EP2824413B2 - Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse - Google Patents

Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse Download PDF

Info

Publication number
EP2824413B2
EP2824413B2 EP14001934.0A EP14001934A EP2824413B2 EP 2824413 B2 EP2824413 B2 EP 2824413B2 EP 14001934 A EP14001934 A EP 14001934A EP 2824413 B2 EP2824413 B2 EP 2824413B2
Authority
EP
European Patent Office
Prior art keywords
active
burn
body according
active composition
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14001934.0A
Other languages
English (en)
French (fr)
Other versions
EP2824413B8 (de
EP2824413B1 (de
EP2824413A1 (de
Inventor
Arno Hahma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Defence GmbH and Co KG
Original Assignee
Diehl Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50942008&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2824413(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Diehl Defence GmbH and Co KG filed Critical Diehl Defence GmbH and Co KG
Publication of EP2824413A1 publication Critical patent/EP2824413A1/de
Application granted granted Critical
Publication of EP2824413B1 publication Critical patent/EP2824413B1/de
Publication of EP2824413B8 publication Critical patent/EP2824413B8/de
Publication of EP2824413B2 publication Critical patent/EP2824413B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J2/00Reflecting targets, e.g. radar-reflector targets; Active targets transmitting electromagnetic or acoustic waves
    • F41J2/02Active targets transmitting infrared radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B4/00Fireworks, i.e. pyrotechnic devices for amusement, display, illumination or signal purposes
    • F42B4/26Flares; Torches

