JP3882419B2 - Coating liquid for forming conductive film and use thereof - Google Patents

Coating liquid for forming conductive film and use thereof Download PDF

Info

Publication number
JP3882419B2
JP3882419B2 JP26606899A JP26606899A JP3882419B2 JP 3882419 B2 JP3882419 B2 JP 3882419B2 JP 26606899 A JP26606899 A JP 26606899A JP 26606899 A JP26606899 A JP 26606899A JP 3882419 B2 JP3882419 B2 JP 3882419B2
Authority
JP
Japan
Prior art keywords
conductive film
solution
fine particles
weight
coating liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26606899A
Other languages
Japanese (ja)
Other versions
JP2001093414A (en
JP2001093414A5 (en
Inventor
啓介 阿部
恭宏 真田
聡 竹宮
久夫 猪熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP26606899A priority Critical patent/JP3882419B2/en
Publication of JP2001093414A publication Critical patent/JP2001093414A/en
Publication of JP2001093414A5 publication Critical patent/JP2001093414A5/ja
Application granted granted Critical
Publication of JP3882419B2 publication Critical patent/JP3882419B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、導電膜形成用塗布液、特に、ブラウン管パネル等のガラス基体表面において、電磁波シールド性能等を発揮し得る、優れた導電性を有する導電膜を形成することが可能な、導電膜形成用塗布液に関する。本発明は、さらに、かかる導電膜形成用塗布液を用いて形成した導電膜、および、かかる導電膜を用いた低反射導電膜に関する。
【0002】
【従来の技術】
ブラウン管は高電圧で作動するために、起動時または終了時にブラウン管表面に静電気が誘発される。静電気は、該表面に埃が付着する、表示画像のコントラスト低下を引き起こす、直接手指が触れた際に軽い電気ショックによる不快感を与える、などの不具合を生じさせる。
【0003】
従来、この現象を防止するために、ブラウン管パネル表面に帯電防止膜を付与する試みがされ、例えば、ブラウン管パネル表面を350℃程度に加熱し、CVD法により酸化スズおよび酸化インジウム等の導電性酸化物層をパネル表面に設ける方法(特開昭63−76247)等が提案されてきた。
【0004】
しかし、この方法では装置コストがかかることに加え、ブラウン管表面を高温に加熱するためにブラウン管内の蛍光体の脱落を生じたり、寸法精度が低下したりする問題があった。また、上記導電層に用いる材料としては酸化スズが一般的であるが、低温処理では、充分な導電性を有する高性能な膜が得にくい欠点があった。
【0005】
また、近年、電磁波ノイズによる電子機器への電波障害が社会問題となり、それらを防止するために規格の作成や規制が行われている。電磁波ノイズ問題に対する解決策としては、導電性被膜をブラウン管表面に設け、該導電性被膜に当たった電磁波を、被膜内に誘導される渦電流の作用で反射することによって、電磁波シールドを行うことが知られている。
【0006】
しかし、このような性能を発揮するためには、導電性被膜が、高い電界強度に耐え得る程の優れた導電性を有している必要があるが、それほどの良導電性の膜を得ることはさらに困難であった。
【0007】
一方、導電膜の製造方法に関し、例えば、基体に金属塩と還元剤との混合液を塗布して導電膜を形成する(特開平6−310058)ことが提案されているが、この方法では金属塩溶液の安定性に乏しいために、該溶液と還元剤との混合後、直ちに混合液を基体に塗布する必要があり、また、溶液自体の成膜性が乏しいために得られる膜の外観が悪いという欠点があった。
【0008】
一般に金属、特に貴金属コロイドの調製方法としては、還元剤を用いて希薄溶液中で貴金属微粒子を還元析出させる方法が知られている。このとき、還元析出した金属微粒子は、保護コロイドとよばれる無機イオン、有機酸、高分子樹脂等により安定化され、液中で凝集沈殿せず、分散状態を維持できる。
【0009】
しかし、このままでは、保護コロイドの効果が強く、充分な導電性を有する導電膜が得られにくいため、還元析出時に生成した副生成イオンおよび過剰な保護コロイドを脱塩処理等の方法で除去することが必要である。保護コロイドとして、クエン酸イオン、ギ酸等を用いた場合は、脱塩処理等により、過剰分を除去できるが、ゾルの安定性が損なわれ、分散安定性に優れた導電膜形成用塗布液の実現は困難であった。
【0010】
また、保護コロイドとしての作用が知られている高分子樹脂としては、ポリアクリル酸、ポリアクリロニトリル鹸化物、ポリスチレンスルホン酸等のイオン性解離基を有するものや、ポリビニルアルコール、ポリ酢酸ビニル鹸化物、ポリヒドロキシエチルメタクリレート等の水酸基を有するもの、ポリビニルピロリドン等の分子内に電子対供与原子(N原子)を有するもの、デンプン、ゼラチン等の天然高分子などがある。
【0011】
しかし、この内、イオン性解離基や水酸基を有する高分子は、金属イオンとの共存下では、イオン性解離基や水酸基などの極性基が金属イオンを介してポリマー分子間の架橋点となり、ゲルを形成するため、金属イオンとの共存下では充分な保護コロイドの効果を発現しない。分子内に電子対供与原子(N原子)を有するものは、金属微粒子に吸着しやすいが、保護コロイドとしての効果が強すぎ、金属微粒子が単分散状態に近づくため、充分な導電性を有する膜を形成しにくい。また、天然高分子は溶液を冷却した場合、水素結合により架橋を形成しゲル化しやすいため、保護コロイドとしての制御が難しい。
【0012】
このように、従来保護コロイドとして知られている高分子樹脂では、導電膜形成用塗布液の金属微粒子に対する保護コロイドとしては不適切であり、塗布液の状態で分散安定性に優れ、高い導電性を有する導電膜を形成できる導電膜形成用塗布液は得られていない。
【0013】
一方、また、導電膜を形成するために、金属塩と導電性酸化物微粒子とを含有する液、または金属塩と金属で表面が被覆された微粒子を含有する液(特開平7−258862)が提案されている。しかし、前記の導電性酸化物微粒子は導電性が金属単体の場合よりも劣り、また、金属で表面が被覆された微粒子も金属と非金属微粒子との界面で接触抵抗が生じ、結果として得られる膜の導電性は充分ではなかった。
【0014】
【発明が解決しようとする課題】
本発明は、従来技術が有する問題点を解決し、塗布液の状態で金属微粒子の分散安定性に優れており、ブラウン管フェイス面等のガラス基体表面上に、低温熱処理により、耐候性、外観に優れ、電磁波シールド性能も発揮しうる高い導電性を有する導電膜を形成できる導電膜形成用塗布液の提供を目的とする。
【0015】
本発明は、さらに、かかる導電膜形成用塗布液を用いて形成した導電膜、および、かかる導電膜を用いた導電性と反射防止効果に優れた低反射導電膜の提供を目的とする。
【0016】
【課題を解決するための手段】
本発明の導電膜形成用塗布液(以下、単に塗布液という)は、金属微粒子が分散したゾルからなり、該ゾル中の金属微粒子が鎖状連鎖構造をなし、かつ分散していることを特徴とする。
【0017】
図1に本発明の塗布液の一例の透過型電子顕微鏡(TEM)写真を示す。本発明の塗布液は、例えば以下のようにして得られる。
すなわち、金属イオンと、セルロース誘導体からなる水溶性樹脂と、水とを含む液に、還元剤を添加することにより金属微粒子を還元析出させ、加熱により前記水溶性樹脂をゲル化させることによって前記金属微粒子を分散させて本発明の塗布液が得られる。
【0018】
【発明の実施の形態】
金属微粒子は、特に限定されないが、導電性、化学的実用性、耐久性等の理由からAg、Au、Pd、Ru、Pt、Ir、Re、Rh、CuおよびNiからなる群から選ばれた1種以上であることが好ましい。2種以上、すなわち、合金金属の例としては、Au−Pd、Ru−Re、Au−Ag、Ag−Pdなどが挙げられる。
金属微粒子は、金属イオンと、セルロース誘導体からなる水溶性樹脂とを含む液に、還元剤を添加して還元析出させることにより得られる。
【0019】
金属イオンの還元剤としては、特に限定されず、水素化ホウ素ナトリウム、水素化ホウ素カリウム、水素化ナトリウム、水素化リチウムなどの水素化物や、ヒドラジン、ホルムアルデヒド、ギ酸、シュウ酸、ホスフィン酸ナトリウムなどが好ましく用いられる。還元剤は、後述するように、金属微粒子が水溶性樹脂のゲル化によって分散した後に、限外濾過等の脱塩濃縮処理により除去されることが好ましい。
【0020】
金属微粒子は平均一次粒径が100nm以下であることが好ましい。金属微粒子の平均一次粒径が100nm超では、形成される膜において可視光の散乱が生じて、膜の透明性が著しく低下するとともに、塗布液中での金属微粒子の分散均一性および分散安定性が著しく損なわれる。金属微粒子の平均一次粒径は、塗布液中での分散安定性や、液を塗布して形成した膜の導電特性などから、5〜30nmであることが特に好ましく、10〜20nmであることがさらに好ましい。
【0021】
金属微粒子の濃度は、塗布液全重量に対して0.01〜5重量%とするのが好ましい。金属微粒子濃度が5重量%超では、形成される膜の透明性が著しく低下し、金属微粒子濃度が0.01重量%未満では、形成される膜の抵抗が上昇する。0.05〜2重量%とするのが特に好ましい。
【0022】
還元剤によって還元析出した金属微粒子は、加熱により、水溶性樹脂をゲル化させることによって分散される。
水溶性樹脂は、セルロース誘導体からなる。水溶性樹脂がゲル化し、溶液の粘性率が急上昇する温度(ゲル化点)は、溶液の組成等により変化するが、実際の作業上、35℃以上が好ましい。35℃未満であると塗布液の調製に冷却等の操作が必要となる。
【0023】
また、水溶性樹脂の平均分子量(ゲルパーミエーションクロマトグラフ分析による平均分子量)は、5000〜5000000であることが好ましい。平均分子量が5000未満では、水溶性樹脂による保護コロイド効果が小さくなるため、液中での金属微粒子の安定性が劣り、凝集が経時的に進行しやすくなる。また、平均分子量が5000000超では、形成した膜中での金属微粒子間の距離が広がり、膜の導電性が低下する。金属微粒子が塗布液中で連鎖構造を維持し、きわめて安定して分散することが可能で、かつ形成される膜が良好な導電性を発現することから、平均分子量は、10000〜100000であることが特に好ましい。
【0024】
水溶性樹脂の例としては、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロースおよびヒドロキシプロピルメチルセルロースからなる群から選ばれた1種以上が挙げられる。
【0025】
水溶性樹脂の含有量は、金属微粒子に対して0.5〜100重量%であることが好ましい。0.5重量%未満では、水溶性樹脂による保護コロイド効果が低く、経時的に金属微粒子の凝集が進行し、形成される膜の可視光の散乱が増大し、膜の透明性が低下するうえ、金属微粒子の液中での沈降も生じる。100重量%超では、液の分散性は良好であるが、成膜した導電膜中に残存する水溶性樹脂が多く、金属微粒子間の接触が悪化し、形成される膜の導電連鎖性が欠如し、膜の導電性が低下する。
【0026】
本発明の塗布液においては、溶媒として水を用いるが、形成する導電膜の外観を整えるために、液の表面張力や粘性率等を制御するための溶媒を適宜使用できる。かかる溶媒としては、各種の有機溶媒が挙げられる。有機溶媒の例としては、メタノール、エタノール、n−プロパノール、イソプロパノール、n−ブタノール、イソブタノール、sec−ブタノール、tert−ブタノール等のアルコール類、エチレングリコール等の多価アルコール類、エチルセロソルブ、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールメチルエーテル等のエーテル類、2,4−ペンタンジオン、ジアセトンアルコール等のケトン類、乳酸エチル、乳酸メチル等のエステル類、N−メチルピロリドン等のアミド類、ジメチルスルホキシド、スルホラン等の硫黄化合物が挙げられる。
【0027】
本発明の塗布液には、形成される導電膜の透過率等の物性を変えるために、Sn、Sb、In、Zn、Ga、Ru、Al、Si、TiおよびZrからなる群から選ばれた1種以上の元素の化合物(特に酸化物の微粒子)を、添加剤として添加できる。
【0028】
例えば、SnをドープしたIn23やSbをドープしたSnO2は、形成される導電膜の抵抗を上昇させずに透過率を制御できるため、添加剤として好適に用いられる。また、SiO2(特にケイ酸エチル等を加水分解して得られるSiO2ゾル)は、塗布液の濡れ性が向上するため、添加剤として好適である。TiO2も、塗布液の濡れ性および形成される導電膜の色調を制御できるため、添加剤として好適である。
【0029】
添加剤は、微粒子またはアルコキシドの加水分解物の形態で本発明の塗布液に添加してもよく、また、超音波分散機やサンドミル等の分散機により分散した液として添加してもよい。さらに塗布液の基体への濡れ性を向上させるために、本発明の塗布液に種々の界面活性剤を添加してもよい。
【0030】
