカ系透明被膜形成用塗布液が好ましく、特に前記記一般式[1]で表されるアルコキシシランの加水分解重縮合物を含有していることが好ましい。このような塗布液から形成されるシリカ系被膜は、導電性微粒子含有の導電性微粒子層よりも屈折率が小さく、得られる透明導電性被膜付基材は反射防止性に優れている。
【0053】
たとえば、前記アルコキシシランの1種以上を、水−アルコール混合溶媒中で酸触媒の存在下、加水分解すると、アルコキシシランの加水分解重縮合物を含む透明被膜形成用塗布液が得られる。このような塗布液中に含まれる被膜形成成分の濃度は、酸化物換算で0.5〜2.0重量%であることが望ましい。
本発明で使用される透明被膜形成用塗布液には、前記したような低屈折率粒子を含んでいてもよい。
【0054】
さらにまた、本発明で使用される透明被膜形成用塗布液には、フッ化マグネシウムなどの低屈折率材料で構成された微粒子、透明被膜の透明度および反射防止性能を阻害しない程度に少量の導電性微粒子および/または染料または顔料などの添加剤が含まれていてもよい。
本発明では、このような透明被膜形成用塗布液を塗布して形成した被膜を、乾燥時、または乾燥後に、150℃以上で加熱するか、未硬化の被膜に可視光線よりも波長の短い紫外線、電子線、X線、γ線などの電磁波を照射するか、あるいはアンモニアなどの活性ガス雰囲気中に晒してもよい。このようにすると、被膜形成成分の硬化が促進され、得られる透明被膜の硬度を高くすることが可能となる。
【0055】
さらに、透明被膜形成用塗布液を塗布して被膜を形成する際に、透明導電性微粒子層を約40〜90℃に保持しながら透明被膜形成用塗布液を塗布して、前記のような処理を行うと、透明被膜の表面にリング状の凹凸が形成し、ギラツキの少ないアンチグレアの透明被膜付基材が得ることができる。
表示装置
本発明に係る透明導電性被膜付基材は、帯電防止、電磁遮蔽に必要な概ね102〜104Ω/□の範囲の表面抵抗を有し、また透明性に優れるとともに可視光領域および近赤外領域で充分な反射防止性能を有しているので表示装置の前面板として好適に用いられる。
【0056】
本発明に係る表示装置は、ブラウン管(CRT)、蛍光表示管(FIP)、プラズマディスプレイ(PDP)、液晶用ディスプレイ(LCD)などのような電気的に画像を表示する装置であり、上記のような透明導電性被膜付基材で構成された前面板を備えている。
従来の前面板を備えた表示装置を作動させると、前面板に画像が表示されると同時に前面板が帯電したり、電磁波が前面板から放出されるが、本発明に係る表示装置では、前面板が前記した概ね102〜104Ω/□の表面抵抗を有する透明導電性被膜付基材で構成されているので、このような帯電を防止したり、電磁波およびこの電磁波の放出に伴って生じる電磁場を効果的に遮蔽することができる。
【0057】
また、表示装置の前面板で反射光が生じると、この反射光によって表示画像が見にくくなるが、本発明に係る表示装置では、前面板が可視光領域および近赤外領域で充分な反射防止性能を有する透明導電性被膜付基材で構成されているので、このような反射光を効果的に防止することができる。
【0058】
【発明の効果】
本発明によれば、透明導電性被膜形成用塗布液には酸化インジウム系微粒子とこれと同じ正電荷を有する着色剤が均一に混合して分散しているのでポットライフが向上し、このため筋やムラ、光点等の外観上の欠陥が発生しないので透明導電性被膜付基材の歩留まりが高く製造信頼性に優れた透明導電性被膜形成用塗布液を提供することができる。また金属微粒子に比べて耐塩水性や耐酸化性にも優れることから耐久性に優れた被膜を形成できる。
【0059】
また、前記着色剤が含まれているので光透過率を調整することができ、コントラストに優れた透明導電性被膜付基材を提供することができる。また、帯電防止性能、電磁遮蔽性能、透明性、反射防止性能等に優れ、さらに耐塩水性や耐酸化性にも優れた透明導電性被膜付基材を提供することができる。
さらに、このような透明導電性被膜付基材を表示装置の前面板として用いれば、帯電防止性能、電磁遮蔽性能に優れるとともに外観、コントラスト、反射防止性能等に優れ、さらに耐塩水性や耐酸化性にも優れることから耐久性に優れた表示装置を提供することができる。
【0060】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
【0061】
【製造実施例】
a)導電性微粒子分散液の調製
n ドープ酸化インジウム (ITO) 微粒子 (P-1) 分散液の調製
硝酸インジウム79.9gを水686gに溶解して得られた溶液と、錫酸カリウム12.7gを濃度10重量%の水酸化カリウム溶液に溶解して得られた溶液とを調製し、これらの溶液を、50℃に保持された1000gの純水に2時間かけて添加した。この間、系内のpHを11に保持した。得られたSnドープ酸化インジウム水和物分散液からSnドープ酸化インジウム水和物を濾別・洗浄した後、再び水に分散させて固形分濃度10重量%の金属酸化物前駆体水酸化物分散液を調製した。この分散液を、温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物粉体を調製した。上記粉体を、窒素ガス雰囲気下、550℃で2時間加熱処理した。
【0062】
これを濃度が30重量%となるようにエタノールに分散させ、さらに硝酸水溶液でpHを3.5に調製した後、この混合液を30℃に保持しながらサンドミルで0.5時間粉砕してゾルを調製した。ついで、エタノールを加えて濃度20重量%のSnドープ酸化インジウム微粒子(P-1)分散液を調製した。
得られた導電性金属酸化物粒子(P-1)については以下のように平均粒子径を測定し結果を表1に示した。
【0063】
導電性微粒子についてはSEM写真を撮影し20個の粒子について粒子径を測定し、平均値を平均粒子径として表1に示した。
F・S n ドープ酸化インジウム微粒子 (P-2) 分散液の調製
硝酸インジウム79.9gを水686gに溶解して得られた溶液と、フッ化錫2.7gを濃度10重量%の水酸化カリウム溶液に溶解して得られた溶液とを調製し、これらの溶液を、50℃に保持された1000gの純水に2時間かけて添加した。この間、系内のpHを11に保持した。得られたFドープ酸化イン ジウム水和物分散液からFドープ酸化インジウム水和物を濾別・洗浄した後、再び水に分散させて固形分濃度10重量%の金属酸化物前駆体水酸化物分散液を調製した。この分散液を、温度100℃で噴霧乾燥して金属酸化物前駆体水酸化物粉体を調製した。上記粉体を、窒素ガス雰囲気下、550℃で2時間加熱処理した。
【0064】
これを濃度が30重量%となるようにエタノールに分散させ、さらに硝酸水溶液でpHを3.5に調製した後、この混合液を30℃に保持しながらサンドミルで0.5時間粉砕してゾルを調製した。ついで、エタノールを加えて濃度20重量%のF・Snドープ酸化インジウム微粒子(P-2)分散液を調製した。平均粒子径を表1に示した。
b)着色剤粒子分散液の調製
着色剤粒子 (CP-1) 分散液の調製
カーボンブラック微粒子(三菱化学(株)製:MA230)41g、純水350g、KOH0.2gを混合し、混合液をサンドミルで2時間処理し、ついで純水410gを加え、イオン交換樹脂にてイオン除去し、固形分濃度5重量%の着色剤粒子(CP-1)分散液を調製した。着色剤粒子(CP-1)の平均粒子径は40nmであった。
【0065】
着色剤粒子 (CP-2) 分散液の調製
カーボンブラック微粒子(三菱化学(株)製:MA230)33g、エチルアルコール268g、テトラブトキシジルコニウム(日本曹達(株)製:ZR-181、ZrO2濃度15重量%)40g、濃度63重量%の硝酸0.26gを混合し、混合液をサンドミルで1.5時間処理し、固形分濃度9.7重量%の着色剤粒子(CP-2)分散液を調製した。着色剤粒子(CP-2)の平均粒子径は40nmであった。
【0066】
着色剤粒子 (CP-3) 分散液の調製
カーボンブラック微粒子(三菱化学(株)製:MA−7)33g、エチルアルコール268g、テトラブトキシジルコニウム(日本曹達(株)製:ZR-181、ZrO2濃度15重量%)40g、濃度63重量%の硝酸0.26gを混合し、混合液をサンドミルで1.5時間処理し、固形分濃度9.7重量%の着色剤粒子(CP-3)分散液を調製した。着色剤粒子(CP-3)の平均粒子径は30nmであった。
【0067】
着色剤粒子 (CP-4) 分散液の調製
カーボンブラック微粒子(三菱化学(株)製:MA230)33g、エチルアルコール268g、テトラブトキシジルコニウム(日本曹達(株)製:ZR-181、ZrO2濃度15重量%)55g、濃度63重量%の硝酸0.26gを混合し、混合液をサンドミルで1.5時間処理し、固形分濃度9.3重量%の着色剤粒子(CP-4)分散液を調製した。着色剤粒子(CP-4)の平均粒子径は40nmであった。
【0068】
着色剤粒子 (CP-5) 分散液の調製