Definitions

  • the invention relates to an apparent target active body with a pyrotechnic active mass and a structure surrounding the active mass.
  • the active body with a pyrotechnic active mass block with specific structures is known.
  • the structure causes an increase in the surface area, as a result of which the rate of combustion of the active mass block and thus the duration of action of the active body can be controlled.
  • the underlying task is to create an active body, the effectiveness of which is given even at high altitudes with a low oxygen content in the air and in which less losses in performance occur at high ejection speeds due to flow effects.
  • the active mass block can have one or more channels on the inside, which enables flow-protected initiation of the active mass block on the inside.
  • the active mass block can have a flow protection formed by a protective cap and a protective film.
  • a flow protection cap protects the active mass block.
  • the flow protection cap can be attached over a protective film of the active mass block.
  • the object on which this embodiment is based is to prevent the protective film from tearing open prematurely when the active mass container is ejected under flight conditions due to the forces which occur.
  • an active body which contains several flares arranged one behind the other as active mass.
  • the active body is enclosed in a plastic-like container. This can be a plastic film or a shrink tube.
  • the object achieved in this way is to show an active body which has a residue-free combustible shell which allows the active mass to be ignited from the outside, for example thermally, inductively or by means of a laser.
  • the active mass container is opened during combustion.
  • an encapsulated active body for an IR deceptive or sham target is known.
  • the underlying task is to show an active body with optimized ignition behavior.
  • the active body is housed completely inside a stable, tight and preferably combustible casing.
  • the ignition can take place via the surface of the active body or by a central ignition along the longitudinal axis.
  • the combustible casing can be ignited by contact with a hot surface, by coupling in laser radiation, inductive ignition and other suitable methods, such as friction.
  • an active mass with two active mass components is known for an infrared glow target with a spatial effect that burns essentially spectrally when burned, the first active mass component forming a matrix in which particles formed from the second active mass component are embedded.
  • the object of the present invention is to provide an apparent target active body which burns off reliably even at high inflow speeds, such as when ejecting from a fast-flying aircraft, and at high altitudes, preferably with emission of (spectrally) target-like IR radiation.
  • an apparent target body with a pyrotechnic active mass and a structure surrounding the active mass is provided.
  • the structure surrounds the active mass in such a way that when the active mass burns off, the structure prevents gas from flowing out of the active mass in such a way that a higher gas pressure is present on 100% of the entire surface of the active mass than outside the structure.
  • the burn-up of the active mass can be designed such that there is such an overpressure on the surface of the active mass relative to the environment that the burn-off can take place largely unaffected by wind acting on the apparent target active body and by the external pressure.
  • a decoupling from the external conditions can take place at least in part, the more extensive the greater the gas pressure difference between the gas pressure on the surface of the active mass and thus within the structure and the gas pressure outside the structure. It is not a problem for the person skilled in the art to provide a structure which prevents the escape of gas which arises during the combustion of the active mass in such a way that a higher gas pressure is present on the entire surface of the active mass than outside the structure.
  • a "higher gas pressure than outside the structure" and a specification of the gas pressure below in relation to the atmospheric pressure refers here to the conditions when the apparent target active body burns at rest on the ground without wind.
  • the atmospheric pressure can be the normal pressure at sea level.
  • the active mass can be an active mass which radiates spectrally when burned.
  • active masses are known in the prior art.
  • active masses for apparent targets that radiate spectrally when they burn up, predominantly in the medium-wave IR range it is often a problem that the active masses do not burn or go out when there is a strong wind against them, for example when they are ejected from an aircraft.
  • the apparent target active body according to the invention enables such active masses to be burned off even under these conditions and / or at low air pressure, as is present at great heights.
  • the apparent target active body according to the invention enables a larger area radiation and thus a greater radiation power than that from the DE 10 2004 047 231 A1 Known active body, in which only one-sided radiation occurs due to the nozzle effect caused by the channels. Furthermore, the higher gas pressure acting on the entire surface of the active mass enables a higher burn rate than at atmospheric pressure. Combustion channels or inflow protection caps, as are known from the prior art, are not required, as a result of which the apparent target body according to the invention can be constructed more simply.
  • This goal can be achieved by means of the dummy target active body according to the invention, because the structure can shield the active mass which glows when it burns up, so that no black body radiation from inner parts of a flame which arises during the burnup can be detected outside the structure.
  • the spectral ratio mentioned can be increased in that the structure filters out soot from the flame. Soot in a flame increases the proportion of blackbody radiation emitted by the flame.
  • the structure can be used to select this Burning behavior of the active mass can be determined.
  • This burning behavior is then almost independent of the wind speed at which the apparent target body is ejected from an aircraft and its flight altitude or the prevailing air pressure.
  • the erosion behavior of the apparent target active body according to the invention can therefore be very well predetermined. The effect is therefore much more calculable than with currently known apparent target active bodies, because neither the flight altitude nor the flight speed need be taken into account to predict the effect of the apparent target active body according to the invention.
  • the apparent target active body according to the invention can be produced very easily with any active mass.
  • the active mass can be in the form of a block, in the form of at least one pressed tablet, in the form of several pieces or in the form of granules.
  • the tablet or the block does not have to have a particularly large surface area in order to achieve a sufficiently rapid erosion, since this is already brought about by the increased pressure.
  • slowly burning active masses can also be used for the production of the false target active body according to the invention. Such slow-burning active masses often have a higher output than fast-burning active masses.
  • the structure consists of a combustion chamber which has a multiplicity of openings all around, from which the gas formed when the active mass is burned off can flow out.
  • the openings can be dimensioned and their number selected so that the pressure inside the combustion chamber when burning up is at least as high as the dynamic pressure at the maximum wind speed at which the apparent target is used.
  • the openings should be so small that the active mass cannot be thrown out of the openings, at least at the beginning of the burn.
  • the structure can consist of a material which can withstand a temperature which arises during the burning of the structure for at least one third, in particular at least half, of the time required for the entire burning of the active mass.
  • the structure consists of a material which withstands a temperature which arises on the structure when it burns off for at least 1.3 s, in particular at least 1.5 s, in particular at least 2 s.
  • the dummy target active body according to the invention is produced very simply by packing an active material into a fine-mesh network of heat-resistant material. The free surface in this network is chosen so that a slight overpressure is created when the active mass burns off.
  • the structure is in the form of a, in particular multi-layer, metal mesh, in the form of a wool, fleece or fabric made of an inorganic material, in particular surrounded by a metal mesh, or in the form of a combustion chamber having openings.
  • the structure consists of or comprises a combustible material.
  • the inorganic material is stone, quartz, aluminum oxide or glass.
  • the openings are distributed over the entire surface of the combustion chamber.
  • the combustion chamber consists of a metal or a ceramic, optionally stabilized with a metal mesh.
  • the combustible material is preferably a combustible material with a non-sooting flame, because soot increases the proportion of black body radiation emitted during the combustion.
  • the plastics mentioned burn with a flame that does not smoke, or at most weakly sooting, and are therefore well suited for a specular target body which radiates spectrally when burned.
  • the plastic or the active mass can contain a catalyst which improves the spectral ratio of the flame burning outside the structure.
  • the structure can also be coated with a combustible material, for example a plastic or a lacquer. This combustible material can also burn when the active mass burns in the air and also generate radiation.
  • the structure is designed such that the gas pressure on the entire surface of the active mass and thus also in the space which forms between the structure and the active mass when burned off by at least 0.5 bar, in particular at least 1 bar, in particular at least 1.5 bar, in particular at least 2 bar, is higher than the atmospheric pressure.
  • an overpressure of at least 2 bar compared to the atmospheric pressure is advantageous because the flow velocity can reach the speed of sound at the narrowest points of the openings.
  • the ambient pressure has no influence on the pressure in the combustion chamber even when the air stream flowing to the apparent target body reaches the speed of sound.
  • the space on the inside of the structure is then completely independent of the surroundings when the active mass burns.
  • the use of the apparent target active body according to the invention is completely independent of the flight altitude and the wind speed.
  • the structure is designed such that the gas pressure when the active mass burns up on the entire surface of the active mass is at least 1.3 s, in particular at least 1.5 s, in particular at least 2 s, higher than that atmospheric pressure.
  • the size of the openings should be selected in the design of the structure as a combustion chamber so that the outflow of the resulting gas is still sufficiently inhibited during the time mentioned, even if the openings increase due to the burnup no opening reaches a size which is sufficient for the active mass to pass through before the stated time.
  • the structure is coated with a redox catalyst or consists of a redox catalyst.
  • a redox catalyst is generally understood to mean a catalyst which catalyzes a redox reaction.
  • the gas formed when the active mass is burned off is then converted catalytically as it flows through the structure and thus has a composition which is more favorable outside the structure for the desired spectral ratio of an apparent target.
  • the effect of the redox catalyst changes the structure of the flame and increases the spectral ratio.
  • the catalyst can catalyze the conversion of soot into carbon oxides. This creates less blackbody radiation and improves the spectral ratio.
  • Another beneficial effect of the redox catalyst is that the flame formed during the combustion is stabilized because the gases burning in the flame have a higher hydrogen content. hydrogen burns in the air at any pressure and wind. Furthermore, the reaction taking place on the catalyst can cool the structure, so that it emits less blackbody radiation than without a catalyst. This further increases the spectral ratio.
  • the structure can be coated or impregnated, for example, by the catalyst being precipitated from an aqueous solution as a suspension and this suspension then being filtered through the structure, so that particles of the catalyst, for example quartz wool, remain attached to the structure.
  • the structure must then be dried in order to be able to act catalytically in the apparent target active body according to the invention.
  • the redox catalyst can be a water gas catalyst, at least one organometallic compound, in particular an organometallic pigment or metal complex, an oxide or a salt of a rare earth metal, a compound containing a rare earth metal, which forms an oxide of a rare earth metal in a flame formed during the combustion of the active material, zirconium, titanium , Aluminum, zinc, magnesium, calcium, strontium, barium, hafnium, vanadium, niobium, tantalum, chromium, nickel, silver, iron, manganese, molybdenum, tungsten, cobalt, copper or thorium or an oxide of one of the metals mentioned or one of them of said metal-containing compound, which forms an oxide of such a metal in a flame which arises when the active substance is burned off, a platinum metal, rhenium or a compound containing a platinum metal, rhenium or silver which is reduced to metal in a flame which forms when the active substance burns up , or a mixture of
  • the active mass can be an active mass that generates at least one secondary flame when burned.
  • Such an active mass is from, for example DE 10 2010 053 783 A1 known.
  • the active mass for producing a secondary flame can also comprise a fuel containing carbon and hydrogen atoms and an oxidizing agent for the fuel containing oxygen atoms, the amount of the oxidizing agent being such that it is not sufficient for complete oxidation of the carbon.
  • a flame with at least two zones arises because the fuel which has not been reacted with the oxidizing agent then reacts with the air in a second flame zone.
  • a redox catalyst in the form of particles can also be distributed in the active mass.
  • the temperature of the structure is significantly reduced when the active mass burns up.
  • the structure can be made from a stainless steel or quartz mesh.
  • a structure that is itself catalytically active can be produced, for example, from normal iron or from copper or a copper alloy. These are strongly oxidized during the burn-up or already have an oxide layer on the surface, the iron or copper oxide catalyzing the water gas reaction and can also serve as an oxidizing agent for soot.
  • the active mass can be in the form of a block or several rods, at least one end face of which can be treated with a means for inhibiting the erosion.
  • a means for inhibiting the erosion Such means are known in the prior art.
  • it can be a fire-retardant paint or varnish.
  • the advantage of being in the form of a block or rods compared to a bed is that the distance between the active mass and the structure can be kept small as a result of the burning. If the distance is too large locally, there is a risk that the flame temperature on the structure will become so high that the structure will be destroyed. It is particularly expedient if the end face or two opposite end faces is / are treated with the means for inhibiting the erosion and the structure is fastened to this end face / these end faces. As a result, an active mass block can burn off radially and a relatively small distance between the structure and the burning active mass can be ensured.
  • the active mass is surrounded by a gas-tight sheath which can be detonated by the gas formed during the combustion.
  • the wrapper can consist of paper, adhesive tape or a film.
  • the envelope builds up the higher gas pressure within the structure faster than without such an envelope, because it prevents the gas from flowing out through the structure at the start of the reaction. This initially accelerates the burnup very much and shortens the rise time when the false target burns down. A correspondingly short rise time would also be possible by using a relatively large amount of a lighting set. However, this would endanger the safety of the dummy target, since such a firing set is usually highly flammable. A strong firing often creates a non-spectral flash due to blackbody radiation. This can tell the seeker that it is a fake target is.
  • the one-necked flask was then connected to a rotary evaporator and the methanol was distilled off under a pressure of about 500 mbar, the water bath in the evaporator being heated to 90.degree.
  • the warm, crude BMIM-ClO4 from the flask was filtered through the frit again into a 250 ml separating funnel, because further sodium chloride had failed when the methanol evaporated.
  • the finished BMIM-ClO4 (a yellowish, viscous oil) was filled from the separating funnel into a laboratory bottle and weighed. The yield was almost quantitative.
  • the active ingredient tablets were burned off without the enveloping structure.
  • the active ingredient tablet was encased in a fine-mesh stainless steel mesh with a mesh size of 0.15 mm before burning, and in a third trial in quartz wool.
  • the oxidizing agent ammonium perchlorate contained in the active mass was not sufficient to completely oxidize the nitrocellulose, so that during the combustion, in addition to the primary flame, at least one secondary flame and thus a flame with different temperature zones developed, the temperature on the stainless steel mesh and on the quartz wool remaining relatively low. Both were unchanged after the burn. This shows that the temperature directly on the structure did not exceed about 1,000 ° C.
  • the stainless steel mesh glowed relatively hot when it burned up and thus worsened the spectral ratio.
  • the wind cools the flame and the network down considerably, so that the spectral ratio is then better than shown here.
  • a better spectral ratio was determined when using quartz wool.
  • the reduction in power only in the KW band when using the quartz wool shows that the soot was filtered off by the quartz wool and its radiation was shielded.
  • the burn rate was approximately doubled by the stainless steel mesh and the quartz wool. This is due to the overpressure on the surface of the active mass caused by this structure when burning, and to the temperature reflection from the stainless steel mesh or the quartz wool onto the tablet.
  • Example 1 The same tablets were used as in Example 1.
  • the structure encasing the active mass consisted of a stainless steel mesh with a mesh size of 0.15 mm.
  • Two further tests were carried out using the same stainless steel mesh, but with two different water gas catalysts.
  • the stainless steel nets were immersed several times in an aqueous catalyst suspension and then dried.
  • One of the catalysts was a so-called HTS (High Temperature Shift) catalyst, consisting of magnetite with 10 mol% chromium (III) oxide.
  • the other was a so-called LTS (Low Temperature Shift) catalyst, consisting of zinc oxide, aluminum oxide and copper (II) oxide in a molar ratio of 1: 1: 1. Both catalysts were precipitated from 0.1 molar solutions.
  • the stainless steel nets were immersed in this suspension and dried at 120 ° C for half an hour. This process was repeated three times each. It was not possible to determine the amount of catalyst remaining on the network.
  • quartz wool was used instead of the stainless steel mesh.
  • a weighed amount of the catalysts was suspended in water and filtered through the quartz wool. Magnetite was also used as a further catalyst.
  • the quartz wool with the catalyst was then dried at 120 ° C. for half an hour.
  • the active ingredient tablets were wrapped in this wool and wrapped with a 1 mm thick iron wire to fix the wool in place during the burning process.
  • the amount of catalyst was 1% of the tablet weight.
  • quartz wool was impregnated with 0.01% by weight of platinum, based on the tablet weight, by impregnating the quartz wool with a hexachloroplatinic acid solution, the entire amount of the solution being absorbed by the quartz wool.
  • the quartz wool was then dried.
  • the active materials used here each contain a combustion catalyst and a water gas catalyst.
  • the burn occurred without a structure enveloping the tablet.
  • a second experiment was used as a structure gelöchertes tube made of polyacetal (POM), Delrin ® type, used by the company. DuPont.
  • Polyacetal burns with a colorless flame that has a very high spectral ratio. As a result, the plastic has no or a positive effect on the spectral ratio. Furthermore, the polyacetal increases the energy content of the apparent target.
  • the active mass was introduced into the perforated POM tube for wrapping.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Air Bags (AREA)
  • Catalysts (AREA)
  • User Interface Of Digital Computer (AREA)