本発明の塗布液は、それ自体で基体上への塗布液として使用できる。本発明の塗布液の溶媒として、低沸点溶媒を用いた場合には、室温下での乾燥でも導電膜を形成できる。溶媒として、沸点が100〜250℃にある中〜高沸点溶媒を用いた場合には、室温乾燥しても溶媒が塗膜中に残留するため、加熱処理を行うことが好ましい。加熱温度の上限は、導電膜が形成される基体として用いられるガラス、プラスチック等の軟化点によって決定される。基体がガラスである場合、好ましい加熱温度範囲は100〜500℃程度である。
【0031】
本発明の塗布液を基体上に塗布し、必要に応じて乾燥、加熱等を行って導電膜が形成される。かかる導電膜を形成する基体がブラウン管パネル等であって、低反射性能を付与したい場合においては、導電膜上に低屈折率膜を形成することで、光の干渉作用を利用した低反射導電膜を形成できる。例えば、基体がガラス(屈折率n=1.52)の場合、本発明の塗布液を用いて形成した導電膜の上に、導電膜の屈折率の約(1/1.23)の屈折率の低屈折率膜を形成することにより、膜の反射率を最も低減できる。膜の反射率の低減には、可視光領域(特に555nm)の反射率を低減することが好ましいが、実用上は反射外観等を考慮し、適宜決定することが好ましい。
【0032】
このような2層からなる低反射導電膜における低屈折率膜としては、形成される膜の硬度等の点から、ケイ素化合物を含有する塗布液を用いて形成することが好ましい。さらに、屈折率を低減するため、低屈折率膜形成用の塗布液にMgF2微粒子等を添加してもよい。
【0033】
低屈折率膜形成用の塗布液に含有されるケイ素化合物としては、Siアルコキシド等の種々のものが使用でき、例えば、Si(OR)y・R’4-y(yは3または4であり、R、R’はアルキル基を示す)で示されるSiアルコキシドまたはその加水分解物が挙げられる。
Siアルコキシドの具体例としては、シリコンエトキシド、シリコンメトキシド、シリコンイソプロポキシド、シリコンブトキシドなどが挙げられる。
【0034】
Siアルコキシドは、アルコール、エステル、エーテル等に溶解しても使用でき、Siアルコキシド溶液に塩酸、硝酸、硫酸、酢酸、ギ酸、マレイン酸、フッ酸、またはアンモニア水溶液を添加してSiアルコキシドを加水分解しても使用できる。また、低屈折率膜形成用の塗布液において、Siアルコキシドの含有割合は、液の保存安定性の観点から、溶媒に対して30重量%(固形分換算)以下であることが好ましい。
【0035】
また、低屈折率膜形成用の塗布液には、形成される膜の強度向上のために、バインダーとして、Zr、Ti、Sn、Al等のアルコキシドや、これらの加水分解物を添加して、ZrO2、TiO2、SnO2およびAl23のうち1種、または2種以上の複合物を低屈折率膜中に含有させることができる。さらに低屈折率膜形成用の塗布液の、導電膜や基体に対する濡れ性を向上させるために、この低屈折率膜形成用の塗布液に界面活性剤を添加してもよい。添加される界面活性剤としては、直鎖アルキルベンゼンスルホン酸ナトリウムやアルキルエーテル硫酸エステル等が挙げられる。
【0036】
本発明の塗布液は、多層の反射防止膜の製造にも利用できる。多層の反射防止膜の構成としては、反射防止をしたい光の波長をλとして、基体側より、高屈折率層−低屈折率層を光学厚みλ/2−λ/4、またはλ/4−λ/4で形成した2層の反射防止膜、基体側より中屈折率層−高屈折率層−低屈折率層を光学厚みλ/4−λ/2−λ/4で形成した3層の反射防止膜、基体側より低屈折率層−中屈折率層−高屈折率層−低屈折率層を光学厚みλ/2−λ/2−λ/2−λ/4で形成した4層の反射防止膜等が典型的な例として知られている。
本発明の塗布液は、これらの多層の反射防止膜における中屈折率層または高屈折率層の形成に使用でき、低屈折率膜形成用の塗布液は低屈折率層の形成に使用できる。
【0037】
本発明の塗布液が塗布される基体としては、特に限定されず、ブラウン管パネル、複写機用ガラス板、計算機用パネル、クリーンルーム用ガラス、CRTまたはLCD等の表示装置前面板等の各種ガラス、プラスチック等が挙げられる。
【0038】
塗布液の基体上への塗布方法としては、スピンコート、ディップコート、スプレーコート等の方法が好適に使用できる。また、スプレーコート法を用いて表面に凹凸を形成し、形成される膜に防眩効果を付与してもよく、また、その上にシリカ被膜等のハードコート層を設けてもよい。または、本発明の塗布液をスピンコート法またはスプレーコート法で形成し、その上に低屈折率膜形成用の塗布液をスプレーコートして、表面に凹凸を有する低屈折率膜(例えばシリカ膜)のノングレアコート層を設けてもよい。
【0039】
本発明の塗布液と低屈折率膜形成用塗布液の基体に対する塗布量(膜厚)は、被塗布基体の種類、被塗布基体の使用目的等によって変わるので、一概には規定できないが、塗布量は、硬化後の膜の厚みが約5〜150nmとなる範囲が好適である。5nm未満では、導電膜の導電性が不充分であり、また2層または多層の膜を形成した場合の低反射性確保等の点で不充分である。150nm超では導電膜の透過率が不充分であり、また2層または多層の膜を形成した場合の低反射性確保等の点で不充分である。
【0040】
また、低屈折率膜形成用塗布液の塗布量は硬化後の膜の厚みが約5〜150nmとなる範囲が好適である。5nm未満では、膜強度が不充分であり、また2層または多層の膜を形成した場合の低反射性確保等の点で不充分である。150nm超では、膜の外観および低反射性等の点で好ましくない。
なお、上述した導電膜および低屈折率膜の上下には、他の膜を介在させて多層構造の低反射導電膜とすることもできる。
【0041】
本発明の塗布液により得られる導電膜(低屈折率膜が形成されている場合は低屈折率膜の表面)の表面抵抗(シート抵抗)は、10×103Ω/□以下、特に5×103Ω/□以下が好ましい。
【0042】
【作用】
一般に酸化物超微粒子は表面に水酸基を有するため、水素結合に起因する鎖状連鎖構造を液中で形成しうると考えられるが、金属微粒子の場合、連鎖の起源である表面の水酸基が存在しないため、連鎖構造が形成され難く、ゾルの分散性と塗膜の導電性の2点を両立させることは難しい。
【0043】
本発明においては、室温付近では水に溶解し、加熱によりゲル化し、保護コロイド効果が発現する、セルロース誘導体からなる水溶性樹脂を、金属微粒子の分散安定剤として使用することにより、分散安定性、および導電性に優れた導電膜形成用塗布液が得られる。
【0044】
金属微粒子が分散したゾルの安定性の観点からは、ゾルは金属微粒子単独で分散状態を維持していることが好ましいが、形成する膜の導電性の観点からは、金属微粒子同士が連鎖構造を有することが必要である。本発明の塗布液は、ゾル中の金属微粒子が鎖状連鎖構造をなし、かつ分散している。
【0045】
本発明の塗布液に用いられる水溶性樹脂である、セルロース誘導体は、室温付近の水中で、分子構造内の水和性部位は通常の水和を生じ疎水性部位は疎水性水和を生じ溶解しているものであるが、溶液の温度を上げることにより、疎水性部位近傍の水の構造性が、熱の影響で乱され、疎水性部位の水和がこわれ、分子としてミセルを形成するものと推察される。このミセルがゲル化の主因であると考えられる。このゲル化は温度に起因するため、温度制御のみで、分散安定性、および導電性に優れた塗布液を実現できる。
【0046】
本発明の塗布液における金属微粒子の鎖状連鎖構造は、形成された導電膜においても保たれる傾向があることが、膜をAFM(原子間力顕微鏡)で観察することにより判明している。導電膜においても、金属微粒子の鎖状連鎖構造によって、導電性が確保されていると考えられる。
【0047】
【実施例】
以下の例において得られたゾル中の粒子の平均一次粒径は透過型電子顕微鏡によって測定した。
[例1]
「Ag微粒子分散液の調製」
ガラス容器内で、蒸留水1L(リットル)に硝酸銀(Ag63.5重量%)を0.78g、メチルセルロース(平均分子量100000)を0.1g溶解した。これに水酸化ナトリウム水溶液(1.12重量%濃度)50gおよびホルムアルデヒド水溶液(36重量%濃度)5gの混合物を添加し撹拌した。添加直後にAg微粒子が生成した。その後、溶液を50℃に加温して1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Ag固形分換算で1.2重量%のAgゾル液40gを得た。この分散液のAg微粒子の平均粒径は12nmであった(A1液とする)。
【0048】
「Pd微粒子分散液の調製」
ガラス容器内で、蒸留水1Lに塩化パラジウム(II)(Pd60.0重量%)を0.83g、エチルセルロース(平均分子量50000)を0.1g溶解した。これに水酸化リチウム水溶液(1.12重量%濃度)70gおよびホルムアルデヒド水溶液(36重量%濃度)8gの混合物を添加し撹拌した。その後、溶液を60℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Pd固形分換算で1.3重量%のPdゾル液38gを得た。この分散液のPd微粒子の平均粒径は15nmであった(B1液とする)。
【0049】
「導電膜用コート液の調製」
(A1液)と(B1液)をAg:Pd=4:6(重量比)となるように混合し、エタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、メチルセルロースとエチルセルロースの合計が0.07重量%、(メチルセルロース+エチルセルロース)/(Ag+Pd)が20重量%となるように調整した(C1液とする)。
【0050】
「ケイ素化合物含有液の調製」
シリコンエトキシド50gをエタノール200gに溶解し、撹拌下で濃硝酸1.5gと純水33gとの混合溶液を滴下し、室温で2時間撹拌してSiO2濃度4.9重量%の液を得た(D1液とする)。
このD1液を、プロピレングリコールモノメチルエーテル/イソプロパノール/ジアセトンアルコール=50:40:10(重量比)の混合溶媒でSiO2固形分が0.70重量%となるように希釈した(E1液とする)。
【0051】
「塗布および硬化」
C1液20gを、表面温度45℃に加温した14インチブラウン管パネル表面にスピンコート法で、硬化時の膜厚が40nmになるように100rpm、60秒間の条件で塗布した後、E1液20gをC1液の塗布時と同一のスピンコート条件で硬化時の膜厚が60nmになる塗布量で塗布した後、160℃で30分間加熱し、低反射導電膜を得た。
【0052】
[例2]
「Au微粒子分散液の調製」
ガラス容器内で、蒸留水1Lに塩化金酸(Au48.0重量%)を1.04g、ヒドロキシプロピルセルロース(平均分子量25000)を0.1g溶解した。これに水酸化カリウム水溶液(1.12重量%濃度)95gおよびホルムアルデヒド水溶液(36重量%濃度)15gの混合物を添加し撹拌した。添加直後にAu微粒子が生成した。その後、溶液を40℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Au固形分換算で1.2重量%のAuゾル液40gを得た。この分散液のAu微粒子の平均粒径は10nmであった(F1液とする)。
【0053】
F1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、ヒドロキシプロピルセルロースが0.07重量%、ヒドロキシプロピルセルロース/Auが20重量%となるように調整した(F2液とする)。
例1におけるC1液のかわりにF2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0054】
[例3]
「Ru微粒子分散液の調製」
ガラス容器内で、蒸留水1Lに塩化ルテニウム水和物(Ru40.0重量%)を1.25g、カルボキシメチルセルロース(平均分子量60000)を0.1g溶解した。これに水素化ホウ素ナトリウム水溶液(10重量%濃度)20gを添加し撹拌した。添加直後にRu微粒子が生成した。その後、溶液を40℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Ru固形分換算で1.5重量%のRuゾル液31gを得た。この分散液のRu微粒子の平均粒径は10nmであった(G1液とする)。
【0055】
G1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、カルボキシメチルセルロースが0.07重量%、カルボキシメチルセルロース/Ruが20重量%となるように調整した(G2液とする)。
例1におけるC1液のかわりにG2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0056】
[例4]
「Pt微粒子分散液の調製」
ガラス容器内で、蒸留水1Lにヘキサクロロ白金(IV)酸水和物(Pt40.0重量%)を1.25g、エチルヒドロキシエチルセルロース(平均分子量100000)を0.1g溶解した。これに水酸化ナトリウム水溶液(1.12重量%濃度)50gおよびホルムアルデヒド水溶液(36重量%濃度)5gの混合物を添加し撹拌した。添加直後にPt微粒子が生成した。その後、溶液を50℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Pt固形分換算で1.0重量%のPtゾル液45gを得た。この分散液のPt微粒子の平均粒径は12nmであった(H1液とする)。
【0057】
H1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、エチルヒドロキシエチルセルロースが0.07重量%、エチルヒドロキシエチルセルロース/Ptが20重量%となるように調整した(H2液とする)。
例1におけるC1液のかわりにH2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0058】
[例5]
「Ir微粒子分散液の調製」
ガラス容器内で、蒸留水1Lにヘキサクロロイリジウム(IV)酸水和物(Ir38.0重量%)を1.32g、ヒドロキシプロピルメチルセルロース(平均分子量60000)を0.1g溶解した。これに水酸化ナトリウム水溶液(1.12重量%濃度)80gおよびホルムアルデヒド水溶液(36重量%濃度)15gの混合物を添加し撹拌した。添加直後にIr微粒子が生成した。その後、溶液を45℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Ir固形分換算で1.0重量%のIrゾル液45gを得た。この分散液のIr微粒子の平均粒径は12nmであった(J1液とする)。
