JPH05166423A - Manufacture of conductive film and low reflective conductive film - Google Patents

Manufacture of conductive film and low reflective conductive film

Info

Publication number
JPH05166423A
JPH05166423A JP35081591A JP35081591A JPH05166423A JP H05166423 A JPH05166423 A JP H05166423A JP 35081591 A JP35081591 A JP 35081591A JP 35081591 A JP35081591 A JP 35081591A JP H05166423 A JPH05166423 A JP H05166423A
Authority
JP
Japan
Prior art keywords
conductive film
compound
film
low
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35081591A
Other languages
Japanese (ja)
Inventor
Keisuke Abe
啓介 阿部
Keiko Kubota
恵子 久保田
Takeshi Morimoto
剛 森本
Kazuya Hiratsuka
和也 平塚
Satoshi Takemiya
聡 竹宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP35081591A priority Critical patent/JPH05166423A/en
Publication of JPH05166423A publication Critical patent/JPH05166423A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make low temperature heat treatment applicable and at the same time to realize high performance by applying a coating liquid containing rhenium compound and other metal compound to a substrate, and forming a film having low index of refraction after heating and applying ultra-violet rays. CONSTITUTION:A conductive film containing oxide rhenium is formed by adding at least one of Si compound, Ti compound, Zr compound, Al compound, Sn compound, and In compound to a liquid composed of rhenium compound and water and/or organic solvent, and after applying the solvent on the substrate, heating and applying ultra-violet rays. After that, a less reflective conductive film is formed by forming on the conductive film, a film having lower index of refraction than that of the conductive film with light interaction due to two-layer structure being utilized. Thereby, it is made feasible to form a less reflective conductive film of high efficiency and excellent quality with low- temperature heat treatment and at the same time its productivity is increased, and since vacuum is not required, the cost of an equipment is comparatively low. Accordingly, this method is made applicable to a substrate having a large area such as the panel face of CRT and the like.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はブラウン管パネル等のガ
ラス基体表面に塗布される低反射導電膜に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low reflection conductive film applied on the surface of a glass substrate such as a cathode ray tube panel.

【0002】[0002]

【従来の技術】ブラウン管は高電圧で作動するため起動
時、或いは終了時に該表面に静電気が誘発される。この
静電気により該表面にほこりが付着しコントラスト低下
を引き起こしたり、或いは直接触れた際軽い電気ショッ
クによる不快感を生ずることが多い。
2. Description of the Related Art Since a cathode ray tube operates at a high voltage, static electricity is induced on the surface of the cathode ray tube at the time of starting or ending. This static electricity often causes dust to adhere to the surface to cause a reduction in contrast, or causes discomfort due to a slight electric shock when directly touched.

【0003】従来、上述の事柄を防止するためにブラウ
ン管パネル表面に帯電防止膜を付与する試みがかなりな
されてきた。例えば特開昭63−76247号記載の通
り、ブラウン管パネル表面を350℃程度に加熱し、C
VD法により酸化スズ及び酸化インジウム等の導電性酸
化物質を設ける方法が採用されてきた。しかしながらこ
の方法では装置コストがかかることに加え、ブラウン管
を高温加熱するためブラウン管内の蛍光体の脱落を生じ
たり、寸法精度が低下する等の問題があった。また、導
電層に用いる材料として酸化スズが最も一般的である
が、この場合低温処理では高性能膜が得にくい欠点があ
った。
In the past, many attempts have been made to provide an antistatic film on the surface of a cathode ray tube panel in order to prevent the above-mentioned problems. For example, as described in JP-A-63-76247, the surface of the cathode ray tube panel is heated to about 350 ° C., and C
A method of providing a conductive oxide substance such as tin oxide and indium oxide by the VD method has been adopted. However, in this method, there is a problem in that in addition to the cost of the apparatus, since the CRT is heated to a high temperature, the fluorescent substance in the CRT falls off and the dimensional accuracy decreases. Further, tin oxide is the most general material used for the conductive layer, but in this case, there is a drawback that it is difficult to obtain a high performance film by low temperature treatment.

【0004】また近年、電磁波ノイズによる電子機器へ
の電波障害が社会問題となり、それらを防止するため規
格の作成、規制が行われている。電磁波ノイズは人体に
ついて、CRT上の静電気チャージによる皮膚ガンの恐
れ、低周波電磁界(ELF)による胎児への影響、その
他X線、紫外線などによる害が各国で問題視されてい
る。この場合、導電性塗膜の存在により、導電性塗膜に
電磁波が当たると、塗膜中に渦電流を誘導して、この作
用で電磁波を反射する。しかしこのためには高い電界強
度に耐え得る金属並の電気特性の良導電体が必要である
が、それほどの良導電性の膜を得ることは更に困難であ
った。
In recent years, radio wave interference to electronic equipment due to electromagnetic noise has become a social problem, and standards have been created and regulated to prevent them. Electromagnetic noise is considered to be a problem in various countries in the human body, such as fear of skin cancer due to electrostatic charge on the CRT, influence on the fetus due to low-frequency electromagnetic field (ELF), and harm due to X-rays and ultraviolet rays. In this case, when an electromagnetic wave hits the conductive coating film due to the presence of the conductive coating film, an eddy current is induced in the coating film and the electromagnetic wave is reflected by this action. However, for this purpose, a conductor having good electric characteristics comparable to that of a metal capable of withstanding high electric field strength is required, but it has been more difficult to obtain a film having such good conductivity.

【0005】また低反射膜のコーティング法は、従来よ
り光学的機器においては言うまでもなく、民生用機器特
にTV、コンピューター端末の陰極線管(CRT)に関
し数多くの検討がなされてきた。
Further, the coating method of the low reflection film has been hitherto examined in many cases not only in optical equipment but also in consumer equipment, particularly in cathode ray tubes (CRT) of TVs and computer terminals.