Description

  • Die Erfindung betrifft einen Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse und einer die Wirkmasse umgebenden Struktur.
  • Aus der DE 10 2004 047 231 A1 ist ein Wirkkörper mit einem pyrotechnischen Wirkmassenblock mit spezifischen Strukturen bekannt. Durch die Struktur wird eine Vergrößerung der Oberfläche bewirkt, wodurch sich die Abbrandgeschwindigkeit des Wirkmassenblocks und somit die Wirkdauer des Wirkkörpers steuern lassen. Die zugrunde liegende Aufgabe besteht darin, einen Wirkkörper zu schaffen, dessen Wirksamkeit auch in hohen Höhen bei geringem Sauerstoffgehalt der Luft gegeben ist und bei dem geringere Leistungseinbußen bei hohen Ausstoßgeschwindigkeiten durch Strömungseffekte auftreten. Der Wirkmassenblock kann dazu im Inneren einen oder mehrere Kanäle aufweisen, wodurch eine anströmgeschützte Initiierung des Wirkmassenblocks im Inneren ermöglicht wird. Weiterhin kann der Wirkmassenblock einen durch eine Schutzkappe und eine Schutzfolie gebildeten Anströmschutz aufweisen. Dadurch kann gewährleistet werden, dass Einbußen der IR-Strahlung bei hohen Anströmgeschwindigkeiten, wie sie bei Ausstoß des Wirckörpers aus einem Flugzeug entstehen, verringert werden. Durch die beim Wirkmassenabbrand produzierten Gase in den Kanälen entsteht ein Düseneffekt, der gleichzeitig für den Antrieb und somit die Kinematik des Wirkkörpers genutzt werden kann.
  • Aus der DE 10 2008 017 722 A1 ist ein Wirkmassenbehälter mit einem Wirkmassenblock bekannt. Dabei schützt eine Anströmschutzkappe den Wirkmassenblock. Die Anströmschutzkappe kann über eine Schutzfolie des Wirkmassenblocks angebracht sein. Die dieser Ausgestaltung zugrunde liegende Aufgabe besteht darin, ein beim Ausstoßen des Wirkmassenbehälters unter Flugbedingungen durch die auftretenden Kräfte bewirktes vorzeitiges Aufreißen der Schutzfolie zu verhindern.
  • Aus der DE 10 2009 030 871 A1 ist ein Wirkkörper bekannt, welcher mehrere hintereinander angeordnete Flares als Wirkmasse enthält. Der Wirkkörper ist von einem kunststoffartigen Container umschlossen. Dabei kann es sich um eine Kunststofffolie oder einen Schrumpfschlauch handeln. Die dadurch gelöste Aufgabe besteht darin, einen Wirkkörper aufzuzeigen, der über eine rückstandsfrei verbrennbare Hülle verfügt, die eine Anzündung der Wirkmasse von außen, beispielsweise thermisch, induktiv oder mittels Laser, erlaubt. Bei der Verbrennung erfolgt ein Öffnen des Wirkmassencontainers.
  • Aus der WO 2011/116873 A1 ist ein gekapselter Wirkkörper für ein IR-Täusch- bzw. Scheinziel bekannt. Die zugrunde liegende Aufgabe besteht darin, einen Wirkkörper mit optimiertem Anzündverhalten aufzuzeigen. Der Wirckörper ist dazu vollständig im Inneren einer stabilen, dichten und vorzugsweise verbrennbaren Hülle untergebracht. Die Anzündung kann über die Oberfläche des Wirkkörpers oder durch eine zentral liegende Anzündung entlang der Längsachse erfolgen. Die verbrennbare Hülle kann durch einen Kontakt mit einer heißen Oberfläche, durch Einkopplung von Laserstrahlung, induktive Anzündung sowie weitere geeignete Verfahren, wie beispielsweise Reibung, angezündet werden.
  • Aus der EP 2 602 239 A2 ist eine Wirkmasse mit zwei Wirkmassenkomponenten für ein beim Abbrand im Wesentlichen spektral strahlendes Infrarotscheinziel mit Raumwirkung bekannt, wobei die erste Wirkmassenkomponente eine Matrix bildet, in der aus der zweiten Wirkmassenkomponente gebildete Partikel eingebettet sind.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, einen Scheinzielwirkkörper anzugeben, welcher auch bei hohen Anströmgeschwindigkeiten, wie beim Ausstoß aus einem schnell fliegenden Flugzeug, und in hohen Höhen zuverlässig, vorzugsweise unter Emission einer (spektral) zielähnlichen IR-Strahlung, abbrennt.
  • Die Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst. Zweckmäßige Ausgestaltungen ergeben sich aus den Merkmalen der Patentansprüche 2 bis 14.
  • Erfindungsgemäß ist ein Scheinzielwirkköper mit einer pyrotechnischen Wirkmasse und einer die Wirkmasse umgebenden Struktur vorgesehen. Die Struktur umgibt die Wirkmasse dabei derart, dass bei einem Abbrand der Wirkmasse entstehendes Gas durch die Struktur so an einem Abströmen von der Wirkmasse gehindert wird, dass an 100% der gesamten Oberfläche der Wirkmasse ein höherer Gasdruck vorliegt als außerhalb der Struktur. Dies unterscheidet sich wesentlich von dem aus der DE 10 2004 047 231 A1 bekannten Aufbau, bei dem durch einen Gasausstoß durch Kanäle ein erhöhter Gasdruck in den Kanälen vorliegt aber nicht durch eine umgebende Struktur an der gesamten Oberfläche der Wirkmasse. Durch den Grad der Hemmung des Abströmens des Gases kann der Abbrand der Wirkmasse so gestaltet werden, dass ein solcher Überdruck an der Oberfläche der Wirkmasse gegenüber der Umgebung vorliegt, dass der Abbrand von auf den Scheinzielwirkkörper einwirkendem Wind und vom Außendruck weitgehend unbeeinflusst erfolgen kann. So kann zumindest teilweise eine Entkopplung von den Außenbedingungen erfolgen, die umso weitgehender ist, je größer der Gasdruckunterschied zwischen dem Gasdruck an der Oberfläche der Wirkmasse und damit innerhalb der Struktur und dem Gasdruck außerhalb der Struktur ist. Es stellt für den Fachmann kein Problem dar, eine Struktur bereitzustellen, welche das Abströmen von beim Abbrand der Wirkmasse entstehendem Gas so hindert, dass an der gesamten Oberfläche der Wirkmasse ein höherer Gasdruck vorliegt als außerhalb der Struktur. Da die Hemmung des Abströmens des Gases zwangsweise zu einem höheren Druck beim Abbrennen führt, ist ein Nachweisen des höheren Gasdrucks an der Oberfläche der Wirkmasse überflüssig. Er kann jedoch indirekt, beispielsweise durch Aufnehmen des Abbrandvorgangs mit einer Hochgeschwindigkeitskamera und Vermessen des Aufblähens der Struktur beim Abbrand und/oder einen Vergleich der Geschwindigkeit, mit welcher eine Flamme von dem erfindungsgemäßen Scheinzielwirkkörper ausgestoßen wird mit einer Geschwindigkeit einer Flamme, die von einer ohne die Struktur abbrennenden Wirkmasse ausgeht, ermittelt werden. Durch den höheren Druck ist die Geschwindigkeit des Ausstoßes der Flamme bei dem erfindungsgemäßen Scheinzielwirkkörper höher. Ein "höherer Gasdruck als außerhalb der Struktur" und eine weiter unten erfolgende Angabe des Gasdrucks im Verhältnis zum Atmosphärendruck bezieht sich hier auf die Verhältnisse bei einem ruhenden Abbrand des Scheinzielwirkkörpers am Boden ohne Wind. Der Atmosphärendruck kann der Normaldruck auf Meereshöhe sein.
  • Bei der Wirkmasse kann es sich um eine beim Abbrand spektral strahlende Wirkmasse handeln. Solche Wirkmassen sind im Stand der Technik bekannt. Bei Wirkmassen für Scheinziele, die beim Abbrand vorwiegend im mittelwelligen IR-Bereich spektral strahlen, ist es oft ein Problem, dass die Wirkmassen bei einer Anströmung mit starkem Wind, beispielsweise beim Ausstoß aus einem Flugzeug, nicht brennen bzw. erlöschen. Der erfindungsgemäße Scheinzielwirkkörper ermöglicht jedoch einen Abbrand solcher Wirkmassen auch bei diesen Bedingungen und/oder bei geringem Luftdruck, wie er in großen Höhen vorliegt. Gleichzeitig ermöglicht der erfindungsgemäße Scheinzielwirkkörper eine großflächigere Abstrahlung und damit eine größere Strahlungsleistung als der aus der DE 10 2004 047 231 A1 bekannte Wirkkörper, bei dem durch den durch die Kanäle bedingten Düseneffekt nur eine einseitige Abstrahlung erfolgt. Weiterhin ermöglicht der auf der gesamten Oberfläche der Wirkmasse einwirkende höhere Gasdruck eine höhere Abbrandrate als bei Atmosphärendruck. Brennkanäle oder Anströmschutzkappen, wie sie aus dem Stand der Technik bekannt sind, sind nicht erforderlich, wodurch der erfindungsgemäße Scheinzielwirkköper einfacher aufgebaut sein kann.
  • Ziel bei spektral strahlenden Scheinzielwirkmassen ist es, dass das Verhältnis von einer Intensität einer beim Abbrand der Wirkmasse emittierten Strahlung im Wellenlängenbereich von etwa 3,5 bis 5,0 µm zu einer Intensität einer beim Abbrand der Wirkmasse emittierten Strahlung im Wellenlängenbereich von etwa 1,5 bis 2,5 µm (= Spektralverhältnis) möglichst hoch ist. Dieses Ziel kann mittels des erfindungsgemäßen Scheinzielwirkkörpers erreicht werden, weil die Struktur die beim Abbrand glühende Wirkmasse abschirmen kann, so dass keine Schwarzkörperstrahlung von inneren Teilen einer beim Abbrand entstehenden Flamme außerhalb der Struktur detektierbar ist. Weiterhin kann das genannte Spektralverhältnis dadurch gesteigert werden, dass die Struktur Ruß aus der Flamme herausfiltert. Ruß in einer Flamme erhöht den von der Flamme emittierten Anteil an Schwarzkörperstrahlung.