【0059】
J1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、ヒドロキシプロピルメチルセルロースが0.07重量%、ヒドロキシプロピルメチルセルロース/Irが20重量%となるように調整した(J2液とする)。
例1におけるC1液のかわりにJ2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0060】
[例6]
「Re微粒子分散液の調製」
ガラス容器内で、蒸留水1Lに過レニウム酸水溶液(Re38.0重量%)を1.32g、ヒドロキシプロピルセルロース(平均分子量60000)を0.1g溶解した。これに水酸化カリウム水溶液(1.12重量%濃度)95gおよびホルムアルデヒド水溶液(36重量%濃度)15gの混合物を添加し撹拌した。
添加直後にRe微粒子が生成した。その後、溶液を45℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Re固形分換算で1.0重量%のReゾル液45gを得た。この分散液のRe微粒子の平均粒径は16nmであった(K1液とする)。
【0061】
K1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.37重量%、ヒドロキシプロピルセルロースが0.07重量%、ヒドロキシプロピルセルロース/Reが2重量%となるように調整した(K2液とする)。
例1におけるC1液のかわりにK2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0062】
[例7]
「Rh微粒子分散液の調製」
ガラス容器内で、蒸留水1Lに塩化ロジウム(III)水和物(Rh40.0重量%)を1.25g、エチルセルロース(平均分子量40000)を0.1g溶解した。これに水酸化カリウム水溶液(1.12重量%濃度)95gおよびホルムアルデヒド水溶液(36重量%濃度)15gの混合物を添加し撹拌した。添加直後にRh微粒子が生成した。その後、溶液を45℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Rh固形分換算で1.2重量%のRhゾル液40gを得た。この分散液のRh微粒子の平均粒径は18nmであった(L1液とする)。
【0063】
L1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、エチルセルロースが0.07重量%、エチルセルロース/Rhが20重量%となるように調整した(L2液とする)。
例1におけるC1液のかわりにL2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0064】
[例8]
「Cu微粒子分散液の調製」
ガラス容器内で、蒸留水1Lに塩化第二銅(II)二水和物(Cu37.3重量%)を1.35g、ヒドロキシプロピルセルロース(平均分子量25000)を0.1g溶解した。これに水素化ホウ素ナトリウム水溶液(10重量%濃度)20gを添加し撹拌した。添加直後にCu微粒子が生成した。その後、溶液を40℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Cu固形分換算で1.5重量%のCuゾル液31gを得た。この分散液のCu微粒子の平均粒径は18nmであった(M1液とする)。
【0065】
(F1液)と(M1液)をAu:Cu=7:3(重量比)となるように混合し、エタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、ヒドロキシプロピルセルロースが0.07重量%、ヒドロキシプロピルセルロース/(Cu+Au)が20重量%となるように調整した(M2液とする)。
例1におけるC1液のかわりにM2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0066】
[例9]
「Ni微粒子分散液の調製」
ガラス容器内で、蒸留水1Lに塩化ニッケル(II)六水和物(Ni24.7重量%)を2.0g、メチルセルロース(平均分子量60000)を0.1g溶解した。これに水素化ホウ素ナトリウム水溶液(10重量%濃度)30gを添加し撹拌した。添加直後にNi微粒子が生成した。その後、溶液を45℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Ni固形分換算で1.5重量%のNiゾル液31gを得た。この分散液のNi微粒子の平均粒径は18nmであった(N1液とする)。
【0067】
(F1液)と(N1液)をAu:Ni=8:2(重量比)となるように混合し、エタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、ヒドロキシプロピルセルロースとメチルセルロースの合計が0.07重量%、(ヒドロキシプロピルセルロース+メチルセルロース)/(Au+Ni)が20重量%となるように調整した(N2液とする)。
例1におけるC1液のかわりにN2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0068】
[例10]
「Ru−Re合金微粒子分散液の調製」
ガラス容器内で、蒸留水2Lに過レニウム酸水溶液(Re38.0重量%)を1.32g、塩化ルテニウム水和物(Ru40.0重量%)を1.25g、エチルセルロース(平均分子量50000)を0.2g溶解した。これに水酸化カリウム水溶液(1.12重量%濃度)180gおよびホルムアルデヒド水溶液(36重量%濃度)25gの混合物を添加し撹拌した。添加直後にRe−Ru微粒子が生成した。その後、溶液を45℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Re−Ru固形分換算で1.2重量%のRe−Ruゾル液75gを得た。この分散液のRe−Ru微粒子の平均粒径は19nmであった(P1液とする)。
【0069】
P1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、エチルセルロースの合計が0.07重量%、エチルセルロース/(Re+Ru)が20重量%となるように調整した(P2液とする)。
例1におけるC1液のかわりにP2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0070】
[例11]
「Au−Pd合金微粒子分散液の調製」
ガラス容器内で、蒸留水2Lに、塩化金酸(Au48.0重量%)を1.66g、硝酸パラジウム水溶液(Pd5重量%)を4.0g、ヒドロキシプロピルセルロース(平均分子量25000)を0.2g溶解した。これに水酸化カリウム水溶液(1.12重量%濃度)180gおよびホルムアルデヒド水溶液(36重量%濃度)30gの混合物を添加し撹拌した。添加直後にAu−Pd微粒子が生成した。その後、陽イオン交換樹脂、陰イオン交換樹脂により脱塩を行った後、溶液を42℃に加温し、1時間撹拌し、限外濾過により濃縮処理を行い、Au−Pd固形分換算で1.2重量%のAu−Pdゾル液80gを得た。この分散液のAu−Pd微粒子の平均粒径は10nmであった(Q1液とする)。
【0071】
Q1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、ヒドロキシプロピルセルロースが0.07重量%、ヒドロキシプロピルセルロース/(Au+Pd)が20重量%となるように調整した(Q2液とする)。
例1におけるC1液のかわりにQ2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0072】
Q2液の透過型電子顕微鏡(TEM)写真を図1に示す。図において黒く見える部分が金属微粒子の連なったものである。図1より、本例の塗布液においては、Au−Pd微粒子の大半が、粒子相互間に空隙なく、2個以上結合しており、かつ鎖状連鎖構造を形成して分散していることがわかる。
【0073】
[例12](比較例)
ガラス容器内で、蒸留水1Lに塩化金酸(Au48.0重量%)を1.04g、ポリビニルピロリドン(平均分子量40000)を0.1g溶解した。これに水酸化カリウム水溶液(1.12重量%濃度)95gおよびホルムアルデヒド水溶液(36重量%濃度)15gの混合物を添加し撹拌した。添加直後にAu微粒子が生成した。その後、溶液を40℃に加温し、1時間撹拌し、さらに限外濾過により脱塩濃縮処理を行い、Au固形分換算で1.2重量%のAuゾル液40gを得た。この分散液のAu微粒子の平均粒径は19nmであった(R1液とする)。
【0074】
R1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、ポリビニルピロリドンが0.07重量%、ポリビニルピロリドン/Auが20重量%となるように調整した(R2液)。
例1におけるC1液のかわりにR2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0075】
[例13](比較例)
ITO粒子(酸化インジウムと酸化錫の総量に対して酸化錫を8重量%含む酸化インジウム粒子)をpH2の酸性水溶液に添加し、サンドミルで1時間粉砕解膠を行った。この液を限外濾過により脱塩濃縮処理を行い、ITO粒子固形分換算で1.2重量%のITOゾル液80gを得た。この分散液のITO微粒子の平均粒径は48nmであった(S1液とする)。
【0076】
S1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.95重量%となるように調整した(S2液とする)。
例1におけるC1液のかわりにS2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0077】
[例14](比較例)
ヒドロキシプロピルセルロース0.2gのかわりにポリアクリル酸(平均分子量5000)0.2gを用いたこと以外は、例11と同様にして、Au−Pd固形分換算で1.2重量%のAu−Pdゾル液80gを得た。この分散液のAu−Pd微粒子の平均粒径は10nmであった(T1液とする)。
【0078】
T1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、ポリアクリル酸が0.07重量%、ポリアクリル酸/(Au+Pd)が20重量%となるように調整した(T2液とする)。
例1におけるC1液のかわりにT2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0079】
T2液のTEM写真を図2に示す。図において黒く見える部分が金属微粒子が凝集したものである。図2より、本例の塗布液においては、Au−Pd微粒子の大半が、凝集して大きな塊を形成しており、分散安定性に欠けることがわかる。
【0080】
[例15](比較例)
ヒドロキシプロピルセルロース0.2gのかわりにポリビニルアルコール(鹸化度81.5、平均分子量50000)0.2gを用いたこと以外は、例11と同様にして、Au−Pd固形分換算で1.2重量%のAu−Pdゾル液80gを得た。この分散液のAu−Pd微粒子の平均粒径は10nmであった(U1液とする)。
【0081】
U1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.30重量%、ポリビニルアルコールが0.06重量%、ポリビニルアルコール/(Au+Pd)が20重量%となるように調整した(U2液とする)。
例1におけるC1液のかわりにU2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0082】
U2液のTEM写真を図3に示す。図において黒く見える部分が金属微粒子である。図3より、本例の塗布液においては、Au−Pd微粒子の大半が、他の粒子から離れて、粒子単独で分散していることがわかる。
【0083】
[例16](比較例)
ヒドロキシプロピルセルロース0.2gのかわりにポリビニルピロリドン(平均分子量40000)0.2gを用いたこと以外は、例11と同様にして、Au−Pd固形分換算で1.2重量%のAu−Pdゾル液80gを得た。この分散液のAu−Pd微粒子の平均粒径は10nmであった(V1液とする)。
【0084】
V1液をエタノールおよび水で希釈し、エタノールが80重量%、金属微粒子が0.35重量%、ポリビニルピロリドンが0.07重量%、ポリビニルピロリドン/(Au+Pd)が20重量%となるように調整した(V2液とする)。
例1におけるC1液のかわりにT2液を使用したこと以外は例1と同様にして低反射導電膜を得た。
【0085】
V2液のTEM写真を図4に示す。図において黒く見える部分が金属微粒子である。図4より、本比較例の塗布液においては、Au−Pd微粒子は、接近してはいるが、互いに空隙をあけて分散していることがわかる。
【0086】
[評価結果]
例1〜16で得られた各低反射導電膜の物性を以下の方法で測定した結果を表1に示す。なお、表1において4E2は4×102を意味し、他も同様である。
(1)導電性:ローレスタ抵抗測定器(三菱油化製)により膜表面の表面抵抗(Ω/□)を測定した。測定に際しては低屈折率膜であるシリカ膜表面で表面抵抗を測定した。
(2)透過率:日立製作所製スペクトロフォトメータU−3500により380〜780nmでの視感透過率(%)を測定した。
(3)反射率:GAMMA分光反射率スペクトル測定器により膜の400〜700nmでの視感反射率(%)を測定した。
【0087】
(4)耐擦傷性:1kg荷重下で消しゴム(ライオン社製50−50)で膜表面を50回往復後、その表面の傷の付き具合を目視で判断した。評価基準は、傷が全く付かない場合を○、傷が多少付く場合を△とした。
(5)耐候性:センエンジニアリング社製PHOTODRYCLEARE PL7−200により254nmを主波長とする紫外線を20時間照射した後での膜の導電性を測定した。
(6)耐薬品性:10重量%濃度の塩酸水溶液に膜を72時間浸漬した後の膜の導電性を測定した。
【0088】
【表1】