【0006】従来の方法は例えば特開昭61−1189
31号記載の如く、ブラウン管表面に防眩効果を持たせ
るために表面に微細な凹凸を有するSiO2 層を付着さ
せたり、弗酸により表面をエッチングして凹凸を設ける
等の方法がとられてきた。しかし、これらの方法は、外
部光を散乱させるノングレア処理と呼ばれ、本質的に低
反射層を設ける手法でないため、反射率の低減には限界
があり、又ブラウン管などにおいては、解像度を低下さ
せる原因ともなっていた。
A conventional method is disclosed in, for example, Japanese Patent Laid-Open No. 61-1189.
As described in No. 31, methods such as attaching a SiO 2 layer having fine irregularities to the surface of the cathode ray tube to provide an antiglare effect, or etching the surface with hydrofluoric acid to provide irregularities have been adopted. It was However, these methods are called non-glare processing that scatters external light, and there is a limit to the reduction of reflectance because it is not a method of essentially providing a low reflection layer. Also, in a cathode ray tube, etc., the resolution is lowered. It was also the cause.

【0007】[0007]

【発明が解決しようとする課題】本発明は従来技術が有
していた前述の欠点を解消しようとするものであり、低
温熱処理が可能な高特性の低反射導電膜を新規に提供す
ることを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned drawbacks of the prior art, and to provide a novel low-reflection conductive film of high characteristics which can be heat-treated at a low temperature. It is intended.

【0008】[0008]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、特にブラウン管のフェ
イス面等のガラス基体に被着された酸化レニウムを含む
導電膜を基体側に、更にこの膜より低屈折率を有する膜
を空気側に配した2層からなる高性能低反射導電膜、お
よび、基体より第1層として酸化レニウム被膜よりも低
屈折率でありかつSiO2 膜よりも高屈折率を有する膜
を形成し、その上に第2層として酸化レニウムを含む導
電膜を形成し、更にその上に第3層としてSiO2 かつ
/又はSiO2 −MgF2 を含む低屈折率膜を形成する
ことによりなる3層構造の低反射導電膜を提供するもの
である。
The present invention has been made to solve the above-mentioned problems, and in particular, a conductive film containing rhenium oxide deposited on a glass substrate such as the face surface of a cathode ray tube is provided on the substrate side. And a high-performance low-reflection conductive film consisting of two layers in which a film having a lower refractive index than this film is arranged on the air side, and a SiO 2 film having a lower refractive index than the rhenium oxide film as the first layer from the substrate A film having a higher refractive index than the above, a conductive film containing rhenium oxide is formed as a second layer thereon, and a low layer containing SiO 2 and / or SiO 2 —MgF 2 is further formed thereon as a third layer. The present invention provides a low reflection conductive film having a three-layer structure formed by forming a refractive index film.

【0009】本発明における酸化レニウムを含む導電膜
の製造方法としてレニウム化合物と水かつ/又は有機溶
媒からなる液にSi化合物、Ti化合物、Zr化合物、
Al化合物、Sn化合物、In化合物のうち少なくとも
1種を加えた溶液を塗布し、100〜500℃で加熱か
つ/又は180〜490nmの波長領域の紫外線を照射
して形成することを特徴とする。
As a method for producing a conductive film containing rhenium oxide according to the present invention, a liquid containing a rhenium compound and water and / or an organic solvent contains a Si compound, a Ti compound, a Zr compound,
It is characterized in that it is formed by applying a solution containing at least one of an Al compound, a Sn compound and an In compound, heating it at 100 to 500 ° C. and / or irradiating it with ultraviolet rays in the wavelength region of 180 to 490 nm.

【0010】本発明に用いるレニウム化合物としては三
塩化レニウム、四塩化レニウム、五塩化レニウム等の塩
化物、オキシ四塩化レニウム等の酸化塩化レニウム化合
物、過レニウム酸カリウム、過レニウム酸ナトリウム等
のアルカリ類との化合物、三臭化レニウム等の臭化化合
物、硼化レニウム等の硼化化合物及びその加水分解物の
うち少なくとも1種の何れも使用可能である。
Examples of the rhenium compound used in the present invention include chlorides such as rhenium trichloride, rhenium tetrachloride and rhenium pentachloride, rhenium oxychloride compounds such as rhenium oxytetrachloride, and alkalis such as potassium perrhenate and sodium perrhenate. It is possible to use at least one of a compound with a class, a bromide compound such as rhenium tribromide, a boride compound such as rhenium boride, and a hydrolyzate thereof.

【0011】親水性有機溶媒としては、メタノール、エ
タノール、プロパノール、ブタノール等のアルコール
類、エチルセルソルブ等のエーテル類が任意に使用でき
る。
As the hydrophilic organic solvent, alcohols such as methanol, ethanol, propanol and butanol, and ethers such as ethyl cellosolve can be arbitrarily used.

【0012】また本発明において用いるレニウム化合物
を含む塗布液には膜の付着強度及び硬度を向上させるた
めにバインダーとしてSi(OR)y ・R´4-y (y=
3、4、R、R´:アルキル基)等のケイ素化合物また
はそれを加水分解した溶液を添加することも可能であ
る。その際加水分解の触媒としてはHCl、HNO3
CH3 COOH、HCOOH等を用いることができる。
さらに基体との濡れ性を向上させるために種々の界面活
性剤を添加することもできる。
In the coating liquid containing the rhenium compound used in the present invention, Si (OR) y · R ′ 4-y (y =) is used as a binder in order to improve the adhesion strength and hardness of the film.
It is also possible to add a silicon compound such as 3, 4, R, R ': an alkyl group) or a solution obtained by hydrolyzing the silicon compound. At that time, as the hydrolysis catalyst, HCl, HNO 3 ,
CH 3 COOH, can be used HCOOH like.
Further, various surfactants can be added to improve the wettability with the substrate.