カーボンブラック微粒子(三菱化学(株)製:MA230)33g、エチルアルコール268g、テトラブトキシジルコニウム(日本曹達(株)製:ZR-181、ZrO2濃度15重量%)18g、濃度63重量%の硝酸0.26gを混合し、混合液をサンドミルで1.5時間処理し、固形分濃度10.3重量%の着色剤粒子(CP-5)分散液を調製した。着色剤粒子(CP-5)の平均粒子径は40nmであった。
【0069】
着色剤粒子 (CP-6) 分散液の調製
カーボンブラック微粒子(三菱化学(株)製:MA230)33g、エチルアルコール268g、テトライソプロピルチタネート(松本工業(株)製:オルガチックス TA-10、TiO2濃度17.3重量%)34g、濃度63重量%の硝酸0.26gを混合し、混合液をサンドミルで1.5時間処理し、固形分濃度9.8重量%の着色剤粒子(CP-6)分散液を調製した。着色剤粒子(CP-6)の平均粒子径は40nmであった。
【0070】
着色剤粒子 (CP-7) 分散液の調製
チタンブラック微粒子(三菱マテリアル(株)製:チタンブラック 13M)180g、純水420g、KOH8gを混合し、混合液をサンドミルで5時間処理し、これに純水1200gを加え、イオン交換樹脂にてイオン除去し、固形分濃度10重量%の着色剤粒子(CP-7)分散液を調製した。着色剤粒子(CP-7)の平均粒子径は90nmであった。
【0071】
着色剤粒子 (CP-8) 分散液の調製
上記と同様にして得た固形分濃度10重量%の着色剤粒子(CP-7)分散液100gに、エタノール233g、テトラブトキシジルコニウム(日本曹達(株)製:ZR-181、ZrO2濃度15重量%)12g、濃度63重量%の硝酸0.1gを混合し、1時間撹拌して固形分濃度2.9重量%の着色剤粒子(CP-8)分散液を調製した。着色剤粒子(CP-8)の平均粒子径は90nmであった。
【0072】
【実施例1〜7、比較例1〜3】
透明導電性被膜形成用塗布液 (C-1) (C-10) の調製
先ず、上記で得た微粒子(P-1)、(P-2)、(CP-1)〜(CP-6)分散液を表1に示す配合割合および濃度となるように酸化インジウム系微粒子分散液と着色剤分散液と極性溶媒(エタノール/イソプロピルグリコール/ジアセトンアルコール=重量比81/16/3)を混合し、透明導電性被膜形成用塗布液(C-1)〜(C-10)を調製した。
透明導電性被膜付パネルガラスの製造
ブラウン管用パネルガラス(17")の表面を40℃で保持しながら、スピナー 法で100rpm、90秒の条件で上記透明導電性被膜形成用塗布液(C-1)〜(C-7)、(C-10)をそれぞれ塗布し乾燥した。このときの導電層の膜厚を測定し、結果を表に示した。なお、透明導電性被膜形成用塗布液(C-8)、(C-9)は安定性がなく、透明導電性被膜付パネルガラスの製造は実施しなかった。
【0073】
次いで、このようにして形成された透明導電性微粒子層上に、同じように、スピナー法で100rpm、90秒の条件で下記のように別途調製した透明被膜形成用塗布液(B)を透明被膜の厚さが100nmとなるように塗布・乾燥し、180℃で30分間焼成して透明導電性被膜付基材を得た。
d)透明被膜形成用塗布液 (B) の調製
エタノール42.9g、濃度35重量%の塩酸.2gおよび純水35.5gとを混合し、これに正珪酸メチル(SiO2濃度51重量%)21.4gを加えた後、60℃で2時間撹拌して正珪酸メチルの加水分解・熟成を行い、ついで、イソプロパノール118.3g、メタノール/エタノール/イソプロパノール/ジアセ トンアルコール(17:67:12:4重量混合比)873.1gを加えてSiO2濃度1重量%の透明被膜形成用塗布液(B)を調製した。
【0074】
これらの透明導電性被膜付基材の表面抵抗を表面抵抗計(三菱油化(株)製:LORESTA)で測定し、ヘーズをへーズコンピューター(日本電色(株)製:3000A)で測定した。反射率は反射率計(大塚電子(株)製:MCPD-2000)を用いて測定し、波長400〜700nmの範囲で反射率が最も低い波長での反射率をボトム反射率とし、また波長400〜700nmの平均反射率を視感反射率として求め、結果を表に示した。透過率は分光光度計(日本分光(株)製:UBest55)にて波長550nmにおける透過率を測定した。微粒子の粒子径は、微粒子の透過型電子顕微鏡写真(TEM)を撮影し、20個の粒子について粒子径を測定し、この平均値として示した。
【0075】
製造信頼性の評価として、筋条、ムラについてはシャウカッセンに透かして目し観察し、光点は直接目視観察し、以下の基準で評価し、結果を表に示した。
筋条
○:パネルの表(おもて)面からの観察で筋条が観察されない。
△:パネルの表(おもて)面からの観察で観察されるが、裏面からは観察されない。
×:パネルの裏面からも観察される。
【0076】
ムラ
○:膜厚の不均一さに起因する色ムラがない。
△:色ムラが僅かに認められる。
×:色ムラが明瞭に認められる。
光点
○:パネル面に、直径0.5mm以上の光点ゼロ、0.1mm未満の数200未満
△:パネル面に、直径0.5mm以上の光点2以下、0.1mm未満の数200〜249個
×:パネル面に、直径0.5mm以上の光点3以上、0.1mm未満の数250個以上また信頼性評価として、下記の方法によって、耐塩水性および耐酸化性の試験を実施した。
【0077】
なお、粒子の安定性が低く凝集などした場合には屈折率にムラができ、粗大粒子が光点として視認されるようになる。○であれば、粗大粒子がない(あっても小さいものがわずかにある程度)。
[耐塩水性]
濃度5重量%の食塩水溶液に、前記実施例および比較例で得た透明導電性被膜付基材片を、一部が食塩水溶液中に浸漬するように浸漬させ、24時間および48時間放置した後これを取り出し、未浸漬部位との色調の変化を観察した。
【0078】
[耐酸化性]
濃度2重量%の過酸化水素水溶液に、上記実施例および比較例で得た透明導電性被膜付基材片を、一部が過酸化水素水溶液中に浸漬するように浸漬させ、24時間放置した後これを取り出し、未浸漬部位との色調の変化を観察した。
評価基準 ○:変化が観察されず
△:わずかに変化あり
×:明確に変化あり
【0079】
【表1】

Figure 2004204174
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel coating solution for forming a transparent conductive film.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
2. Description of the Related Art Conventionally, a transparent film having an antistatic function and an antireflection function on the surface of a transparent substrate such as a display panel such as a cathode ray tube, a fluorescent display tube, and a liquid crystal display panel for the purpose of antistatic and antireflective purposes. Was formed.
In addition, it is known that electromagnetic waves are emitted from a cathode ray tube or the like. In addition to the conventional antistatic and antireflection methods, it is desired to shield these electromagnetic waves and an electromagnetic field formed by the emission of the electromagnetic waves. .
[0003]
As one of methods for shielding such electromagnetic waves, there is a method of forming a conductive film for shielding electromagnetic waves on the surface of a display panel such as a cathode ray tube. Surface resistance of at least 10 if the antistatic conductive coating8A surface resistance of about Ω / □ is sufficient, whereas a conductive film for electromagnetic shielding is 10Two-10FourIt was necessary to have a low surface resistance such as Ω / □.