Figure 0003882419
【0089】
【発明の効果】
本発明によれば、塗布液の状態で分散安定性に優れており、ブラウン管フェイス面等のガラス基体上に、低温熱処理により、耐候性、および外観に優れ、電磁波シールド性能も発揮しうる高い導電性を有する導電膜を形成できる。
【図面の簡単な説明】
【図1】例11の塗布液の透過型電子顕微鏡(TEM)写真。
【図2】例14の塗布液のTEM写真。
【図3】例15の塗布液のTEM写真。
【図4】例16の塗布液のTEM写真。[0001]
BACKGROUND OF THE INVENTION
The present invention provides a conductive film forming coating liquid, particularly a conductive film formation capable of forming a conductive film having excellent conductivity capable of exhibiting electromagnetic wave shielding performance on the surface of a glass substrate such as a cathode ray tube panel. It is related with the coating liquid. The present invention further relates to a conductive film formed using such a conductive film forming coating solution, and a low reflective conductive film using such a conductive film.
[0002]
[Prior art]
Since the cathode ray tube operates at a high voltage, static electricity is induced on the surface of the cathode ray tube at start-up or termination. Static electricity causes problems such as dust adhering to the surface, causing a decrease in contrast of a display image, and discomfort due to a light electric shock when directly touched by a finger.
[0003]
Conventionally, in order to prevent this phenomenon, attempts have been made to provide an antistatic film on the CRT panel surface. For example, the CRT panel surface is heated to about 350 ° C., and conductive oxidation such as tin oxide and indium oxide is performed by a CVD method. A method of providing a physical layer on a panel surface (Japanese Patent Laid-Open No. 63-76247) has been proposed.
[0004]
However, in this method, in addition to the cost of the apparatus, there is a problem that the phosphor in the cathode ray tube falls off and the dimensional accuracy is lowered because the surface of the cathode ray tube is heated to a high temperature. Further, tin oxide is generally used as the material for the conductive layer, but there is a drawback that it is difficult to obtain a high-performance film having sufficient conductivity by low-temperature treatment.
[0005]
In recent years, radio wave interference to electronic devices due to electromagnetic noise has become a social problem, and standards have been created and regulated to prevent them. As a solution to the electromagnetic wave noise problem, an electromagnetic wave shield can be performed by providing a conductive coating on the surface of the cathode ray tube and reflecting the electromagnetic wave hitting the conductive coating by the action of eddy currents induced in the coating. Are known.
[0006]
However, in order to exhibit such performance, it is necessary for the conductive film to have excellent conductivity enough to withstand high electric field strength, but to obtain such a highly conductive film. Was even more difficult.
[0007]
On the other hand, regarding a method for producing a conductive film, for example, it has been proposed to form a conductive film by applying a mixed solution of a metal salt and a reducing agent to a substrate (Japanese Patent Laid-Open No. 6-310058). Since the stability of the salt solution is poor, it is necessary to apply the mixed solution to the substrate immediately after mixing the solution and the reducing agent. Also, since the film itself is poor in film formability, the appearance of the obtained film is There was a drawback of being bad.
[0008]
In general, as a method for preparing a metal, particularly a noble metal colloid, a method of reducing and precipitating fine noble metal particles in a dilute solution using a reducing agent is known. At this time, the reduced and precipitated metal fine particles are stabilized by an inorganic ion called a protective colloid, an organic acid, a polymer resin, and the like, and are not aggregated and precipitated in the liquid and can maintain a dispersed state.
[0009]
However, as it is, the effect of the protective colloid is strong and it is difficult to obtain a conductive film having sufficient conductivity. Therefore, by-product ions generated during reduction deposition and excess protective colloid should be removed by a method such as desalting. is required. When citrate ions, formic acid, etc. are used as protective colloids, the excess can be removed by desalting, etc., but the stability of the sol is impaired, and the coating liquid for forming a conductive film with excellent dispersion stability is used. Realization was difficult.
[0010]
In addition, polymer resins known to act as protective colloids include those having an ionic dissociation group such as polyacrylic acid, polyacrylonitrile saponified product, polystyrene sulfonic acid, polyvinyl alcohol, polyvinyl acetate saponified product, Examples include those having a hydroxyl group such as polyhydroxyethyl methacrylate, those having an electron pair donating atom (N atom) in the molecule such as polyvinylpyrrolidone, and natural polymers such as starch and gelatin.
[0011]
However, among these polymers, polymers having ionic dissociation groups and hydroxyl groups, in the presence of metal ions, polar groups such as ionic dissociation groups and hydroxyl groups serve as crosslinking points between polymer molecules via the metal ions, For this reason, sufficient protective colloid effects are not exhibited in the presence of metal ions. A film having an electron pair donating atom (N atom) in the molecule is easily adsorbed to the metal fine particles, but the effect as a protective colloid is too strong, and the metal fine particles approach a monodispersed state. It is difficult to form. In addition, when a natural polymer is cooled, it is difficult to control as a protective colloid because it forms a crosslink by hydrogen bonding and easily gels.
[0012]
As described above, the polymer resin conventionally known as a protective colloid is not suitable as a protective colloid for the metal fine particles of the coating liquid for forming a conductive film, has excellent dispersion stability in the state of the coating liquid, and has high conductivity. A coating liquid for forming a conductive film capable of forming a conductive film having a thickness is not obtained.
[0013]
On the other hand, in order to form a conductive film, a liquid containing a metal salt and conductive oxide fine particles, or a liquid containing fine particles whose surfaces are coated with a metal salt and a metal (Japanese Patent Laid-Open No. 7-258862). Proposed. However, the conductive oxide fine particles are inferior in conductivity to the case of a single metal, and the fine particles whose surface is coated with a metal also have contact resistance at the interface between the metal and the non-metallic fine particles, resulting in a result. The conductivity of the film was not sufficient.
[0014]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art, and is excellent in dispersion stability of metal fine particles in the state of a coating solution. On the surface of a glass substrate such as a cathode ray tube face surface, the weather resistance and appearance are improved by low-temperature heat treatment. An object of the present invention is to provide a coating liquid for forming a conductive film that can form a conductive film having high conductivity that is excellent and can also exhibit electromagnetic shielding performance.
[0015]
Another object of the present invention is to provide a conductive film formed using such a conductive film-forming coating solution, and a low reflective conductive film having excellent conductivity and antireflection effect using the conductive film.
[0016]
[Means for Solving the Problems]
The coating liquid for forming a conductive film of the present invention (hereinafter simply referred to as a coating liquid) comprises a sol in which metal fine particles are dispersed, and the metal fine particles in the sol have a chain chain structure and are dispersed. And
[0017]
FIG. 1 shows a transmission electron microscope (TEM) photograph of an example of the coating solution of the present invention. The coating liquid of the present invention is obtained, for example, as follows.
That is, by adding a reducing agent to a liquid containing a metal ion, a water-soluble resin composed of a cellulose derivative, and water, the metal fine particles are reduced and precipitated, and the water-soluble resin is gelled by heating. The coating liquid of the present invention is obtained by dispersing fine particles.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The metal fine particles are not particularly limited, but are selected from the group consisting of Ag, Au, Pd, Ru, Pt, Ir, Re, Rh, Cu, and Ni for reasons such as conductivity, chemical practicality, and durability. It is preferable that it is a seed or more. Examples of two or more, that is, alloy metals include Au-Pd, Ru-Re, Au-Ag, and Ag-Pd.
The metal fine particles can be obtained by adding a reducing agent to a liquid containing metal ions and a water-soluble resin made of a cellulose derivative to cause reduction precipitation.
[0019]
The metal ion reducing agent is not particularly limited, and hydrides such as sodium borohydride, potassium borohydride, sodium hydride, lithium hydride, hydrazine, formaldehyde, formic acid, oxalic acid, sodium phosphinate, etc. Preferably used. As described later, the reducing agent is preferably removed by desalting and concentration treatment such as ultrafiltration after the metal fine particles are dispersed by gelation of the water-soluble resin.
[0020]
The metal fine particles preferably have an average primary particle size of 100 nm or less. When the average primary particle size of the metal fine particles exceeds 100 nm, visible light is scattered in the formed film, and the transparency of the film is remarkably lowered, and the dispersion uniformity and dispersion stability of the metal fine particles in the coating solution are also observed. Is significantly impaired. The average primary particle diameter of the metal fine particles is particularly preferably from 5 to 30 nm, and preferably from 10 to 20 nm, from the viewpoint of dispersion stability in the coating liquid and the conductive properties of the film formed by applying the liquid. Further preferred.
[0021]
The concentration of the metal fine particles is preferably 0.01 to 5% by weight with respect to the total weight of the coating solution. When the metal fine particle concentration exceeds 5% by weight, the transparency of the formed film is remarkably lowered, and when the metal fine particle concentration is less than 0.01% by weight, the resistance of the formed film increases. It is particularly preferably 0.05 to 2% by weight.
[0022]
The metal fine particles reduced and precipitated by the reducing agent are dispersed by gelling the water-soluble resin by heating.
The water-soluble resin is made of a cellulose derivative. The temperature at which the water-soluble resin gels and the viscosity of the solution rapidly rises (gelation point) varies depending on the composition of the solution, but is preferably 35 ° C. or higher in actual work. When it is lower than 35 ° C., an operation such as cooling is required for preparing the coating solution.
[0023]
Moreover, it is preferable that the average molecular weight (average molecular weight by gel permeation chromatographic analysis) of water-soluble resin is 5000-5 million. When the average molecular weight is less than 5000, the protective colloid effect by the water-soluble resin is reduced, so that the stability of the metal fine particles in the liquid is inferior, and the aggregation tends to proceed with time. On the other hand, when the average molecular weight exceeds 5000000, the distance between the metal fine particles in the formed film is widened, and the conductivity of the film is lowered. The average molecular weight is 10,000 to 100,000 because the metal fine particles maintain a chain structure in the coating solution, can be dispersed extremely stably, and the formed film exhibits good conductivity. Is particularly preferred.
[0024]
Examples of the water-soluble resin include one or more selected from the group consisting of carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, ethylhydroxyethylcellulose, and hydroxypropylmethylcellulose.
[0025]
The content of the water-soluble resin is preferably 0.5 to 100% by weight with respect to the metal fine particles. If it is less than 0.5% by weight, the protective colloid effect by the water-soluble resin is low, the aggregation of the metal fine particles proceeds with time, the scattering of visible light in the formed film increases, and the transparency of the film decreases. In addition, precipitation of the metal fine particles in the liquid also occurs. If it exceeds 100% by weight, the dispersibility of the liquid is good, but there are many water-soluble resins remaining in the formed conductive film, the contact between the metal fine particles deteriorates, and the conductive chain property of the formed film is lacking. In addition, the conductivity of the film decreases.
[0026]
In the coating liquid of the present invention, water is used as a solvent, but a solvent for controlling the surface tension, viscosity, etc. of the liquid can be appropriately used in order to adjust the appearance of the conductive film to be formed. Examples of such a solvent include various organic solvents. Examples of organic solvents include methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, tert-butanol and other polyhydric alcohols such as ethylene glycol, ethyl cellosolve, methyl cellosolve , Ethers such as butyl cellosolve and propylene glycol methyl ether, ketones such as 2,4-pentanedione and diacetone alcohol, esters such as ethyl lactate and methyl lactate, amides such as N-methylpyrrolidone, dimethyl sulfoxide, sulfolane And the like.
[0027]
The coating liquid of the present invention was selected from the group consisting of Sn, Sb, In, Zn, Ga, Ru, Al, Si, Ti and Zr in order to change the physical properties such as the transmittance of the conductive film to be formed. A compound of one or more elements (particularly oxide fine particles) can be added as an additive.
[0028]
For example, Sn doped In 2 O Three SnO doped with Sb 2 Can be suitably used as an additive because the transmittance can be controlled without increasing the resistance of the conductive film to be formed. In addition, SiO 2 (In particular, SiO obtained by hydrolyzing ethyl silicate etc. 2 Sol) is suitable as an additive because it improves the wettability of the coating solution. TiO 2 Is also suitable as an additive because the wettability of the coating liquid and the color tone of the conductive film to be formed can be controlled.
[0029]
The additive may be added to the coating liquid of the present invention in the form of fine particles or an alkoxide hydrolyzate, or may be added as a liquid dispersed by a dispersing machine such as an ultrasonic dispersing machine or a sand mill. Furthermore, in order to improve the wettability of the coating solution to the substrate, various surfactants may be added to the coating solution of the present invention.
[0030]
The coating solution of the present invention can be used as a coating solution on a substrate by itself. When a low boiling point solvent is used as the solvent of the coating solution of the present invention, the conductive film can be formed even by drying at room temperature. When a medium to high boiling point solvent having a boiling point of 100 to 250 ° C. is used as the solvent, the solvent remains in the coating film even after drying at room temperature, and thus heat treatment is preferably performed. The upper limit of the heating temperature is determined by the softening point of glass, plastic or the like used as the substrate on which the conductive film is formed. When the substrate is glass, a preferable heating temperature range is about 100 to 500 ° C.
[0031]