【0013】またさらにはTi化合物、Zr化合物、A
l化合物、Sn化合物、In化合物等を添加して導電膜
の屈折率を高くすることもできる。Ti、Zr、Al、
Sn、Inの各化合物としては、加熱により、各々、T
iO2 、ZrO2 、Al23 、SnO2 、In23
となるようなアルコキシド、金属塩および、それらの加
水分解物等、何れも使用可能である。
Furthermore, Ti compound, Zr compound, A
It is also possible to increase the refractive index of the conductive film by adding an l compound, a Sn compound, an In compound or the like. Ti, Zr, Al,
Each compound of Sn and In is heated to form T
iO 2 , ZrO 2 , Al 2 O 3 , SnO 2 , In 2 O 3
Any of such alkoxides, metal salts and their hydrolysates can be used.

【0014】レニウム化合物とケイ素化合物Si(O
R)y ・R´4-y は任意の比で混合することができる
が、導電性の発現、膜強度を考慮に入れると、その混合
比はReO3 /SiO2 換算で1/6から10/1まで
混合することが好ましい。
Rhenium compound and silicon compound Si (O
R) y · R ′ 4-y can be mixed in any ratio, but considering the development of conductivity and film strength, the mixing ratio is 1/6 to 10 in terms of ReO 3 / SiO 2. It is preferable to mix up to 1/1.

【0015】また液中の固形分含量は0.05〜30.
0wt%含まれることができるがさらに好ましくは0.
3〜5.0wt%にするとよい。固形分含量があまり小
さいと、膜が薄くなるため膜の均一性や十分な導電性が
得られず、またあまり大きいと、塗布液の保存安定性が
悪くなるためかかる固形分含量が好ましい。
The solid content of the liquid is 0.05 to 30.
It can be contained in an amount of 0 wt%, but more preferably, it can be 0.1%.
It is preferable to set it to 3 to 5.0 wt%. If the solid content is too small, the film becomes thin and the uniformity and sufficient conductivity of the film cannot be obtained. On the other hand, if the solid content is too large, the storage stability of the coating solution is deteriorated, and thus the solid content is preferable.

【0016】上記で合成した塗布液の基体上への塗布方
法としては従来使用してきた方法、即ち スピンコー
ト、ディップコート、スプレーコート法等が好適に使用
できる。また、スプレーコートして表面に凹凸を形成し
防眩効果も併せて付与してもよく、その場合導電膜とな
った本発明品の上にシリカ被膜等のハードコートを設け
てもよい。
As a method of applying the above-prepared coating solution onto a substrate, conventionally used methods, that is, spin coating, dip coating, spray coating and the like can be preferably used. Further, spray coating may be performed to form irregularities on the surface to impart an antiglare effect together. In that case, a hard coat such as a silica coating may be provided on the product of the present invention which has become a conductive film.

【0017】本発明においては、導電膜の上に低屈折率
膜を形成することによって、2層構造で光の干渉を利用
して低反射導電膜を形成することができる。例えば基体
がガラス(屈折率n=1.52)の場合、上記の導電膜
の上に、n(導電膜)/n(低屈折率膜)の比の値が約
1.23となるような低屈折率膜を形成すると最も反射
率を低減できる。
In the present invention, by forming the low refractive index film on the conductive film, it is possible to form the low reflection conductive film by utilizing light interference in a two-layer structure. For example, when the substrate is glass (refractive index n = 1.52), the ratio of n (conductive film) / n (low refractive index film) on the conductive film is about 1.23. The reflectance can be most reduced by forming a low refractive index film.

【0018】3層による低反射特性を発現させる場合、
例えば基体上にTiアルコキサイドとSiアルコキサイ
ドよりなる液を塗布し、導電膜よりも低屈折率であり、
かつSiO2 膜(n=1.46)よりも高屈折率の膜を
形成し、その上に酸化レニウムを含む導電膜を形成し、
更にその上にSiO2 かつ又はSiO2 −MgF2 より
なる低屈折率膜を形成することにより達成される。
In the case of exhibiting a low reflection property by three layers,
For example, a liquid composed of Ti alkoxide and Si alkoxide is applied on a substrate and has a lower refractive index than the conductive film,
A film having a higher refractive index than the SiO 2 film (n = 1.46) is formed, and a conductive film containing rhenium oxide is formed on the film.
Further achieved by forming the SiO 2 and or consisting SiO 2 MgF 2 low refractive index film formed thereon.

【0019】このとき基体の屈折率を1.54とするな
らば基体側第1層、第2層、第3層の屈折率をそれぞれ
1 、n2 、n3 として光学厚みをそれぞれλ/4、λ
/4、λ/4とすると n2 =n13 /1.241 のとき最高の低反射特性が得られる。
At this time, assuming that the refractive index of the substrate is 1.54, the optical thicknesses of the first layer, the second layer, and the third layer on the substrate side are n 1 , n 2 , and n 3 , respectively, and the optical thicknesses are λ / 4, λ
When / 4 and λ / 4, the highest low reflection property is obtained when n 2 = n 1 n 3 /1.241.

【0020】又、光学厚みをそれぞれλ/4、λ/2、
λ/4、又は3/4・λ、λ/2、λ/4の構成とした
場合、n1 =1.241・n3 のとき低反射性が得られ
るが、この場合第2層の屈折率を高屈折率化することに
よりより一層の低反射特性が得られる。又、4層構造と
した場合基体側より低屈折率層−中屈折率層−高屈折率
層−低屈折率層で形成するとよい。
The optical thicknesses are λ / 4, λ / 2, and
When λ / 4 or 3/4 · λ, λ / 2, λ / 4 is used, low reflectivity is obtained when n 1 = 1.241 · n 3 , but in this case, refraction of the second layer By making the refractive index high, further low reflection characteristics can be obtained. Further, in the case of a four-layer structure, it is preferable to form from the side of the substrate a low refractive index layer-a medium refractive index layer-a high refractive index layer-a low refractive index layer.

【0021】かかる2層ないし3層以上の多層からなる
低反射導電膜の低屈折率膜としてはMgF2 ゾルを含む
溶液や、Siアルコキシドを含む溶液のうちから選ばれ
る少なくとも1種よりなる溶液を用いて形成する。屈折
率の面からみると該材料のうちMgF2 が最も低く反射
率低減のためにはMgF2 ゾルを含む溶液を用いること
が好ましいが、膜の硬度や耐擦傷性の点ではSiO2
主成分とする膜が好ましい。
As the low refractive index film of the low reflection conductive film composed of two or more layers, a solution containing at least one selected from a solution containing MgF 2 sol and a solution containing Si alkoxide. It is formed by using. From the viewpoint of the refractive index, MgF 2 is the lowest of the materials, and it is preferable to use a solution containing MgF 2 sol to reduce the reflectance, but SiO 2 is mainly used in terms of film hardness and scratch resistance. Membranes of component are preferred.

【0022】かかる低屈折率膜形成用のSiアルコキシ
ドを含む溶液としては種々の物が使用可能であるが、S
i(OR)m R´n (m=1〜4、n=0〜3、R、R
´=C1〜C4のアルキル基)で示されるSiアルコキ
シドあるいは部分加水分解物を含む液が挙げられる。例
えばシリコンエトキシド、シリコンメトキシド、シリコ
ンイソプロポキシド、シリコンブトキシドのモノマーあ
るいは重合体が好ましく使用可能である。
Various materials can be used as the solution containing the Si alkoxide for forming the low refractive index film.
i (OR) m R'n ( m = 1~4, n = 0~3, R, R
A liquid containing a Si alkoxide or a partial hydrolyzate represented by ′ = C1 to C4 alkyl group). For example, a monomer or polymer of silicon ethoxide, silicon methoxide, silicon isopropoxide, silicon butoxide can be preferably used.

【0023】シリコンアルコキシドはアルコール、エス
テル、エーテル等に溶解して用いることもでき、又前記
溶液に塩酸、硝酸、酢酸、弗酸、ギ酸あるいはアンモニ
ア水溶液を添加して加水分解して用いることもできる。
又前記Siアルコキシドは溶媒に対して、1〜30wt
%含まれていることが好ましい。
The silicon alkoxide can be used by dissolving it in alcohol, ester, ether or the like, or can be used by hydrolyzing it by adding hydrochloric acid, nitric acid, acetic acid, hydrofluoric acid, formic acid or aqueous ammonia solution to the solution. ..
Further, the Si alkoxide is 1 to 30 wt% with respect to the solvent.
% Is preferably contained.

【0024】又この溶液には膜の強度向上のためにバイ
ンダーとして、Zr、Ti、Al等のアルコキシドや、
これらの部分加水分解物を添加して、ZrO2 、TiO
2 、Al23 の少なくとも1種、または2種以上の複
合物をMgF2 、SiO2 と同時に析出させてもよい。
あるいは又、基体との濡れ性を挙げるために界面活性剤
を添加してもよい。添加される界面活性剤としては、直
鎖アルキルベンゼンスルホン酸ナトリウム、アルキルエ
ーテル硫酸エステル等が挙げられる。
In addition, in order to improve the strength of the film, the solution contains an alkoxide such as Zr, Ti or Al, or a binder.
By adding these partial hydrolyzates, ZrO 2 , TiO 2
At least one kind of 2 , Al 2 O 3 or a composite of two or more kinds may be simultaneously precipitated with MgF 2 and SiO 2 .
Alternatively, a surfactant may be added to improve the wettability with the substrate. Examples of the surfactant to be added include linear sodium alkylbenzene sulfonate and alkyl ether sulfate.

【0025】本発明の導電膜及び低反射導電膜を形成す
る基体としてはブラウン管パネル、複写機用ガラス板、
計算機用パネル、クリーンルーム用ガラス、CRT或い
はLCD等の表示装置の前面板等の各種ガラス、プラス
チック基板を用いることができる。
As a substrate for forming the conductive film and the low reflective conductive film of the present invention, a cathode ray tube panel, a glass plate for a copying machine,
A computer panel, clean room glass, various kinds of glass such as a front plate of a display device such as a CRT or LCD, and a plastic substrate can be used.

【0026】本発明におけるRe化合物を含む溶液はそ
れ自体で基体上への塗布液として供し得るため、低沸点
の溶媒を用いた場合は、室温での乾燥の均一な膜が得ら
れるが、高沸点溶液を用いた場合或いは膜の強度を向上
させたい場合、塗布した基板を加熱する。加熱温度の上
限は基板に用いられるガラス、プラアスチック等の軟化
点によって決定される。この点も考慮すると好ましい温
度範囲は100〜500℃である。
Since the solution containing the Re compound in the present invention can be provided as a coating solution on a substrate by itself, when a solvent having a low boiling point is used, a uniform film dried at room temperature can be obtained. When using a boiling point solution or when it is desired to improve the strength of the film, the coated substrate is heated. The upper limit of the heating temperature is determined by the softening point of glass, plastic or the like used for the substrate. Considering this point, the preferable temperature range is 100 to 500 ° C.

【0027】[0027]

【作用】一般にパルス源より発生する電磁波を導電膜に
よってシールドする場合、電磁波が導電膜に入射したと
きに生成する渦電流により電界反射損失を生じさせ、電
磁波のシールドを行う。このとき電界反射損失Rは比導
電率をG、比誘磁率をμ、周波数をf、パルス発生源と
シールド材との距離をrとすると R=10 log(G/μ・f3 ・r2 )+353.6 で表わされる。従って比導電率Gが大きなものを選択す
ることにより大きな電界反射損失を生じさせることがで
きる。
In general, when the electromagnetic wave generated by the pulse source is shielded by the conductive film, the eddy current generated when the electromagnetic wave enters the conductive film causes electric field reflection loss to shield the electromagnetic wave. At this time, the electric field reflection loss R is R = 10 log (G / μ · f 3 · r 2) where G is the specific conductivity, μ is the specific magnetic susceptibility, f is the frequency, and r is the distance between the pulse generation source and the shield material. ) +353.6. Therefore, a large electric field reflection loss can be generated by selecting a material having a large specific conductivity G.

【0028】本発明ではこれを達成するため、ReO3
を用いた。ReO3 においては5d電子が伝導に寄与し
π反結合による伝導電子の有効質量が小さいため、金属
伝導に近い電気伝導性を有する。ため、Re同士のバン
ド間をReの5d電子がキャリヤーとして動くことによ
り、伝導性を発現させるため、原子価制御タイプにおけ
る伝導性発現のためのドーパントの導入の必要がなく、
かつ、原子価制御タイプよりも高い導電性を発現するこ
とができる。
In the present invention, in order to achieve this, ReO 3
Was used. In ReO 3 , since 5d electrons contribute to conduction and the effective mass of conduction electrons due to π anticoupling is small, it has electrical conductivity close to metal conduction. Therefore, since the 5d electron of Re moves as a carrier between the bands of Re to develop conductivity, it is not necessary to introduce a dopant for expressing conductivity in the valence control type,
In addition, it is possible to develop higher conductivity than the valence control type.

【0029】[0029]

【実施例】以下に本発明の実施例を挙げ更に説明を行う
が、本発明はこれらに限定されるものではない。以下の
実施例及び比較例において、得られた膜の評価方法は次
の通りである。
The present invention will be further described below with reference to examples of the present invention, but the present invention is not limited thereto. In the following examples and comparative examples, the evaluation methods of the obtained films are as follows.

【0030】1)導電性評価 ローレスタ抵抗測定器(三菱油化製)により膜表面の表
面抵抗値を測定した。
1) Conductivity evaluation The surface resistance value of the film surface was measured by a Loresta resistance measuring instrument (manufactured by Mitsubishi Yuka).

【0031】2)耐擦傷性 1kg荷重下で(LION製50−50)で膜表面を2
00回往復後、その表面の傷の付きを目視で判断した。
評価基準は以下の通りとした。 ○:傷が全くつかない △:傷が多少つく ×:一部に膜剥離が生じる
2) Scratch resistance Under a load of 1 kg (50-50 made by LION), the surface of the film was exposed to 2
After reciprocating 00 times, scratches on the surface were visually judged.
The evaluation criteria are as follows. ○: No scratches were found △: Some scratches were found ×: Film peeling occurred in part

【0032】3)鉛筆硬度 1kg荷重下において、鉛筆で膜表面を走査しその後目
視により表面の傷の生じ始める鉛筆の硬度を膜の鉛筆硬
度と判断した。 4)視感反射率 GAMMA分光反射率スペクトル測定器により多層膜4
00〜700nmでの視感反射率を測定した。
3) Pencil Hardness Under a load of 1 kg, the surface of the film was scanned with a pencil, and the pencil hardness at which scratches on the surface began to be visually observed was judged to be the pencil hardness of the film. 4) Luminous reflectance Multilayer film 4 by GAMMA spectral reflectance spectrum measuring device
The luminous reflectance at 00 to 700 nm was measured.

【0033】[実施例1]ReCl3 をエタノールに溶
かし、液濃度をReO3 換算で3重量%になるように調
製した。この液をA液とする。ケイ酸エチルをエタノー
ルに溶かし、HCl水溶液で加水分解し、SiO2 換算
で3重量%となるようにした。この溶液をB液とする。 Ti(C5722 (OC372 をTiO2
算で3重量%になるようにエタノールに溶かし塩酸水溶
液で加水分解し、この液をC液とした。
[Example 1] ReCl 3 was dissolved in ethanol to prepare a solution having a concentration of 3% by weight in terms of ReO 3 . This solution is referred to as solution A. Ethyl silicate was dissolved in ethanol and hydrolyzed with an aqueous solution of HCl so as to be 3% by weight in terms of SiO 2 . This solution is referred to as solution B. Ti (C 5 H 7 O 2 ) 2 (OC 3 H 7 ) 2 was dissolved in ethanol so as to be 3% by weight in terms of TiO 2 and hydrolyzed with an aqueous hydrochloric acid solution, and this solution was designated as solution C.

【0034】ReO3 とSiO2 とTiO2 を種々の比
になるようにA液、B液、C液を混合した塗布液を70
mmφガラス板表面に2000rpmの回転速度で5秒
間スピンコート法で塗布し、その後450℃で10分間
加熱した。更にこの膜の上にB液を1500rpmの回
転速度で5秒間スピンコート法で塗布し、その後450
℃で10分加熱した。第1層の塗布液中の各成分の固形
分濃度、及び、B液による低屈折率膜を形成した2層か
らなる低反射導電膜の特性を表1に示す。
A coating solution prepared by mixing Re liquid A, liquid B and liquid C in various ratios of ReO 3 , SiO 2 and TiO 2 was prepared.
The surface of the mmφ glass plate was applied by spin coating at a rotation speed of 2000 rpm for 5 seconds, and then heated at 450 ° C. for 10 minutes. Further, liquid B is applied onto this film by spin coating at a rotation speed of 1500 rpm for 5 seconds, and then 450
Heated at 0 ° C for 10 minutes. Table 1 shows the solid content concentration of each component in the coating liquid of the first layer and the characteristics of the two-layer low-reflection conductive film having the low-refractive index film formed of the liquid B.

【0035】[0035]

【表1】 [Table 1]

【0036】[実施例2]SnCl4 ・nH2 OをSn
2 換算で3重量%となるようにエタノールに溶かした
溶液をD液とする。実施例1におけるC液をD液に変更
する以外は実施例1と同様に行った。結果を表2に示
す。
[Example 2] SnCl 4 · nH 2 O was added to Sn
A solution dissolved in ethanol so as to be 3% by weight in terms of O 2 is referred to as liquid D. The same procedure as in Example 1 was performed except that the C liquid in Example 1 was changed to the D liquid. The results are shown in Table 2.

【0037】[0037]

【表2】 [Table 2]

【0038】[実施例3]ZrCl4 をZrO2 換算で
3重量%となるようにエタノールに溶かした溶液をE液
とする。実施例1におけるC液をE液に変更する以外は
実施例1と同様に行った。結果を表3に示す。
Example 3 A solution prepared by dissolving ZrCl 4 in ethanol so as to be 3% by weight in terms of ZrO 2 was designated as solution E. The same procedure as in Example 1 was performed except that the C liquid in Example 1 was changed to the E liquid. The results are shown in Table 3.

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【実施例4】Al(OC372 (C6103
をAl23 換算で3重量%になるようにエタノールに
溶かした溶液をF液とする。実施例1におけるC液をF
液に変更する以外は実施例1と同様に行った。結果を表
4に示す。
Example 4 Al (OC 3 H 7 ) 2 (C 6 H 10 O 3 )
Solution F is a solution prepared by dissolving 3% by weight in terms of Al 2 O 3 in ethanol. The liquid C in Example 1 was replaced with F.
The same procedure as in Example 1 was carried out except that the solution was changed. The results are shown in Table 4.

【0041】[0041]

【表4】 [Table 4]

【0042】[実施例5]実施例1において基体側第1
層塗布後の硬化方法を450℃で10分加熱より254
nmを主波長とする紫外線を10分照射すると変更した
以外は実施例1と同様に行った。結果を表5に示す。
[Embodiment 5] In Embodiment 1, first on the substrate side
The curing method after layer coating is 254 by heating at 450 ° C for 10 minutes.
The same procedure as in Example 1 was performed, except that the ultraviolet ray having a main wavelength of nm was irradiated for 10 minutes. The results are shown in Table 5.

【0043】[0043]

【表5】 [Table 5]

【0044】[実施例6]実施例5において254nm
の紫外線を365nmの紫外線に変更した以外は実施例
1と同様に行った。結果を表6に示す
[Embodiment 6] 254 nm in Embodiment 5
The same procedure as in Example 1 was carried out except that the ultraviolet ray of was changed to 365 nm. The results are shown in Table 6.

【0045】[0045]

【表6】 [Table 6]

【0046】[実施例7]実施例3において基体側第1
層塗布後の硬化方法を450℃で10分加熱より365
nmを主波長とする紫外線を10分照射すると変更した
以外は実施例3と同様に行った。結果を表7に示す。
[Embodiment 7] In Embodiment 3, first on the substrate side
After the layer is applied, the curing method is 365 minutes by heating at 450 ° C. for 10 minutes.
The same procedure as in Example 3 was performed except that irradiation with ultraviolet rays having a main wavelength of nm was performed for 10 minutes. The results are shown in Table 7.

【0047】[0047]

【表7】 [Table 7]

【0048】[実施例8]InCl3 をIn23 換算
で5重量%となるようにエタノールに溶解しアセチルア
セトン/In=1mol比となるようアセチルアセトン
を加え、1時間70℃で還流を行った。この液を冷却後
エタノールで希釈しIn23 換算で3重量%となるよ
うにした(G液)。実施例1におけるC液をG液と変更
した以外は実施例1と同様に行った。結果を表8に示
す。
Example 8 InCl 3 was dissolved in ethanol so as to be 5% by weight in terms of In 2 O 3 , acetylacetone was added so that the acetylacetone / In = 1 mol ratio was obtained, and the mixture was refluxed at 70 ° C. for 1 hour. .. After cooling this liquid, it was diluted with ethanol so as to be 3% by weight in terms of In 2 O 3 (liquid G). The same procedure as in Example 1 was carried out except that the C solution in Example 1 was changed to the G solution. The results are shown in Table 8.

【0049】[0049]

【表8】 [Table 8]

【0050】[実施例9]ReOCl4 をエタノールに
溶かしReO3 換算で3重量%となるように調製した
(H液)。実施例1におけるA液をH液と変更した以外
は実施例1と同様に行った。結果を表9に示す
[Example 9] ReOCl 4 was dissolved in ethanol to prepare 3% by weight in terms of ReO 3 (solution H). The same procedure as in Example 1 was performed except that the solution A in Example 1 was changed to the solution H. The results are shown in Table 9.

【0051】[0051]

【表9】 [Table 9]

【0052】[実施例10]MgCl3 とBF3 ・Et
OHをMgF2 換算で3重量%となるようにEtOHに
溶解させ、70℃で5時間還流を行った(I液)。I液
とB液をI液:B液=3:7となるように混合した(J
液)。実施例1において基体側第2層構成用塗布液とし
て用いるB液をJ液と変更した以外は実施例1と同様に
行った。結果を表10に示す。
Example 10 MgCl 3 and BF 3 .Et
OH was dissolved in EtOH so as to be 3% by weight in terms of MgF 2 , and refluxed at 70 ° C. for 5 hours (solution I). Solution I and solution B were mixed so that solution I: solution B was 3: 7 (J
liquid). The procedure of Example 1 was repeated, except that the solution B used as the coating solution for forming the second layer on the substrate side was changed to the solution J. The results are shown in Table 10.

【0053】[0053]

【表10】 [Table 10]

【0054】[実施例11]Ti(C5722
(iso−OC372 をエタノールに溶解し、HC
lで加水分解し、濃度を調整し3重量%となるようにし
た(K液)。B液とK液をB液:K液=3:7となるよ
うに混合し、70mmφのガラス板表面に2300rp
mの回転速度で5秒間スピンコート法で塗布し、60℃
で5分間乾燥させた。この上にA液とB液とC液を種々
の混合比で混合した液を2000rpmの回転速度で5
秒間スピンコートを行い、更に40℃で10分間焼成を
行った。更にこの上にB液を1500rpmの回転速度
で5秒間スピンコートを行い、その後450℃で10分
間加熱を行った。結果を表11に示す。
Example 11 Ti (C 5 H 7 O 2 ) 2
(Iso-OC 3 H 7 ) 2 was dissolved in ethanol and
It was hydrolyzed with 1 and the concentration was adjusted to 3% by weight (K solution). Solution B and solution K were mixed so that solution B: solution K = 3: 7, and 2300 rp was applied to the surface of a 70 mmφ glass plate.
Spin coating method for 5 seconds at a rotation speed of m, 60 ℃
And dried for 5 minutes. A liquid prepared by mixing liquid A, liquid B and liquid C at various mixing ratios was added thereto at a rotation speed of 2000 rpm for 5 minutes.
Spin coating was performed for 2 seconds, and baking was further performed at 40 ° C. for 10 minutes. Further, liquid B was spin-coated on this for 5 seconds at a rotation speed of 1500 rpm, and then heated at 450 ° C. for 10 minutes. The results are shown in Table 11.

【0055】[0055]

【表11】 [Table 11]

【0056】[実施例12]実施例11記載の基体側第
3層構成用としてのB液をJ液とした以外は実施例11
と同様に行った。結果を表12に示す。
[Embodiment 12] Embodiment 11 is different from Embodiment 11 except that the solution B for forming the third layer on the substrate side is the solution J.
I went the same way. The results are shown in Table 12.

【0057】[0057]

【表12】 [Table 12]

【0058】[0058]

【比較例】平均粒径60ÅのSnO2 をサンドミルで4
時間粉砕した。この液を90℃で1時間加熱解膠した
後、ケイ酸エチルを加水分解しエタノールにSiO2
算で3重量%添加した溶液をSnO2 :SiO2 =2:
1重量比になるように調製し、70mmφガラス板表面
に750rpmの回転速度で5秒間スピンコート法で塗
布し、その後450℃で10分加熱した。さらにこの膜
の上にB液を1500rpmの回転速度で5秒間スピン
コート法で塗布し、450℃で10分加熱した。このコ
ート膜の表面抵抗値は1×108 (Ω/□)で、膜強度
は×、鉛筆硬度はHB、視感反射率は0.8%であっ
た。
[Comparative Example] SnO 2 with an average particle size of 60Å
Crushed for hours. After this solution was heated for 1 hour peptized at 90 ° C. The, SnO 2 solution was added 3 wt% in terms of SiO 2 ethyl silicate hydrolyzed to ethanol: SiO 2 = 2:
It was prepared so as to have a weight ratio of 1 and was applied on the surface of a 70 mmφ glass plate by spin coating at a rotation speed of 750 rpm for 5 seconds, and then heated at 450 ° C. for 10 minutes. Further, the liquid B was applied onto this film by spin coating at a rotation speed of 1500 rpm for 5 seconds, and heated at 450 ° C. for 10 minutes. The surface resistance of this coating film was 1 × 10 8 (Ω / □), the film strength was ×, the pencil hardness was HB, and the luminous reflectance was 0.8%.

【0059】[0059]

【発明の効果】本発明によればスプレーまたはスピンコ
ートあるいは溶液中に基体を浸漬するなどの簡便な方法
により効率よく優れた低反射導電膜を提供することが可
能となる。本発明は生産性に優れ、かつ真空を必要とし
ないので装置も比較的安価なものでよい。特にCRTの
パネルフェイス面等の大面積の基体にも充分適用でき、
量産も可能であるため工業的価値は非常に高い。
EFFECTS OF THE INVENTION According to the present invention, it is possible to efficiently and excellently provide a low-reflection conductive film by a simple method such as spraying, spin coating, or immersing a substrate in a solution. Since the present invention is excellent in productivity and does not require a vacuum, the device may be relatively inexpensive. Especially, it can be applied to large area substrates such as panel face of CRT.
Since it can be mass-produced, its industrial value is very high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01J 29/88 9057−5E (72)発明者 平塚 和也 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 (72)発明者 竹宮 聡 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H01J 29/88 9057-5E (72) Inventor Kazuya Hiratsuka 1150 Hazawa-cho, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory (72) Inventor Satoshi Takemiya 1150, Hazawa-machi, Kanagawa-ku, Yokohama, Kanagawa Prefecture Asahi Glass Co., Ltd. Central Research Laboratory

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】レニウム化合物とその他の金属化合物とを
含む塗布液を基体上に塗布した後、加熱かつ又は紫外線
を照射して成膜することを特徴とする酸化レニウムを含
む導電膜の製造方法。
1. A method for producing a conductive film containing rhenium oxide, which comprises applying a coating solution containing a rhenium compound and another metal compound onto a substrate, and then heating and / or irradiating ultraviolet rays to form a film. ..
【請求項2】レニウム化合物以外の金属化合物が、加熱
かつ又は紫外線照射により、それぞれSiO2 、ZrO
2 、TiO2 、Al23 、SnO2 、In23 とな
るSi化合物、Zr化合物、Ti化合物、Al化合物、
Sn化合物、In化合物のうち少なくとも1種であるこ
とを特徴とする請求項1記載の導電膜の製造方法。
2. A metal compound other than a rhenium compound is heated and / or irradiated with ultraviolet rays to produce SiO 2 , ZrO, respectively.
2 , Si compound, Zr compound, Ti compound, Al compound, which becomes 2 , TiO 2 , Al 2 O 3 , SnO 2 , In 2 O 3 ,
The method for producing a conductive film according to claim 1, wherein the conductive film is at least one kind of Sn compound and In compound.
【請求項3】請求項1又は2記載の製造方法によって酸
化レニウムを含む導電膜を形成し、その上に、かかる導
電膜よりも低屈折率の膜を形成して、2層からなる低反
射導電膜を製造することを特徴とする低反射導電膜の製
造方法。
3. A conductive film containing rhenium oxide is formed by the manufacturing method according to claim 1 or 2, and a film having a refractive index lower than that of the conductive film is formed on the conductive film to form a low reflection film composed of two layers. A method of manufacturing a low-reflection conductive film, which comprises manufacturing a conductive film.
【請求項4】導電膜を少なくとも1層有する3層以上の
多層からなる低反射導電膜の製造方法であって、かかる
導電膜を請求項1又は2記載の方法によって形成するこ
とを特徴とする低反射導電膜の製造方法。
4. A method of manufacturing a low-reflection conductive film having a multilayer structure of three or more layers having at least one conductive film, wherein the conductive film is formed by the method according to claim 1. Method for manufacturing low-reflection conductive film.
【請求項5】請求項3又は4記載の製造方法によって得
られた低反射導電膜。
5. A low-reflection conductive film obtained by the manufacturing method according to claim 3.
【請求項6】請求項3又は4記載の製造方法によって基
体上に低反射導電膜を形成したガラス製品。
6. A glass product in which a low reflection conductive film is formed on a substrate by the manufacturing method according to claim 3.
【請求項7】請求項3又は4記載の製造方法によって陰
極線管表面に低反射導電膜を形成した陰極線管。
7. A cathode ray tube having a low reflection conductive film formed on the surface of the cathode ray tube by the manufacturing method according to claim 3 or 4.
JP35081591A 1991-12-11 1991-12-11 Manufacture of conductive film and low reflective conductive film Withdrawn JPH05166423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35081591A JPH05166423A (en) 1991-12-11 1991-12-11 Manufacture of conductive film and low reflective conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35081591A JPH05166423A (en) 1991-12-11 1991-12-11 Manufacture of conductive film and low reflective conductive film

Publications (1)

Publication Number Publication Date
JPH05166423A true JPH05166423A (en) 1993-07-02

Family

ID=18413070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35081591A Withdrawn JPH05166423A (en) 1991-12-11 1991-12-11 Manufacture of conductive film and low reflective conductive film

Country Status (1)

Country Link
JP (1) JPH05166423A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853869A (en) * 1995-08-23 1998-12-29 Sumitomo Metal Mining Co., Ltd. Transparent conductor film for electric field shielding
EP0941773A1 (en) * 1998-03-13 1999-09-15 Saint-Gobain Vitrage Process for depositing metallic oxide(s) layers
CN1112415C (en) * 1995-05-10 2003-06-25 三星电管株式会社 Transparent electric-conductive coating composition
JP2013221171A (en) * 2012-04-13 2013-10-28 Kanagawa Univ Recovering method of rhenium
JP5987244B1 (en) * 2015-07-24 2016-09-07 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from a solution containing rhenium and other metals, and method for increasing the content ratio of rhenium in a solution containing rhenium and other metals

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1112415C (en) * 1995-05-10 2003-06-25 三星电管株式会社 Transparent electric-conductive coating composition
US5853869A (en) * 1995-08-23 1998-12-29 Sumitomo Metal Mining Co., Ltd. Transparent conductor film for electric field shielding
EP0941773A1 (en) * 1998-03-13 1999-09-15 Saint-Gobain Vitrage Process for depositing metallic oxide(s) layers
FR2775914A1 (en) * 1998-03-13 1999-09-17 Saint Gobain Vitrage METAL OXIDE (S) BASED LAYER DEPOSIT PROCESS
JPH11319547A (en) * 1998-03-13 1999-11-24 Saint Gobain Vitrage Method for building up layer containing metallic oxide as main component
US6517901B1 (en) 1998-03-13 2003-02-11 Saint-Gobain Vitrage Process for depositing layers based on metal oxide(s)
JP2013221171A (en) * 2012-04-13 2013-10-28 Kanagawa Univ Recovering method of rhenium
JP5987244B1 (en) * 2015-07-24 2016-09-07 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from a solution containing rhenium and other metals, and method for increasing the content ratio of rhenium in a solution containing rhenium and other metals
WO2017018364A1 (en) * 2015-07-24 2017-02-02 学校法人神奈川大学 Method for recovering rhenium, method for selectively recovering rhenium from solution including rhenium and other metals, and method for increasing content ratio of rhenium in solution including rhenium and other metals
US10480048B2 (en) 2015-07-24 2019-11-19 Kanagawa University Method for recovering rhenium, method for selectively recovering rhenium from solution including rhenium and other metals, and method for increasing content ratio of rhenium in solution including rhenium and other metals

Similar Documents

Publication Publication Date Title
US5085888A (en) Method for forming thin mgf2 film and low-reflection film
JP3697760B2 (en) Coating liquid
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JP3219450B2 (en) Method for producing conductive film, low reflection conductive film and method for producing the same
JPWO2003049123A1 (en) Conductive film, method for producing the same, and substrate having the same
JPH05166423A (en) Manufacture of conductive film and low reflective conductive film
JPH05107403A (en) High refractivity conductive film or low reflective anti-static film and manufacture thereof
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP3288417B2 (en) CRT panel having low reflection conductive film formed thereon and method of manufacturing the same
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
JPH05132341A (en) Production of electrically conductive film and electrically conductive film with low reflectance
JP3308511B2 (en) Method of forming CRT panel with conductive film
JP3315673B2 (en) CRT with conductive film
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JPH0687632A (en) Low-reflection conductive film having antidazzle effect and its production
JPH09188545A (en) Electroconductive film, its production and glass article
JPH05151839A (en) Manufacture of electric conductive film and low-reflection conductive film
JP3661244B2 (en) Method for forming conductive film and low reflective conductive film
JPH0611602A (en) Low-refractive-index film, low-reflectance film, low-reflectance conductive film and low-reflectance glare-proof conductive film
JP2000153223A (en) Formation of low reflective conductive film
JPH05234433A (en) Manufacture of conductive film
JPH08290943A (en) Coating liquid for forming electroconductive film, production of electroconductive film, electroconductive film and glass article having electroconductive film formed thereon
JPH05166424A (en) Manufacture of conductive film
JPH05270864A (en) Low-refractive index film, low reflection film and low reflection antistatic film
JPH05124838A (en) Electric conductive film and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311