  • Dadurch, dass der an der Oberfläche der Wirkmasse vorliegende Gasdruck im Wesentlichen von der Struktur und die dadurch bedingte Hemmung des Abströmens des beim Abbrand der Wirkmasse entstehenden Gases bestimmt wird und dieser Druck das Abbrandverhalten der Wirkmasse im Wesentlichen bestimmt, kann durch die Wahl der Struktur das Abbrandverhalten der Wirkmasse festgelegt werden. Dieses Abbrandverhalten ist dann nahezu unabhängig von der Windgeschwindigkeit, bei der der Scheinzielwirkkörper aus einem Flugzeug ausgestoßen wird und dessen Flughöhe bzw. dem dabei vorherrschenden Luftdruck. Das Abbrandverhalten des erfindungsgemäßen Scheinzielwirkkörpers kann daher sehr gut vorherbestimmt werden. Die Wirkung ist dadurch sehr viel kalkulierbarer als bei derzeit bekannten Scheinzielwirkkörpern, weil zur Vorhersage der Wirkung des erfindungsgemäßen Scheinzielwirkkörpers weder die Flughöhe noch die Fluggeschwindigkeit wesentlich berücksichtigt zu werden braucht. Sein Einsatz ist daher wesentlich einfacher als derjenige bekannter Scheinzielwirkkörper. Durch den erhöhten Druck können darüber hinaus Wirkmassen eingesetzt werden, deren Sauerstoffbilanz negativer ist als bei bisherigen Scheinzielwirkmassen und die bei Atmosphärendruck und/oder Anströmung durch Wind nicht abbrennen würden. Dadurch können sowohl die spezifische Leistung der Wirkmasse als auch das Spektralverhältnis beim Abbrand erhöht werden. Darüber hinaus wird durch den Aufbau des Drucks und das dadurch bedingte schnellere Abbrennen der Wirkmasse die Anzündung der Wirkmasse vereinfacht.
  • Der erfindungsgemäße Scheinzielwirkkörper kann mit einer beliebigen Wirkmasse sehr einfach hergestellt werden. Die Wirkmasse kann dazu in Form eines Blocks, in Form mindestens einer gepressten Tablette, in Form mehrerer Stücke oder in Form eines Granulats vorliegen. Die Tablette oder der Block muss dabei keine besonders große Oberfläche aufweisen, um einen ausreichend schnellen Abbrand zu erzielen, da dieser bereits durch den erhöhten Druck bewirkt wird. Es ist auch möglich, herkömmliche Treibladungspulver in beliebiger Form ohne aufwendige Geometrie oder die Verbrennung unterstützende Glühelemente als Wirkmasse für den erfindungsgemäßen Scheinzielwirckörper einzusetzen. Auch können ansonsten eher langsam brennende Wirkmassen für die Herstellung des erfindungsgemäßen Scheinzielwirkkörpers verwendet werden. Solche langsamer brennenden Wirkmassen weisen oft eine höhere Leistung auf als schnell brennende Wirkmassen.
  • Gemäß einem nicht zur Erfindung gehörenden Beispiel besteht die Struktur aus einer Brennkammer, die rundum eine Vielzahl von Öffnungen aufweist, aus denen das beim Abbrand der Wirkmasse entstehende Gas ausströmen kann. Die Öffnungen können dabei so dimensioniert und deren Anzahl so gewählt sein, dass der Druck innerhalb der Brennkammer beim Abbrand mindestens so hoch wird, wie der Staudruck bei der maximalen Windgeschwindigkeit, bei der das Scheinziel eingesetzt wird. Die Öffnungen sollten aber so klein sein, dass die Wirkmasse zumindest am Anfang des Abbrands nicht aus den Öffnungen herausgeschleudert werden kann. Ein bis zwei Sekunden nach dem Freisetzen des Scheinzielwirkkörpers aus einem Flugzeug ist dieser üblicherweise jedoch bereits soweit abgebremst, dass die üblichen Wirkmassen bei der dann daran anliegenden Windgeschwindigkeit bereits ohne die Struktur weiterbrennen, so dass es dann auch kein Problem darstellt, wenn die Wirkmasse aus den Öffnungen herausgeschleudert wird. Es ist also günstig, die Öffnungen so zu dimensionieren, dass die sich beim Abbrand verkleinernde Wirkmasse nicht zu früh durch die Öffnungen herausgeschleudert wird. Eine günstige Anzahl und Dimensionierung der Öffnungen kann durch den Fachmann ohne Weiteres durch Routineexperimente ermittelt werden.
  • Die Struktur kann aus einem Material bestehen, welches einer beim Abbrand an der Struktur entstehenden Temperatur für mindestens ein Drittel, insbesondere mindestens die Hälfte, einer für den gesamten Abbrand der Wirkmasse benötigten Zeit standhält. Bei einem Ausführungsbeispiel besteht die Struktur aus einem Material, welches einer beim Abbrand an der Struktur entstehenden Temperatur für mindestens 1,3 s, insbesondere mindestens 1,5 s, insbesondere mindestens 2 s, standhält. Gemäß einer Erfindungsalternative wird der erfindungsgemäße Scheinzielwirkkörper sehr einfach hergestellt, indem eine Wirkmasse in ein feinmaschiges Netz aus wärmefestem Material eingepackt wird. Die freie Oberfläche in diesem Netz wird dabei so gewählt, dass beim Abbrand der Wirkmasse ein leichter Überdruck entsteht.
  • Gemäß einer weiteren Erfindungsalternative liegt die Struktur in Form eines, insbesondere mehrlagigen, Metallnetzes, in Form einer/eines, insbesondere von einem Metallnetz umgebenen, aus einem anorganischen Material bestehenden Wolle, Vlies oder Gewebes, oder in Form einer Öffnungen aufweisenden Brennkammer vor.
  • Gemäß einem nicht zur Erfindung gehörigen Beispiel besteht die Struktur aus einem brennbaren Material oder umfasst ein solches Material.
  • Bei dem anorganischen Material handelt es sich erfindungsgemäß um Stein, Quarz, Aluminiumoxid oder Glas. Bei der Brennkammer sind die Öffnungen über die gesamte Oberfläche der Brennkammer verteilt. Gemäß einer weiteren Erfindungsalternative besteht die Brennkammer aus einem Metall oder einer, ggf. mit einem Metallnetz stabilisierten, Keramik.
  • Das brennbare Material ist vorzugsweise ein mit nicht rußender Flamme brennbares Material, weil Ruß den Anteil an beim Abbrand emittierter Schwarzkörperstrahlung erhöht. Das brennbare Material kann ein doppel- oder mehrbasiges Treibladungspulver, eine weiter pyrotechnische Wirkmasse, ein Kunststoff, insbesondere Polyacetal (= Polyoximethylen = POM = Polyformaldehyd), Polyamid, Polyethylen, Polypropylen, Zellulosenitrat (enthält bis zu 12% Stickstoff) oder Nitrocellulose (enthält mehr als 12% Stickstoff), umfassen. Die genannten Kunststoffe brennen mit nicht oder allenfalls schwach rußender Flamme und sind daher gut für einen beim Abbrand spektral strahlenden Scheinzielwirkköper geeignet. Der Kunststoff oder die Wirkmasse können einen Katalysator enthalten, welcher das Spektralverhältnis der außerhalb der Struktur brennenden Flamme verbessert. Die Struktur kann außerdem mit einem brennbaren Material, beispielsweise einem Kunststoff oder einem Lack beschichtet sein. Dieses brennbare Material kann beim Abbrand der Wirkmasse an der Luft ebenfalls brennen und zusätzlich Strahlung erzeugen.
  • Bei einer Ausgestaltung des erfindungsgemäßen Scheinzielwirkkörpers ist die Struktur so gestaltet, dass der Gasdruck an der gesamten Oberfläche der Wirkmasse und damit auch in dem sich beim Abbrand zwischen der Struktur und der Wirkmasse bildenden Raum um mindestens 0,5 bar, insbesondere mindestens 1 bar, insbesondere mindestens 1,5 bar, insbesondere mindestens 2 bar, höher ist als der Atmosphärendruck. Bei einer Ausgestaltung der Struktur als Brennkammer mit Öffnungen ist ein Überdruck gegenüber dem Atmosphärendruck von mindestens 2 bar vorteilhaft, weil dadurch die Strömungsgeschwindigkeit an den jeweils engsten Stellen der Öffnungen Schallgeschwindigkeit erreichen kann. Dadurch hat der Umgebungsdruck auch dann keinen Einfluss auf den Druck in der Brennkammer, wenn der den Scheinzielwirkkörper anströmende Luftstrom Schallgeschwindigkeit erreicht. Der Raum auf der Innenseite der Struktur ist dann beim Abbrand der Wirkmasse vollkommen unabhängig von der Umgebung. Dadurch ist der Einsatz des erfindungsgemäßen Scheinzielwirkkörpers vollkommen unabhängig von der Flughöhe und der Windgeschwindigkeit.
  • Bei einer weiteren Ausgestaltung des erfindungsgemäßen Scheinzielwirkkörpers ist die Struktur so gestaltet, dass der Gasdruck bei einem Abbrand der Wirkmasse an der gesamten Oberfläche der Wirkmasse für mindestens 1,3 s, insbesondere mindestens 1,5 s, insbesondere mindestens 2 s, höher ist als der Atmosphärendruck. Im Zusammenhang mit der Aufrechterhaltung des Gasdrucks für eine bestimmte Zeit sollte bei der Ausgestaltung der Struktur als Brennkammer die Größe der Öffnungen so gewählt sein, dass auch bei durch den Abbrand sich vergrößernden Öffnungen während der genannten Zeit das Abströmen des entstehenden Gases noch ausreichend gehemmt wird und keine Öffnung eine Größe erreicht, die zum Durchtritt der Wirkmasse vor Ablauf der genannten Zeit ausreicht.
  • Bei einer weiteren Ausgestaltung der Erfindung ist die Struktur mit einem Redoxkatalysator beschichtet oder besteht aus einem Redoxkatalysator. Unter einem Redoxkatalysator wird allgemein ein eine Redoxreaktion katalysierender Katalysator verstanden. Das beim Abbrand der Wirkmasse entstehende Gas wird dann beim Durchströmen der Struktur katalytisch umgesetzt und hat dadurch außerhalb der Struktur eine für das gewünschte Spektralverhältnis eines Scheinziels günstigere Zusammensetzung. Durch die Wirkung des Redoxkatalysators wird die Struktur der Flamme verändert und das Spektralverhältnis erhöht. Weiterhin kann der Katalysator die Umsetzung von entstehendem Ruß in Kohlenoxide katalysieren. Dadurch entsteht weniger Schwarzkörperstrahlung und das Spektralverhältnis wird verbessert. Ein weiterer günstiger Effekt des Redoxkatalysators besteht darin, dass die beim Abbrand entstehende Flamme stabilisiert wird, weil die in der Flamme abbrennenden Gase einen höheren Wasserstoffanteil aufweisen. Wasserstoff brennt an der Luft bei beliebigem Druck und Wind. Weiterhin kann die am Katalysator erfolgende Reaktion die Struktur abkühlen, so dass diese selbst weniger Schwarzkörperstrahlung emittiert als ohne Katalysator. Dadurch wird das Spektralverhältnis weiter erhöht.
  • Das Beschichten bzw. Imprägnieren der Struktur kann beispielsweise dadurch erfolgen, dass der Katalysator aus einer wässrigen Lösung als Suspension ausgefällt wird und diese Suspension dann durch die Struktur filtriert wird, so dass Partikel des Katalysators an der Struktur, beispielsweise Quarzwolle, hängenbleiben. Anschließend muss die Struktur noch getrocknet werden, um katalytisch im erfindungsgemäßen Scheinzielwirkkörper wirken zu können.
  • Der Redoxkatalysator kann einen Wassergaskatalysator, mindestens eine metallorganische Verbindung, insbesondere ein metallorganisches Pigment oder Metallkomplex, ein Oxid oder ein Salz eines Seltenerdmetalls, eine ein Seltenerdmetall enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme ein Oxid eines Seltenerdmetalls bildet, Zirkonium, Titan, Aluminium, Zink, Magnesium, Calcium, Strontium, Barium, Hafnium, Vanadin, Niob, Tantal, Chrom, Nickel, Silber, Eisen, Mangan, Molybdän, Wolfram, Kobalt, Kupfer oder Thorium oder ein Oxid eines der genannten Metalle oder eine eines der genannten Metalle enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme ein Oxid eines solchen Metalls bildet, ein Platinmetall, Rhenium oder eine ein Platinmetall, Rhenium oder Silber enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme zum Metall reduziert wird, oder ein Gemisch aus mindestens zwei der vorgenannten Verbindungen oder Elemente umfassen. Ein Wassergaskatalysator ist ein Katalysator, der eine Wassergasreaktion entsprechend dem Reaktionsschema CO + H2O → CO2 + H2 katalysiert.
  • Der Redoxkatalysator kann CeO2, Ce2O3, Yttriumoxid, Ytterbiumoxid, Neodymiumoxid, Lanthanoxid, ein Gemisch der genannten Oxide, insbesondere ein Gemisch von CeO2 und Yttriumoxid, ein Kupfer-dotiertes Gemisch aus Aluminium- und Zinkoxid (LTS-Katalysator), ein Chrom-dotiertes Magnetit (Fe3O4) (HTS-Katalysator), ein Phtalocyanin, insbesondere Kupferphtalocyanin, Eisenphtalocyanin, Chromphtalocyanin, Kobaltphtalocyanin, Nickelphtalocyanin oder Molybdänphtalocyanin, Vossenblau (= Eisenferricyanid = Eisen(III)ferrocyanid = Eisen(II)ferricyanid) oder ein Porphyrin umfassen.
  • Bei der Wirkmasse kann es sich um eine beim Abbrand mindestens eine Sekundärflamme erzeugende Wirkmasse handeln. Eine solche Wirkmasse ist beispielsweise aus der DE 10 2010 053 783 A1 bekannt. Alternativ kann die Wirkmasse zur Erzeugung einer Sekundärflamme auch einen Kohlenstoff- und Wasserstoffatome enthaltenden Brennstoff und ein Sauerstoffatome enthaltendes Oxidationsmittel für den Brennstoff umfassen, wobei die Menge des Oxidationsmittels so bemessen ist, dass sie nicht zu einer vollständigen Oxidation des Kohlenstoffs ausreicht. Beim Abbrand einer solchen Wirkmasse an der Luft entsteht eine Flamme mit mindestens zwei Zonen, weil der nicht mit dem Oxidationsmittel umgesetzte Brennstoff dann in einer zweiten Flammenzone mit der Luft reagiert. In der Wirkmasse kann zusätzlich ein in Form von Partikeln vorliegender Redoxkatalysator verteilt sein.
  • Durch die beim Abbrand mindestens eine Sekundärflamme erzeugende Wirkmasse wird erreicht, dass die Temperatur beim Abbrand der Wirkmasse an der Struktur deutlich herabgesetzt wird. Dadurch können für die Herstellung der Struktur andere, oftmals günstigere, Materialien eingesetzt werden. Beispielsweise kann die Struktur aus einem Edelstahl- oder Quarzgewebe hergestellt werden. Eine selbst katalytisch wirksame Struktur kann beispielsweise aus normalem Eisen oder aus Kupfer oder einer Kupferlegierung hergestellt werden. Diese werden beim Abbrand stark oxidiert oder weisen bereits eine Oxidschicht an der Oberfläche auf, wobei das Eisen- oder Kupferoxid die Wassergasreaktion katalysieren und auch als Oxidationsmittel für Ruß dienen kann.
  • Die Wirkmasse kann in Form eines Blocks oder mehrerer Stäbe vorliegen, wobei zumindest eine Stirnfläche davon mit einem Mittel zur Hemmung des Abbrands behandelt sein kann. Derartige Mittel sind im Stand der Technik bekannt. Beispielsweise kann es sich dabei um einen brandhemmenden Anstrich oder Lack handeln. Der Vorteil des Vorliegens als Block oder als Stäbe gegenüber einer Schüttung besteht darin, dass dadurch beim Abbrand der Abstand der Wirkmasse zu der Struktur gering gehalten werden kann. Bei einem lokal zu großen Abstand besteht die Gefahr, dass dann die Flammentemperatur an der Struktur so hoch wird, dass die Struktur dadurch zerstört wird. Besonders günstig ist es, wenn die Stirnfläche oder zwei gegenüberliegende Stirnflächen mit dem Mittel zur Hemmung des Abbrands behandelt ist/sind und die Struktur an dieser Stirnfläche/diesen Stirnflächen befestigt ist. Dadurch kann ein Wirkmassenblock radial abbrennen und es kann ein relativ geringer Abstand zwischen der Struktur und der abbrennenden Wirkmasse sicher gestellt werden.
  • Um die Anfeuerung der Wirkmasse zu beschleunigen, ist es vorteilhaft, wenn die Wirkmasse von einer gasdichten durch das beim Abbrand entstehende Gas sprengbaren Umhüllung umgeben ist. Die Umhüllung kann dabei aus Papier, Klebeband oder einer Folie bestehen. Durch die Umhüllung wird der höhere Gasdruck innerhalb der Struktur schneller aufgebaut als ohne eine solche Umhüllung, weil verhindert wird, dass das Gas am Beginn der Reaktion durch die Struktur hinausströmt. Dadurch wird der Abbrand zunächst sehr beschleunigt und die Anstiegszeit beim Abbrand des Scheinziels verkürzt. Eine entsprechend kurze Anstiegszeit wäre auch durch die Verwendung einer relativ großen Menge eines Anfeuerungssatzes möglich. Dies würde jedoch die Sicherheit des Scheinzielwirkkörpers gefährden, da ein solcher Anfeuerungssatz üblicherweise leicht entzündlich ist. Eine starke Anfeuerung erzeugt auch häufig einen nichtspektralen Blitz durch Schwarzkörperstrahlung. Dies kann dem Suchkopf verraten, dass es sich um ein Scheinziel handelt.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.
  • Aus den im Folgenden angegebenen Wirkmassenzusammensetzungen wurden Tabletten mit ca. 17 mm Durchmesser, 30 mm Höhe und einem Gewicht von 10 g gepresst. Die dazu verwendete ionische Flüssigkeit 1-Butyl-3-methylimidazolium-perchlorat (BMIM-ClO4) wurde dabei wie folgt hergestellt:
    • 150 g BMIM-Cl wurden in ca. 600 ml trockenem Methanol bei 25°C in einem 2 Liter Einhalskolben aufgelöst. Eine stöchiometrische Menge trockenes Natriumperchlorat wurde ebenfalls in 600 ml trockenem Methanol in einem 2 Liter Einhalskolben getrennt aufgelöst. Dann wurde die gesamte Perchloratlösung auf einmal in die BMIM-Chloridlösung gegeben. Die Flasche, in der die Perchloratlösung war, wurde noch 3 x mit 50 ml trockenem Methanol gewaschen und das Methanol auch noch zu der BMIM-Chloridlösung gegeben. Die resultierende Lösung wurde nach einigen Minuten trüb und gelb, als das entstandene Natriumchlorid begann auszufallen.
  • Die gesamte Lösung wurde anschließend eine Stunde unter Rückfluss gekocht. Die heiße Lösung wurde danach mittels einer Fritte in einen 2 Liter Einhalskolben filtriert und der Niederschlag noch 3 x mit 50 ml trockenem Methanol gewaschen. Der praktisch ausschließlich aus Kochsalz bestehende Filterkuchen wurde entsorgt.
  • Der Einhalskolben wurde anschließend an einen Rotationsverdampfer angeschlossen und das Methanol unter ca. 500 mbar Druck abdestilliert, wobei das Wasserbad im Verdampfer auf 90°C erhitzt wurde. Als das Methanol abdestilliert war, wurde das warme rohe BMIM-ClO4 aus dem Kolben nochmals durch die Fritte in einen 250 ml Scheidetrichter filtriert, weil beim Verdampfen des Methanols noch weiteres Kochsalz ausgefallen ist.
  • Das fertige BMIM-ClO4 (ein gelbliches, zähflüssiges Öl) wurde aus dem Scheidetrichter in eine Laborflasche gefüllt und gewogen. Die Ausbeute war nahezu quantitativ.
  • Alle hergestellten Tabletten wurden im Labor ohne Wind in jeweils zwei parallelen Versuchen abgebrannt. Dazu wurden die Tabletten gezündet und die spektrale Leistung sowie die Abbrandzeit mittels eines Radiometers (Laserprobe RM-5650) mit zwei Messköpfen jeweils vom Typ RkP-575 und Hochgeschwindigkeitsvideoaufzeichnung ermittelt. Die dargestellten Ergebnisse sind jeweils Mittelwerte aus den beiden parallelen Versuchen.
  • Beispiel 1:
  • Wirkmassenzusammensetzung:
    Stoff Typ Gew.-%
    Ammoniumperchlorat gemahlen d50 = 25 µm 21,9
    Nitrocellulose Hagedorn H24 37,9
    Diethylenglycoldinitrat selbst synthetisiert 10,8
    BMIM-ClO4 selbst synthetisiert 5,4
    Dicyandiamid ABCR kristallin 24,0
    Akardit II 0,1
  • Bei einem ersten Versuch wurden die Wirkmassentabletten ohne die umhüllende Struktur abgebrannt. Bei einem zweiten Versuch wurde die Wirkmassentablette vor dem Abbrand in ein feinmaschiges Edelstahlnetz mit einer Maschenweite von 0,15 mm und bei einem dritten Versuch in Quarzwolle eingehüllt. Beim Abbrand reichte das in der Wirkmasse enthaltene Oxidationsmittel Ammoniumperchlorat zur vollständigen Oxidation der Nitrocellulose nicht aus, so dass beim Abbrand neben der Primärflamme mindestens eine Sekundärflamme und damit eine Flamme mit unterschiedlichen Temperaturzonen entstand, wobei die Temperatur am Edelstahlnetz und an der Quarzwolle verhältnismäßig niedrig blieb. Beide waren nach dem Abbrand unverändert. Dies zeigt, dass die Temperatur direkt an der Struktur etwa 1.000°C nicht überstiegen hat. Beim Abbrand zeigten sich die folgenden Ergebnisse:
    Wirkmasse umgebende Struktur KW [(J/(g sr))] MW [(J/(g sr))] (MW + KW) [(J/(g sr))] MW/KW Abbrandzeit [s]
    keine 10 113 123 11,3 24,3
    Edelstahlnetz 0,15 mm 19,7 126 145 6,4 13,8
    Quarzwolle 8,8 115 124 13,1 12,2
    KW = Leistung im Kurzwellenkanal (ca. 1,5 bis 2,5 µm), MW = Leistung im Mittelwellenkanal (ca. 3,5 bis 5,0 µm);
  • Bei der Interpretation der Ergebnisse ist zu beachten, dass das Edelstahlnetz beim Abbrand relativ heiß geglüht hat und dadurch das Spektralverhältnis verschlechterte. Bei einem Abbrand unter Einsatzbedingungen, bei denen der Scheinzielwirkkörper zunächst mit hoher Geschwindigkeit fliegt und dadurch starkem Wind ausgesetzt ist, kühlt der Wind die Flamme und das Netz stark ab, so dass das Spektralverhältnis dann besser ist als hier dargestellt. Beim Einsatz der Quarzwolle wurde ein besseres Spektralverhältnis ermittelt. Die Reduktion der Leistung nur im KW-Band beim Einsatz der Quarzwolle zeigt, dass der Ruß durch die Quarzwolle abgefiltert und dessen Strahlung abgeschirmt wurde. Durch das Edelstahlnetz und die Quarzwolle wurde die Abbrandrate etwa verdoppelt. Dies beruht auf dem durch diese Struktur beim Abbrand bewirkten Überdruck an der Oberfläche der Wirkmasse sowie auf der Temperaturrückstrahlung vom Edelstahlnetz bzw. der Quarzwolle auf die Tablette.
  • Beispiel 2:
  • Es wurden dieselben Tabletten verwendet wie bei Beispiel 1. Bei einem ersten Versuch bestand die die Wirkmasse umhüllende Struktur aus einem Edelstahlnetz mit einer Maschenweite von 0,15 mm. Zwei weitere Versuche wurden mit den gleichen Edelstahlnetzen durchgeführt, die jedoch mit zwei unterschiedlichen Wassergaskatalysatoren beschichtet waren. Zum Beschichten wurden die Edelstahlnetze jeweils mehrfach in eine wässrige Katalysatorsuspension getaucht und nachfolgend getrocknet. Einer der Katalysatoren war ein sogenannter HTS (High Temperature Shift)-Katalysator, bestehend aus Magnetit mit 10 mol-% Chrom(III)oxid. Der andere war ein sogenannter LTS (Low Temperature Shift)-Katalysator, bestehend aus Zinkoxid, Aluminiumoxid und Kupfer(II)oxid im Molarverhältnis 1:1:1. Beide Katalysatoren wurden aus 0,1-molaren Lösungen ausgefällt. Die Edelstahlnetze wurden in diese Suspension eingetaucht und bei 120°C für eine halbe Stunde getrocknet. Dieser Vorgang wurde jeweils dreimal wiederholt. Dabei war es nicht möglich, die Menge an auf dem Netz zurückgebliebenem Katalysator zu bestimmen.
  • In einer weiteren Versuchsreihe wurde statt des Edelstahlnetzes Quarzwolle verwendet. Eine abgewogene Menge der Katalysatoren wurde jeweils in Wasser suspendiert und durch die Quarzwolle filtriert. Als weiterer Katalysator wurde dabei auch Magnetit verwendet. Die Quarzwolle mit dem Katalysator wurde anschließend bei 120°C für eine halbe Stunde getrocknet. Die Wirkmassentabletten wurden in diese Wolle gewickelt und mit einem 1 mm dicken Eisendraht umwickelt, um die Wolle während des Abbrands zu fixieren. Die Menge an Katalysator betrug dabei jeweils 1% des Tablettengewichts. Weiterhin wurde Quarzwolle mit 0,01 Gew.-% Platin, bezogen auf das Tablettengewicht, imprägniert, indem die Quarzwolle mit einer Hexachlorplatinsäurelösung imprägniert wurde, wobei die gesamte Menge der Lösung von der Quarzwolle absorbiert wurde. Die Quarzwolle wurde anschließend getrocknet. Beim Abbrand wurden die folgenden Ergebnisse erzielt:
    Wirkmasse umgebende Struktur KW [(J/(g sr))] MW [(J/(g sr))] (MW + KW) [(J/(g sr))] MW/KW Abbrandzeit [s]
    keine 10 113 123 11,3 24,3
    Edelstahlnetz 0,15 mm 19,7 126 145 6,4 13,8
    Edelstahlnetz 0,15 mm mit HTS 13 116 129 8,9 12,2
    Edelstahlnetz 0,15 mm mit LTS 15 110 125 7,4 12,1
    Quarzwolle 3,8 52,9 56,7 13,8 12,0
    Quarzwolle mit 1% LTS 5,3 64,9 70,3 12,2 10,8
    Quarzwolle mit 1 % HTS 3,0 69,6 72,6 22,9 11,3
    Quarzwolle mit 0,01% Platin 4,3 95,5 99,8 22,0 15,9
    Quarzwolle mit 1% Magnetit 5,9 108,1 113,9 18,4 17,5
    KW = Leistung im Kurzwellenkanal (ca. 1,5 bis 2,5 µm), MW = Leistung im Mittelwellenkanal (ca. 3,5 bis 5,0 µm);
  • Bei den Versuchen zeigte sich, dass der Katalysator praktisch keine negative Wirkung auf die Abbrandzeit hatte, obwohl die Rückstrahlung von den Edelstahlnetzen mit Katalysator geringer war, weil die Netze durch die katalytische Reaktion abgekühlt wurden. Dies zeigt, dass für die Abbrandzeit nahezu ausschließlich die durch die Struktur bedingte Druckerhöhung entscheidend ist. Teilweise wurde durch den Katalysator eine geringfügige Beschleunigung des Abbrands erreicht. Das Spektralverhältnis konnte teilweise durch den Katalysator erheblich erhöht werden.
  • Beispiel 3:
  • Es wurden Tabletten aus den folgenden Wirkmassegemischen gepresst: Wirkmasse 1:
    Stoff Typ Gew.-%
    Ammoniumperchlorat gemahlen d50 = 25 µm 21,7
    Nitrocellulose Hagedorn H24 37,9
    Diethylenglycoldinitrat selbst synthetisiert 10,8
    BMIM-ClO4 selbst synthetisiert 5,4
    Dicyandiamid ABCR kristallin 24,0
    Akardit II 0,1
    Ceroxid Schuchardt 0,1
    Magnetit selbst gefällt, Partikelgröße < 1 µm 0,1
    Wirkmasse 2:
    Stoff Typ Gew.-%
    Ammoniumperchlorat gemahlen d50 = 25 µm 40,8
    Nitrocellulose Hagedorn H24 50,15
    Ceriumoxid fein 0,1
    Dioctyladipat BASF 8,85
    Eisenphtalocyanin ABCR 0,2
  • Die hier verwendeten Wirkmassen enthalten jeweils einen Abbrandkatalysator und einen Wassergaskatalysator. In einem ersten Versuch erfolgte der Abbrand ohne eine die Tablette umhüllende Struktur. In einem zweiten Versuch wurde als Struktur ein gelöchertes Rohr aus Polyacetal (POM), Typ Delrin®, von der Fa. DuPont verwendet. Polyacetal brennt mit einer farblosen Flamme, die ein sehr hohes Spektralverhältnis aufweist. Dadurch hat der Kunststoff keine oder eine positive Wirkung auf das Spektralverhältnis. Weiterhin erhöht das Polyacetal den Energiegehalt des Scheinzielwirkkörpers. Zur Umhüllung wurde die Wirkmasse in das gelöcherte Rohr aus POM eingebracht. Die Ergebnisse dieser Versuche waren wie folgt:
    Wirkmasse Wirkmasse umgebende Struktur KW [(J/(g sr))] MW [(J/(g sr))] (MW + KW) [(J/(g sr))] MW/KW Abbrand zeit [s]
    1 keine 19,7 126 145 6,4 13,8
    1 gelöchertes Rohr aus POM 13 116 129 8,9 12,2
    2 keine 3,6 80,2 83,8 22,8 16,0
    2 gelöchertes Rohr aus POM 2,8 91,5 94,3 32,6 10,1
    KW = Leistung im Kurzwellenkanal (ca. 1,5 bis 2,5 µm), MW = Leistung im Mittelwellenkanal (ca. 3,5 bis 5,0 µm);
  • Aus den Versuchsergebnissen ist ersichtlich, dass die POM-Struktur sowohl die spezifische Leistung als auch das Spektralverhältnis erhöht hat. Weiterhin hat die Struktur die Abbrandrate erhöht.

Claims (14)

  1. Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse und einer die Wirkmasse umgebenden Struktur, wobei die Struktur die Wirkmasse derart umgibt, dass bei einem Abbrand der Wirkmasse entstehendes Gas durch die Struktur so an einem Abströmen von der Wirkmasse gehindert wird, dass an 100% der gesamten Oberfläche der Wirkmasse ein höherer Gasdruck vorliegt als außerhalb der Struktur, wobei die Struktur
    - in Form eines Metallnetzes, oder
    - in Form einer/eines aus einem anorganischen Material bestehenden Wolle, Vlieses oder Gewebes, wobei das anorganische Material Stein, Quarz, Aluminiumoxid, Keramik oder Glas ist, oder
    - in Form eines feinmaschigen Netzes aus wärmefestem Material vorliegt.
  2. Scheinzielwirkkörper nach Anspruch 1,
    wobei die Struktur aus einem Material besteht, welches einer beim Abbrand an der Struktur entstehenden Temperatur für mindestens ein Drittel, insbesondere mindestens die Hälfte, einer für den gesamten Abbrand der Wirkmasse benötigten Zeit standhält.
  3. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei die Struktur aus einem Material besteht, welches einer beim Abbrand an der Struktur entstehenden Temperatur für mindestens 1,3 s, insbesondere mindestens 1,5 s, insbesondere mindestens 2 s, standhält.
  4. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei das Metallnetz mehrlagig vorliegt.
  5. Scheinzielwirkkörper nach einem der Ansprüche 1 bis 3,
    wobei die Wolle, das Vlies oder das Gewebe von einem Metallnetz umgeben ist.
  6. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei die Struktur so gestaltet ist, dass der Gasdruck an der gesamten Oberfläche der Wirkmasse um mindestens 0,5 bar, insbesondere mindestens 1 bar, insbesondere mindestens 1,5 bar, insbesondere mindestens 2 bar, höher ist als der Atmosphärendruck.
  7. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei die Struktur so gestaltet ist, dass der Gasdruck bei einem Abbrand der Wirkmasse an der gesamten Oberfläche der Wirkmasse für mindestens 1,3 s, insbesondere mindestens 1,5 s, insbesondere mindestens 2 s, höher ist als der Atmosphärendruck.
  8. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei die Struktur mit einem Redoxkatalysator beschichtet ist oder aus einem Redoxkatalysator besteht.
  9. Scheinzielwirkkörper nach Anspruch 8,
    wobei der Redoxkatalysator einen Wassergaskatalysator, mindestens eine metallorganische Verbindung, insbesondere ein metallorganisches Pigment oder Metallkomplex, ein Oxid oder ein Salz eines Seltenerdmetalls, eine ein Seltenerdmetall enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme ein Oxid eines Seltenerdmetalls bildet, Zirkonium, Titan, Aluminium, Zink, Magnesium, Calcium, Strontium, Barium, Hafnium, Vanadin, Niob, Tantal, Chrom, Nickel, Silber, Eisen, Mangan, Molybdän, Wolfram, Kobalt, Kupfer oder Thorium oder ein Oxid eines der genannten Metalle oder eine eines der genannten Metalle enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme ein Oxid eines solchen Metalls bildet, ein Platinmetall, Rhenium oder eine ein Platinmetall, Rhenium oder Silber enthaltende Verbindung, die in einer beim Abbrand der Wirkmasse entstehenden Flamme zum Metall reduziert wird, oder ein Gemisch aus mindestens zwei der vorgenannten Verbindungen oder Elemente umfasst.
  10. Scheinzielwirkkörper nach Anspruch 8,
    wobei der Redoxkatalysator CeO2, Ce2O3, Yttriumoxid, Ytterbiumoxid, Neodymiumoxid, Lanthanoxid, ein Gemisch der genannten Oxide, insbesondere ein Gemisch von CeO2 und Yttriumoxid, ein Kupfer-dotiertes Gemisch aus Aluminium- und Zinkoxid (LTS-Katalysator), ein Chrom-dotiertes Magnetit (Fe3O4) (HTS-Katalysator), ein Phtalocyanin, insbesondere Kupferphtalocyanin, Eisenphtalocyanin, Chromphtalocyanin, Kobaltphtalocyanin, Nickelphtalocyanin oder Molybdänphtalocyanin, Eisenferricyanid oder ein Porphyrin umfasst.
  11. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei die Wirkmasse eine beim Abbrand spektral strahlende Wirkmasse ist.
  12. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei die Wirkmasse eine beim Abbrand mindestens eine Sekundärflamme erzeugende Wirkmasse ist.
  13. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei die Wirkmasse in Form eines Blocks oder mehrerer Stäbe vorliegt, wobei zumindest eine Stirnfläche davon mit einem Mittel zur Hemmung des Abbrands behandelt ist und die Struktur an der Stirnfläche oder zwei Stirnflächen befestigt ist.
  14. Scheinzielwirkkörper nach einem der vorhergehenden Ansprüche,
    wobei die Wirkmasse von einer gasdichten, durch das beim Abbrand entstehende Gas sprengbaren Umhüllung umgeben ist.
EP14001934.0A 2013-06-18 2014-06-04 Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse Active EP2824413B2 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013010266.9A DE102013010266A1 (de) 2013-06-18 2013-06-18 Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse

Publications (4)

Publication Number Publication Date
EP2824413A1 EP2824413A1 (de) 2015-01-14
EP2824413B1 EP2824413B1 (de) 2017-04-05
EP2824413B8 EP2824413B8 (de) 2017-05-31
EP2824413B2 true EP2824413B2 (de) 2019-12-25

Family

ID=50942008

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14001934.0A Active EP2824413B2 (de) 2013-06-18 2014-06-04 Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse

Country Status (5)

Country Link
EP (1) EP2824413B2 (de)
AU (1) AU2014203268B2 (de)
DE (1) DE102013010266A1 (de)
IL (1) IL232582B (de)
ZA (1) ZA201404324B (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014012657B4 (de) 2014-08-22 2019-12-19 Diehl Defence Gmbh & Co. Kg Wirkkörper mit einer Wirkmasse und einer Umhüllung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1929170A1 (de) 1968-06-10 1969-12-11 Bofors Ab Leuchtkoerper
DE2746809A1 (de) 1976-10-27 1978-05-03 Bofors Ab Leuchtsignalkoerper
DE3515166A1 (de) 1985-04-26 1986-10-30 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen Wurfkoerper zur darstellung eines infrarot-flaechenstrahlers
DE4327976C1 (de) 1993-08-19 1995-01-05 Buck Chem Tech Werke Flaremasse zur Scheinzielerzeugung
DE4244681A1 (de) 1991-10-01 1995-08-17 Secr Defence Brit Angetriebene pyrotechnische Lockfackel
WO1996034249A1 (en) 1995-04-24 1996-10-31 Thiokol Corporation High-intensity infrared decoy flare
JP2000028299A (ja) 1998-07-07 2000-01-28 Nof Corp 赤外線フレア
DE102004047231A1 (de) 2004-09-28 2006-04-06 Rheinmetall Waffe Munition Gmbh Wirkkörper
WO2013016116A1 (en) 2011-07-22 2013-01-31 Nanocomposix, Inc. Pyrophoric sheet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905748A1 (de) 1989-02-24 1993-06-03 Dornier Gmbh Scheinziel
GB9120803D0 (en) 1991-10-01 1995-03-08 Secr Defence Pyrotechnic decoy flare
DE9414263U1 (de) 1994-09-02 1994-10-27 Buck Werke GmbH & Co, 73337 Bad Überkingen Leuchtkörper
US5866840A (en) 1997-09-17 1999-02-02 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Nozzles for pyrophoric IR decoy flares
US20030047104A1 (en) 1999-11-10 2003-03-13 Amos Raz Decoy flare
CA2432050C (en) 2000-12-13 2009-06-23 The Secretary Of State For Defence Infra-red emitting decoy flare
DE102008017722A1 (de) 2008-04-07 2009-10-08 Rheinmetall Waffe Munition Gmbh Wirkmassenbehälter
DE102009030871B4 (de) 2009-06-26 2013-05-29 Rheinmetall Waffe Munition Gmbh Verbrennbarer Wirkmassencontainer
DE102009030869A1 (de) 2009-06-26 2011-02-10 Rheinmetall Waffe Munition Gmbh Wirkkörper
DE102010013110A1 (de) 2010-03-26 2011-09-29 Rheinmetall Waffe Munition Gmbh Gekapselter Wirkkörper für ein IR-Täusch- bzw. Scheinziel
DE102010053783A1 (de) 2010-12-08 2012-06-14 Diehl Bgt Defence Gmbh & Co. Kg Hochleistungswirkmasse für pyrotechnische Infrarotscheinziele
DE102011120454A1 (de) 2011-12-07 2013-06-13 Diehl Bgt Defence Gmbh & Co. Kg Wirkmasse für ein beim Abbrand im Wesentlichen spektral strahlendes Infrarotscheinziel mit Raumwirkung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1929170A1 (de) 1968-06-10 1969-12-11 Bofors Ab Leuchtkoerper
DE2746809A1 (de) 1976-10-27 1978-05-03 Bofors Ab Leuchtsignalkoerper
DE3515166A1 (de) 1985-04-26 1986-10-30 Buck Chemisch-Technische Werke GmbH & Co, 7347 Bad Überkingen Wurfkoerper zur darstellung eines infrarot-flaechenstrahlers
DE4244681A1 (de) 1991-10-01 1995-08-17 Secr Defence Brit Angetriebene pyrotechnische Lockfackel
DE4327976C1 (de) 1993-08-19 1995-01-05 Buck Chem Tech Werke Flaremasse zur Scheinzielerzeugung
WO1996034249A1 (en) 1995-04-24 1996-10-31 Thiokol Corporation High-intensity infrared decoy flare
JP2000028299A (ja) 1998-07-07 2000-01-28 Nof Corp 赤外線フレア
DE102004047231A1 (de) 2004-09-28 2006-04-06 Rheinmetall Waffe Munition Gmbh Wirkkörper
WO2013016116A1 (en) 2011-07-22 2013-01-31 Nanocomposix, Inc. Pyrophoric sheet

Also Published As

Publication number Publication date
AU2014203268B2 (en) 2018-01-18
AU2014203268A1 (en) 2015-01-22
DE102013010266A1 (de) 2014-12-18
EP2824413B8 (de) 2017-05-31
ZA201404324B (en) 2016-10-26
EP2824413B1 (de) 2017-04-05
EP2824413A1 (de) 2015-01-14
IL232582B (en) 2018-11-29
IL232582A0 (en) 2014-08-31

Similar Documents

Publication Publication Date Title
DE3820443C2 (de) Poröses Treibmittelkorn und Verfahren zu seiner Herstellung
DE69729758T2 (de) Airbag-gasgenerator und airbag-vorrichtung
EP0664876B1 (de) Verfahren zur scheinzielerzeugung
DE3727851C2 (de)
DE3326884A1 (de) Verfahren zum verdecken sichtbarer und infraroter strahlung und nebelmunition zur durchfuehrung dieses verfahrens
DE102005001452B4 (de) Gasgenerator für einen Airbag
DE19909083C2 (de) Verfahren und Vorrichtung zum Löschen von Bränden
EP1221017B1 (de) Treibladungsanordnung für rohrwaffen oder ballistische antriebe
EP1794537B1 (de) Wirkkörper
DE102007060372A1 (de) Rekombinatorelement
EP2824413B2 (de) Scheinzielwirkkörper mit einer pyrotechnischen Wirkmasse
DE3920611C2 (de) Natriumchlorat-Sauerstoffgenerator
EP1173395B1 (de) Pyrotechnischer nebelsatz zur erzeugung eines im sichtbaren, infraroten und im millimeterwellen-bereich undurchdringlichen aerosols
DE19852318A1 (de) Airbagaufblasvorrichtung
WO2020083773A1 (de) Gasgenerator, gassackmodul, fahrzeugsicherheitssystem und verfahren zum betreiben eines gasgenerators
EP3241589B1 (de) Brand- oder rauchschutzvorrichtung, insbesondere förderanlagenabschluss
DE19758421B4 (de) Pyrotechnische Leuchtvorrichtung
DE4321806A1 (de) Schubreduzierende Düse mit ungeordnetem Fluss
DE102012016452B4 (de) Wirkmasse für ein beim Abbrand der Wirkmasse spektral strahlendes Scheinziel mit einem Zusatzstoff
EP2698362B1 (de) Wirkmasse für ein beim Abbrand der Wirkmasse spektral strahlendes Scheinziel
DE19723260A1 (de) Gasgenerator
DE4342428C2 (de) Geschützmunition mit einer verbrennbaren Treibladungshülse
EP2530065B1 (de) Hochleistungswirkmasse für ein beim Abbrand spektral strahlendes Infrarotscheinziel
DE69310238T2 (de) Verfahren und Vorrichtung zum Unschädlichmachen einer Bedrohung durch Freigabe eines Neutralisationsmittels
DE102019100623A1 (de) Gasgenerator, modul und fahrzeugsicherheitssystem

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

R17P Request for examination filed (corrected)

Effective date: 20150709

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20161118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: DIEHL DEFENCE GMBH & CO. KG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 882231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014003268

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170405

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170805

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502014003268

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: RHEINMETALL WAFFE MUNITION GMBH

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170604

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170604

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

27A Patent maintained in amended form

Effective date: 20191225

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502014003268

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170405

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 882231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230601

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230622

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230816

Year of fee payment: 10