The conductive film is formed by applying the coating solution of the present invention on a substrate and drying, heating, or the like as necessary. When the substrate on which such a conductive film is formed is a cathode ray tube panel or the like and it is desired to provide low reflection performance, a low reflective film using a light interference action is formed by forming a low refractive index film on the conductive film. Can be formed. For example, when the substrate is glass (refractive index n = 1.52), the refractive index is about (1 / 1.23) of the refractive index of the conductive film on the conductive film formed using the coating liquid of the present invention. By forming the low refractive index film, the reflectance of the film can be reduced most. In order to reduce the reflectivity of the film, it is preferable to reduce the reflectivity in the visible light region (especially 555 nm), but in practice it is preferable to appropriately determine it in consideration of the reflective appearance and the like.
[0032]
The low refractive index film in such a two-layer low reflective conductive film is preferably formed using a coating solution containing a silicon compound from the viewpoint of the hardness of the film to be formed. Furthermore, in order to reduce the refractive index, the coating liquid for forming the low refractive index film is MgF. 2 Fine particles or the like may be added.
[0033]
As the silicon compound contained in the coating solution for forming the low refractive index film, various compounds such as Si alkoxide can be used, for example, Si (OR) y ・ R ' 4-y (Wherein y is 3 or 4, and R and R ′ each represent an alkyl group) or a hydrolyzate thereof.
Specific examples of the Si alkoxide include silicon ethoxide, silicon methoxide, silicon isopropoxide, silicon butoxide and the like.
[0034]
Si alkoxide can be used even if it is dissolved in alcohol, ester, ether, etc. Hydrochloric acid, nitric acid, sulfuric acid, acetic acid, formic acid, maleic acid, hydrofluoric acid, or aqueous ammonia solution is added to Si alkoxide solution to hydrolyze Si alkoxide. Even you can use it. In the coating liquid for forming a low refractive index film, the content ratio of Si alkoxide is preferably 30% by weight (in terms of solid content) or less with respect to the solvent from the viewpoint of storage stability of the liquid.
[0035]
In addition, in order to improve the strength of the formed film, the coating liquid for forming a low refractive index film is added with an alkoxide such as Zr, Ti, Sn, Al or a hydrolyzate thereof as a binder. ZrO 2 TiO 2 , SnO 2 And Al 2 O Three Among them, one kind or two or more kinds of composites can be contained in the low refractive index film. Furthermore, in order to improve the wettability of the coating liquid for forming a low refractive index film to the conductive film or the substrate, a surfactant may be added to the coating liquid for forming a low refractive index film. Examples of the surfactant to be added include linear sodium alkylbenzene sulfonate and alkyl ether sulfate.
[0036]
The coating liquid of the present invention can also be used for producing a multilayer antireflection film. The multilayer antireflection film has a structure in which the wavelength of light to be antireflection is λ, and the high refractive index layer-low refractive index layer has an optical thickness of λ / 2-λ / 4 or λ / 4-4- from the substrate side. Two layers of antireflection films formed with λ / 4, medium refractive index layer-high refractive index layer-low refractive index layer with optical thickness λ / 4-λ / 2-λ / 4 from the substrate side 4 layers of antireflection film, low refractive index layer-medium refractive index layer-high refractive index layer-low refractive index layer formed with optical thickness λ / 2-λ / 2-λ / 2-λ / 4 from the substrate side An antireflection film or the like is known as a typical example.
The coating liquid of the present invention can be used for forming a medium refractive index layer or a high refractive index layer in these multilayer antireflection films, and the coating liquid for forming a low refractive index film can be used for forming a low refractive index layer.
[0037]
The substrate to which the coating liquid of the present invention is applied is not particularly limited, and various glasses such as cathode ray tube panels, copier glass plates, computer panels, clean room glasses, front plates of display devices such as CRT or LCD, plastics Etc.
[0038]
As a method for applying the coating solution onto the substrate, methods such as spin coating, dip coating, and spray coating can be suitably used. Further, irregularities may be formed on the surface by using a spray coating method to impart an antiglare effect to the formed film, and a hard coat layer such as a silica coating may be provided thereon. Alternatively, the coating liquid of the present invention is formed by a spin coating method or a spray coating method, and a coating liquid for forming a low refractive index film is spray coated thereon, and a low refractive index film (for example, a silica film) having irregularities on the surface. ) Non-glare coat layer may be provided.
[0039]
The coating amount (film thickness) of the coating solution of the present invention and the coating solution for forming a low refractive index film varies depending on the type of substrate to be coated, the purpose of use of the substrate to be coated, etc. The amount is preferably in the range where the thickness of the cured film is about 5 to 150 nm. If it is less than 5 nm, the conductivity of the conductive film is insufficient, and it is insufficient in terms of ensuring low reflectivity when a two-layer or multilayer film is formed. If it exceeds 150 nm, the transmittance of the conductive film is insufficient, and it is insufficient in terms of ensuring low reflectivity when a two-layer or multilayer film is formed.
[0040]
The coating amount of the coating solution for forming a low refractive index film is preferably in a range where the thickness of the cured film is about 5 to 150 nm. If it is less than 5 nm, the film strength is insufficient, and it is insufficient in terms of ensuring low reflectivity when a two-layer or multilayer film is formed. If it exceeds 150 nm, it is not preferable in terms of the appearance of the film and low reflectivity.
Note that another film may be interposed above and below the conductive film and the low refractive index film to form a low-reflection conductive film having a multilayer structure.
[0041]
The surface resistance (sheet resistance) of the conductive film (the surface of the low refractive index film when a low refractive index film is formed) obtained by the coating liquid of the present invention is 10 × 10 Three Ω / □ or less, especially 5 × 10 Three Ω / □ or less is preferable.
[0042]
[Action]
In general, ultrafine oxide particles have a hydroxyl group on the surface, so it is thought that a chain-like chain structure resulting from hydrogen bonding can be formed in the liquid. However, in the case of metal fine particles, there is no surface hydroxyl group that is the origin of the chain. Therefore, it is difficult to form a chain structure, and it is difficult to achieve both the dispersibility of the sol and the conductivity of the coating film.
[0043]
In the present invention, dispersion stability is obtained by using a water-soluble resin composed of a cellulose derivative, which dissolves in water at around room temperature, gels by heating, and develops a protective colloid effect, as a dispersion stabilizer for metal fine particles. And the coating liquid for electrically conductive film formation excellent in electroconductivity is obtained.
[0044]
From the viewpoint of the stability of the sol in which the metal fine particles are dispersed, the sol is preferably maintained in a dispersed state by the metal fine particles alone, but from the viewpoint of the conductivity of the film to be formed, the metal fine particles have a chain structure. It is necessary to have. In the coating solution of the present invention, metal fine particles in the sol have a chain-like chain structure and are dispersed.
[0045]
The cellulose derivative, which is a water-soluble resin used in the coating solution of the present invention, dissolves in water near room temperature, where the hydratable part in the molecular structure causes normal hydration and the hydrophobic part causes hydrophobic hydration. However, by increasing the temperature of the solution, the structure of water near the hydrophobic site is disturbed by the effect of heat, and the hydrophobic site is hydrated, forming micelles as molecules. It is guessed. These micelles are considered to be the main cause of gelation. Since this gelation is caused by temperature, a coating solution having excellent dispersion stability and conductivity can be realized only by controlling the temperature.
[0046]
It has been found by observing the film with an AFM (atomic force microscope) that the chain structure of the metal fine particles in the coating liquid of the present invention tends to be maintained in the formed conductive film. Also in the conductive film, it is considered that the conductivity is ensured by the chain structure of the metal fine particles.
[0047]
【Example】
The average primary particle size of the particles in the sol obtained in the following examples was measured with a transmission electron microscope.
[Example 1]
“Preparation of Ag fine particle dispersion”
In a glass container, 0.78 g of silver nitrate (Ag 63.5 wt%) and 0.1 g of methyl cellulose (average molecular weight 100000) were dissolved in 1 L (liter) of distilled water. A mixture of 50 g of an aqueous sodium hydroxide solution (1.12 wt% concentration) and 5 g of an aqueous formaldehyde solution (36 wt% concentration) was added and stirred. Immediately after the addition, Ag fine particles were formed. Thereafter, the solution was heated to 50 ° C. and stirred for 1 hour, and further desalted and concentrated by ultrafiltration, to obtain 40 g of an Ag sol solution of 1.2 wt% in terms of Ag solid content. The average particle diameter of Ag fine particles in this dispersion was 12 nm (referred to as A1 liquid).
[0048]
“Preparation of Pd fine particle dispersion”
In a glass container, 0.83 g of palladium chloride (II) (Pd 60.0 wt%) and 0.1 g of ethyl cellulose (average molecular weight 50000) were dissolved in 1 L of distilled water. A mixture of 70 g of an aqueous lithium hydroxide solution (1.12% by weight concentration) and 8 g of an aqueous formaldehyde solution (36% by weight concentration) was added and stirred. Thereafter, the solution was heated to 60 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 38 g of a 1.3 wt% Pd sol solution in terms of Pd solid content. The average particle size of Pd fine particles in this dispersion was 15 nm (referred to as B1 solution).
[0049]
"Preparation of coating liquid for conductive film"
(A1 solution) and (B1 solution) were mixed so that Ag: Pd = 4: 6 (weight ratio), diluted with ethanol and water, ethanol was 80 wt%, metal fine particles were 0.35 wt%, The total of methylcellulose and ethylcellulose was adjusted to 0.07% by weight, and (methylcellulose + ethylcellulose) / (Ag + Pd) was adjusted to 20% by weight (referred to as C1 solution).
[0050]
"Preparation of silicon compound-containing liquid"
50 g of silicon ethoxide is dissolved in 200 g of ethanol, a mixed solution of 1.5 g of concentrated nitric acid and 33 g of pure water is added dropwise with stirring, and the mixture is stirred for 2 hours at room temperature. 2 A solution having a concentration of 4.9% by weight was obtained (referred to as solution D1).
This D1 solution was mixed with propylene glycol monomethyl ether / isopropanol / diacetone alcohol = 50: 40: 10 (weight ratio) in a SiO 2 mixture. 2 It diluted so that solid content might be 0.70 weight% (it is set as E1 liquid).
[0051]
"Coating and curing"
After applying 20 g of C1 liquid on the surface of a 14-inch CRT tube heated to a surface temperature of 45 ° C. by spin coating method under conditions of 100 rpm and 60 seconds so that the film thickness upon curing is 40 nm, 20 g of E1 liquid is added. After applying with the same coating amount as that for the application of the C1 solution at an application amount such that the film thickness upon curing was 60 nm, heating was performed at 160 ° C. for 30 minutes to obtain a low-reflection conductive film.
[0052]
[Example 2]
"Preparation of Au fine particle dispersion"
In a glass container, 1.04 g of chloroauric acid (Au 48.0% by weight) and 0.1 g of hydroxypropylcellulose (average molecular weight 25000) were dissolved in 1 L of distilled water. A mixture of 95 g of an aqueous potassium hydroxide solution (1.12% by weight concentration) and 15 g of an aqueous formaldehyde solution (36% by weight concentration) was added and stirred. Au fine particles were formed immediately after the addition. Thereafter, the solution was heated to 40 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 40 g of a 1.2 wt% Au sol solution in terms of Au solid content. The average particle size of Au fine particles in this dispersion was 10 nm (referred to as F1 solution).
[0053]
The F1 solution was diluted with ethanol and water, and adjusted so that ethanol was 80% by weight, metal fine particles were 0.35% by weight, hydroxypropylcellulose was 0.07% by weight, and hydroxypropylcellulose / Au was 20% by weight. (F2 solution).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the F2 liquid was used instead of the C1 liquid in Example 1.
[0054]
[Example 3]
"Preparation of Ru fine particle dispersion"
In a glass container, 1.25 g of ruthenium chloride hydrate (Ru 40.0 wt%) and 0.1 g of carboxymethyl cellulose (average molecular weight 60000) were dissolved in 1 L of distilled water. To this was added 20 g of a sodium borohydride aqueous solution (10 wt% concentration) and stirred. Ru fine particles were formed immediately after the addition. Thereafter, the solution was heated to 40 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 31 g of a Ru sol solution having a weight of 1.5% by weight in terms of Ru solid content. The average particle size of Ru fine particles of this dispersion was 10 nm (G1 solution).
[0055]
The G1 solution was diluted with ethanol and water, and adjusted so that ethanol was 80 wt%, metal fine particles were 0.35 wt%, carboxymethylcellulose was 0.07 wt%, and carboxymethylcellulose / Ru was 20 wt% (G2 Liquid).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the G2 liquid was used instead of the C1 liquid in Example 1.
[0056]
[Example 4]
“Preparation of Pt fine particle dispersion”
In a glass container, 1.25 g of hexachloroplatinum (IV) acid hydrate (Pt 40.0 wt%) and 0.1 g of ethyl hydroxyethyl cellulose (average molecular weight 100000) were dissolved in 1 L of distilled water. A mixture of 50 g of an aqueous sodium hydroxide solution (1.12 wt% concentration) and 5 g of an aqueous formaldehyde solution (36 wt% concentration) was added and stirred. Immediately after the addition, fine Pt particles were formed. Thereafter, the solution was heated to 50 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 45 g of a 1.0 wt% Pt sol solution in terms of Pt solid content. The average particle diameter of Pt fine particles in this dispersion was 12 nm (referred to as H1 liquid).
[0057]
The H1 solution was diluted with ethanol and water, and adjusted so that ethanol was 80 wt%, metal fine particles were 0.35 wt%, ethylhydroxyethylcellulose was 0.07 wt%, and ethylhydroxyethylcellulose / Pt was 20 wt%. (H2 solution).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the H2 liquid was used instead of the C1 liquid in Example 1.
[0058]
[Example 5]
“Preparation of Ir fine particle dispersion”