[0004]
When an attempt is made to form a conductive film having a low surface resistance using a coating solution containing a conductive oxide such as a conventional Sb-doped tin oxide or Sn-doped indium oxide, a conventional antistatic coating is used. It was necessary to make the film thickness thicker than that. However, the anti-reflection effect is not exhibited unless the thickness of the conductive film is set to about 10 to 200 nm, so that a conventional conductive oxide such as Sb-doped tin oxide or Sn-doped indium oxide has low surface resistance, There has been a problem that it is difficult to obtain a conductive film having excellent electromagnetic wave shielding properties and also excellent antireflection.
[0005]
Further, as one method of forming a conductive film having a low surface resistance, there is a method of forming a metal fine particle-containing film on the surface of a substrate using a conductive film forming coating solution containing metal fine particles such as Ag. . In this method, as a coating liquid for forming a metal fine particle-containing film, a liquid in which colloidal metal fine particles are dispersed in a polar solvent is used. In such a coating liquid, the surface of the metal fine particles is surface-treated with an organic stabilizer such as polyvinyl alcohol, polyvinyl pyrrolidone or gelatin in order to improve the dispersibility of the colloidal metal fine particles. However, a conductive film formed using such a coating solution for forming a metal fine particle-containing film has large grain boundary resistance because the metal fine particles contact each other via a stabilizer in the film, and the surface resistance of the film is high. Sometimes did not drop. For this reason, after film formation, it is necessary to bake at a high temperature of about 400 ° C. to decompose and remove the stabilizer, but when baking at a high temperature to decompose and remove the stabilizer, fusion and aggregation of the metal fine particles occur. In addition, there is a problem that the transparency and haze of the conductive film are reduced. Further, in the case of a cathode ray tube or the like, there is a problem that the tube is deteriorated when exposed to a high temperature.
[0006]
In addition, since the metal fine particles do not originally transmit light unlike the above-described conductive oxide, the conductive film formed using the metal fine particles has transparency depending on the density and thickness of the metal fine particles in the conductive film. There was also a problem of the decrease.
Further, in the conventional transparent conductive film containing fine metal particles such as Ag, the salt water resistance and oxidation resistance are low, the metal is oxidized, or the particles grow by ionization, and in some cases, corrosion may occur. There has been a problem that the conductivity and light transmittance of the coating film are reduced, and the display device lacks reliability.
[0007]
In addition, coating liquids used for forming the above-mentioned conventional transparent conductive coatings, among which highly conductive fine particles such as metal fine particles for forming a low surface resistance transparent conductive coating having excellent electromagnetic wave shielding performance. Is insufficient in stability, and the surface of the resulting transparent conductive film is not necessarily smooth, and may have a streak or spot-like appearance defect, thereby lowering the product yield. There was a problem. Further, when a conventional coating liquid is used, there is a problem that defects in appearance are likely to occur due to the influence of the cleanliness of the substrate, and manufacturing reliability is lacking.
[0008]
In addition to the above, a colorant such as carbon fine particles is blended in the transparent conductive film to control transmittance and improve contrast.
Usually, the conductive fine particles have a positive charge, and depending on the colorant, if the conductive fine particles have a particle surface potential opposite to that of the conductive fine particles, the conductive fine particles and the colorant particles adhere to each other and aggregate, For this reason, the stability of the coating solution was insufficient, and it could not be practically used as a coating solution. Further, even when a conductive film was formed, the conductivity was sometimes greatly reduced.
[0009]
For example, when the conductive fine particles are the above-described indium oxide-based fine particles, carbon fine particles cannot be blended, and therefore, a display device having a transparent conductive film-coated substrate excellent in contrast cannot be obtained. .
[0010]
[Object of the invention]
The present invention solves the problems of the prior art as described above, andTwo-108A transparent conductive film with low surface resistance of about Ω / □, excellent antistatic properties, antireflective properties and electromagnetic shielding properties, with a smooth surface and excellent adhesion to the substrate, as well as excellent contrast An object of the present invention is to provide a coating liquid for forming a transparent conductive film, a base material having a transparent conductive film, and a display device provided with the base material, which can be used for forming a transparent conductive film.
[0011]
Summary of the Invention
The coating liquid for forming a transparent conductive film according to the present invention,
Including conductive fine particles, a colorant and a polar solvent,
The conductive fine particles are indium oxide-based fine particles selected from indium oxide, indium oxide doped with Sn or F,
The colorant is a particle having a positive charge.
[0012]
The colorant is preferably an organic pigment and / or an inorganic pigment coated with a metal oxide and having a positive charge.
Preferably, the solid content of the coating solution is in the range of 0.5 to 5% by weight, and the content of the colorant in the solid content is in the range of 1 to 50% by weight.
The substrate with a transparent conductive film according to the present invention,
A substrate,
A transparent conductive fine particle layer containing the conductive fine particles on a substrate,
Provided on the transparent conductive fine particle layer, a substrate with a transparent conductive coating comprising a transparent coating having a lower refractive index than the transparent conductive fine particle layer,
The transparent conductive fine particle layer includes conductive fine particles and a colorant, and the conductive fine particles are indium oxide-based fine particles selected from indium oxide, indium oxide doped with Sn or F.
[0013]
The transmittance of the transparent conductive film at a wavelength of 550 nm is preferably in the range of 55 to 95%.
The display device according to the present invention includes a front plate formed of the base material with the transparent conductive film, and a transparent conductive film is formed on an outer surface of the front plate.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described specifically.
Coating solution for forming transparent conductive film
First, the coating liquid for forming a transparent conductive film according to the present invention will be described.
Conductive fine particles
Indium oxide-based fine particles are used as the conductive fine particles.
[0015]
Examples of the indium oxide-based fine particles include indium oxide, indium oxide doped with Sn or F.
Indium oxide-based fine particles have high conductivity among oxide-based conductive fine particles, and thus the resulting transparent conductive film has excellent antistatic performance and electromagnetic wave shielding performance, and is transparent unlike the transparent conductive film using metal fine particles. Excellent in nature.
[0016]
The indium oxide-based fine particles preferably have an average particle diameter in the range of 2 to 200 nm, more preferably 5 to 150 nm.
When the average particle diameter of the indium oxide-based fine particles is less than 2 nm, the surface resistance of the particle layer rapidly increases, so that it is impossible to obtain a film having a low resistance value that can achieve the object of the present invention. is there.
[0017]
If the average particle diameter of the indium oxide-based fine particles exceeds 200 nm, the contact between particles is reduced due to the large size of the particles, and sufficient conductivity may not be obtained. Further, the film strength and the adhesion to the substrate may be reduced, and the haze of the obtained transparent conductive film may be increased.
Colorant
As the colorant, an organic pigment and / or an inorganic pigment which can suppress the visible light transmittance and have a positive charge can be used.
[0018]
As the colorant having a positive charge, it is possible to use the colorant as it is if it originally has a positive charge.However, since the colorant usually has a negative charge, in the present invention, an organic material having a negative charge is used. A pigment and / or inorganic pigment coated with a metal oxide to impart a positive charge is preferably used.
Examples of the organic pigment having a negative charge include carbon black, phthalocyanine blue, phthalocyanine green, quinacridone red, anthraquinone red, isoindolinone yellow, and dioxazine violet.
[0019]
Examples of the inorganic pigment having a negative charge include oxides and composite oxides of one or more elements selected from Ti, Cr, Co, Ni, Fe, Mn, and Cu. Titanium black and the like are preferable. Can be used.
Each of the pigment particles preferably has an average particle size of 50 to 200 nm, more preferably 80 to 150 nm.
[0020]
When the average particle size of the pigment particles is within the above range, the coating can be sufficiently colored, the transmittance can be controlled, and a coating having excellent appearance and higher strength can be obtained. When the average particle diameter of the pigment particles is small, the coloring power may be reduced and the transmittance may not be controlled to a desired value, so that a desired contrast may not be obtained. On the contrary, if the average particle diameter of the pigment particles is large, the transparency of the obtained film may decrease, and the film formability may decrease, and the appearance and strength of the film may decrease, or the haze may increase. is there.
[0021]
Further, as the metal oxide for coating the pigment, titanium oxide, zirconium oxide, aluminum oxide and the like are preferable. Coating the pigment with these metal oxides can impart a positive charge to the resulting colorant, and also increases the dispersion stability of the coated metal oxide particles, thereby providing a coating solution with excellent long-term stability. In addition, a transparent conductive film containing such a coloring agent has a small decrease in conductivity.
[0022]
Even if coated with silica, it will have a negative charge like silica sol, so that it adheres to and aggregates with conductive particles having a positive charge, and therefore the coating liquid has insufficient stability, and Cannot be used as a coating liquid.
The amount of the metal oxide coating in the colorant coated with the metal oxide is such that the thickness of the coating layer on the surface of the pigment particles is at least 0.5 nm or more, preferably 1 to 5 nm. Just fine. If the thickness is in such a range, it is possible to impart a positive charge to the entire surface, and the stability of the coating solution for forming a transparent conductive film obtained by blending with the conductive particles is extremely high. . If the thickness of the coating layer is small, it may not be possible to impart a positive charge to the entire surface, and the stability of the coating solution for forming a transparent conductive film may be insufficient. Even if the thickness is increased, the positive charge does not increase further, and the effect of suppressing the transmittance of the transparent conductive film decreases because the ratio of the pigment particles decreases, and the amount of the coloring pigment used increases. Or the strength of the transparent conductive film may be reduced.
[0023]
The ratio of the metal oxide coating layer in the colorant varies depending on the particle size and specific gravity of the pigment particles, but is preferably in the range of about 5 to 50% by weight, more preferably 10 to 30% by weight as the oxide.
A method of treating a pigment having a negative charge with a surfactant or the like to convert it into a pigment having a positive charge is also known, but the reason for this method is not clear, but the strength of the obtained transparent conductive film is not clear. May be reduced, or the conductivity may be significantly reduced.
[0024]
The method for coating the color pigment with such a metal oxide is not particularly limited, and examples thereof include the following methods.
First, a dispersion of the above-described pigment particles is prepared. As the dispersion medium, methanol, ethanol, butanol, acetylacetone or the like is used. The concentration of the pigment particles in the dispersion is preferably in the range of 1 to 20% by weight, more preferably 2 to 10% by weight as a solid content. When the concentration of the dispersion is within such a range, the pigment particles are stably dispersed without agglomeration. The temperature of the dispersion varies depending on the type of the metal compound, but is preferably kept in the range of 10 to 60C, more preferably 20 to 30C.
[0025]
Next, an aqueous solution or an organic solvent solution of a metal compound for coating a metal oxide is added, and the metal compound is hydrolyzed to form a coating layer. At this time, a catalyst for hydrolyzing the metal compound can be added as needed before, simultaneously with, or after the addition of the metal compound.
Examples of the metal compound include titanium tetrachloride, zirconium chloride, aluminum sulfate, Zr (OCFourH9)Four, Ti (OCThreeH7)Four, [(CHThree)TwoCHO]TwoAl (OThreeC6H9) (Aluminum ethyl acetoacetate diisopropylate) and the like.
[0026]
Further, as the organic solvent, the same solvent as the dispersion medium can be used.
As the catalyst, an acid or an alkali can be used. As the acid catalyst, nitric acid, hydrochloric acid, sulfuric acid or the like is used, and as the alkali catalyst, ammonium hydroxide is preferable.
The amount of the catalyst used is not particularly limited as long as the metal compound can be hydrolyzed, but is generally in the range of 0.01 mol to 0.2 mol per 1 mol of the metal compound.
[0027]
After adding the metal compound and terminating the hydrolysis, aging may be performed if necessary. The temperature at this time is usually 50 to 100 ° C., and the time is preferably 0.5 to 24 hours. By performing such aging, a uniform and dense metal oxide coating layer can be formed uniformly on the surface of the pigment particles. Further, it is preferable to wash before or after aging. Examples of the washing method include an ultrafiltration membrane method, an ion exchange resin method, and a centrifugal separation method. By washing, that is, removing the salts and ions derived from the metal compound or the catalyst, the resulting colorant particles are more efficiently charged positively, and the transparent conductive film-forming coating containing the positively charged conductive particles is formed. The liquid has excellent stability.
[0028]
The coloring agent (metal oxide-coated pigment particles) thus obtained has a positive charge and a zeta potential in the range of 0 to 50 mV, preferably 5 to 50 mV.
When the zeta potential of the colorant is negative, the stability of the coating liquid for forming a conductive film becomes insufficient depending on the amount of the colorant, and the surface of the obtained transparent conductive film is not necessarily smooth. In some cases, streaks or spot-like defects in appearance may occur, resulting in lower product yield. If the amount of the coloring agent is reduced, a desired contrast cannot be obtained.
[0029]
In addition, it is difficult to obtain a colorant having a zeta potential exceeding 50 mV.
The method for measuring the zeta potential is described below.
A zeta potential measurement device (ZETASIZER 3000HSA, manufactured by Malvern Instruments) is used. The alcohol dispersion of the colorant particles is diluted with distilled water until a predetermined scattering intensity is obtained, and the pH is changed with an aqueous solution of nitric acid having a concentration of 0.1 mol%, and the pH is in the range of 5 to 3 (pH 4 in the present invention). Is determined as zeta potential.
[0030]
The coating liquid for forming a transparent conductive film according to the present invention is obtained by dispersing the conductive fine particles and the colorant in a polar solvent, or mixing the polar solvent dispersion of the conductive fine particles and the polar solvent dispersion of the colorant. Can be obtained by
As the polar solvent used in the present invention,
Water; alcohols such as methanol, ethanol, propanol, butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol, ethylene glycol, hexylene glycol, and isopropyl glycol; esters such as methyl acetate, ethyl acetate; and diethyl; Ethers such as ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; and ketones such as acetone, methyl ethyl ketone, acetylacetone, and acetoacetic ester. These may be used alone or as a mixture of two or more.
[0031]
The total content of the conductive fine particles and the colorant in the coating liquid for forming a transparent conductive film is preferably 15% by weight or less, more preferably 0.5 to 5% by weight as a solid content.
Within this range, it is possible to form a desired film thickness with a single application (no need for two coatings), high transparency, and at the time of coating, streaks and unevenness occur, resulting in poor appearance. A coating film having excellent smoothness can be formed without generation of any problem.
[0032]
When the solid content concentration is low, the film thickness of a film obtained by one application may be thin, and it may be necessary to apply twice, or the conductivity of the film may be insufficient. When the concentration is increased, the film thickness is increased, so that the light transmittance is reduced and the transparency is reduced. Further, since the solid content is large, streaks and unevenness are generated at the time of coating, which may cause poor appearance.
[0033]
Next, the solid content concentration (the total amount of the conductive fine particles and the colorant) in the coating liquid for forming the transparent conductive film is determined by the points such as the fluidity of the liquid and the dispersibility of the particulate components such as the conductive fine particles in the coating liquid. Therefore, it is preferably 15% by weight or less, preferably 0.5 to 5% by weight.
Further, the ratio of the conductive fine particles in the solid content is preferably in the range of 50 to 99% by weight, more preferably 80 to 99% by weight.
[0034]
Proportion of conductive fine particles in solid content Within the above range, the conductivity of the conductive film is high, so that a sufficient electromagnetic wave shielding effect can be exhibited and the light transmittance can be controlled in the range of 55 to 95%. Yes, and therefore the contrast can be improved. When the proportion of the conductive particles is small, the conductivity of the coating film obtained is low, and when the proportion of the conductive fine particles is large, the light transmittance becomes 95% or more and the contrast becomes insufficient.
[0035]
The proportion of the colorant in the solid content is preferably in the range of 1 to 50% by weight, more preferably 1 to 20% by weight. Within this range, the transmittance can be adjusted without significantly lowering the conductivity of the transparent conductive film, and the contrast can be improved.
The coating liquid for forming a transparent conductive film of the present invention contains Au, Ag, Pd, Pt, Rh, Ru, Cu, Fe, Ni, Co, Sn, Ti, In, Al, Ta in addition to the indium oxide-based fine particles. And fine metal particles of at least one metal selected from metals such as Sb and Sb. When it consists of two or more metals, it may be an alloy or a eutectic, it may be a mixture, and the combination of two or more metals may be Au-Cu, In-Sn, Ag- Pt, Ag-Pd, Au-Pd, Au-Rh, Pt-Pd, Pt-Rh, Fe-Ni, Ni-Pd, Fe-Co, Cu-Co, Ru-Ag, Au-Cu-Ag, Ag- Cu-Pt, Ag-Cu-Pd, Ag-Au-Pd, Au-Rh-Pd, Ag-Pt-Pd, Ag-Pt-Rh, Fe-Ni-Pd, Fe-Co-Pd, Cu-Co- Pd and the like.
[0036]
Such metal fine particles may be contained as long as the content of the indium oxide-based fine particles can be maintained within the above range. When the metal fine particles are contained, the conductivity of the conductive film is improved and the electromagnetic wave shielding ability is improved. In addition, the transmittance can be controlled by using metal fine particles, and therefore, the contrast can be improved. Further, the coating liquid of the present invention is not always necessary because it has excellent stability, but when mixed with indium oxide-based fine particles and metal fine particles as described above, in order to improve the dispersibility of the metal fine particles, An organic stabilizer may be contained in the coating liquid for forming a transparent conductive film. Specific examples of such organic stabilizers include gelatin, polyvinyl alcohol, polyvinylpyrrolidone, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, and citric acid. And polyvalent carboxylic acids and salts thereof, and mixtures thereof. Such an organic stabilizer may be contained in an amount of 0.005 to 0.5 part by weight, preferably 0.01 to 0.2 part by weight, based on 1 part by weight of the metal fine particles. When the amount of the organic stabilizer is within the above range, high dispersibility can be imparted to the metal fine particles, and the conductivity is not impaired.
[0037]
In the coating liquid for forming a transparent conductive film of the present invention, since the coloring agent having the same positive charge surface potential and the indium oxide-based conductive fine particles are uniformly mixed, the particles are aggregated or the stability is impaired. When the coating liquid is used, a transparent conductive film that is dense and has good adhesion to a substrate, has a flat surface, and has no defects in appearance can be obtained.
The coating liquid for forming a transparent conductive film according to the present invention may contain a matrix-forming component that acts as a binder for the conductive fine particles after the film is formed. As such a matrix-forming component, those composed of silica are preferable, and specifically, a silicic acid obtained by subjecting a hydrolyzed polycondensate of an organosilicon compound such as alkoxysilane or an aqueous alkali metal silicate solution to alkali removal is used. Examples include polycondensates and coating resins. The matrix-forming component may be contained in an amount of 0.01 to 0.5 part by weight, preferably 0.03 to 0.3 part by weight, per solid part of the conductive fine particles.
[0038]
By using the coating liquid for forming a transparent conductive film as described above, the conductive fine particles are uniformly dispersed, the pot life is long, and the surface of the obtained transparent conductive film is smooth, and a streak or unevenness is obtained. There is no appearance defect, and the production reliability of the substrate with a transparent conductive film is excellent. In addition, approximately 10Two-10FourSince a transparent conductive fine particle layer having a surface resistance of Ω / □ can be formed, charging can be prevented, and an electromagnetic field generated by the emission of electromagnetic waves and electromagnetic waves can be effectively shielded. Further, the surface of the obtained substrate with a transparent conductive film is smooth, has no appearance defects such as streaks or unevenness, and is excellent in salt water resistance, oxidation resistance and transparency.
[0039]
Substrate with transparent conductive coating
Next, the substrate with a transparent conductive film according to the present invention will be specifically described.
In the substrate with a transparent conductive coating according to the present invention, the average particle diameter is 1 to 200 nm, preferably 2 to 2, on a substrate such as a glass, a plastic, a film made of ceramic, or another molded product. A transparent conductive fine particle layer composed of 150 nm conductive fine particles and the above-mentioned coloring agent, and a transparent film is formed on the transparent conductive fine particle layer.
[0040]
Examples of the conductive fine particles and the colorant include the same as described above.
[Transparent conductive fine particle layer]
The thickness of the transparent conductive fine particle layer is preferably in the range of 5 to 200 nm, and more preferably 10 to 150 nm. If the thickness is within this range, a transparent conductive film having excellent antistatic properties and electromagnetic shielding properties is provided. A substrate can be obtained.
[0041]
Such a transparent conductive fine particle layer may contain metal fine particles, a matrix component, an organic stabilizer and the like, if necessary, and specific examples thereof include the same as described above.
[Transparent film]
In the substrate with a transparent conductive film according to the present invention, a transparent film having a lower refractive index than the transparent conductive fine particle layer is formed on the transparent conductive fine particle layer.
[0042]
At this time, the thickness of the transparent coating is preferably in the range of 50 to 300 nm, and more preferably in the range of 80 to 200 nm. When the thickness of the transparent film is in such a range, a substrate having high film strength and excellent antireflection performance can be obtained. If the thickness of the transparent film is small, the strength of the film is low, and therefore, the conductive fine particle layer may be damaged, or the antireflection performance may be insufficient. Even if the thickness of the transparent film is increased, cracks may occur in the transparent film, the strength of the film may be reduced, and the antireflection performance may be insufficient because the film is too thick.
[0043]
Such a transparent film is formed of, for example, an inorganic oxide such as silica, titania, and zirconia, and a composite oxide thereof. In the present invention, as a transparent film, a hydrolyzable polycondensate of a hydrolyzable organosilicon compound represented by the following formula [1] or a silicic acid polycondensate obtained by removing alkali metal silicate aqueous solution A silica-based coating consisting of A substrate with a transparent conductive film on which such a transparent film is formed has excellent antireflection performance.
[0044]
RaSi (OR ')4-a            [1]
(In the formula, R is a vinyl group, an aryl group, an acryl group, an alkyl group having 1 to 8 carbon atoms, a hydrogen atom or a halogen atom, and R ′ is a vinyl group, an aryl group, an acryl group, Alkyl group, -CTwoHFourOCnH2n + 1(N = 1 to 4) or a hydrogen atom, and a is an integer of 0 to 3. )
Examples of such alkoxylans include tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane, tetrabutoxysilane, tetraoctylsilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltriethoxysilane, methyltriisopropoxysilane, Vinyl trimethoxy silane, phenyl trimethoxy silane, dimethyl dimethoxy silane and the like can be mentioned.
[0045]
The transparent coating further has an average particle size of 5 to 300 nm, preferably 10 to 200 nm, and a refractive index of 1.28 to 1.42, preferably 1.28 to 1.40. It is desirable to include low refractive index particles.
The average particle size of the low refractive index particles used is appropriately selected according to the thickness of the formed transparent film.
[0046]
When the refractive index of the low-refractive-index particles is 1.42 or less, the resulting substrate with a transparent conductive film has low bottom reflectance and luminous reflectance, and can exhibit excellent antireflection performance.
It is desirable that the content of the low refractive index particles in the transparent coating is in the range of 10 to 90% by weight, preferably 20 to 80% by weight in terms of oxide.
[0047]
The low refractive index particles used in the present invention are not particularly limited as long as the average particle diameter and the refractive index are in the above ranges, and conventionally known particles can be used. For example, a composite oxide sol disclosed in Japanese Patent Application Laid-Open No. 7-133105 filed by the present applicant and a porous composite oxide particle having a coating layer disclosed in WO 00/37359 can be suitably used.
[0048]
Further, the transparent coating may contain additives such as fine particles, dyes, and pigments made of a low refractive index material such as magnesium fluoride, if necessary.
[Production method of substrate with transparent conductive film]
Next, a method for producing the above-mentioned substrate with a transparent conductive film will be described.
The transparent conductive film-coated substrate is coated with a transparent conductive film-forming coating solution containing the above-described conductive fine particles and a coloring agent on the substrate and dried to form a transparent conductive fine particle layer. It can be produced by applying a coating liquid for forming a transparent film on the fine particle layer and forming a transparent film having a lower refractive index than the fine particle layer on the transparent conductive fine particle layer.
[0049]
Formation of transparent conductive fine particle layer
First, the coating liquid for forming a transparent conductive film is coated on a substrate and dried to form a transparent conductive fine particle layer on the substrate.
As a method of forming the transparent conductive fine particle layer, for example, a coating solution for forming a transparent conductive film was applied on a substrate by a method such as dipping method, spinner method, spray method, roll coater method and flexographic printing method. Thereafter, drying is performed at a temperature in the range of ordinary temperature to about 90 ° C.
[0050]
When the matrix forming component as described above is contained in the coating liquid for forming a transparent conductive film, the matrix forming component may be cured.
For example, a film formed by applying a coating solution for forming a transparent conductive film is heated at 150 ° C. or more at the time of drying or after drying, or an uncured film is exposed to ultraviolet rays or electron beams having a wavelength shorter than visible light. , X-rays, γ-rays or the like, or may be exposed to an active gas atmosphere such as ammonia. In this case, the curing of the film-forming component is promoted, and the hardness of the obtained film is increased.
[0051]
Formation of transparent film
In the present invention, a transparent coating having a lower refractive index than the fine particle layer is formed on the transparent conductive fine particle layer formed as described above.
The method for forming the transparent film is not particularly limited, and may be a dry thin film forming method such as a vacuum evaporation method, a sputtering method, an ion plating method, or a dipping method or a spinner method as described above, depending on the material of the transparent film. And a wet thin film forming method such as a spray method, a roll coater method, and a flexographic printing method.
[0052]
When the transparent film is formed by a wet thin film forming method, a conventionally known coating liquid for forming a transparent film can be used. As such a coating liquid for forming a transparent film, a coating liquid containing an inorganic oxide such as silica, titania, zirconia, or a composite oxide thereof as a transparent film forming component is specifically used.
In the present invention, a coating solution for forming a silica-based transparent film containing a hydrolyzable polycondensate of a hydrolyzable organosilicon compound or a silicic acid solution obtained by dealkalizing an aqueous alkali metal silicate solution is used as a coating solution for forming a transparent film. The liquid is preferable, and particularly preferably contains a hydrolyzed polycondensate of an alkoxysilane represented by the above general formula [1]. The silica-based coating formed from such a coating solution has a smaller refractive index than the conductive fine particle layer containing conductive fine particles, and the resulting substrate with a transparent conductive coating has excellent antireflection properties.
[0053]
For example, when one or more of the above alkoxysilanes are hydrolyzed in a mixed solvent of water and alcohol in the presence of an acid catalyst, a coating liquid for forming a transparent film containing a hydrolyzed polycondensate of alkoxysilane is obtained. It is desirable that the concentration of the film forming component contained in such a coating liquid is 0.5 to 2.0% by weight in terms of oxide.
The coating liquid for forming a transparent film used in the present invention may contain the low refractive index particles as described above.
[0054]
Furthermore, the coating liquid for forming a transparent film used in the present invention contains fine particles composed of a low refractive index material such as magnesium fluoride, and a small amount of conductive material that does not impair the transparency and antireflection performance of the transparent film. Fine particles and / or additives such as dyes or pigments may be included.
In the present invention, a coating film formed by applying such a coating liquid for forming a transparent film is heated at 150 ° C. or more during or after drying, or an uncured film is coated with ultraviolet light having a wavelength shorter than visible light. Alternatively, it may be irradiated with an electromagnetic wave such as an electron beam, X-ray, or γ-ray, or may be exposed to an active gas atmosphere such as ammonia. In this case, the curing of the film-forming component is promoted, and the hardness of the obtained transparent film can be increased.
[0055]
Further, when forming the coating by applying the coating liquid for forming a transparent coating, the coating liquid for forming a transparent coating is applied while maintaining the transparent conductive fine particle layer at about 40 to 90 ° C. Is performed, ring-shaped irregularities are formed on the surface of the transparent film, and a substrate with an antiglare transparent film having little glare can be obtained.
Display device
The substrate with a transparent conductive film according to the present invention has approximately 10 parts required for antistatic and electromagnetic shielding.Two-10FourIt has a surface resistance in the range of Ω / □, is excellent in transparency, and has sufficient antireflection performance in the visible light region and the near infrared region, so that it is suitably used as a front plate of a display device.
[0056]
The display device according to the present invention is a device for displaying an image electrically, such as a cathode ray tube (CRT), a fluorescent display tube (FIP), a plasma display (PDP), a liquid crystal display (LCD), and the like. A front plate made of a transparent base material with a transparent conductive film.
When a display device having a conventional front panel is operated, an image is displayed on the front panel and the front panel is charged at the same time, or an electromagnetic wave is emitted from the front panel. The face plate is approximately 10Two-10FourSince it is composed of a substrate with a transparent conductive film having a surface resistance of Ω / □, it is possible to prevent such electrification and to effectively shield electromagnetic waves and electromagnetic fields generated by emission of these electromagnetic waves. it can.
[0057]
Further, when reflected light is generated on the front panel of the display device, the reflected light makes it difficult to view a displayed image. However, in the display device according to the present invention, the front panel has sufficient antireflection performance in the visible light region and the near infrared region. , The reflected light can be effectively prevented.
[0058]
【The invention's effect】
According to the present invention, the coating liquid for forming a transparent conductive film contains indium oxide-based fine particles and a coloring agent having the same positive charge uniformly mixed and dispersed. Since there is no appearance defect such as unevenness, light spots, etc., it is possible to provide a coating solution for forming a transparent conductive film having a high yield of a substrate with a transparent conductive film and excellent production reliability. In addition, since it has excellent salt water resistance and oxidation resistance as compared with metal fine particles, a film having excellent durability can be formed.
[0059]
Further, since the coloring agent is contained, the light transmittance can be adjusted, and a substrate with a transparent conductive film having excellent contrast can be provided. Further, it is possible to provide a substrate with a transparent conductive film which is excellent in antistatic performance, electromagnetic shielding performance, transparency, antireflection performance and the like, and is also excellent in salt water resistance and oxidation resistance.
Furthermore, when such a substrate with a transparent conductive film is used as a front plate of a display device, it has excellent antistatic performance, electromagnetic shielding performance, excellent appearance, contrast, antireflection performance, etc., and furthermore, salt water resistance and oxidation resistance. Therefore, a display device with excellent durability can be provided.
[0060]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
[0061]
[Production Examples]
a) Preparation of conductive fine particle dispersion
S n Doped indium oxide (ITO) Fine particles (P-1) Preparation of dispersion
A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and a solution obtained by dissolving 12.7 g of potassium stannate in a potassium hydroxide solution having a concentration of 10% by weight were prepared. Was added to 1000 g of pure water maintained at 50 ° C. over 2 hours. During this time, the pH in the system was maintained at 11. The Sn-doped indium oxide hydrate dispersion was filtered and washed from the obtained Sn-doped indium oxide hydrate dispersion, and then dispersed again in water to disperse a metal oxide precursor hydroxide having a solid concentration of 10% by weight. A liquid was prepared. This dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere.
[0062]
This was dispersed in ethanol so as to have a concentration of 30% by weight, and the pH was adjusted to 3.5 with an aqueous nitric acid solution. Was prepared. Then, ethanol was added to prepare a dispersion of Sn-doped indium oxide fine particles (P-1) having a concentration of 20% by weight.
The average particle diameter of the obtained conductive metal oxide particles (P-1) was measured as follows, and the results are shown in Table 1.
[0063]
For the conductive fine particles, SEM photographs were taken, and the particle diameters of 20 particles were measured. The average value was shown in Table 1 as the average particle diameter.
FS n Doped indium oxide fine particles (P-2) Preparation of dispersion
A solution obtained by dissolving 79.9 g of indium nitrate in 686 g of water and a solution obtained by dissolving 2.7 g of tin fluoride in a potassium hydroxide solution having a concentration of 10% by weight were prepared. Was added to 1000 g of pure water maintained at 50 ° C. over 2 hours. During this time, the pH in the system was maintained at 11. The F-doped indium oxide hydrate dispersion is filtered and washed from the obtained F-doped indium oxide hydrate dispersion, and then dispersed again in water to obtain a metal oxide precursor hydroxide having a solid concentration of 10% by weight. A dispersion was prepared. This dispersion was spray-dried at a temperature of 100 ° C. to prepare a metal oxide precursor hydroxide powder. The powder was heat-treated at 550 ° C. for 2 hours in a nitrogen gas atmosphere.
[0064]
This was dispersed in ethanol so as to have a concentration of 30% by weight, and the pH was adjusted to 3.5 with an aqueous nitric acid solution. Was prepared. Then, ethanol was added to prepare a dispersion of F.Sn-doped indium oxide fine particles (P-2) having a concentration of 20% by weight. The average particle size is shown in Table 1.
b) Preparation of colorant particle dispersion
Colorant particles (CP-1) Preparation of dispersion
41 g of carbon black fine particles (MA230, manufactured by Mitsubishi Chemical Corporation), 350 g of pure water, and 0.2 g of KOH are mixed, the mixture is treated with a sand mill for 2 hours, then 410 g of pure water is added, and ions are removed with an ion exchange resin. Then, a colorant particle (CP-1) dispersion having a solid content concentration of 5% by weight was prepared. The average particle size of the colorant particles (CP-1) was 40 nm.
[0065]
Colorant particles (CP-2) Preparation of dispersion
33 g of carbon black fine particles (MA230, manufactured by Mitsubishi Chemical Corporation), 268 g of ethyl alcohol, tetrabutoxyzirconium (ZR-181, ZrO, manufactured by Nippon Soda Co., Ltd.)Two40 g of nitric acid having a concentration of 15% by weight and 0.26 g of nitric acid having a concentration of 63% by weight were mixed, and the mixture was treated with a sand mill for 1.5 hours to disperse colorant particles (CP-2) having a solid concentration of 9.7% by weight. A liquid was prepared. The average particle size of the colorant particles (CP-2) was 40 nm.
[0066]
Colorant particles (CP-3) Preparation of dispersion
33 g of carbon black fine particles (MA-7, manufactured by Mitsubishi Chemical Corporation), 268 g of ethyl alcohol, tetrabutoxyzirconium (ZR-181, ZrO, manufactured by Nippon Soda Co., Ltd.)Two40 g of nitric acid having a concentration of 15% by weight and 0.26 g of nitric acid having a concentration of 63% by weight were mixed, and the mixture was treated with a sand mill for 1.5 hours to disperse colorant particles (CP-3) having a solid concentration of 9.7% by weight. A liquid was prepared. The average particle size of the colorant particles (CP-3) was 30 nm.
[0067]
Colorant particles (CP-4) Preparation of dispersion
33 g of carbon black fine particles (MA230, manufactured by Mitsubishi Chemical Corporation), 268 g of ethyl alcohol, tetrabutoxyzirconium (ZR-181, ZrO, manufactured by Nippon Soda Co., Ltd.)Two55 g of nitric acid having a concentration of 15% by weight and 0.26 g of nitric acid having a concentration of 63% by weight were mixed, and the mixture was treated with a sand mill for 1.5 hours to disperse colorant particles (CP-4) having a solid concentration of 9.3% by weight. A liquid was prepared. The average particle size of the colorant particles (CP-4) was 40 nm.
[0068]
Colorant particles (CP-5) Preparation of dispersion
33 g of carbon black fine particles (MA230, manufactured by Mitsubishi Chemical Corporation), 268 g of ethyl alcohol, tetrabutoxyzirconium (ZR-181, ZrO, manufactured by Nippon Soda Co., Ltd.)Two18 g of nitric acid having a concentration of 15% by weight and 0.26 g of nitric acid having a concentration of 63% by weight were mixed, and the mixture was treated with a sand mill for 1.5 hours to disperse colorant particles (CP-5) having a solid concentration of 10.3% by weight. A liquid was prepared. The average particle size of the colorant particles (CP-5) was 40 nm.
[0069]
Colorant particles (CP-6) Preparation of dispersion
33 g of carbon black fine particles (MA230, manufactured by Mitsubishi Chemical Corporation), 268 g of ethyl alcohol, tetraisopropyl titanate (Orgatics TA-10, manufactured by Matsumoto Industry Co., Ltd., TiO)Two34 g of nitric acid having a concentration of 17.3% by weight and 0.26 g of nitric acid having a concentration of 63% by weight were mixed, and the mixture was treated with a sand mill for 1.5 hours to obtain colorant particles having a solid content of 9.8% by weight (CP-6). ) A dispersion was prepared. The average particle size of the colorant particles (CP-6) was 40 nm.
[0070]
Colorant particles (CP-7) Preparation of dispersion
180 g of titanium black fine particles (manufactured by Mitsubishi Materials Corporation: Titanium Black 13M), 420 g of pure water, and 8 g of KOH were mixed, the mixture was treated with a sand mill for 5 hours, and 1200 g of pure water was added thereto. This was removed to prepare a colorant particle (CP-7) dispersion having a solid content of 10% by weight. The average particle size of the colorant particles (CP-7) was 90 nm.
[0071]
Colorant particles (CP-8) Preparation of dispersion
233 g of ethanol and tetrabutoxyzirconium (ZR-181, ZrO, manufactured by Nippon Soda Co., Ltd.) were added to 100 g of a colorant particle (CP-7) dispersion having a solid content of 10% by weight obtained in the same manner as described above.Two12 g of nitric acid having a concentration of 15% by weight) and 0.1 g of nitric acid having a concentration of 63% by weight were mixed and stirred for 1 hour to prepare a colorant particle (CP-8) dispersion having a solid concentration of 2.9% by weight. The average particle size of the colorant particles (CP-8) was 90 nm.
[0072]
Examples 1 to 7, Comparative Examples 1 to 3
Coating solution for forming transparent conductive film (C-1) ~ (C-10) Preparation of
First, the fine particles (P-1), (P-2), and (CP-1) to (CP-6) dispersions obtained above were dispersed in the indium oxide-based fine particles so as to have the mixing ratio and concentration shown in Table 1. The liquid, the colorant dispersion and a polar solvent (ethanol / isopropyl glycol / diacetone alcohol = weight ratio 81/16/3) are mixed, and the coating liquid for forming a transparent conductive film (C-1) to (C-10) Was prepared.
Manufacture of panel glass with transparent conductive coating
While maintaining the surface of the CRT panel glass (17 ″) at 40 ° C., the above-mentioned coating liquids for forming a transparent conductive film (C-1) to (C-7), (C-7), (100 rpm) and 90 seconds by a spinner method. C-10) was applied and dried, and the film thickness of the conductive layer at this time was measured, and the results are shown in the table.In addition, the coating liquid for forming a transparent conductive film (C-8), (C-9) ) Was not stable, and the production of panel glass with a transparent conductive coating was not carried out.
[0073]
Next, on the transparent conductive fine particle layer thus formed, a coating liquid (B) for forming a transparent coating separately prepared as described below under the conditions of 100 rpm and 90 seconds by the spinner method in the same manner as the transparent coating was used. Was applied and dried so as to have a thickness of 100 nm, and baked at 180 ° C. for 30 minutes to obtain a substrate with a transparent conductive film.
d) Coating solution for forming transparent film (B) Preparation of
42.9 g of ethanol, 0.2 g of hydrochloric acid having a concentration of 35% by weight and 35.5 g of pure water were mixed, and methyl orthosilicate (SiO 2) was added thereto.TwoAfter adding 21.4 g, the mixture was stirred at 60 ° C. for 2 hours to hydrolyze and ripen methyl orthosilicate, then 118.3 g of isopropanol, methanol / ethanol / isopropanol / diacetone alcohol (17%). : 67: 12: 4 weight ratio) (873.1 g) was added to prepare a coating solution (B) for forming a transparent film having a SiO 2 concentration of 1% by weight.
[0074]
The surface resistance of these substrates having a transparent conductive film was measured with a surface resistance meter (LORESTA, manufactured by Mitsubishi Yuka Co., Ltd.), and the haze was measured with a haze computer (3000A, manufactured by Nippon Denshoku Co., Ltd.). . The reflectance is measured using a reflectance meter (MCPD-2000, manufactured by Otsuka Electronics Co., Ltd.), and the reflectance at the wavelength having the lowest reflectance in the wavelength range of 400 to 700 nm is defined as the bottom reflectance. The average reflectance at 700 nm was determined as the luminous reflectance, and the results are shown in the table. The transmittance was measured at a wavelength of 550 nm using a spectrophotometer (UBest55, manufactured by JASCO Corporation). The particle diameter of the fine particles was obtained by taking a transmission electron micrograph (TEM) of the fine particles, measuring the particle diameters of 20 particles, and indicating the average value.
[0075]
As evaluation of manufacturing reliability, streaks and unevenness were visually observed and observed through Schaucassen, and light spots were directly visually observed and evaluated according to the following criteria. The results are shown in the table.
Streak
:: No streak is observed from the front side of the panel.
Δ: Observed from the front (front) surface of the panel, but not observed from the back surface.
×: Observed from the back of the panel.
[0076]
village
:: No color unevenness due to uneven film thickness.
Δ: Color unevenness is slightly observed.
X: Color unevenness is clearly observed.
Light spot
:: Zero light spot with a diameter of 0.5 mm or more on the panel surface, less than several hundreds with a diameter less than 0.1 mm
Δ: 200 to 249 light spots with a diameter of 0.5 mm or more and 2 or less and less than 0.1 mm on the panel surface
D: 3 or more light spots having a diameter of 0.5 mm or more, and several 250 or more light spots having a diameter of less than 0.1 mm, and a salt water resistance and oxidation resistance test were carried out by the following methods for reliability evaluation.
[0077]
When the particles have low stability and aggregate, the refractive index becomes uneven, and coarse particles are visually recognized as light spots. In the case of が な い, there are no coarse particles (even if there are some small particles).
[Salt resistance]
The transparent conductive film-coated substrate pieces obtained in the above Examples and Comparative Examples were immersed in a 5% by weight saline solution so that a part thereof was immersed in the saline solution, and left for 24 hours and 48 hours. This was taken out, and the change in color tone from the unimmersed part was observed.
[0078]
[Oxidation resistance]
The transparent conductive film-coated substrate pieces obtained in the above Examples and Comparative Examples were immersed in an aqueous solution of hydrogen peroxide having a concentration of 2% by weight so that a part thereof was immersed in the aqueous solution of hydrogen peroxide, and allowed to stand for 24 hours. Thereafter, this was taken out, and the change in color tone from the unimmersed part was observed.
Evaluation criteria ○: No change was observed
△: slight change
×: clearly changed
[0079]
[Table 1]
Figure 2004204174

Claims (6)

導電性微粒子と着色剤と極性溶媒とを含み、
導電性微粒子が酸化インジウム、SnまたはFがドーピングされた酸化インジウムから選ばれる酸化インジウム系微粒子であり、
着色剤が正電荷を有する粒子であることを特徴とする透明導電性被膜形成用塗布液。
Including conductive fine particles, a colorant and a polar solvent,
The conductive fine particles are indium oxide-based fine particles selected from indium oxide, indium oxide doped with Sn or F,
A coating liquid for forming a transparent conductive film, wherein the colorant is particles having a positive charge.
前記着色剤が、金属酸化物で被覆されて正電荷を有する有機顔料および/または無機顔料であることを特徴とする請求項1に記載の透明導電性被膜形成用塗布液。2. The coating liquid for forming a transparent conductive film according to claim 1, wherein the colorant is an organic pigment and / or an inorganic pigment which is coated with a metal oxide and has a positive charge. 3. 前記塗布液の固形分濃度が0.5〜5重量%の範囲にあり、固形分中の着色剤の含有量が1〜50重量%の範囲にあることを特徴とする請求項1または2に記載の透明導電性被膜形成用塗布液。The solid content of the coating solution is in the range of 0.5 to 5% by weight, and the content of the colorant in the solid content is in the range of 1 to 50% by weight. The coating liquid for forming a transparent conductive film according to the above. 基材と、
基材上の前記導電性微粒子を含む透明導電性微粒子層と、
該透明導電性微粒子層上に設けられ、該透明導電性微粒子層よりも屈折率が低い透明被膜とからなる透明導電性被膜付基材であって、
透明導電性微粒子層が導電性微粒子と着色剤とを含み、導電性微粒子が酸化インジウム、SnまたはFがドーピングされた酸化インジウムから選ばれる酸化インジウム系微粒子であることを特徴とする透明導電性被膜付基材。
A substrate,
A transparent conductive fine particle layer containing the conductive fine particles on a substrate,
Provided on the transparent conductive fine particle layer, a substrate with a transparent conductive coating comprising a transparent coating having a lower refractive index than the transparent conductive fine particle layer,
A transparent conductive film, wherein the transparent conductive fine particle layer contains conductive fine particles and a coloring agent, and the conductive fine particles are indium oxide-based fine particles selected from indium oxide, indium oxide doped with Sn or F. With substrate.
前記透明導電性被膜の波長550nmにおける透過率が55〜95%の範囲にあることを特徴とする請求項4に記載の透明導電性被膜付基材。The substrate with a transparent conductive coating according to claim 4, wherein the transmittance of the transparent conductive coating at a wavelength of 550 nm is in the range of 55 to 95%. 請求項4または5に記載の透明導電性被膜付基材で構成された前面板を備え、透明導電性被膜が該前面板の外表面に形成されていることを特徴とする表示装置。A display device comprising a front plate made of the substrate with a transparent conductive film according to claim 4 or 5, wherein the transparent conductive film is formed on an outer surface of the front plate.
JP2002377717A 2002-12-26 2002-12-26 Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device Pending JP2004204174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002377717A JP2004204174A (en) 2002-12-26 2002-12-26 Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002377717A JP2004204174A (en) 2002-12-26 2002-12-26 Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device

Publications (1)

Publication Number Publication Date
JP2004204174A true JP2004204174A (en) 2004-07-22

Family

ID=32814810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002377717A Pending JP2004204174A (en) 2002-12-26 2002-12-26 Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device

Country Status (1)

Country Link
JP (1) JP2004204174A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010865A1 (en) * 2005-07-19 2007-01-25 Toyo Ink Mfg. Co., Ltd. Curable composition, cured film and multilayer body
WO2007138946A1 (en) * 2006-05-29 2007-12-06 Toyo Ink Mfg. Co., Ltd. Metal oxide composition, cured film and laminate
JP2008162142A (en) * 2006-12-28 2008-07-17 Catalysts & Chem Ind Co Ltd Base with transparent colored film and coating solution for forming transparent colored film
WO2009011337A1 (en) * 2007-07-18 2009-01-22 Showa Denko K.K. Resin composition and its use

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007010865A1 (en) * 2005-07-19 2007-01-25 Toyo Ink Mfg. Co., Ltd. Curable composition, cured film and multilayer body
JP4924425B2 (en) * 2005-07-19 2012-04-25 東洋インキScホールディングス株式会社 Curable composition, cured film and laminate
WO2007138946A1 (en) * 2006-05-29 2007-12-06 Toyo Ink Mfg. Co., Ltd. Metal oxide composition, cured film and laminate
JPWO2007138946A1 (en) * 2006-05-29 2009-10-08 東洋インキ製造株式会社 Metal oxide composition, cured film and laminate
JP4692630B2 (en) * 2006-05-29 2011-06-01 東洋インキ製造株式会社 Method for producing metal oxide dispersion, laminate and dispersant
JP2008162142A (en) * 2006-12-28 2008-07-17 Catalysts & Chem Ind Co Ltd Base with transparent colored film and coating solution for forming transparent colored film
WO2009011337A1 (en) * 2007-07-18 2009-01-22 Showa Denko K.K. Resin composition and its use
JPWO2009011337A1 (en) * 2007-07-18 2010-09-24 昭和電工株式会社 Resin composition and use thereof
TWI454520B (en) * 2007-07-18 2014-10-01 Showa Denko Kk Resin composition and its use
JP5615545B2 (en) * 2007-07-18 2014-10-29 昭和電工株式会社 Resin composition and use thereof

Similar Documents

Publication Publication Date Title
JP3563236B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film, method for producing the same, and display device
JP4183924B2 (en) METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
JP4031624B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP2004055298A (en) Coating solution for forming transparent conductive film and substrate with transparent conductive coat, and display device
JP3973330B2 (en) Substrate with transparent coating, coating liquid for forming transparent coating, and display device
JP4343520B2 (en) Coating liquid for forming transparent film, substrate with transparent film, and display device
JP4522505B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP5068298B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4002469B2 (en) Manufacturing method of indium metal fine particles, coating liquid for forming transparent conductive film containing indium metal fine particles, dispersion sol, substrate with transparent conductive film, display device
JP3779088B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP4959067B2 (en) Coating liquid for forming transparent low-reflective conductive film, substrate with transparent low-reflective conductive film, and display device
JP2001187864A (en) Transparent coating film-forming coating fluid, substrate with transparent coating film and display
KR100996052B1 (en) Coating agent for forming transparent film, transparent film coated substrate and display
JP4002435B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP2004204174A (en) Coating liquid for forming transparent electeroconductive film, substrate with transparent electroconductive film and displaying device
JP4240905B2 (en) Indium-based oxide fine particles and production method thereof, coating liquid for forming transparent conductive film containing indium-based oxide fine particles, substrate with transparent conductive film, and display device
JP4519343B2 (en) Crystalline conductive fine particles, method for producing the fine particles, coating liquid for forming transparent conductive film, substrate with transparent conductive film, and display device
JP5187990B2 (en) Coating liquid for forming transparent conductive film, substrate with transparent conductive film and display device
JP4372301B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
JP2003105268A (en) Coating liquid for forming transparent coated film, base material with transparent and electroconductive coated film, and display device
JP4425530B2 (en) Method for producing indium oxide fine particles, coating liquid for forming transparent conductive film containing fine particles, substrate with transparent conductive film, and display device
JP4033646B2 (en) Conductive metal oxide particles, method for producing conductive metal oxide particles, substrate with transparent conductive film, and display device
JP2003261326A (en) Indium based oxide fine particle, method of producing the fine particle, coating solution for forming transparent electrically conductive film containing the fine particle, base material with transparent electrically conductive film and display
JP4902048B2 (en) Substrate with transparent conductive film and display device