In a glass container, 1.32 g of hexachloroiridium (IV) acid hydrate (Ir38.0 wt%) and 0.1 g of hydroxypropylmethylcellulose (average molecular weight 60000) were dissolved in 1 L of distilled water. A mixture of 80 g of an aqueous sodium hydroxide solution (1.12% by weight concentration) and 15 g of an aqueous formaldehyde solution (36% by weight concentration) was added and stirred. Ir fine particles were formed immediately after the addition. Thereafter, the solution was heated to 45 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration, to obtain 45 g of an Ir sol solution of 1.0 wt% in terms of Ir solid content. The average particle diameter of Ir fine particles in this dispersion was 12 nm (referred to as J1 liquid).
[0059]
The solution J1 was diluted with ethanol and water, and adjusted so that ethanol was 80% by weight, metal fine particles were 0.35% by weight, hydroxypropylmethylcellulose was 0.07% by weight, and hydroxypropylmethylcellulose / Ir was 20% by weight. (J2 solution).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the J2 liquid was used instead of the C1 liquid in Example 1.
[0060]
[Example 6]
"Preparation of Re fine particle dispersion"
In a glass container, 1.32 g of a perrhenic acid aqueous solution (Re 38.0 wt%) and 0.1 g of hydroxypropylcellulose (average molecular weight 60000) were dissolved in 1 L of distilled water. A mixture of 95 g of an aqueous potassium hydroxide solution (1.12% by weight concentration) and 15 g of an aqueous formaldehyde solution (36% by weight concentration) was added and stirred.
Immediately after the addition, Re fine particles were formed. Thereafter, the solution was heated to 45 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 45 g of a Re sol solution of 1.0% by weight in terms of Re solid content. The average particle size of the Re fine particles in this dispersion was 16 nm (referred to as K1 solution).
[0061]
The K1 solution was diluted with ethanol and water, and adjusted so that ethanol was 80% by weight, metal fine particles were 0.37% by weight, hydroxypropylcellulose was 0.07% by weight, and hydroxypropylcellulose / Re was 2% by weight. (K2 solution).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the K2 solution was used instead of the C1 solution in Example 1.
[0062]
[Example 7]
“Preparation of Rh fine particle dispersion”
In a glass container, 1.25 g of rhodium (III) chloride hydrate (Rh 40.0% by weight) and 0.1 g of ethyl cellulose (average molecular weight 40000) were dissolved in 1 L of distilled water. A mixture of 95 g of an aqueous potassium hydroxide solution (1.12% by weight concentration) and 15 g of an aqueous formaldehyde solution (36% by weight concentration) was added and stirred. Immediately after the addition, Rh fine particles were formed. Thereafter, the solution was heated to 45 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 40 g of 1.2% by weight Rh sol solution in terms of Rh solid content. The average particle size of the Rh fine particles in this dispersion was 18 nm (referred to as L1 solution).
[0063]
Liquid L1 was diluted with ethanol and water, and adjusted so that ethanol was 80 wt%, metal fine particles 0.35 wt%, ethylcellulose 0.07 wt%, and ethylcellulose / Rh 20 wt% (L2 liquid and To do).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the L2 liquid was used instead of the C1 liquid in Example 1.
[0064]
[Example 8]
“Preparation of Cu fine particle dispersion”
In a glass container, 1.35 g of cupric chloride (II) dihydrate (Cu 37.3 wt%) and 0.1 g of hydroxypropyl cellulose (average molecular weight 25000) were dissolved in 1 L of distilled water. To this was added 20 g of a sodium borohydride aqueous solution (10 wt% concentration) and stirred. Cu fine particles were formed immediately after the addition. Thereafter, the solution was heated to 40 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 31 g of a 1.5% by weight Cu sol solution in terms of Cu solid content. The average particle size of Cu fine particles in this dispersion was 18 nm (referred to as M1 solution).
[0065]
(F1 solution) and (M1 solution) are mixed so that Au: Cu = 7: 3 (weight ratio), diluted with ethanol and water, ethanol is 80 wt%, metal fine particles are 0.35 wt%, It adjusted so that hydroxypropyl cellulose might be 0.07 weight% and hydroxypropylcellulose / (Cu + Au) might be 20 weight% (it was set as M2 liquid).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the M2 liquid was used instead of the C1 liquid in Example 1.
[0066]
[Example 9]
“Preparation of Ni fine particle dispersion”
In a glass container, 2.0 g of nickel chloride (II) hexahydrate (Ni 24.7% by weight) and 0.1 g of methylcellulose (average molecular weight 60000) were dissolved in 1 L of distilled water. To this was added 30 g of an aqueous sodium borohydride solution (10 wt% concentration) and stirred. Ni fine particles were formed immediately after the addition. Thereafter, the solution was heated to 45 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 31 g of a 1.5 wt% Ni sol solution in terms of Ni solid content. The average particle size of the Ni fine particles in this dispersion was 18 nm (referred to as N1 solution).
[0067]
(F1 solution) and (N1 solution) are mixed so that Au: Ni = 8: 2 (weight ratio), diluted with ethanol and water, ethanol is 80 wt%, metal fine particles are 0.35 wt%, The total of hydroxypropylcellulose and methylcellulose was adjusted to 0.07% by weight, and (hydroxypropylcellulose + methylcellulose) / (Au + Ni) was adjusted to 20% by weight (referred to as N2 solution).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the N2 liquid was used instead of the C1 liquid in Example 1.
[0068]
[Example 10]
"Preparation of Ru-Re alloy fine particle dispersion"
In a glass container, 1.32 g of a perrhenic acid aqueous solution (Re 38.0 wt%), 1.25 g of ruthenium chloride hydrate (Ru 40.0 wt%), and ethyl cellulose (average molecular weight 50000) in 2 L of distilled water. .2 g was dissolved. A mixture of 180 g of an aqueous potassium hydroxide solution (1.12% by weight concentration) and 25 g of an aqueous formaldehyde solution (36% by weight concentration) was added and stirred. Immediately after the addition, Re-Ru fine particles were formed. Thereafter, the solution was heated to 45 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 75 g of a 1.2 wt% Re-Ru sol solution in terms of Re-Ru solid content. . The average particle size of the Re-Ru fine particles in this dispersion was 19 nm (referred to as P1 solution).
[0069]
The P1 solution was diluted with ethanol and water, and adjusted so that ethanol was 80% by weight, metal fine particles were 0.35% by weight, the total of ethyl cellulose was 0.07% by weight, and ethyl cellulose / (Re + Ru) was 20% by weight. (Referred to as P2 liquid).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the P2 liquid was used instead of the C1 liquid in Example 1.
[0070]
[Example 11]
"Preparation of Au-Pd alloy fine particle dispersion"
In a glass container, 2 L of distilled water, 1.66 g of chloroauric acid (Au 48.0 wt%), 4.0 g of palladium nitrate aqueous solution (Pd 5 wt%), 0.2 g of hydroxypropylcellulose (average molecular weight 25000) Dissolved. A mixture of 180 g of an aqueous potassium hydroxide solution (1.12% by weight concentration) and 30 g of an aqueous formaldehyde solution (36% by weight concentration) was added and stirred. Immediately after the addition, Au-Pd fine particles were formed. Then, after desalting with a cation exchange resin or an anion exchange resin, the solution was heated to 42 ° C., stirred for 1 hour, concentrated by ultrafiltration, and 1 in terms of Au—Pd solid content. 80 g of a 2 wt% Au—Pd sol solution was obtained. The average particle diameter of Au—Pd fine particles in this dispersion was 10 nm (referred to as Q1 solution).
[0071]
Solution Q1 is diluted with ethanol and water so that ethanol is 80% by weight, metal fine particles are 0.35% by weight, hydroxypropylcellulose is 0.07% by weight, and hydroxypropylcellulose / (Au + Pd) is 20% by weight. It adjusted (it is set as Q2 liquid).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the Q2 solution was used instead of the C1 solution in Example 1.
[0072]
A transmission electron microscope (TEM) photograph of the Q2 liquid is shown in FIG. In the figure, the portion that appears black is a series of fine metal particles. From FIG. 1, it can be seen that in the coating liquid of this example, most of the Au—Pd fine particles are bonded with no gap between the particles, and two or more are bonded, and a chained chain structure is formed and dispersed. Recognize.
[0073]
[Example 12] (Comparative example)
In a glass container, 1.04 g of chloroauric acid (Au 48.0 wt%) and 0.1 g of polyvinylpyrrolidone (average molecular weight 40000) were dissolved in 1 L of distilled water. A mixture of 95 g of an aqueous potassium hydroxide solution (1.12% by weight concentration) and 15 g of an aqueous formaldehyde solution (36% by weight concentration) was added and stirred. Au fine particles were formed immediately after the addition. Thereafter, the solution was heated to 40 ° C., stirred for 1 hour, and further desalted and concentrated by ultrafiltration to obtain 40 g of a 1.2 wt% Au sol solution in terms of Au solid content. The average particle size of the Au fine particles in this dispersion was 19 nm (referred to as R1 solution).
[0074]
The R1 solution was diluted with ethanol and water, and adjusted so that ethanol was 80 wt%, metal fine particles were 0.35 wt%, polyvinylpyrrolidone was 0.07 wt%, and polyvinylpyrrolidone / Au was 20 wt% (R2 liquid).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the R2 liquid was used instead of the C1 liquid in Example 1.
[0075]
[Example 13] (Comparative example)
ITO particles (indium oxide particles containing 8% by weight of tin oxide based on the total amount of indium oxide and tin oxide) were added to an acidic aqueous solution having a pH of 2, and pulverized and peptized with a sand mill for 1 hour. This solution was desalted and concentrated by ultrafiltration to obtain 80 g of an ITO sol solution of 1.2% by weight in terms of solid content of ITO particles. The average particle size of the ITO fine particles of this dispersion was 48 nm (referred to as S1 solution).
[0076]
The S1 liquid was diluted with ethanol and water, and adjusted so that ethanol was 80 wt% and metal fine particles were 0.95 wt% (referred to as S2 liquid).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the S2 solution was used instead of the C1 solution in Example 1.
[0077]
[Example 14] (Comparative Example)
1.2 wt% Au—Pd in terms of Au—Pd solid content in the same manner as in Example 11 except that 0.2 g of polyacrylic acid (average molecular weight 5000) was used instead of 0.2 g of hydroxypropylcellulose. 80 g of sol solution was obtained. The average particle diameter of the Au—Pd fine particles in this dispersion was 10 nm (referred to as T1 solution).
[0078]
T1 solution is diluted with ethanol and water so that ethanol is 80% by weight, metal fine particles are 0.35% by weight, polyacrylic acid is 0.07% by weight, and polyacrylic acid / (Au + Pd) is 20% by weight. It adjusted (it is set as T2 liquid).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the T2 solution was used instead of the C1 solution in Example 1.
[0079]
A TEM photograph of the T2 solution is shown in FIG. In the figure, the portion that appears black is an aggregation of metal fine particles. From FIG. 2, it can be seen that in the coating liquid of this example, most of the Au—Pd fine particles are aggregated to form a large lump and lack in dispersion stability.
[0080]
[Example 15] (Comparative example)
1.2 weight in terms of Au-Pd solid content in the same manner as in Example 11 except that 0.2 g of polyvinyl alcohol (saponification degree 81.5, average molecular weight 50000) was used instead of 0.2 g of hydroxypropylcellulose. % Au—Pd sol solution 80 g was obtained. The average particle diameter of the Au—Pd fine particles in this dispersion was 10 nm (referred to as U1 liquid).
[0081]
The U1 solution was diluted with ethanol and water, and adjusted so that ethanol was 80% by weight, metal fine particles were 0.30% by weight, polyvinyl alcohol was 0.06% by weight, and polyvinyl alcohol / (Au + Pd) was 20% by weight. (Used as U2 liquid).
A low reflective conductive film was obtained in the same manner as in Example 1 except that U2 liquid was used instead of C1 liquid in Example 1.
[0082]
A TEM photograph of the U2 solution is shown in FIG. The portion that appears black in the figure is the metal fine particles. FIG. 3 shows that in the coating liquid of this example, most of the Au—Pd fine particles are separated from the other particles and dispersed alone.
[0083]
[Example 16] (Comparative Example)
1.2 wt% Au—Pd sol in terms of Au—Pd solid content in the same manner as in Example 11 except that 0.2 g of polyvinylpyrrolidone (average molecular weight 40000) was used instead of 0.2 g of hydroxypropylcellulose. 80 g of a liquid was obtained. The average particle diameter of the Au—Pd fine particles in this dispersion was 10 nm (referred to as V1 solution).
[0084]
Solution V1 was diluted with ethanol and water, and adjusted so that ethanol was 80 wt%, metal fine particles were 0.35 wt%, polyvinyl pyrrolidone was 0.07 wt%, and polyvinyl pyrrolidone / (Au + Pd) was 20 wt%. (V2 solution).
A low reflective conductive film was obtained in the same manner as in Example 1 except that the T2 solution was used instead of the C1 solution in Example 1.
[0085]
A TEM photograph of the V2 solution is shown in FIG. The portion that appears black in the figure is the metal fine particles. From FIG. 4, it can be seen that in the coating solution of this comparative example, the Au—Pd fine particles are close to each other but are dispersed with a gap therebetween.
[0086]
[Evaluation results]
Table 1 shows the results of measuring the physical properties of the low reflective conductive films obtained in Examples 1 to 16 by the following method. In Table 1, 4E2 is 4 × 10. 2 The same is true for others.
(1) Conductivity: The surface resistance (Ω / □) of the membrane surface was measured with a Laresta resistance measuring instrument (Mitsubishi Yuka). In the measurement, the surface resistance was measured on the surface of the silica film which is a low refractive index film.
(2) Transmittance: The luminous transmittance (%) at 380 to 780 nm was measured with a spectrophotometer U-3500 manufactured by Hitachi, Ltd.
(3) Reflectance: The luminous reflectance (%) at 400 to 700 nm of the film was measured with a GAMMA spectral reflectance spectrum measuring instrument.
[0087]
(4) Scratch resistance: The surface of the membrane was reciprocated 50 times with an eraser (Lion Corporation 50-50) under a load of 1 kg, and the degree of scratching on the surface was visually determined. The evaluation criteria were ◯ when no scratches were found and △ when some scratches were attached.
(5) Weather resistance: The conductivity of the film after irradiation with ultraviolet light having a main wavelength of 254 nm for 20 hours was measured by PHOTODRYCLARE PL7-200 manufactured by Sen Engineering.
(6) Chemical resistance: The conductivity of the film was measured after immersing the film in an aqueous hydrochloric acid solution having a concentration of 10% by weight for 72 hours.
[0088]
[Table 1]
Figure 0003882419
[0089]
【The invention's effect】
According to the present invention, it is excellent in dispersion stability in the state of a coating solution, and on a glass substrate such as a cathode ray tube face surface, by low-temperature heat treatment, it has excellent weather resistance and appearance, and can exhibit high electromagnetic shielding performance. A conductive film having properties can be formed.
[Brief description of the drawings]
1 is a transmission electron microscope (TEM) photograph of the coating liquid of Example 11. FIG.
2 is a TEM photograph of the coating solution of Example 14. FIG.
3 is a TEM photograph of the coating liquid of Example 15. FIG.
4 is a TEM photograph of the coating liquid of Example 16. FIG.

Claims (11)

金属イオンと、セルロース誘導体からなる水溶性樹脂と、水とを含む液に、還元剤を添加することにより金属微粒子を還元析出させ、加熱により前記水溶性樹脂をゲル化させることによって前記金属微粒子を分散させて得られる導電膜形成用塗布液。  A metal fine particle is reduced and precipitated by adding a reducing agent to a solution containing a metal ion, a water-soluble resin composed of a cellulose derivative, and water, and the water-soluble resin is gelled by heating. A coating liquid for forming a conductive film obtained by dispersing. 金属微粒子が、Ag、Au、Pd、Ru、Pt、Ir、Re、Rh、CuおよびNiからなる群から選ばれた1種以上であり、かつ金属微粒子が、Ag、Au、Pd、Ru、Pt、Ir、Re、Rh、CuおよびNiからなる群から選ばれた2種以上の場合は、前記金属微粒子は合金金属微粒子である請求項1に記載の導電膜形成用塗布液。Metal particles, Ag, Au, Pd, Ru , Pt, Ir, Re, Rh, Ri der least one member selected from the group consisting of Cu and Ni, and the metal particles, Ag, Au, Pd, Ru , Pt, Ir, Re, Rh, in the case of two or more species selected from the group consisting of Cu and Ni, said fine metal particles conductive film forming coating liquid according to claim 1 Ru Oh alloy metallic fine particles. 金属微粒子の濃度が、塗布液全重量に対して0.01〜5重量%である請求項1または2に記載の導電膜形成用塗布液。  The coating liquid for forming a conductive film according to claim 1 or 2, wherein the concentration of the metal fine particles is 0.01 to 5% by weight with respect to the total weight of the coating liquid. 水溶性樹脂が、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、エチルヒドロキシエチルセルロースおよびヒドロキシプロピルメチルセルロースからなる群から選ばれた1種以上である請求項1〜3いずれか1項に記載の導電膜形成用塗布液。  The water-soluble resin is at least one selected from the group consisting of carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, ethylhydroxyethylcellulose, and hydroxypropylmethylcellulose. Coating liquid for forming a conductive film. 水溶性樹脂の平均分子量が5000〜5000000である請求項1〜4いずれか1項に記載の導電膜形成用塗布液。  The average molecular weight of water-soluble resin is 5000-5 million. The coating liquid for electrically conductive film formation of any one of Claims 1-4. 水溶性樹脂の含有量が、金属微粒子に対して0.5〜100重量%である請求項1〜5いずれか1項に記載の導電膜形成用塗布液。  The coating liquid for forming a conductive film according to any one of claims 1 to 5, wherein the content of the water-soluble resin is 0.5 to 100% by weight with respect to the metal fine particles. 請求項1〜6いずれか1項に記載の導電膜形成用塗布液を基体上に塗布することにより形成された導電膜。  The electrically conductive film formed by apply | coating the coating liquid for electrically conductive film formation of any one of Claims 1-6 on a base | substrate. 導電膜の表面抵抗が10×10Ω/□以下である請求項7に記載の導電膜。The conductive film according to claim 7, wherein the conductive film has a surface resistance of 10 × 10 3 Ω / □ or less. 請求項7に記載の導電膜の上に、該導電膜よりも屈折率が低い膜が形成されてなる低反射導電膜。  A low reflective conductive film, wherein a film having a refractive index lower than that of the conductive film is formed on the conductive film according to claim 7. 低反射導電膜の表面抵抗が10×10Ω/□以下である請求項9に記載の低反射導電膜。The low reflective conductive film according to claim 9, wherein the surface resistance of the low reflective conductive film is 10 × 10 3 Ω / □ or less. ガラス基体上に、請求項7あるいは8に記載の導電膜、または請求項9あるいは10に記載の低反射導電膜が形成されたガラス物品。  A glass article in which the conductive film according to claim 7 or 8 or the low reflective conductive film according to claim 9 or 10 is formed on a glass substrate.
JP26606899A 1999-09-20 1999-09-20 Coating liquid for forming conductive film and use thereof Expired - Fee Related JP3882419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26606899A JP3882419B2 (en) 1999-09-20 1999-09-20 Coating liquid for forming conductive film and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26606899A JP3882419B2 (en) 1999-09-20 1999-09-20 Coating liquid for forming conductive film and use thereof

Publications (3)

Publication Number Publication Date
JP2001093414A JP2001093414A (en) 2001-04-06
JP2001093414A5 JP2001093414A5 (en) 2005-07-14
JP3882419B2 true JP3882419B2 (en) 2007-02-14

Family

ID=17425927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26606899A Expired - Fee Related JP3882419B2 (en) 1999-09-20 1999-09-20 Coating liquid for forming conductive film and use thereof

Country Status (1)

Country Link
JP (1) JP3882419B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003068674A1 (en) * 2002-02-15 2003-08-21 Japan Science And Technology Agency Noble-metal nanowire structure and process for producing the same
WO2004096470A1 (en) * 2003-04-28 2004-11-11 Sumitomo Metal Mining Co., Ltd. Method for preparing liquid colloidal dispersion of silver particles, liquid colloidal dispersion of silver particles, and silver conductive film
JP4378513B2 (en) 2003-05-29 2009-12-09 独立行政法人理化学研究所 Metal nanoparticles with support, metal nanoparticle continuum and methods for producing them
CN101292362B (en) * 2005-08-12 2011-06-08 凯博瑞奥斯技术公司 Transparent conductors and its preparation method, lamination structure and display device
CN102324462B (en) 2006-10-12 2015-07-01 凯博瑞奥斯技术公司 Nanowire-based transparent conductors and applications thereof
US8018568B2 (en) 2006-10-12 2011-09-13 Cambrios Technologies Corporation Nanowire-based transparent conductors and applications thereof
KR101456838B1 (en) 2007-04-20 2014-11-04 캄브리오스 테크놀로지즈 코포레이션 Composite transparent conductors and methods of forming the same
JP2009224183A (en) * 2008-03-17 2009-10-01 Fujifilm Corp Metal oxide microparticles, transparent conductive film, dispersion, and device
CN102834472B (en) 2010-02-05 2015-04-22 凯博瑞奥斯技术公司 Photosensitive ink compositions and transparent conductors and method of using the same
JP5425664B2 (en) * 2010-03-01 2014-02-26 国立大学法人宇都宮大学 Gold nanoparticles and production method thereof
EP2543046A4 (en) * 2010-03-05 2015-08-19 Carestream Health Inc Transparent conductive films, articles, and methods
KR101703161B1 (en) * 2014-02-13 2017-02-06 주식회사 엘지화학 A Conductive Additive, the Method for Preparation of the Same and an Oily Conductive Primer Composition comprising the Same
KR102588589B1 (en) * 2015-05-18 2023-10-16 히데미 카키하라 Antibacterial substances and liquid antibacterial agents and methods for producing liquid antibacterial agents
US20190352529A1 (en) * 2016-06-27 2019-11-21 Dowa Electronics Materials Co., Ltd. Silver nanowire ink, method for producing same, and conductive film
JP6720129B2 (en) * 2017-11-27 2020-07-08 旭化成株式会社 Method for manufacturing electromagnetic wave shield sheet

Also Published As

Publication number Publication date
JP2001093414A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
JP3882419B2 (en) Coating liquid for forming conductive film and use thereof
US7135223B2 (en) Transparent conductive layered structure and method of producing the same, and transparent coat layer forming coating liquid used in the method of producing the same, and display device to which transparent conductive layered structure is applied
TW539734B (en) Transparent conductive layered structure and method of producing the same, and coating liquid for forming transparent conductive layer used in production of transparent conductive layered structure and method of producing the same
JPH1145619A (en) Conductive composition, transparent conductive film formed by using this, and its manufacture
JP4411672B2 (en) Coating liquid for forming transparent conductive layer and method for producing the same
JP3473272B2 (en) Coating liquid for conductive film formation and conductive film
JP2000268639A (en) Transparent conductive base material, its manufacture, paint liquid for forming transparent conductive layer used for manufacturing it, and its manufacture
JP3697760B2 (en) Coating liquid
JP3876811B2 (en) Production method of coating liquid for forming transparent conductive layer
US20040197549A1 (en) Conductive film, manufactruing method thereof, substrate having the same
JP3979967B2 (en) Manufacturing method of low reflection low resistance film
US6902815B2 (en) Coating liquid for forming colored transparent conductive film, substrate with colored transparent conductive film and method for its production, and display device
JP3449123B2 (en) Coating solution for forming low-resistance film or low-refractive-index film, and method for producing low-resistance film or low-reflection low-refractive-index film
JP4325201B2 (en) Transparent conductive layer forming coating liquid and transparent conductive film
JP2001279304A (en) Chain-shaped metallic colloid dispersed liquid and its production method
JP3750461B2 (en) Transparent conductive layer forming coating liquid, transparent conductive layer and transparent conductive substrate
JP3514192B2 (en) Method for forming low reflective conductive film
JP3520705B2 (en) Coating liquid for forming conductive film, conductive film and method for manufacturing the same
JP3975310B2 (en) Transparent conductive substrate, method for producing the same, and display device to which the substrate is applied
JP2004190142A (en) Coating liquid for forming electroconductive film, electroconductive film, and production method therefor
JP3484903B2 (en) Coating liquid for forming low-resistance film, low-resistance film and method for manufacturing the same, and low-reflection low-resistance film and method for manufacturing the same
JP3315673B2 (en) CRT with conductive film
JP2005232272A (en) Coating liquid for forming conductive film and manufacturing method of low reflection conductive film
JPH115929A (en) Coating liquid for use in forming electrically conductive film, method for forming electrically conductive film, and method for forming electrically conductive film of low reflectivity
JPH10147886A (en) Conductive film forming coating solution, conductive film and its production

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees