EP2275401A1 - Kristalline 1-{[(a-isobutanyloxyethoxy)carbonyl]aminomethyl}-1-Cyclohexanessigsäure - Google Patents

Kristalline 1-{[(a-isobutanyloxyethoxy)carbonyl]aminomethyl}-1-Cyclohexanessigsäure Download PDF

Info

Publication number
EP2275401A1
EP2275401A1 EP10013362A EP10013362A EP2275401A1 EP 2275401 A1 EP2275401 A1 EP 2275401A1 EP 10013362 A EP10013362 A EP 10013362A EP 10013362 A EP10013362 A EP 10013362A EP 2275401 A1 EP2275401 A1 EP 2275401A1
Authority
EP
European Patent Office
Prior art keywords
substituted
hydrogen
aminomethyl
another embodiment
butyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10013362A
Other languages
English (en)
French (fr)
Other versions
EP2275401B1 (de
Inventor
Stephen P. Raillard
Cindy X. Zhou
Fenmei Yao
Suresh Kumar Manthati
Jia-Ning Xiang
Mark A. Gallop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XenoPort Inc
Original Assignee
XenoPort Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XenoPort Inc filed Critical XenoPort Inc
Publication of EP2275401A1 publication Critical patent/EP2275401A1/de
Application granted granted Critical
Publication of EP2275401B1 publication Critical patent/EP2275401B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/22Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/06Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups by reactions not involving the formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D309/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
    • C07D309/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D309/04Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D309/06Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/02Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • Methods for synthesis of 1-(acyloxy)-alkyl carbamates are provided. More particularly, the synthesis of prodrugs (i.e ., 1-(acyloxy)-alkyl carbamates of GABA analogs) from 1-haloalkyl carbamates of GABA analogs are described. Also described are new 1-haloalkyl carbamates of GABA analogs.
  • prodrugs One solution to drug delivery and/or bioavailability issues in pharmaceutical development is converting known drugs to prodrugs.
  • a polar functional group e.g ., a carboxylic acid, an amino group, a hydroxyl group, etc.
  • promoiety which is labile under physiological conditions.
  • prodrugs are usually transported through hydrophobic biological barriers such as membranes and typically possess superior physicochemical properties than the parent drug.
  • Pharmacologically effective prodrugs are non-toxic and are preferably selectively cleaved at the locus of drug action. Ideally, cleavage of the promoiety occurs rapidly and quantitatively with the formation of non-toxic by-products ( i.e ., the hydrolyzed promoiety).
  • acyloxyalkoxycarbonyl functionality is an example of a promoiety that may be used to modulate the physiochemical properties of pharmaceuticals (Alexander, United States Patent No. 4,916,230 ; Alexander, United States Patent No. 5,733,907 ; Alexander et al., U.S. Patent No. 4,426,391 ).
  • 1-(acyloxy)-alkyl derivatives of a pharmaceutical possess superior bioavailability may be less irritating to topical and gastric mucosal membranes and are usually more permeable through such membranes when compared to the parent drug.
  • a method for synthesizing 1-(acyloxy)-alkyl derivatives from acyloxy derivatives which typically proceeds in high yield, does not necessarily require the use of heavy metals and is readily amenable to scale-up is provided herein.
  • a method of synthesizing a compound of Formula ( I ) comprises contacting a compound of Formula ( II ), a compound of Formula ( III ) and at least one equivalent of a metal salt wherein:
  • a method of synthesizing a compound of Formula ( I ) comprises contacting a compound of Formula ( II ), a compound of Formula ( III ) and at least one equivalent of an organic base, where X, n, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined, supra.
  • Compounds refers to compounds encompassed by structural formulae ( I ) - ( VIII ) disclosed herein and includes any specific compounds within these formulae whose structure is disclosed herein. Compounds may be identified either by their chemical structure and/or chemical name. When the chemical structure and chemical name conflict, the chemical structure is determinative of the identity of the compound.
  • the compounds described herein may contain one or more chiral centers and/or double bonds and therefore, may exist as stereoisomers, such as double-bond isomers ( i.e ., geometric isomers), enantiomers or diastereomers.
  • the chemical structures depicted herein encompass all possible enantiomers and stereoisomers of the illustrated compounds including the stereoisomerically pure form (e.g ., geometrically pure, enantiomerically pure or diastereomerically pure) and enantiomeric and stereoisomeric mixtures.
  • Enantiomeric and stereoisomeric mixtures can be resolved into their component enantiomers or stereoisomers using separation techniques or chiral synthesis techniques well known to the skilled artisan.
  • the compounds may also exist in several tautomeric forms including the enol form, the keto form and mixtures thereof. Accordingly, the chemical structures depicted herein encompass all possible tautomeric forms of the illustrated compounds.
  • the compounds described also include isotopically labeled compounds where one or more atoms have an atomic mass different from the atomic mass conventionally found in nature.
  • isotopes that may be incorporated into the compounds of the invention include, but are not limited to, 2 H, 3 H, 13 C, 14 C, 15 N, 18 O, 17 O, etc .
  • Compounds may exist in unsolvated forms as well as solvated forms, including hydrated forms and as N-oxides. In general, compounds may be hydrated, solvated or N-oxides. Certain compounds may exist in multiple crystalline or amorphous forms. In general, all physical forms are equivalent for the uses contemplated herein and are intended to be within the scope of the present invention. Further, it should be understood, when partial structures of the compounds are illustrated, that brackets indicate the point of attachment of the partial structure to the rest of the molecule.
  • 1-Acyloxy-Alkyl Carbamate refers to an N-1-acyloxy-alkoxycarbonyl derivative of a primary or secondary amine as encompassed by structural formulae ( I ), ( V ) and ( VI ) disclosed herein.
  • Alkyl by itself or as part of another substituent refers to a saturated or unsaturated, branched, straight-chain or cyclic monovalent hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane, alkene or alkyne.
  • Typical alkyl groups include, but are not limited to, methyl; ethyls such as ethanyl, ethenyl, ethynyl; propyls such as propan-1-yl, propan-2-yl, cyclopropan-1-yl, prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl (allyl), cycloprop-1-en-1-yl; cycloprop-2-en-1-yl, prop-1-yn-1-yl, prop-2-yn-1-yl, etc .; butyls such as butan-1-yl, butan-2-yl, 2-methyl-propan-1-yl, 2-methyl-propan-2-yl, cyclobutan-1-yl, but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-2-yl, buta-1
  • alkyl is specifically intended to include groups having any degree or level of saturation, i.e ., groups having exclusively single carbon-carbon bonds, groups having one or more double carbon-carbon bonds, groups having one or more triple carbon-carbon bonds and groups having mixtures of single, double and triple carbon-carbon bonds. Where a specific level of saturation is intended, the expressions “alkanyl,” “alkenyl,” and “alkynyl” are used.
  • an alkyl group comprises from 1 to 20 carbon atoms, more preferably, from 1 to 10 carbon atoms, most preferably, from 1 to 6 carbon atoms.
  • Alkanyl by itself or as part of another substituent refers to a saturated branched, straight-chain or cyclic alkyl radical derived by the removal of one hydrogen atom from a single carbon atom of a parent alkane.
  • Typical alkanyl groups include, but are not limited to, methanyl; ethanyl; propanyls such as propan-1-yl, propan-2-yl (isopropyl), cyclopropan-1-yl, etc .; butanyls such as butan-1-yl, butan-2-yl ( sec -butyl), 2-methyl-propan-1-yl (isobutyl), 2-methyl-propan-2-yl ( t -butyl), cyclobutan-1-yl, etc .; and the like.
  • Alkenyl by itself or as part of another substituent refers to an unsaturated branched, straight-chain or cyclic alkyl radical having at least one carbon-carbon double bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkene.
  • the group may be in either the cis or trans conformation about the double bond(s).
  • Typical alkenyl groups include, but are not limited to, ethenyl; propenyls such as prop-1-en-1-yl, prop-1-en-2-yl, prop-2-en-1-yl (allyl), prop-2-en-2-yl, cycloprop-1-en-1-yl; cycloprop-2-en-1-yl; butenyls such as but-1-en-1-yl, but-1-en-2-yl, 2-methyl-prop-1-en-1-yl, but-2-en-1-yl, but-2-en-1-yl, but-2-en-2-yl, buta-1,3-dien-1-yl, buta-1,3-dien-2-yl, cyclobut-1-en-1-yl, cyclobut-1-en-3-yl, cyclobuta-1,3-dien-1-yl, etc.; and the like.
  • Alkynyl by itself or as part of another substituent refers to an unsaturated branched, straight-chain or cyclic alkyl radical having at least one carbon-carbon triple bond derived by the removal of one hydrogen atom from a single carbon atom of a parent alkyne.
  • Typical alkynyl groups include, but are not limited to, ethynyl; propynyls such as prop-1-yn-1-yl, prop-2-yn-1-yl, etc .; butynyls such as but-1-yn-1-yl, but-1-yn-3-yl, but-3-yn-1-yl, etc .; and the like.
  • Acyl by itself or as part of another substituent refers to a radical -C(O)R 30 , where R 30 is hydrogen, alkyl, cycloalkyl, cycloheteroalkyl, aryl, arylalkyl, heteroalkyl, heteroaryl, heteroarylalkyl as defined herein.
  • Representative examples include, but are not limited to formyl, acetyl, cyclohexylcarbonyl, cyclohexylmethylcarbonyl, benzoyl, benzylcarbonyl and the like.
  • Alkoxy by itself or as part of another substituent refers to a radical -OR 31 where R 31 represents an alkyl or cycloalkyl group as defined herein. Representative examples include, but are not limited to, methoxy, ethoxy, propoxy, butoxy, cyclohexyloxy and the like.
  • Alkoxycarbonyl by itself or as part of another substituent refers to a radical -OR 32 where R 32 represents an alkyl or cycloalkyl group as defined herein. Representative examples include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, cyclohexyloxycarbonyl and the like.
  • Aryl by itself or as part of another substituent refers to a monovalent aromatic hydrocarbon radical derived by the removal of one hydrogen atom from a single carbon atom of a parent aromatic ring system.
  • Typical aryl groups include, but are not limited to, groups derived from aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as -indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, pic
  • Arylalkyl by itself or as part of another substituent refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with an aryl group.
  • Typical arylalkyl groups include, but are not limited to, benzyl, 2-phenylethan-1-yl, 2-phenylethen-1-yl, naphthylmethyl, 2-naphthylethan-1-yl, 2-naphthylethen-1-yl, naphthobenzyl, 2-naphthophenylethan-1-yl and the like.
  • an arylalkyl group is (C 6 -C 30 ) arylalkyl, e.g ., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C 1 -C 10 ) and the aryl moiety is (C 6 -C 20 ), more preferably, an arylalkyl group is (C 6 -C 20 ) arylalkyl, e.g ., the alkanyl, alkenyl or alkynyl moiety of the arylalkyl group is (C 1 -C 8 ) and the aryl moiety is (C 6 -C 12 ).
  • Aryldialkylsilyl by itself or as part of another substituent refers to the radical - SiR 33 R 34 R 35 where one of R 33 , R 34 or R 35 is aryl as defined herein and the other two of R 33 , R 34 or R 35 are alkyl as defined herein.
  • Bridged cycloalkyl by itself or as part of another substituent refers to a radical selected from the group consisting of wherein:
  • Carbamoyl by itself or as part of another substituent refers to the radical -C(O)NR 40 R 41 where R 40 and R 41 are independently hydrogen, alkyl, cycloalkyl or aryl as defined herein.
  • Cycloalkyl by itself or as part of another substituent refers to a saturated or unsaturated cyclic alkyl radical. Where a specific level of saturation is intended, the nomenclature “cycloalkanyl” or “cycloalkenyl” is used.
  • Typical cycloalkyl groups include, but are not limited to, groups derived from cyclopropane, cyclobutane, cyclopentane, cyclohexane and the like.
  • the cycloalkyl group is (C 3 -C 10 ) cycloalkyl, more preferably (C 3 -C 7 ) cycloalkyl.
  • Cycloheteroalkyl by itself or as part of another substituent refers to a saturated or unsaturated cyclic alkyl radical in which one or more carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatom.
  • Typical heteroatoms to replace the carbon atom(s) include, but are not limited to, N, P, O, S, Si, etc. Where a specific level of saturation is intended, the nomenclature “cycloheteroalkanyl” or “cycloheteroalkenyl” is used.
  • Typical cycloheteroalkyl groups include, but are not limited to, groups derived from epoxides, azirines, thiiranes, imidazolidine, morpholine, piperazine, piperidine, pyrazolidine, pyrrolidine, quinuclidine, and the like.
  • GABA analog refers to a compound, unless specified otherwise, as having the following structure: wherein:
  • 1-Haloalkyl Carbamate refers to an N-1-haloalkoxycarbonyl derivative of a primary or secondary amine as encompassed by structural formulae ( II ), ( VII ) and ( VIII ) disclosed herein.
  • Heteroalkyl, Heteroalkanyl, Heteroalkenyl and Heteroalkynyl by themselves or as part of another substituent refer to alkyl, alkanyl, alkenyl and alkynyl groups, respectively, in which one or more of the carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatomic groups.
  • Heteroaryl by itself or as part of another substituent refers to a monovalent heteroaromatic radical derived by the removal of one hydrogen atom from a single atom of a parent heteroaromatic ring system.
  • Typical heteroaryl groups include, but are not limited to, groups derived from acridine, arsindole, carbazole, ⁇ -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine,
  • the heteroaryl group is from 5-20 membered heteroaryl, more preferably from 5-10 membered heteroaryl.
  • Preferred heteroaryl groups are those derived from thiophene, pyrrole, benzothiophene, benzofuran, indole, pyridine, quinoline, imidazole, oxazole and pyrazine
  • Heteroarylalkyl by itself or as part of another substituent refers to an acyclic alkyl radical in which one of the hydrogen atoms bonded to a carbon atom, typically a terminal or sp 3 carbon atom, is replaced with a heteroaryl group. Where specific alkyl moieties are intended, the nomenclature heteroarylalkanyl, heteroarylalkenyl and/or heterorylalkynyl is used.
  • the heteroarylalkyl group is a 6-30 membered heteroarylalkyl, e.g ., the alkanyl, alkenyl or alkynyl moiety of the heteroarylalkyl is 1-10 membered and the heteroaryl moiety is a 5-20-membered heteroaryl, more preferably, 6-20 membered heteroarylalkyl, e.g ., the alkanyl, alkenyl or alkynyl moiety of the heteroarylalkyl is 1-8 membered and the heteroaryl moiety is a 5-12-membered heteroaryl.
  • Parent Aromatic Ring System refers to an unsaturated cyclic or polycyclic ring system having a conjugated ⁇ electron system. Specifically included within the definition of "parent aromatic ring system” are fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, fluorene, indane, indene, phenalene, etc .
  • Typical parent aromatic ring systems include, but are not limited to, aceanthrylene, acenaphthylene, acephenanthrylene, anthracene, azulene, benzene, chrysene, coronene, fluoranthene, fluorene, hexacene, hexaphene, hexalene, as-indacene, s-indacene, indane, indene, naphthalene, octacene, octaphene, octalene, ovalene, penta-2,4-diene, pentacene, pentalene, pentaphene, perylene, phenalene, phenanthrene, picene, pleiadene, pyrene, pyranthrene, rubicene, triphenylene, trinaphthalene and the like.
  • Parent Heteroaromatic Ring System refers to a parent aromatic ring system in which one or more carbon atoms (and any associated hydrogen atoms) are independently replaced with the same or different heteroatom. Typical heteroatoms to replace the carbon atoms include, but are not limited to, N, P, O, S, Si, etc . Specifically included within the definition of "parent heteroaromatic ring systems” are fused ring systems in which one or more of the rings are aromatic and one or more of the rings are saturated or unsaturated, such as, for example, arsindole, benzodioxan, benzofuran, chromane, chromene, indole, indoline, xanthene, etc .
  • Typical parent heteroaromatic ring systems include, but are not limited to, arsindole, carbazole, ⁇ -carboline, chromane, chromene, cinnoline, furan, imidazole, indazole, indole, indoline, indolizine, isobenzofuran, isochromene, isoindole, isoindoline, isoquinoline, isothiazole, isoxazole, naphthyridine, oxadiazole, oxazole, perimidine, phenanthridine, phenanthroline, phenazine, phthalazine, pteridine, purine, pyran, pyrazine, pyrazole, pyridazine, pyridine, pyrimidine, pyrrole, pyrrolizine, quinazoline, quinoline, quinolizine, quinoxaline, tetrazole, thi
  • Pharmaceutically acceptable salt refers to a salt of a compound, which possesses the desired pharmacological activity of the parent compound.
  • Such salts include: (1) acid addition salts, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, and the like; or formed with organic acids such as acetic acid; propionic acid, hexanoic acid, cyclopentanepropionic acid, glycolic acid, pyruvic acid, lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, 3-(4-hydroxybenzoyl) benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethane-disulfonic acid, 2-hydroxyethanesulfonic acid, benzenesulfonic acid, 4-chlorobenzen
  • Prodrug refers to a derivative of a drug molecule that requires a transformation within the body to release the active drug. Prodrugs are frequently, although not necessarily, pharmacologically inactive until converted to the parent drug.
  • a hydroxyl containing drug may be converted to, for example, to a sulfonate, ester or carbonate prodrug, which may be hydrolyzed in vivo to provide the hydroxyl compound.
  • An amino containing drug may be converted, for example, to a carbamate, amide, enamine, imine, N-phosphonyl, N-phosphoryl or N-sulfenyl prodrug, which may be hydrolyzed in vivo to provide the amino compound.
  • a carboxylic acid drug may be converted to an ester (including silyl esters and thioesters), amide or hydrazide prodrug, which be hydrolyzed in vivo to provide the carboxylic acid compound.
  • ester including silyl esters and thioesters
  • amide or hydrazide prodrug which be hydrolyzed in vivo to provide the carboxylic acid compound.
  • Prodrugs for drugs which have functional groups different than those listed above are well known to the skilled artisan.
  • Promoiety refers to a form of protecting group that when used to mask a functional group within a drug molecule converts the drug into a prodrug. Typically, the promoiety will be attached to the drug via bond(s) that are cleaved by enzymatic or non-enzymatic means in vivo.
  • Protecting group refers to a grouping of atoms that when attached to a reactive functional group in a molecule masks, reduces or prevents reactivity of the functional group. Examples of protecting groups can be found in Green et al., “Protective Groups in Organic Chemistry", (Wiley, 2nd ed. 1991 ) and Harrison et al., “Compendium of Synthetic Organic Methods", Vols. 1-8 (John Wiley and Sons, 1971-1996 ).
  • Representative amino protecting groups include, but are not limited to, formyl, acetyl, trifluoroacetyl, benzyl, benzyloxycarbonyl ("CBZ”), tert -butoxycarbonyl (“Boc”), trimethylsilyl (“TMS”), 2-trimethylsilyl-ethanesulfonyl (“SES”), trityl and substituted trityl groups, allyloxycarbonyl, 9-fluorenylinethyloxycarbonyl (“FMOC”), nitro-veratryloxycarbonyl (“NVOC”) and the like.
  • hydroxy protecting groups include, but are not limited to, those where the hydroxy group is either acylated or alkylated such as benzyl, and trityl ethers as well as alkyl ethers, tetrahydropyranyl ethers, trialkylsilyl ethers and allyl ethers.
  • Substituted refers to a group in which one or more hydrogen atoms are independently replaced with the same or different substituent(s).
  • Trialkylsilyl by itself or as part of another substituent refers to a radical - SiR 50 R 51 R 52 where R 50 , R 51 and R 52 are alkyl as defined herein.
  • 1-(acyloxy)-alkyl carbamates of GABA analogs are synthesized by reaction of a 1-haloalkyl carbamate of a GABA analog with a carboxylic acid in the presence of either a metal salt or an organic base.
  • the carboxylic acid also serves a solvent for the reaction.
  • a compound of Formula (I) is synthesized by a method comprising contacting a compound of Formula ( II ), a compound of Formula ( III ) and at least one equivalent of a metal salt wherein:
  • a compound of Formula ( I ) is synthesized by a method comprising contacting a compound of Formula ( II ), a compound of Formula ( III ) and at least one equivalent of an organic base, wherein X, n, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 and R 10 are as defined, supra.
  • R 2 and R 3 are independently hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, substituted carbamoyl, cycloalkyl, substituted cycloalkyl, heteroaryl or substituted heteroaryl.
  • R 2 and R 3 are independently hydrogen, alkyl, alkoxycarbonyl, aryl, arylalkyl, carbamoyl, cycloalkyl, or heteroaryl.
  • R 2 and R 3 are independently hydrogen, alkanyl or substituted alkanyl.
  • R 2 and R 3 are independently hydrogen or alkanyl.
  • R 1 is alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl or substituted heteroaryl.
  • R 1 is alkyl or substituted alkyl.
  • R 1 is alkanyl or substituted alkanyl.
  • R 1 is alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl or substituted heteroaryl
  • R 2 and R 3 are independently hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl.
  • R 1 is alkyl, substituted alkyl, aryl, arylalkyl or heteroaryl and R 2 and R 3 are independently hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl.
  • R 1 is alkanyl or substituted alkanyl and R 2 and R 3 are independently hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl.
  • R 1 is alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl or substituted cycloalkyl and R 2 and R 3 are independently hydrogen, alkyl, alkoxycarbonyl, aryl, arylalkyl, carbamoyl, cycloalkyl or heteroaryl.
  • R 1 is alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl or substituted cycloalkyl and R 2 and R 3 are independently hydrogen, alkanyl or substituted alkanyl.
  • R 1 is alkyl, substituted alkyl, aryl,substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl or substituted cycloalkyl and R 2 and R 3 are independently alkanyl.
  • R 1 is alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, cycloalkyl, substituted cycloalkyl, heteroaryl or substituted heteroaryl and R 2 and R 3 together with the atom to which they are attached form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl or substituted cycloheteroalkyl ring.
  • R 1 is alkyl, substituted alkyl, aryl, arylalkyl, cycloalkyl or heteroaryl and R 2 and R 3 are independently hydrogen, alkyl, alkoxycarbonyl, aryl, arylalkyl, carbamoyl, cycloalkyl or heteroaryl.
  • R 1 is alkyl, substituted alkyl, aryl, arylalkyl, cycloalkyl or heteroaryl and R 2 and R 3 are independently hydrogen, alkanyl or substituted alkanyl.
  • R 1 is alkyl, substituted alkyl, aryl, arylalkyl, cycloalkyl or heteroaryl and R 2 and R 3 are independently alkanyl.
  • R 1 is alkyl, substituted alkyl, aryl, arylalkyl, cycloalkyl or heteroaryl and R 2 and R 3 together with the atom to which they are attached form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl or substituted cycloheteroalkyl ring.
  • R 1 is alkanyl or substituted alkanyl and R 2 and R 3 are independently hydrogen, alkyl, alkoxycarbonyl, aryl, arylalkyl, carbamoyl, cycloalkyl or heteroaryl.
  • R 1 is alkanyl or substituted alkanyl and R 2 and R 3 are independently hydrogen, alkanyl or substituted alkanyl.
  • R 1 is alkanyl or substituted alkanyl and R 2 and R 3 are independently alkanyl.
  • R 1 is alkanyl or substituted alkanyl
  • R 2 and R 3 together with the atom to which they are attached form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl or substituted cycloheteroalkyl ring.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl.
  • R 2 and R 3 are independently hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, cyclobutyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec -butoxycarbonyl, tert -butoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl or 3-pyridyl.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, ten-butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl and R 2 and R 3 are independently hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, cyclobutyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbon
  • R 2 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl and R 2 and R 3 together with the atom to which they are attached form a cyclobutyl, cyclopentyl or cyclohexyl ring.
  • R 2 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, cyclohexyl or phenyl and R 3 is hydrogen.
  • R 2 is methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl or cyclohexyloxycarbonyl and R 3 is methyl.
  • R 2 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl, tert -butyl, 1,1-dimethoxyethyl or 1,1-diethoxyethyl.
  • R 2 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl or tert -butyl, and R 3 is hydrogen.
  • R 1 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl, tert -butyl, 1,1-dimethoxyethyl or 1,1-diethoxyethyl
  • R 2 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl or tert -butyl
  • R 3 is hydrogen.
  • R 10 is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryldialkylsilyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl or trialkylsilyl.
  • R 10 is hydrogen.
  • R 10 is alkanyl, substituted alkanyl, alkenyl, substituted alkenyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryldialkylsilyl or trialkylsilyl.
  • n is 0. In another embodiment, n is 1.
  • R 5 is selected from the group consisting of hydrogen, alkanyl, substituted alkanyl, aryl, substituted aryl, arylalkanyl, substituted arylalkanyl, cycloalkanyl, heteroarylalkyl and substituted heteroarylalkanyl.
  • R 5 is selected from the group consisting of hydrogen, alkanyl and cycloalkanyl.
  • R 5 is selected from the group consisting of hydrogen, methyl, isopropyl, isobutyl, sec -butyl, tert -butyl, cyclopentyl and cyclohexyl.
  • R 5 is selected from the group consisting of substituted alkanyl.
  • R 5 is selected from the group consisting of -CH 2 OH, -CH(OH)CH 3 , -CH 2 CO 2 H, -CH 2 CH 2 CO 2 H, -CH 2 CONH 2 , -CH 2 CH 2 CONH 2 , - CH 2 CH 2 SCH 3 , CH 2 SH, -CH 2 (CH 2 ) 3 NH 2 and -CH 2 CH 2 CH 2 NHC(NH)NH 2 .
  • R 5 is selected from the group consisting of aryl, arylalkanyl, substituted arylalkanyl and heteroarylalkanyl.
  • R 5 is selected from the group consisting of phenyl, benzyl, 4-hydroxybenzyl, 4-bromobenzyl, 4-imidazolylmethyl and 3-indolylmethyl.
  • R 4 and R 5 together with the atoms to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring. In still another embodiment, R 4 and R 5 together with the atoms to which they are attached form an azetidine, pyrrolidine or piperidine ring.
  • R 6 and R 9 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl and substituted cycloalkyl. In another embodiment, R 6 and R 9 are independently selected from the group consisting of hydrogen and alkanyl. In still another embodiment, R 6 and R 9 are both hydrogen.
  • R 7 and R 8 are independently selected from the group consisting of hydrogen; alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl and substituted cycloheteroalkyl. In another embodiment, R 7 and R 8 are independently selected from the group consisting of hydrogen, alkanyl and substituted alkanyl. In still another embodiment, R 7 is hydrogen and R 8 is selected from the group consisting of C 1-6 alkanyl.
  • R 7 and R 8 together with the carbon atom to which they are attached are cycloalkanyl or substituted cycloalkanyl. In still another embodiment, R 7 and R 8 together with the carbon atom to which they are attached are selected from the group consisting of cyclobutyl, substituted cyclobutyl, cyclopentyl, substituted cyclopentyl, cyclohexyl and substituted cyclohexyl.
  • R 7 and R 8 together with the carbon atom to which they are attached are cycloheteroalkyl or substituted cycloheteroalkyl. In still another embodiment, R 7 and R 8 together with the carbon atom to which they are attached are bridged cycloalkyl.
  • X is chloro, bromo or iodo. In another embodiment, X is chloro, and R 2 and R 3 are independently hydrogen or alkanyl. In still another embodiment, X is chloro, and R 2 and R 3 together with the atom to which they are attached form a cycloalkanyl ring.
  • X is chloro, bromo or iodo
  • R 2 and R 3 are independently hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, cyclobutyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec -butoxycarbonyl, tert -butoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl or 3-pyridyl.
  • X is chloro, bromo or iodo
  • R 2 and R 3 together with the atom to which they are attached form a cyclobutyl, cyclopentyl or cyclohexyl ring.
  • X is chloro, bromo or iodo
  • R 2 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl, tert -butyl, cyclohexyl or phenyl and R 3 is hydrogen.
  • a compound of Formulae ( I ) or ( II ) is derived is derived from a GABA analog of Formula ( IV ): wherein the GABA analog of Formula ( IV ) is selected from the group consisting of:
  • the compound of Formula ( I ) is a compound of Formulae ( V ) or ( VI ):
  • n is 0. In another embodiment n is 1.
  • R 5 is selected from the group consisting of hydrogen, alkanyl, substituted alkanyl, aryl, substituted aryl, arylalkanyl, substituted arylalkanyl, cycloalkanyl, heteroarylalkyl and substituted heteroarylalkanyl.
  • R 5 is selected from the group consisting of hydrogen, methyl, isopropyl, isobutyl, sec -butyl, tert- butyl, cyclopentyl, cyclohexyl, -CH 2 OH, -CH(OH)CH 3 , -CH 2 COH, -CH 2 CH 2 CO 2 H, -CH 2 CONH 2 , -CH 2 CH 2 CONH 2 , - CH 2 CH 2 SCH 3 , CH 2 SH, -CH 2 (CH 2 ) 3 MH 2 and -CH 2 CH 2 CH 2 NHC(NH)NH 2 , phenyl, benzyl, 4-hydroxybenzyl, 4-bromobenzyl, 4-imidazolylmethyl and 3-indolylmethyl.
  • R 4 and R 5 together with the atoms to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring. In still another embodiment, R 4 and R 5 together with the atoms to which they are attached form an azetidine, pyrrolidine or piperidine ring.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is hydrogen and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1,-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is methyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is ethyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is propyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is isopropyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is butyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is isobutyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is sec -butyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is tert -butyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is cyclohexyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is phenyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is methyl and R 3 is methyl.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is methoxycarbonyl and R 3 is methyl.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is ethoxycarbonyl and R 3 is methyl.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is isopropoxycarbonyl and R 3 is methyl.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl, R 2 is cyclohexyloxycarbonyl and R 3 is methyl.
  • R 1 is methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, pentyl, isopentyl, sec -pentyl, neopentyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl, 4-methoxyphenyl, benzyl, phenethyl, styryl or 3-pyridyl and R 2 and R 3 together with the atom to which they are attached form a cyclohexyl ring.
  • R 2 is methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl or cyclohexyloxycarbonyl and R 3 is methyl.
  • R 2 is hydrogen, methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl or tert -butyl and R 3 is hydrogen.
  • R 1 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl, tert -butyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl or cyclohexyl
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl.
  • R 1 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl, tert -butyl, 1,1-dimethoxyethyl, 1,1-diethoxyethyl, cyclobutyl, cyclopentyl or cyclohexyl
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is hydrogen, methyl, ethyl, isopropyl, n -butyl, isobutyl, sec -butyl or tert -butyl
  • R 3 is hydrogen.
  • R 1 is ethyl or isopropyl
  • R 10 is allyl, benzyl or trimethylsilyl
  • R 2 is methyl, n -propyl or isopropyl
  • R 3 is hydrogen
  • R 1 is isopropyl
  • R 10 is benzyl
  • R 2 is methyl
  • R 3 is hydrogen
  • R 1 is isopropyl
  • R 10 is allyl
  • R 2 is methyl
  • R 3 is hydrogen.
  • R 1 is ethyl or isopropyl
  • R 10 is allyl, benzyl or trimethylsilyl
  • R 2 is methyl, n -propyl or isopropyl
  • R 3 is hydrogen and X is chloro.
  • R 1 is isopropyl
  • R 10 is benzyl
  • R 2 is methyl
  • R 3 is hydrogen and X is chloro.
  • R 1 is isopropyl
  • R 10 is allyl
  • R 2 is methyl
  • R 3 is hydrogen and X is chloro.
  • X is bromo or chloro. In another embodiment, X is chloro, bromo or iodo, R 10 is hydrogen, allyl, benzyl or trimethylsilyl, R 2 is hydrogen and R 3 is hydrogen. In still another embodiment, X is chloro, bromo or iodo, R 10 is hydrogen, allyl, benzyl or trimethylsilyl, R 2 is methyl and R 3 is hydrogen. In still another embodiment, X is chloro, bromo or iodo, R 10 is hydrogen, allyl, benzyl or trimethylsilyl, R 2 is ethyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is propyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is isopropyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is butyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is isobutyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is sec -butyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is tert -butyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is cyclohexyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is phenyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is methyl and R 3 is methyl.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is methoxycarbonyl and R 3 is methyl
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is ethoxycarbonyl and R 3 is methyl
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is isopropoxycarbonyl and R 3 is methyl.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is cyclohexyloxycarbonyl and R 3 is methyl.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl and R 2 and R 3 together with the atom to which they are attached form a cyclohexyl ring.
  • X is chloro
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is hydrogen, methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl or tert -butyl and R 3 is hydrogen.
  • X is chloro
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is methyl, n -propyl or isopropyl
  • R 3 is hydrogen.
  • X is chloro, R 10 is allyl, R 2 is methyl, and R 3 is hydrogen.
  • X is chloro, R 10 is benzyl, R 2 is methyl, and R 3 is hydrogen.
  • X is chloro, R 10 is trimethylsilyl, R 2 is methyl, and R 3 is hydrogen.
  • the ratio of the compound of Formula (II) to the compound of Formula ( III ) is between about 1:1 and 1:20. In another embodiment, the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is between about 1:1 and 1:5. In still another embodiment, the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is about 1:1.
  • the compounds of Formulae ( II ) and ( III ) and the metal salt are contacted with a solvent.
  • the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is between about 1:1 and 1:20.
  • the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is between about 1:1 and 1:5.
  • the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is about 1:1.
  • the solvent is dichloromethane, dichloroethane, chloroform, toluene, dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, dimethyl sulfoxide, pyridine, ethyl acetate, acetonitrile, acetone, 2-butanone, methyl tert -butyl ether, methanol, ethanol, isopropanol, tert -butanol, water, hexamethylphosphoramide or combinations thereof.
  • the metal is Ag, Hg, Na, K, Li, Cs, Ca, Mg or Zn.
  • the compounds of Formulae ( II ) and ( III ) and the organic base are contacted with a solvent.
  • the ratio of the compound of Formula ( II ) to the compound of Formula (III) is between about 1:1 and 1:20.
  • the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is between about 1:15 and 1:20.
  • the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is about 1:10.
  • the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is between about 1:1 and 1:5.
  • the ratio of the compound of Formula ( II ) to the compound of Formula ( III ) is about 1:1.
  • the solvent is dichloromethane, dichloroethane, chloroform, toluene, dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, dimethyl sulfoxide, pyridine, ethyl acetate, acetonitrile, acetone, 2-butanone, methyl tert -butyl ether, methanol, ethanol, isopropanol, tert -butanol, water, hexamethylphosphoramide or combinations thereof.
  • the organic base is triethylamine, tributylamine, diisopropylethylamine, dimethylisopropylamine, N-methylmorpholine, N-methylpyrrolidine, N-methylpiperidine, pyridine, 2-methylpyridine, 2,6-dimethylpyridine, 4-dimethylaminopyridine, 1, 4-diazabicyclo[2.2.2]octane, 1, 8-diazabicyclo[5.4.0]undec-7-ene, 1, 5-diazabicyclo[4.3.0]undec-7-ene or combinations thereof.
  • the compound of Formula ( III ) is a liquid under the conditions of said contacting, the compound of Formula ( III ) further serving as a solvent for the reaction with the compound of Formula ( II ).
  • the compound of Formula ( III ) is acetic acid, methoxyacetic acid, ethoxyacetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, valeric acid, isovaleric acid, 2-methylbutyric acid, cyclobutanecarboxylic acid, cyclopentanecarboxylic acid or cyclohexanecarboxylic acid.
  • the compound of Formula ( III ) is isobutyric acid.
  • the compound of Formula ( II ), the compound of Formula ( III ) and the metal salt are contacted at a temperature between about -25 °C and about 120 °C. In another embodiment, the temperature is between about 0 °C and about 25 °C.
  • the compound of Formula ( II ), the compound of Formula ( III ) and the organic base are contacted at a temperature between about -25 °C and about 120 °C. In another embodiment, the temperature is between about 0 °C and about 25 °C.
  • the compound of Formula ( II ), the compound of Formula ( III ) and the organic base are contacted with a catalytic amount of an iodide salt.
  • the iodide salt is sodium iodide, potassium iodide, tetramethylammonium iodide, tetraethylammonium iodide or tetrabutylammonium iodide.
  • R 2 and R 3 are independently hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, substituted carbamoyl, cycloalkyl, substituted cycloalkyl, heteroaryl or substituted heteroaryl.
  • R 2 and R 3 are independently hydrogen, alkyl, alkoxycarbonyl, aryl, arylalkyl, carbamoyl, cycloalkyl or heteroaryl.
  • R 2 and R 3 are independently hydrogen, alkanyl or substituted alkanyl. In still another embodiment, R 2 and R 3 are independently hydrogen or alkanyl. In still another embodiment, R 2 and R 3 together with the atom to which they are bonded form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl or substituted cycloheteroalkyl ring. In still another embodiment R 2 and R 3 together with the atom to which they are bonded form a cycloalkanyl ring.
  • X is chloro, bromo or iodo. In another embodiment, X is chloro.
  • X is chloro, bromo or iodo and R 2 and R 3 are independently hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl.
  • X is chloro, bromo or iodo
  • R 2 and R 3 are independently hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl.
  • X is chloro and R 2 and R 3 are independently hydrogen, alkyl, substituted alkyl, alkoxycarbonyl, substituted alkoxycarbonyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, carbamoyl, cycloalkyl, substituted cycloalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl or substituted heteroarylalkyl.
  • X is chloro, bromo or iodo
  • R 2 and R 3 are independently hydrogen, alkyl, alkoxycarbonyl, aryl, arylalkyl, carbamoyl, cycloalkyl or heteroaryl.
  • X is chloro, bromo or iodo
  • R 2 and R 3 are independently hydrogen, alkanyl or substituted alkanyl.
  • X is chloro, bromo or iodo, and R 2 and R 3 are independently alkanyl.
  • X is chloro, bromo or iodo
  • R 2 and R 3 together with the atom to which they are attached form a cycloalkyl, substituted cycloalkyl, cycloheteroalkyl or substituted cycloheteroalkyl ring.
  • X is chloro, and R 2 and R 3 are independently hydrogen, alkyl, alkoxycarbonyl, aryl, arylalkyl, carbamoyl, cycloalkyl or heteroaryl. In still another embodiment, X is chloro, and R 2 and R 3 are independently hydrogen, alkanyl or substituted alkanyl. In still another embodiment, X is chloro, and R 2 and R 3 are independently alkanyl. In still another embodiment, X is chloro, and R 2 and R 3 together with the atom to which they are attached form a cycloalkanyl ring.
  • R 2 and R 3 are independently hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, cyclobutyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec -butoxycarbonyl, tert -butoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl or 3-pyridyl.
  • X is chloro, bromo or iodo
  • R 2 and R 3 are independently hydrogen, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec -butyl, tert -butyl, cyclobutyl, cyclopentyl, cyclohexyl, methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, sec -butoxycarbonyl, tert -butoxycarbonyl, cyclohexyloxycarbonyl, phenyl, benzyl, phenethyl or 3-pyridyl.
  • X is chloro, bromo or iodo
  • R 2 and R 3 together with the atom to which they are attached form a cyclobutyl, cyclopentyl or cyclohexyl ring.
  • R 2 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl, tert -butyl, cyclohexyl or phenyl and R 3 is hydrogen.
  • R 2 is methyl, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl or cyclohexyloxycarbonyl and R 3 is methyl.
  • X is chloro, bromo or iodo
  • R 2 is methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl, tert -butyl, cyclohexyl or phenyl and R 3 is hydrogen.
  • R 10 is hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryldialkylsilyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, heteroalkyl, substituted heteroalkyl, heteroaryl, substituted heteroaryl, heteroarylalkyl, substituted heteroarylalkyl or trialkylsilyl.
  • R 10 is hydrogen.
  • R 10 is alkanyl, substituted alkanyl, alkenyl, substituted alkenyl, aryl, substituted aryl, arylalkyl, substituted arylalkyl, aryldialkylsilyl or trialkylsilyl.
  • R 10 is allyl.
  • R 10 is benzyl.
  • R 10 is trimethylsilyl.
  • n is 0. In another embodiment, n is 1.
  • R 4 is hydrogen.
  • R 5 is selected from the group consisting of hydrogen, alkanyl, substituted alkanyl, aryl, substituted aryl, arylalkanyl, substituted arylalkanyl, cycloalkanyl, heteroarylalkyl and substituted heteroarylalkanyl.
  • R 5 is selected from the group consisting of hydrogen, alkanyl and cycloalkanyl.
  • R 5 is selected from the group consisting of hydrogen, methyl, isopropyl, isobutyl, sec -butyl, tert -butyl, cyclopentyl and cyclohexyl.
  • R 5 is selected from the group consisting of substituted alkanyl.
  • R 5 is selected from the group consisting of -CH 2 OH, -CH(OH)CH 3 , -CH 2 CO 2 H, -CH 2 CH 2 CO 2 H, -CH 2 CONH 2 , -CH 2 CH 2 CONH 2 , - CH 2 CH 2 SCH 3 , CH 2 SH, -CH 2 (CH 2 ) 3 NH 2 and -CH 2 CH 2 CH 2 NHC(NH)NH 2 .
  • R 5 is selected from the group consisting of aryl, arylalkanyl, substituted arylalkanyl and heteroarylalkanyl.
  • R 5 is selected from the group consisting of phenyl, benzyl, 4-hydroxybenzyl, 4-bromobenzyl, 4-imidazolylmethyl and 3-indolylmethyl.
  • R 4 and R 5 together with the atoms to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring. In still another embodiment, R 4 and R 5 together with the atoms to which they are attached form an azetidine, pyrrolidine or piperidine ring.
  • R 6 and R 9 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aryl, substituted aryl, cycloalkyl and substituted cycloalkyl. In another embodiment, R 6 and R 9 are independently selected from the group consisting of hydrogen and alkanyl. In still another embodiment, R 6 and R 9 are both hydrogen.
  • R 7 and R 8 are independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, cycloheteroalkyl and substituted cycloheteroalkyl. In another embodiment, R 7 and R 8 are independently selected from the group consisting of hydrogen, alkanyl and substituted alkanyl. In still another embodiment, R 7 is hydrogen and R 8 is selected from the group consisting of C 1-6 alkanyl.
  • R 7 and R 8 together with the carbon atom to which they are attached are cycloalkanyl or substituted cycloalkanyl.
  • R 7 and R 8 together with the carbon atom to which they are attached are selected from the group consisting of cyclobutyl, substituted cyclobutyl, cyclopentyl, substituted cyclopentyl, cyclohexyl and substituted cyclohexyl.
  • R 7 and R 8 together with the carbon atom to which they are attached are cycloheteroalkyl or substituted cycloheteroalkyl.
  • R 7 and R 8 together with the carbon atom to which they are attached are bridged cycloalkyl.
  • a compound of Formula ( II ) is derived from a GABA analog of Formula ( IV ): wherein the GABA analog of Formula ( IV ) is selected from the group consisting of
  • the compound of Formula ( II ) is a compound of Formulae ( VII ) or ( VIII ):
  • n is 0. In another embodiment, n is 1.
  • R 4 is hydrogen.
  • R 5 is selected from the group consisting of hydrogen, alkanyl, substituted alkanyl, aryl, substituted aryl, arylalkanyl, substituted arylalkanyl, cycloalkanyl, heteroarylalkyl and substituted heteroarylalkanyl.
  • R 5 is selected from the group consisting of hydrogen, methyl, isopropyl, isobutyl, sec -butyl, tert -butyl, cyclopentyl, cyclohexyl, -CH 2 OH, -CH(OH)CH 3 , -CH 2 CO 2 H, -CH 2 CH 2 CO 2 H, -CH 2 CONH 2 , -CH 2 CH 2 CONH 2 , - CH 2 CH 2 SCH 3 , CH 2 SH, -CH 2 (CH 2 ) 3 NH 2 and -CH 2 CH 2 CH 2 NHC(NH)NH 2 , phenyl, benzyl, 4-hydroxybenzyl, 4-bromobenzyl, 4-imidazolylmethyl and 3-indolylmethyl.
  • R 4 and R 5 together with the atoms to which they are attached form a cycloheteroalkyl or substituted cycloheteroalkyl ring. In still another embodiment, R 4 and R 5 together with the atoms to which they are attached form an azetidine, pyrrolidine or piperidine ring.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is hydrogen and R 3 is hydrogen
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is methyl and R 3 is hydrogen
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is ethyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is propyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is isopropyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is butyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is isobutyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is sec -butyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is tert -butyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is cyclohexyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is phenyl and R 3 is hydrogen.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is methyl and R 3 is methyl.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is methoxycarbonyl and R 3 is methyl
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is ethoxycarbonyl and R 3 is methyl
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is isopropoxycarbonyl and R 3 is methyl.
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is cyclohexyloxycarbonyl
  • R 3 is methyl
  • X is chloro, bromo or iodo
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 and R 3 together with the atom to which they are attached form a cyclohexyl ring.
  • X is chloro
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is hydrogen, methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, sec -butyl or tert -butyl and R 3 is hydrogen.
  • X is chloro
  • R 10 is hydrogen, allyl, benzyl or trimethylsilyl
  • R 2 is methyl, n -propyl or isopropyl
  • R 3 is hydrogen.
  • X is chloro, R 10 is allyl, R 2 is methyl, and R 3 is hydrogen.
  • X is chloro, R 10 is benzyl, R 2 is methyl, and R 3 is hydrogen.
  • X is chloro, R 10 is trimethylsilyl, R 2 is methyl, and R 3 is hydrogen.
  • starting materials useful for preparing compounds and intermediates thereof, and/or practicing methods of the invention are commercially available or can be prepared by well-known synthetic methods.
  • Other methods for synthesis of the prodrugs described herein are either described in the art or will be readily apparent to the skilled artisan in view of the references provided above and may be used to synthesize the compounds of the invention. Accordingly, the methods presented in the Schemes herein are illustrative rather than comprehensive.
  • the carboxylic acid moiety in ( 2 ) is esterified to yield compound ( 3 ), either (i) via alkylation with R 10 -Y, where Y is halide, O 3 SR' (R' is alkyl, substituted alkyl, aryl or substituted aryl), or other suitable leaving group), or (ii) via condensation with alcohol R 10 -OH under standard acylation conditions (e.g ., in the presence of a coupling agent such as a carbodiimide, via an acyl halide, acid anhydride or other activated ester intermediate).
  • a coupling agent such as a carbodiimide
  • compound ( 4 ) Removal of the protecting group from ( 3 ) under standard deprotection conditions affords compound ( 4 ).
  • the protecting group Pg is removable under acidic conditions and compound ( 4 ) is isolated as a salt, which is stabilized towards lactam formation relative to the corresponding free base form.
  • tert -Butoxycarbonyl i.e ., Boc
  • Boc is one preferred protecting group, and may be removed with HCl to afford ( 4 ) as a hydrochloride salt.
  • the hydrochloride salt of ( 4 ) is prepared directly from (1) by treatment with an excess of thionyl chloride or hydrogen chloride gas and alcohol R 10 -OH (Scheme 2).
  • Typical ratios of ( 1 ) to thionyl chloride from between 1:1 and 1:20, and ratios of ( 1 ) to alcohol from between 1:1 and 1:20 may be used.
  • the reaction may be performed at temperatures between -20 °C and 25°C. Under conditions where the alcohol R 10 -OH is a liquid, the alcohol may be used as a solvent for the reaction.
  • reaction may be performed in the presence of a suitable solvent, such as, for example, dichloromethane, dichloroethane, chloroform, toluene, dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, or pyridine.
  • a suitable solvent such as, for example, dichloromethane, dichloroethane, chloroform, toluene, dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, or pyridine.
  • Preferred alcohols R 10 -OH for this reaction are arylalkyl, substituted arylalkyl and allylic alcohols. Allyl alcohol and benzyl alcohol are particularly preferred.
  • a compound of formula ( II ) is prepared by acylation of ( 4 ) with compound ( 5 ) (see Scheme 3), where X is halide and Z is a leaving group ( e.g ., halide, p -nitrophenolate, imidazolyl, etc .).
  • X is Cl or Br and Z is Cl. More preferably, X and Z are both Cl.
  • the acylation reaction may be performed in the presence of a base, including inorganic and organic bases (e.g ., tertiary amine bases, such as triethylamine, tributylamine, diisopropylethylamine, dimethylisopropylamine, N-methylmorpholine, N-methylpyrrolidine, N-methylpiperidine, pyridine, 2-methylpyridine, 2,6-dimethylpyridine, 4-dimethylaminopyridine, 1, 4-diazabicyclo[2.2.2]octane, 1, 8-diazabicyclo[5.4.0]undec-7-ene, 1, 5-diazabicyclo[4.3.0]undec-7-ene, etc.).
  • bases including inorganic and organic bases (e.g ., tertiary amine bases, such as triethylamine, tributylamine, diisopropylethylamine, dimethylisopropylamine, N-methylmorpho
  • Suitable solvents for this acylation include, but are not limited to, dichloromethane, dichloroethane, chloroform, toluene, dimethylformamide, dimethylacetamide, N-methylpyrrolidinone, dimethyl sulfoxide, pyridine, ethyl acetate, isopropyl acetate, acetonitrile, acetone, 2-butanone, methyl tert -butyl ether, or combinations thereof.
  • biphasic solvent mixtures comprising water and one or more of dichloromethane, dichloroethane, chloroform, toluene, ethyl acetate, isopropyl acetate or methyl tert -butyl ether, may be utilized.
  • Typical temperatures for performing this reaction are between -20 °C and 50°C, more preferably, between -20 °C and 25°C.
  • a compound of formula ( II ), where R 10 is trialkylsilyl or aryldialkylsilyl may be prepared directly from compound ( 1 ) by silylation (e.g ., using a silyl halide or silylamide reagent) and then acylation of the resulting intermediate with compound ( 5 ) (see Scheme 4).
  • Suitable solvents for performing this reaction include, but are not limited to, dichloromethane, dichloroethane, chloroform, toluene, pyridine, and acetonitrile.
  • Suitable bases for performing this reaction include, but are not limited to, triethylamine, tributylamine, diisopropylethylamine, dimethylisopropylamine, N-methylmorpholine, N-methylpyrrolidine, N-methylpiperidine, pyridine, 2-methylpyridine, 2,6-dimethylpyridine, 4-dimethylaminopyridine, 1, 4-diazabicyclo[2.2.2]octane, 1, 8-diazabicyclo[5.4.0]undec-7-ene or 1, 5-diazabicyclo[4.3.0]undec-7-ene.
  • Typical temperatures for performing this reaction are between -78 °C and 50°C, more preferably, between -20 °C and 25°C.
  • R 10 is a carboxylic acid protecting group that can be removed under mild conditions to provide a compound of formula ( I ) where R 10 is hydrogen.
  • Carboxylic acid protecting groups removable via mild acidic hydrolysis, fluoride ion-promoted hydrolysis, catalytic hydrogenolysis, transfer hydrogenolysis, or other transition metal-mediated deprotection reactions are preferred.
  • R 10 is trimethylsilyl, allyl or benzyl.
  • the invention is further defined by reference to the following examples, which describe in detail the preparation of 1-haloalkyl carbamates of GABA analogs and illustrate methods of synthesizing 1-(acyloxy)-alkyl carbamates of GABA analogues from 1-haloalkyl carbamates of GABA analogs. It will be apparent to those skilled in the art that many modifications, both to materials and methods, may be practiced without departing from the scope of the invention.
  • a dry 500 mL, three-necked, round-bottomed flask was fitted with a magnetic stirring bar and a 60 mL pressure-equalizing addition funnel and flushed with nitrogen gas.
  • the flask was charged with gabapentin (17.1 g, 0.1 mol) and benzyl alcohol (128 mL, 1.18 mol) and the mixture was cooled to 0°C with an ice-water bath.
  • Thionyl chloride (51.8 mL, 77.25 g, 0.65 mol) was added dropwise to the stirred solution over a period of 1 h.
  • the reaction was monitored by LC/MS, with product and unreacted gabapentin hydrochloride being observed.
  • the reaction mixture contained residual gabapentin hydrochloride (by LC/MS). Additional thionyl chloride (20 mL, 30 g, 0.25 mol) was added at 0°C, and the reaction mixture allowed to stir at room temperature for another 12 h (LC/MS shows traces of residual gabapentin hydrochloride). A final portion of thionyl chloride (10 mL, 15 g, 0.12 mol) was added at 0°C and the reaction mixture allowed to stir at room temperature for 4 h (LC/MS showed no remaining gabapentin hydrochloride). The reaction mixture was then diluted with ethyl ether (200 mL) and cooled to 0° C while stirring.
  • Gabapentin (700 g , 4.09 mol) was slurried in water (2.7 L) with potassium carbonate (1.2 kg, 8.58 mol) and mechanically stirred under a nitrogen atmosphere.
  • Di- tert -butyl dicarbonate (875 g, 4.00 mol) was dissolved in dioxane (4 L) and was added in large aliquots while maintaining the pH at 8 - 10, and if needed, adjusting the pH using additional potassium carbonate. The reaction was monitored by 1 H-NMR, noting the disappearance of the singlet resonance at 1.22 ppm for di- tert -butyl dicarbonate.
  • the crude reaction mixture was split in two equal batches, each of which was diluted with diethyl ether (6 L), washed with water (6 x 2L) in a centrifugal extractor to remove excess isobutyric acid, followed by washing with 10% potassium bicarbonate (4 x 2 L) and brine (2 x 2 L) before drying over anhydrous sodium sulfate.
  • the combined organic extracts were concentrated to provide a dark orange oil (916 g).
  • the crude oil (400 g) was loaded onto an 800 g Biotage TM silica gel chromatography column and eluted with 5% ethyl acetate in hexane (6 L), then with 7% ethyl acetate in hexane (12 L).
  • the resulting sodium salt ( 12 ) was scraped from the flasks as a hygroscopic solid and transferred quickly into bottles, which were immediately capped and transferred into a drying chamber at 14% relative humidity (RH).
  • RH relative humidity
  • the remaining oily product in the flasks was dissolved in diethyl ether and concentrated in vacuo at 25 °C, then dried under high vacuum until a dry foam was produced.
  • a dry 500 mL, three-neck, round-bottomed flask was fitted with a magnetic stirring bar and a 100 mL pressure-equalizing addition funnel and flushed with nitrogen gas.
  • the flask was charged with gabapentin (17.1 g, 0.1 mol) and allyl alcohol (100 mL, 1.46 mol) and the entire mixture was cooled to 0°C in an ice-water bath.
  • Thionyl chloride (22.5 mL, 36 g, 0.3 mol) was added drop-wise over a period of 30 min to the stirred solution, and the reaction mixture allowed to stir for 16 h at room temperature.
  • the mixture was then diluted with diethyl ether (200 mL) and cooled to 0°C while stirring.
  • the product was recrystallized using 1:10 ethyl acetate: heptane (100 mL) to give the product ( 11 ) as a white, crystalline solid (7.9 g, 88%), m.p 63-64°C.
  • Method B To a stirred solution of compound ( 15 ) (1 g, 2.7 mmol) in acetonitrile (10 mL) under nitrogen was added (10 mg, 0.008 mmol) of tetrakis(triphenylphosphine) palladium (0) followed by morpholine (0.28 mL, 0.28 g, 3.2 mmol). After one hour, the solvent was removed in vacuo. The resulting oil was dissolved in diethyl ether (50 mL) and the organic phase was washed with 2N HCl (20 mL), water (20 mL) and brine (20 mL).
  • the crude compound was purified by column chromatography on silica gel, eluting with 30% ethyl acetate : hexane to give the desired product ( 11 ) as a colorless oil, which solidified on further standing at room temperature for 12 h (0.70 g, 78% yield), m.p. 62-64°C.
  • the resulting silyl ester ( 19 ) was converted via acidic work-up to the corresponding acid ( 18 ) by washing the reaction mixture with water (2 x 1 L), followed by 1N HCl (2 x 1 L) then brine (2 x 500 mL). After drying over anhydrous sodium sulfate and removal of the solvent in vacuo, the crude product (116 g, 60% yield) was obtained as an off-white solid and used in Example 16 without further purification.
  • Example 17 1- ⁇ [( ⁇ -Chloroisobutoxy)carbonyl]aminomethyl ⁇ -1-Cyclohexane Acetic Acid (21) via Trimethylsilyl 1- ⁇ [(1( ⁇ -Chloroisobutoxy)-carbonyl]aminomethyl ⁇ -1-Cyclohexane Acetate (22)
  • the resulting silyl ester ( 22 ) was converted via acidic work-up to the corresponding acid ( 21 ) by washing the reaction mixture with 10% citric acid (30 mL) and the organic layer separated. The aqueous layer was further extracted with ether (3 x 20 mL) and the combined organic phases were dried over MgSO 4 and then concentrated in vacuo. Chromatography of the residue on silica gel, eluting with hexane: ethyl acetate (1:4) gave the title compound ( 21 ) (2.37g, 77%).
  • the resulting silyl ester ( 32 ) was converted via acidic work-up to the corresponding acid ( 31 ) by quenching the reaction mixture with citric acid, diluting with dichloromethane, washing with water and brine; then drying over anhydrous Na 2 SO 4 . Filtration and evaporation afforded the title compound ( 31 ) (300 mg), which was used in the following example without further purification.
  • Example 28 3- ⁇ [( ⁇ -Chloroisobutoxy)carbonyl]aminomethyl ⁇ -5-Methyl-Hexanoic Acid (34) via Trimethylsilyl 3- ⁇ [( ⁇ -Chloroisobutoxy)carbonyl]-aminomethyl ⁇ -5-Methyl-Hexanoate (35)
  • the resulting silyl ester ( 35 ) was converted via acidic work-up to the corresponding acid ( 34 ) by quenching the reaction mixture with citric acid, diluting with dichloromethane, washing with water and brine, then drying over anhydrous Na 2 SO 4 . Filtration and evaporation afforded the title compound ( 34 ) (300 mg), which was used in the following example without further purification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pyridine Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
EP10013362A 2002-06-11 2003-06-11 Kristalline 1-{[(alpha-Isobutanyloxyethoxy)carbonyl]aminomethyl}-1-cyclohexanessigsäure Expired - Lifetime EP2275401B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/171,485 US6818787B2 (en) 2001-06-11 2002-06-11 Prodrugs of GABA analogs, compositions and uses thereof
EP03757492A EP1554237A4 (de) 2002-06-11 2003-06-11 Verfahren zur synthese von acyloxyalkylderivaten von gaba-analoga

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP03757492.8 Division 2003-06-11

Publications (2)

Publication Number Publication Date
EP2275401A1 true EP2275401A1 (de) 2011-01-19
EP2275401B1 EP2275401B1 (de) 2013-04-03

Family

ID=29732785

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10013362A Expired - Lifetime EP2275401B1 (de) 2002-06-11 2003-06-11 Kristalline 1-{[(alpha-Isobutanyloxyethoxy)carbonyl]aminomethyl}-1-cyclohexanessigsäure
EP03757492A Withdrawn EP1554237A4 (de) 2002-06-11 2003-06-11 Verfahren zur synthese von acyloxyalkylderivaten von gaba-analoga

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP03757492A Withdrawn EP1554237A4 (de) 2002-06-11 2003-06-11 Verfahren zur synthese von acyloxyalkylderivaten von gaba-analoga

Country Status (10)

Country Link
US (2) US6818787B2 (de)
EP (2) EP2275401B1 (de)
JP (1) JP4310271B2 (de)
CN (2) CN101613307A (de)
AU (1) AU2003247522A1 (de)
DK (1) DK2275401T3 (de)
ES (1) ES2416032T3 (de)
HK (1) HK1083018A1 (de)
IL (1) IL165687A (de)
WO (1) WO2003104184A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013126015A1 (en) 2012-02-23 2013-08-29 N. V. Nutricia Composition comprising non- digestible oligosaccharides

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048917B2 (en) 2005-04-06 2011-11-01 Xenoport, Inc. Prodrugs of GABA analogs, compositions and uses thereof
EP1404324B2 (de) * 2001-06-11 2011-04-06 XenoPort, Inc. Prodrugs von gaba-analoga, zusammensetzungen und ihre verwendungszwecke
US7186855B2 (en) * 2001-06-11 2007-03-06 Xenoport, Inc. Prodrugs of GABA analogs, compositions and uses thereof
WO2003077902A1 (en) * 2002-02-19 2003-09-25 Xenoport, Inc. Methods for synthesis of prodrugs from 1-acyl-alkyl derivatives and compositions thereof
US7025745B2 (en) * 2002-10-07 2006-04-11 Advanced Cardiovascular Systems, Inc. Method of making a catheter balloon using a tapered mandrel
WO2004053192A1 (en) * 2002-12-11 2004-06-24 Xenoport, Inc. Orally administered dosage forms of fused gaba analog prodrugs having reduced toxicity
EP1608357A4 (de) * 2003-03-31 2008-03-26 Xenoport Inc Behandlung oder prävention von hitzewallungen unter verwendung von prodrugs von gaba-analoga
US20070010573A1 (en) 2003-06-23 2007-01-11 Xianqi Kong Methods and compositions for treating amyloid-related diseases
US7662987B2 (en) * 2003-07-15 2010-02-16 Xenoport, Inc. Methods for synthesis of acyloxyalkyl compounds
EP2354120A1 (de) 2003-08-20 2011-08-10 XenoPort, Inc. Synthese von Acyloxyalkylcarbamat-Prodrugs und Zwischenprodukten davon
KR20110097942A (ko) * 2003-08-20 2011-08-31 제노포트 인코포레이티드 아실옥시알킬 카르바메이트 프로드러그, 합성 및 사용 방법
EP1670451A4 (de) * 2003-09-11 2009-10-21 Xenoport Inc Behandlung und/oder prävention von harninkontinenz mit prodrugs von gaba-analoga
BRPI0414481A (pt) * 2003-09-17 2006-11-14 Xenoport Inc métodos de tratamento ou de prevenção da sìndrome das pernas inquietas em um paciente e de melhoria do sono em um paciente com sìndrome das pernas inquietas, e, composição farmacêutica
KR101096480B1 (ko) * 2003-10-14 2011-12-20 제노포트 인코포레이티드 감마-아미노부티르산 유사체의 결정질 형태
EP1543831A1 (de) * 2003-12-18 2005-06-22 Pfizer GmbH Arzneimittelwerk Gödecke Zusammensetzung enthaltend Pregabalin
CN1902175B (zh) * 2003-12-30 2012-08-22 什诺波特有限公司 酰氧基烃基氨基甲酸酯前药及其中间体的合成
BRPI0517227B8 (pt) 2004-11-04 2021-05-25 Xenoport Inc comprimido oral de liberação prolongada do ácido 1-{[alfa-isobutanoiloxietoxi)carbonil]amino metil}-1-cicloexano acético, e, uso do comprimido
US8044100B2 (en) 2004-12-22 2011-10-25 Bellus Health Inc. Methods and compositions for treating amyloid-related diseases
AU2006262386B2 (en) * 2005-06-20 2012-02-02 Xenoport, Inc. Acyloxyalkyl carbamate prodrugs of tranexamic acid, methods of synthesis and use
US20070049626A1 (en) * 2005-08-26 2007-03-01 Tran Pierre V Treating premature ejaculation using gabapentin and pregabalin prodrugs
US20070105924A1 (en) * 2005-09-23 2007-05-10 Silverman Richard B Vigabatrin bioisoteres and related methods of use
US8787344B2 (en) * 2006-08-30 2014-07-22 Qualcomm Incorporated Method and apparatus for ACKCH with repetition in orthogonal systems
FI3851447T3 (fi) * 2006-10-12 2023-11-15 Bellus Health Inc Menetelmiä, yhdisteitä, koostumuksia ja vehikkeleitä 3-amino-1-propaanisulfonihapon vapauttamiseksi
CN101616664A (zh) * 2006-11-14 2009-12-30 克塞诺波特公司 加巴喷丁和普加巴林的前药用于治疗耳鸣的应用
US7879906B2 (en) * 2006-11-24 2011-02-01 Anchen Laboratories, Inc. GABA analogs, compositions and methods for manufacturing thereof
US7632836B2 (en) * 2006-11-30 2009-12-15 Cenerx Biopharma, Inc. Dialkylamino alkyl esters of pivagabine as medicaments for the treatment of central nervous system disorders
BRPI0720252A2 (pt) * 2006-12-08 2014-01-07 Xenoport Inc Uso de pró-fármacos de análogos de gaba para tratar doenças
ATE511392T1 (de) * 2007-01-11 2011-06-15 Xenoport Inc Verzögert freigesetzte orale dosierungsformen eines prodrugs von r-baclofen und behandlungsverfahren damit
WO2008157408A2 (en) * 2007-06-15 2008-12-24 Xenoport, Inc. Use of prodrugs of gaba analogs, antispasticity agents, and prodrugs of gaba b receptor agonists for treating spasticity
WO2009061934A1 (en) * 2007-11-06 2009-05-14 Xenoport, Inc. Use of prodrugs of gaba b agonists for treating neuropathic and musculoskeletal pain
CA2706575C (en) * 2008-01-25 2015-07-14 Xenoport, Inc. Enantiomerically resolving acyloxyalkyl thiocarbonates used in synthesizing acyloxyalkyl carbamate prodrugs
EP2250148B1 (de) * 2008-01-25 2016-08-17 XenoPort, Inc. Kristalline form von kalziumsalzen von (3s)-aminomethyl-5-methylhexansäuren und anwendungsverfahren
US7868043B2 (en) 2008-01-25 2011-01-11 Xenoport, Inc. Mesophasic forms of (3S)-aminomethyl-5-methyl-hexanoic acid prodrugs and methods of use
US20100137442A2 (en) * 2008-02-01 2010-06-03 Xenoport, Inc. Sustained Release Particulate Oral Dosage Forms of (R)-Baclofen and Methods of Treatment
EP2116618A1 (de) 2008-05-09 2009-11-11 Agency for Science, Technology And Research Diagnose und Behandlung des Kawasaki-Syndroms
US20090318728A1 (en) * 2008-06-24 2009-12-24 Teva Pharmaceutical Industries Ltd. Processes for preparing prodrugs of gabapentin and intermediates thereof
TW201006789A (en) * 2008-07-02 2010-02-16 Teva Pharma Gabapentin enacarbil salts and processes for their preparation
WO2010017504A1 (en) * 2008-08-07 2010-02-11 Xenoport, Inc. Methods of synthesizing 1-(acyloxy)-alkyl carbamate prodrugs
WO2010017498A1 (en) 2008-08-07 2010-02-11 Xenoport, Inc. Methods of synthesizing n-hydroxysuccinimidyl carbonates
AU2009302241B2 (en) * 2008-10-08 2015-10-29 Xgene Pharmaceutical Inc. GABA conjugates and methods of use thereof
WO2010063002A2 (en) * 2008-11-26 2010-06-03 Teva Pharmaceutical Industries Ltd. Processes for the preparation and purification of gabapentin enacarbil
US20100160666A1 (en) * 2008-12-23 2010-06-24 Teva Pharmaceutical Industries Ltd. Preparation of gabapentin enacarbil intermediate
EP2400989B1 (de) 2009-02-24 2016-08-10 Nektar Therapeutics Gabapentin-peg konjugate
NZ594648A (en) * 2009-03-03 2013-12-20 Xenoport Inc Sustained release oral dosage forms of an r-baclofen prodrug
EP2403481A1 (de) * 2009-03-06 2012-01-11 XenoPort, Inc. Orale dosierformen mit einer hohen ladung eines gabapentin-prodrugs
WO2010120370A2 (en) * 2009-04-17 2010-10-21 Xenoport, Inc. Gamma-amino-butyric acid derivatives as gabab receptor ligands
WO2011028234A1 (en) * 2009-09-04 2011-03-10 Xenoport, Inc. Uses of acyloxyalkyl carbamate prodrugs of tranexamic acid
US20110130454A1 (en) * 2009-11-24 2011-06-02 Xenoport, Inc. Prodrugs of gamma-amino acid, alpha-2-delta ligands, pharmaceutical compositions and uses thereof
US20110124705A1 (en) * 2009-11-24 2011-05-26 Xenoport, Inc. Prodrugs of alpha-2-delta ligands, pharmaceutical compositions and uses thereof
US20110184060A1 (en) 2010-01-22 2011-07-28 Xenoport, Inc. Oral dosage forms having a high loading of a tranexamic acid prodrug
US20110263701A1 (en) 2010-04-21 2011-10-27 Sigal Blau Gabapentin enacarbil compositions
EP2383255A1 (de) * 2010-04-28 2011-11-02 Lacer, S.A. Neue Verbindungen, deren Synthese und Verwendung bei der Schmerzbehandlung
WO2013023155A1 (en) 2011-08-11 2013-02-14 Xenoport, Inc. Anhydrous and hemihydrate crystalline forms of an (r)-baclofen prodrug, methods of synthesis and methods of use
WO2014134005A2 (en) 2013-02-26 2014-09-04 Xenoport, Inc. Method of making 1-(acyloxy)-alkyl carbamate compounds
CN106132406B (zh) 2014-02-03 2020-03-27 夸德里加生物科学公司 作为化疗剂的β-取代的γ-氨基酸和类似物
AU2015210638B2 (en) 2014-02-03 2017-07-20 Quadriga Biosciences, Inc. Beta-substituted beta-amino acids and analogs as chemotherapeutic agents
TW201710241A (zh) 2015-06-26 2017-03-16 第一三共股份有限公司 1-(醯基氧基)烷基胺甲酸酯衍生物之新穎製造方法
AR105592A1 (es) 2015-08-03 2017-10-18 Quadriga Biosciences Inc b-AMINOÁCIDOS b-SUSTITUIDOS Y ANÁLOGOS COMO AGENTES QUIMIOTERAPÉUTICOS Y USOS DE LOS MISMOS
AU2016328150B2 (en) 2015-09-23 2020-10-01 Xw Laboratories Inc. Prodrugs of gamma-hydroxybutyric acid, compositions and uses thereof
CN105777586A (zh) * 2016-04-14 2016-07-20 安徽省逸欣铭医药科技有限公司 S(+)氨己烯酸酯衍生物及其制备方法和用途
WO2020074160A1 (en) 2018-10-10 2020-04-16 Curovir Ab Condensed pyrimidine or pyridazine derivatives as antiviral agents
CN114306234A (zh) * 2021-12-23 2022-04-12 江苏百奥信康医药科技有限公司 一种含有加巴喷丁复合物的tpgs胶束口服液及其制备方法

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024175A (en) 1974-12-21 1977-05-17 Warner-Lambert Company Cyclic amino acids
US4426391A (en) 1982-09-15 1984-01-17 Merck & Co., Inc. [(Alkoxycarbonyl)oxy]alkyl esters of methyldopa
US4760057A (en) 1983-06-23 1988-07-26 Merck & Co., Inc. (Acyloxyalkoxy)carbonyl derivatives as bioreversible prodrug moieties for primary and secondary amine functions in drugs
US4916230A (en) 1984-07-02 1990-04-10 Merck & Co., Inc. Process for preparing novel N-(acyloxy-alkoxy)carbonyl derivatives useful as bioreversible prodrug moieties for primary and secondary amine functions in drugs
WO1992009560A1 (en) 1990-11-27 1992-06-11 Northwestern University Gaba and l-glutamic acid analogs for antiseizure treatment
WO1993023383A1 (en) 1992-05-20 1993-11-25 Northwestern University Gaba and l-glutamic acid analogs for antiseizure treatment
US5401868A (en) 1990-01-22 1995-03-28 Leo Pharmaceutical Products Ltd. A/S (Lovens Kemiske Fabrik Productionsaktieselskab) Aryloxymethylcarbonochloridate ester intermediates for use in synthesizing pro drugs and their use therefor
EP0416689B1 (de) 1989-09-06 1995-11-29 Merck & Co. Inc. Acyloxymethylester der Bisphonsäuren als Knochenresorptions-Inhibitoren
US5563175A (en) 1990-11-27 1996-10-08 Northwestern University GABA and L-glutamic acid analogs for antiseizure treatment
WO1997029101A1 (en) 1996-02-07 1997-08-14 Warner-Lambert Company Novel cyclic amino acids as pharmaceutical agents
WO1997033858A1 (en) 1996-03-14 1997-09-18 Warner-Lambert Company Novel substituted cyclic amino acids as pharmaceutical agents
WO1997033859A1 (en) 1996-03-14 1997-09-18 Warner-Lambert Company Novel bridged cyclic amino acids as pharmaceutical agents
US5733907A (en) 1993-11-18 1998-03-31 Merck & Co., Inc. Prodrugs of an inhibitor of HIV protease
WO1998017627A1 (en) 1996-10-23 1998-04-30 Warner-Lambert Company Substituted gamma aminobutyric acids as pharmaceutical agents
WO1999008671A1 (en) 1997-08-20 1999-02-25 Warner-Lambert Company Gaba analogs to prevent and treat gastrointestinal damage
WO1999021824A1 (en) 1997-10-27 1999-05-06 Warner-Lambert Company Cyclic amino acids and derivatives thereof useful as pharmaceutical agents
WO1999031075A1 (en) 1997-12-16 1999-06-24 Warner-Lambert Company 1-substituted-1-aminomethyl-cycloalkane derivatives (=gabapentin analogues), their preparation and their use in the treatment of neurological disorders
WO1999031074A2 (en) 1997-12-16 1999-06-24 Warner-Lambert Company ((cyclo)alkyl substituted)-.gamma.-aminobutyric acid derivatives (=gaba analogues), their preparation and their use in the treatment of neurological disorders
WO1999031057A1 (en) 1997-12-16 1999-06-24 Warner-Lambert Company 4(3)substituted-4(3)-aminomethyl-(thio)pyran or -piperidine derivatives (=gabapentin analogues), their preparation and their use in the treatment of neurological disorders
WO1999061424A1 (en) 1998-05-26 1999-12-02 Warner-Lambert Company Conformationally constrained amino acid compounds having affinity for the alpha2delta subunit of a calcium channel
WO2000015611A1 (en) 1998-09-14 2000-03-23 Warner-Lambert Company Branched alkyl pyrrolidine-3-carboxylic acids
WO2000031020A1 (en) 1998-11-25 2000-06-02 Warner-Lambert Company Improved gamma amino butyric acid analogs
WO2000050027A1 (en) 1999-02-23 2000-08-31 Warner-Lambert Company Gabapentin derivative for preventing and treating visceral pain
WO2001090052A1 (en) * 2000-05-26 2001-11-29 Warner-Lambert Company Cyclic amino acid derivatives useful as pharmaceutical agents
WO2002100347A2 (en) 2001-06-11 2002-12-19 Xenoport, Inc. Prodrugs of gaba analogs, compositions and uses thereof

Family Cites Families (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2002A (en) * 1841-03-12 Tor and planter for plowing
GB1364672A (en) 1971-06-09 1974-08-29 Beecham Group Ltd Penicillins
JPS5515432B1 (de) 1971-06-14 1980-04-23
US3906092A (en) * 1971-11-26 1975-09-16 Merck & Co Inc Stimulation of antibody response
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
DE2611690A1 (de) 1976-03-19 1977-09-22 Goedecke Ag Cyclische sulfonyloxyimide
CA1085420A (en) 1977-03-24 1980-09-09 Johannes Hartenstein 1-aminomethyl-1-cycloalkane-acetic acid
JPS5455562A (en) 1977-10-11 1979-05-02 Takeda Chem Ind Ltd Lactam compound
US4189571A (en) 1978-02-07 1980-02-19 Fisons Limited Esters of cromoglycates
US4328214A (en) 1979-07-04 1982-05-04 Ciba-Geigy Corporation Cyclopeptides and pharmaceutical preparations thereof and also processes for their manufacture
FR2476087A1 (fr) 1980-02-18 1981-08-21 Roussel Uclaf Nouvelles oximes derivees de l'acide 3-alkyloxy ou 3-alkyl-thiomethyl 7-amino thiazolyl acetamido cephalosporanique, leur procede de preparation et leur application comme medicaments
JPS5721400A (en) 1980-07-12 1982-02-04 Kyowa Hakko Kogyo Co Ltd Novel fortimicin derivative
EP0185651A1 (de) 1981-07-08 1986-06-25 Hoechst Uk Limited Zwischenprodukte zur Herstellung von antibakteriellen Penemderivaten
EP0070204B1 (de) 1981-07-15 1987-11-19 Sumitomo Pharmaceuticals Company, Limited Carboxyl-Beta-Lactam Verbindungen und ihre Herstellung
US4377590A (en) 1982-05-10 1983-03-22 Pfizer Inc. Derivatives of ampicillin and amoxicillin with beta-lactamase inhibitors
JPS58222089A (ja) 1982-06-16 1983-12-23 Sumitomo Chem Co Ltd 新規なβ−ラクタム化合物及びその製造法
JPS59219268A (ja) 1983-05-30 1984-12-10 Kyoto Yakuhin Kogyo Kk ウラシル誘導体
EP0138481B1 (de) 1983-10-05 1991-06-26 Merck Frosst Canada Inc. Inhibitoren für die Leukotrien-Biosynthese
EP0136893B1 (de) 1983-10-05 1989-08-16 Merck Frosst Canada Inc. Benzo(a)Phenothiazine und Hydro-Derivate und sie enthaltende pharmazeutische Zusammensetzungen
US4611056A (en) 1983-10-05 1986-09-09 Merck Frosst Canada, Inc. Benzo[A]phenothiazines and hydro-derivatives
US5051448A (en) 1984-07-24 1991-09-24 The Mclean Hospital Corporation GABA esters and GABA analog esters
FR2570695A1 (fr) 1984-09-27 1986-03-28 Synthelabo Diphenylazomethines a chaine ramifiee ou cyclique, leur preparation et leur application en therapeutique
IL78144A0 (en) 1985-04-04 1986-07-31 Draco Ab Novel androstane-17beta-carboxylic acid esters
US5308626A (en) * 1985-06-28 1994-05-03 Toni N. Mariani Lymphokine activated effector cells for antibody-dependent cellular cytotoxicity (ADCC) treatment of cancer and other diseases
ES2032394T3 (es) 1986-02-20 1993-02-16 Hoechst Aktiengesellschaft Procedimiento para preparar derivados de tienoimidazol sustituidos.
JPH01113391A (ja) 1987-10-24 1989-05-02 Kyowa Hakko Kogyo Co Ltd マイトマイシン誘導体
US5002935A (en) 1987-12-30 1991-03-26 University Of Florida Improvements in redox systems for brain-targeted drug delivery
ES2058503T5 (es) 1988-03-29 1999-04-16 Univ Florida Formulaciones farmaceuticas para uso parenteral.
JPH01275565A (ja) 1988-04-28 1989-11-06 Ishihara Sangyo Kaisha Ltd 置換キノリン系化合物、それらの製造方法及びそれらを有効成分として含有する除草剤
DE3815221C2 (de) 1988-05-04 1995-06-29 Gradinger F Hermes Pharma Verwendung einer Retinol- und/oder Retinsäureester enthaltenden pharmazeutischen Zubereitung zur Inhalation zur Einwirkung auf die Schleimhäute des Tracheo-Bronchialtraktes einschließlich der Lungenalveolen
AT392967B (de) 1989-01-24 1991-07-25 Laevosan Gmbh & Co Kg Neue 1-(3-(2-hydroxy-3-alkylaminopropoxy)-2- thienyl)-3-phenyl-1-propanone und verfahren zu deren herstellung
IE64155B1 (en) 1989-03-29 1995-07-12 Lepetit Spa New substituted alkylamide derivatives of teicoplanin
JP2919910B2 (ja) 1989-05-17 1999-07-19 第一製薬株式会社 光学活性キノロンカルボン酸誘導体
IL94872A (en) * 1989-06-30 1995-03-30 Oncogen Monoclonal or chimeric antibodies that react with human carcinoma, recombinant proteins that contain their anti-binding site, pharmaceutical preparations and kits that contain the
DE3928183A1 (de) 1989-08-25 1991-02-28 Goedecke Ag Lactamfreie cyclische aminosaeuren
CA2023099A1 (en) 1989-09-04 1991-03-05 Quirico Branca Amino acid derivatives
US5264449A (en) 1989-11-13 1993-11-23 Allergan, Inc. N-substituted derivatives of 3R,4R-ethyl-[(1-methyl-1H-imidazol-5-yl)methyl]-2-pyrrolidinone
US5786189A (en) * 1989-11-29 1998-07-28 Smithkline Beecham Biologicals (S.A.) Vaccine
US5084479A (en) 1990-01-02 1992-01-28 Warner-Lambert Company Novel methods for treating neurodegenerative diseases
US5248670A (en) * 1990-02-26 1993-09-28 Isis Pharmaceuticals, Inc. Antisense oligonucleotides for inhibiting herpesviruses
US5580872A (en) 1990-05-02 1996-12-03 Abbott Laboratories Quinolizinone type compounds
EP0458751A1 (de) 1990-05-25 1991-11-27 Warner-Lambert Company System zur Freisetzung von cyclischen Aminosäuren mit verbessertem Geschmack, Struktur und Komprimierbarkeit
US5827819A (en) 1990-11-01 1998-10-27 Oregon Health Sciences University Covalent polar lipid conjugates with neurologically active compounds for targeting
HUT68769A (en) 1991-05-07 1995-07-28 Merck & Co Inc FIBRINOGéN RECEPTOR ANTAGONIST COMPOUNDS AND PHARMACEUTICAL COMPOSITIONS COMPRISING THEM AS EFFECTIVE SUBSTANCE
US5698155A (en) 1991-05-31 1997-12-16 Gs Technologies, Inc. Method for the manufacture of pharmaceutical cellulose capsules
JPH05202059A (ja) 1991-08-06 1993-08-10 Nippon Soda Co Ltd 新規な3環性ヘテロ環化合物とその製造方法
GB9204918D0 (en) 1992-03-06 1992-04-22 Nycomed As Chemical compounds
DE4213919A1 (de) 1992-04-28 1993-11-04 Thomae Gmbh Dr K Cyclische iminoderivate, verfahren zu ihrer herstellung und diese verbindungen enthaltende arzneimittel
AU4534593A (en) 1992-06-12 1994-01-04 Affymax Technologies N.V. Compositions and methods for enhanced drug delivery
US5622944A (en) 1992-06-12 1997-04-22 Affymax Technologies N.V. Testosterone prodrugs for improved drug delivery
JP3151054B2 (ja) * 1992-06-25 2001-04-03 協和醗酵工業株式会社 抗dcc遺伝子産物モノクローナル抗体
DE4228717A1 (de) 1992-08-28 1994-03-03 Cassella Ag Imidazolidin-Derivate
SK94393A3 (en) 1992-09-11 1994-08-10 Thomae Gmbh Dr K Cyclic derivatives of urea, process for their production and their pharmaceutical agents with the content of those
JPH06228149A (ja) 1993-02-04 1994-08-16 Nippon Soda Co Ltd 新規な5環性ヘテロ環化合物、製造中間体とそれらの製造方法
JPH06228103A (ja) 1993-02-05 1994-08-16 Nippon Soda Co Ltd 新規なオクタヒドロアクリジン誘導体とその製造方法
EP0688325A1 (de) 1993-03-08 1995-12-27 Eisai Co., Ltd. Phosphonsaure derivate
US5602118A (en) 1993-03-16 1997-02-11 American Cyanamid Company 2-thiosubstituted carbapenems
US5417972A (en) * 1993-08-02 1995-05-23 The Board Of Trustees Of The Leland Stanford Junior University Method of killing B-cells in a complement independent and an ADCC independent manner using antibodies which specifically bind CDIM
US5849719A (en) * 1993-08-26 1998-12-15 The Regents Of The University Of California Method for treating allergic lung disease
US5679647A (en) * 1993-08-26 1997-10-21 The Regents Of The University Of California Methods and devices for immunizing a host against tumor-associated antigens through administration of naked polynucleotides which encode tumor-associated antigenic peptides
AU689809B2 (en) 1993-10-14 1998-04-09 Abbott Laboratories Quinolizinone type compounds
DE59409322D1 (de) 1993-12-03 2000-06-08 Hoffmann La Roche Essigsäurederivate als Arzneimittel
JPH0873455A (ja) 1994-03-15 1996-03-19 Upjohn Co:The オキサゾリジノン誘導体及びこれを有効成分とする医薬組成物
WO1995026204A1 (en) * 1994-03-25 1995-10-05 Isis Pharmaceuticals, Inc. Immune stimulation by phosphorothioate oligonucleotide analogs
EP0712844A4 (de) 1994-06-06 1996-11-06 Green Cross Corp Neue kondensierte carbonsäureverbindung oder ihr salz und ihre medizinische verwendung
US6207646B1 (en) * 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
ATE420171T1 (de) * 1994-07-15 2009-01-15 Univ Iowa Res Found Immunomodulatorische oligonukleotide
DE4424975A1 (de) 1994-07-15 1996-01-18 Thomae Gmbh Dr K 2-Piperidinone, diese Verbindungen enthaltende Arzneimittel und Verfahren zu ihrer Herstellung
US6429199B1 (en) * 1994-07-15 2002-08-06 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules for activating dendritic cells
US6239116B1 (en) * 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US5466811A (en) 1994-07-18 1995-11-14 Merck & Co., Inc. Dioxolenylmethyl carbamates pro moieties for amine drugs
WO1996009297A1 (en) 1994-09-23 1996-03-28 Arris Pharmaceutical Corporation Compositions and methods for treating mast-cell inflammatory condition
CN1167485A (zh) 1994-11-01 1997-12-10 泰尔茂株式会社 四氢异喹啉衍生物和含有它们的药物制剂
US5684018A (en) 1994-12-13 1997-11-04 Merck & Co., Inc. Acyloxyisopropyl carbamates as prodrugs for amine drugs
JP3874438B2 (ja) 1994-12-28 2007-01-31 新日本製鐵株式会社 置換β−アミノ酸残基を有するフィブリノーゲン受容体拮抗物質およびそれを有効成分とする医薬製剤
DE19502912A1 (de) * 1995-01-31 1996-08-01 Hoechst Ag G-Cap Stabilisierte Oligonucleotide
JPH08217787A (ja) 1995-02-15 1996-08-27 Meiji Seika Kaisha Ltd 脂溶性アントラサイクリン誘導体
US5672584A (en) 1995-04-25 1997-09-30 The University Of Kansas Cyclic prodrugs of peptides and peptide nucleic acids having improved metabolic stability and cell membrane permeability
JPH0980709A (ja) 1995-04-27 1997-03-28 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料および画像形成方法
JP3759767B2 (ja) 1995-04-28 2006-03-29 テルモ株式会社 ピペリジン誘導体およびそれを含有する医薬製剤
WO1996036613A1 (fr) 1995-05-19 1996-11-21 Nippon Soda Co., Ltd. Derives d'acides benzoiques substitues, procede de production desdits derives et herbicides
WO1996038435A1 (en) 1995-05-30 1996-12-05 Abbott Laboratories Dopamine agonists
JPH11510478A (ja) 1995-06-06 1999-09-14 アボツト・ラボラトリーズ キノリジノン型化合物
US6410690B1 (en) * 1995-06-07 2002-06-25 Medarex, Inc. Therapeutic compounds comprised of anti-Fc receptor antibodies
JPH0915799A (ja) 1995-06-26 1997-01-17 Fuji Photo Film Co Ltd ハロゲン化銀カラー写真感光材料および画像形成法
AR005245A1 (es) 1995-12-21 1999-04-28 Astrazeneca Ab Prodrogas de inhibidores de trombina, una formulación farmaceutica que las comprende, el uso de dichas prodrogas para la manufactura de un medicamento y un procedimiento para su preparacion
US5760072A (en) 1995-12-29 1998-06-02 Pharmachemie B.V. Paclitaxel prodrugs, method for preparation as well as their use in selective chemotherapy
CN1151840C (zh) * 1996-05-09 2004-06-02 太平洋制药控股公司 干扰素在制备用于治疗哺乳动物肿瘤病的药剂中的应用
USRE41920E1 (en) 1996-07-24 2010-11-09 Warner-Lambert Company Llc Isobutylgaba and its derivatives for the treatment of pain
HUP0003267A3 (en) 1996-07-30 2002-02-28 Arris Pharmaceutical Corp San Heteroaryl derivatives, pharmaceutical compositions containing them and process for producing them
US5962473A (en) 1996-08-16 1999-10-05 Eli Lilly And Company Methods of treating or ameliorating the symptoms of common cold or allergic rhinitis with serotonin 5-HT1F
KR20000068415A (ko) 1996-09-04 2000-11-25 로즈 암스트롱, 크리스틴 에이. 트러트웨인 매트릭스 메탈로프로테이나제 억제용 화합물 및 방법
JP3190857B2 (ja) 1997-07-23 2001-07-23 松下電器産業株式会社 液晶表示素子
EP0944635A4 (de) 1996-10-09 2000-07-05 Elizanor Biopharmaceuticals In Therapeutische diphosphonatverbindungen
ES2189003T3 (es) 1996-12-10 2003-07-01 Abbott Lab Enantiomeros 3-piridilo y su utilizacion como analgesicos.
WO1998037919A1 (en) * 1997-02-28 1998-09-03 University Of Iowa Research Foundation USE OF NUCLEIC ACIDS CONTAINING UNMETHYLATED CpG DINUCLEOTIDE IN THE TREATMENT OF LPS-ASSOCIATED DISORDERS
AU6120298A (en) 1997-03-07 1998-09-22 Takeda Chemical Industries Ltd. 2-peperazinone-1-acetic acid derivatives and their use
US6406705B1 (en) * 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
JPH10287669A (ja) 1997-04-10 1998-10-27 Dai Ichi Seiyaku Co Ltd 置換アミノメチルピロリジン誘導体
EP1003531B1 (de) * 1997-05-20 2007-08-22 Ottawa Health Research Institute Verfahren zur Herstellung von Nukleinsäurekonstrukten
WO1998054164A1 (en) 1997-05-30 1998-12-03 Takeda Chemical Industries, Ltd. Sulfonamide derivatives, their production and use
JP2002510313A (ja) 1997-06-26 2002-04-02 イーライ・リリー・アンド・カンパニー 抗血栓物質
JPH1129533A (ja) 1997-07-10 1999-02-02 Bunshi Bio Photonics Kenkyusho:Kk ケージドヒドロキシフェニルプロピオン酸及びその誘導体
WO1999006402A1 (fr) 1997-07-31 1999-02-11 Ube Industries, Ltd. Composes amides n-acylamino acides et intermediaires utiles dans la preparation de ceux-ci
US6127418A (en) 1997-08-20 2000-10-03 Warner-Lambert Company GABA analogs to prevent and treat gastrointestinal damage
US6740682B2 (en) 1997-08-29 2004-05-25 Tularik Limited Meta-benzamidine derivatives as serine protease inhibitors
US6262069B1 (en) 1997-08-29 2001-07-17 Protherics Molecular Design Limited 1-amino-7-isoquinoline derivatives as serine protease inhibitors
EP1047690B1 (de) 1997-12-19 2004-03-24 Abbott Laboratories Heterozyklische ether- und thioether-verbindungen, verwendbar zur steuerung von chemischer synaptischer transmission
JPH11199573A (ja) 1998-01-07 1999-07-27 Yamanouchi Pharmaceut Co Ltd 5ht3受容体作動薬及び新規ベンゾチアゾール誘導体
WO1999037296A1 (en) 1998-01-23 1999-07-29 Warner-Lambert Company Gabapentin and its derivatives for the treatment of muscular and skeletal pain
WO1999038829A1 (fr) 1998-01-28 1999-08-05 Shionogi & Co., Ltd. Nouveau compose tricyclique
DE19804085A1 (de) 1998-02-03 1999-08-05 Boehringer Ingelheim Pharma 5-Gliedrige heterocyclische kondensierte Benzoderivate, deren Herstellung und deren Verwendung als Arzneimittel
EP1060166A1 (de) 1998-02-03 2000-12-20 Boehringer Ingelheim Pharma KG 5-gliedrige benzokondensierte heterocyclen als antithrombotika
EP1054005A4 (de) 1998-02-05 2003-02-05 Takeda Chemical Industries Ltd Sulfonamidderivate, verfahren zu ihrer herstellung und ihre verwendung
AU760549B2 (en) * 1998-04-03 2003-05-15 University Of Iowa Research Foundation, The Methods and products for stimulating the immune system using immunotherapeutic oligonucleotides and cytokines
EP1070712A4 (de) 1998-04-09 2005-01-05 Meiji Seika Kaisha Stickstoff enthaltende heterozyklen mit blutgerinnungshemmender wirkung und ihre medizinische verwendung
WO1999052903A1 (en) 1998-04-15 1999-10-21 Warner-Lambert Company Prodrugs of benzofuranylmethyl carbamate nk1 antagonists
DE19816983A1 (de) 1998-04-17 1999-10-21 Boehringer Ingelheim Pharma Bicyclen, deren Herstellung und deren Verwendung als Arzneimittel
EP1078927B1 (de) 1998-05-01 2006-08-23 Kyoto Pharmaceutical Industries, Ltd. Cabapenemderivate, ihre anwendung und ihre zwischenprodukte
TWI248435B (en) 1998-07-04 2006-02-01 Boehringer Ingelheim Pharma Benzimidazoles, the preparation thereof and their use as pharmaceutical compositions
CA2340100A1 (en) 1998-08-11 2000-02-24 Daiichi Pharmaceutical Co., Ltd. Novel sulfonyl derivatives
FR2783521B1 (fr) 1998-09-18 2002-04-26 Synthelabo Derives de n-(arginyl) benzenesulfonamide, leur preparation et leur application en therapeutique
US6359005B1 (en) 1998-10-16 2002-03-19 Warner-Lambert Company Method for the treatment of mania and bipolar disorder
CO5210925A1 (es) 1998-11-17 2002-10-30 Novartis Ag Derivados de diamino nitroguanidina tetrasustituidos
DE69925859T2 (de) 1998-11-24 2006-05-11 Daiichi Pharmaceutical Co., Ltd. Cycloalkylsubstituierte aminomethylpyrrolidin-derivate
AUPP999799A0 (en) 1999-04-27 1999-05-20 Fujisawa Pharmaceutical Co., Ltd. New compound
US6446932B1 (en) 1999-05-03 2002-09-10 Springs Window Fashions Lp Hanger and pin assembly for displaying merchandise
MXPA01012125A (es) 1999-05-27 2002-06-04 Pfizer Prod Inc Profarmacos mutuos de amilodipino y atorvastatina.
JP2000344774A (ja) 1999-06-03 2000-12-12 Meiji Seika Kaisha Ltd カルバペネム類の製造法
GB9914306D0 (en) 1999-06-19 1999-08-18 Glaxo Group Ltd Chemical process
ES2282127T3 (es) 1999-07-08 2007-10-16 University Of North Carolina At Chapel Hill Nuevos profarmacos para amidinas anticrobianas.
HUP0202223A3 (en) 1999-07-15 2002-11-28 Lilly Co Eli Pseudomycin prodrugs, pharmaceutical compositions comprising thereof and their use
AU768512B2 (en) 1999-07-16 2003-12-18 Leo Pharmaceutical Products Ltd. A/S (Lovens Kemiske Fabrik Produktionsaktieselskab) Aminobenzophenones as inhibitors of IL-1beta and TNF-alpha
WO2001005768A1 (fr) 1999-07-19 2001-01-25 Shionogi & Co., Ltd. Composes tricycliques porteurs de pendants acyloxymethoxycarbonyle
WO2001005750A1 (fr) 1999-07-19 2001-01-25 Shionogi & Co., Ltd. COMPOSES DE p-TERPHENYLE A CHAINES LATERALES D'ACYLOXYMETHOXYCARBONYLE
TR200200099T2 (tr) 1999-07-23 2002-06-21 Shionogi &Co., Ltd. Th2 farklılaşma inhibitörleri
CN1188410C (zh) 1999-08-06 2005-02-09 詹森药业有限公司 非类固醇类的il-5抑制剂,其制备的方法以及包含该抑制剂的医药组合物
HN2000000224A (es) 1999-10-20 2001-04-11 Warner Lambert Co Aminoacidos biciclicos como agentes farmaceuticos
AU1244001A (en) 1999-10-27 2001-05-08 Cor Therapeutics, Inc. Pyridyl-containing spirocyclic compounds as inhibitors of fibrinogen-dependent platelet aggregation
GB9928330D0 (en) 1999-11-30 2000-01-26 Ferring Bv Novel antidiabetic agents
EP1237847B1 (de) 1999-12-08 2006-05-17 Warner-Lambert Company Llc Verfahren zur stereoselektiven synthese zyklischer aminosäuren
EA006597B1 (ru) 1999-12-08 2006-02-24 Варнер-Ламберт Компани Ингибиторы аминотрансфераз, зависимых от аминокислот с разветвленной цепью, и их применение в лечении диабетической ретинопатии
JP2004501067A (ja) 2000-01-28 2004-01-15 ローム アンド ハース カンパニー 高められた特性をもつ医薬
US6376548B1 (en) 2000-01-28 2002-04-23 Rohm And Haas Company Enhanced propertied pesticides
WO2001055082A2 (en) 2000-01-28 2001-08-02 Rohm And Haas Company Intermediates for biologically active compounds
WO2001062242A1 (en) 2000-02-24 2001-08-30 Biocryst Pharmaceuticals, Inc. Prodrugs of substituted cyclopentane and cyclopentene compounds useful as neuraminidase inhibitors
MXPA02009020A (es) 2000-03-17 2003-02-12 Du Pont Pharm Co Derivados de beta-aminoacidos ciclicos como inhibidores de las metaloproteasas de matriz y factor de necrosis de tumor alfa.
GB0011071D0 (en) 2000-05-08 2000-06-28 Novartis Ag Organic compounds
DE60114413T2 (de) 2000-05-25 2006-07-27 F. Hoffmann-La Roche Ag Substituierte 1-aminoalkyl-lactame und deren verwendung als muscarinrezeptor-antagonisten
KR100785182B1 (ko) 2000-06-26 2007-12-11 워너-램버트 캄파니 엘엘씨 수면 장애를 위한 가바펜틴 유사체
GB2364049A (en) 2000-06-28 2002-01-16 Warner Lambert Co Cyclic ketones and their use in the synthesis of amino acids
AU2001268951A1 (en) 2000-07-07 2002-01-21 Novo-Nordisk A/S Modulators of protein tyrosine phosphatases (ptpases)
EP1301516B1 (de) 2000-07-07 2006-03-22 Novo Nordisk A/S Modulatoren von protein tyrosin phosphatasen (ptpasen)
JP2002105041A (ja) 2000-07-18 2002-04-10 Dai Ichi Seiyaku Co Ltd FXa阻害化合物
GB0018528D0 (en) 2000-07-27 2000-09-13 Photocure Asa Compounds
GB2365425A (en) 2000-08-01 2002-02-20 Parke Davis & Co Ltd Alkyl amino acid derivatives useful as pharmaceutical agents
DE10040783A1 (de) 2000-08-21 2002-03-07 Merck Patent Gmbh AZA-Aminosäurederivate (Faktor X¶a¶-Inhibitoren 15)
DZ3415A1 (fr) 2000-08-31 2002-03-07 Chiron Corp Guanidinobenzamides comme mc4-r agonistes.
AU9233101A (en) 2000-10-04 2002-04-15 Kissei Pharmaceutical 5-amidino-2-hydroxybenzenesulfonamide derivatives, pharmaceutical compositions containing the same and intermediates for their preparation
WO2002032376A2 (en) 2000-10-06 2002-04-25 Xenoport, Inc. Bile-acid conjugates for providing sustained systemic concentrations of drugs
US7144877B2 (en) 2000-10-06 2006-12-05 Xenoport, Inc. Bile-acid derived compounds for enhancing oral absorption and systemic bioavailability of drugs
WO2002028881A1 (en) 2000-10-06 2002-04-11 Xenoport, Inc. Bile-acid derived compounds for providing sustained systemic concentrations of drugs after oral administration
AU1339302A (en) 2000-10-20 2002-05-06 Biocryst Pharm Inc Biaryl compounds as serine protease inhibitors
US6683112B2 (en) 2000-10-24 2004-01-27 Andrx Corporation Gabapentin prodrugs and formulations
US6528678B2 (en) 2000-10-25 2003-03-04 Pharmacia& Upjohn Company Phosgene-free process for preparing carbamates
AU2002239257A1 (en) 2000-11-17 2002-06-03 Xenoport, Inc. Amino acid conjugates providing for sustained systemic concentrations of gaba analogues
EP1226820A1 (de) 2001-01-26 2002-07-31 Warner-Lambert Company Verwendung von bicyclische Aminosäuren zur Prophylaxe und Behandlung von Eingeweideschmerzen und gastrointestinalen Erkrankungen
US7420002B2 (en) 2001-06-11 2008-09-02 Xenoport Amino acid conjugates providing for sustained systemic concentrations of GABA analogues
ITMI20022658A1 (it) * 2002-12-17 2004-06-18 Nicox Sa Farmaci per il dolore cronico.

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4024175A (en) 1974-12-21 1977-05-17 Warner-Lambert Company Cyclic amino acids
US4426391A (en) 1982-09-15 1984-01-17 Merck & Co., Inc. [(Alkoxycarbonyl)oxy]alkyl esters of methyldopa
US4760057A (en) 1983-06-23 1988-07-26 Merck & Co., Inc. (Acyloxyalkoxy)carbonyl derivatives as bioreversible prodrug moieties for primary and secondary amine functions in drugs
US4916230A (en) 1984-07-02 1990-04-10 Merck & Co., Inc. Process for preparing novel N-(acyloxy-alkoxy)carbonyl derivatives useful as bioreversible prodrug moieties for primary and secondary amine functions in drugs
EP0416689B1 (de) 1989-09-06 1995-11-29 Merck & Co. Inc. Acyloxymethylester der Bisphonsäuren als Knochenresorptions-Inhibitoren
US5401868A (en) 1990-01-22 1995-03-28 Leo Pharmaceutical Products Ltd. A/S (Lovens Kemiske Fabrik Productionsaktieselskab) Aryloxymethylcarbonochloridate ester intermediates for use in synthesizing pro drugs and their use therefor
US6028214A (en) 1990-11-27 2000-02-22 Northwestern University GABA and L-glutamic acid analogs for antiseizure treatment
US6117906A (en) 1990-11-27 2000-09-12 Northwestern University GABA and L-glutamic acid analogs for antiseizure treatment
US5563175A (en) 1990-11-27 1996-10-08 Northwestern University GABA and L-glutamic acid analogs for antiseizure treatment
WO1992009560A1 (en) 1990-11-27 1992-06-11 Northwestern University Gaba and l-glutamic acid analogs for antiseizure treatment
WO1993023383A1 (en) 1992-05-20 1993-11-25 Northwestern University Gaba and l-glutamic acid analogs for antiseizure treatment
US5733907A (en) 1993-11-18 1998-03-31 Merck & Co., Inc. Prodrugs of an inhibitor of HIV protease
WO1997029101A1 (en) 1996-02-07 1997-08-14 Warner-Lambert Company Novel cyclic amino acids as pharmaceutical agents
WO1997033858A1 (en) 1996-03-14 1997-09-18 Warner-Lambert Company Novel substituted cyclic amino acids as pharmaceutical agents
WO1997033859A1 (en) 1996-03-14 1997-09-18 Warner-Lambert Company Novel bridged cyclic amino acids as pharmaceutical agents
US6103932A (en) 1996-03-14 2000-08-15 Warner-Lambert Company Substituted cyclic amino acids as pharmaceutical agents
US6020370A (en) 1996-03-14 2000-02-01 Warner-Lambert Company Bridged cyclic amino acids as pharmaceutical agents
WO1998017627A1 (en) 1996-10-23 1998-04-30 Warner-Lambert Company Substituted gamma aminobutyric acids as pharmaceutical agents
WO1999008671A1 (en) 1997-08-20 1999-02-25 Warner-Lambert Company Gaba analogs to prevent and treat gastrointestinal damage
WO1999021824A1 (en) 1997-10-27 1999-05-06 Warner-Lambert Company Cyclic amino acids and derivatives thereof useful as pharmaceutical agents
WO1999031074A2 (en) 1997-12-16 1999-06-24 Warner-Lambert Company ((cyclo)alkyl substituted)-.gamma.-aminobutyric acid derivatives (=gaba analogues), their preparation and their use in the treatment of neurological disorders
WO1999031057A1 (en) 1997-12-16 1999-06-24 Warner-Lambert Company 4(3)substituted-4(3)-aminomethyl-(thio)pyran or -piperidine derivatives (=gabapentin analogues), their preparation and their use in the treatment of neurological disorders
WO1999031075A1 (en) 1997-12-16 1999-06-24 Warner-Lambert Company 1-substituted-1-aminomethyl-cycloalkane derivatives (=gabapentin analogues), their preparation and their use in the treatment of neurological disorders
WO1999061424A1 (en) 1998-05-26 1999-12-02 Warner-Lambert Company Conformationally constrained amino acid compounds having affinity for the alpha2delta subunit of a calcium channel
WO2000015611A1 (en) 1998-09-14 2000-03-23 Warner-Lambert Company Branched alkyl pyrrolidine-3-carboxylic acids
WO2000031020A1 (en) 1998-11-25 2000-06-02 Warner-Lambert Company Improved gamma amino butyric acid analogs
WO2000050027A1 (en) 1999-02-23 2000-08-31 Warner-Lambert Company Gabapentin derivative for preventing and treating visceral pain
WO2001090052A1 (en) * 2000-05-26 2001-11-29 Warner-Lambert Company Cyclic amino acid derivatives useful as pharmaceutical agents
WO2002100347A2 (en) 2001-06-11 2002-12-19 Xenoport, Inc. Prodrugs of gaba analogs, compositions and uses thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GREEN ET AL.: "Protective Groups in Organic Chemistry", 1991, WILEY
HARRISON ET AL.: "Compendium of Synthetic Organic Methods", vol. 1-8, 1971, JOHN WILEY AND SONS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013126015A1 (en) 2012-02-23 2013-08-29 N. V. Nutricia Composition comprising non- digestible oligosaccharides

Also Published As

Publication number Publication date
AU2003247522A1 (en) 2003-12-22
IL165687A0 (en) 2006-01-15
DK2275401T3 (da) 2013-06-10
HK1083018A1 (en) 2006-06-23
ES2416032T3 (es) 2013-07-30
US20030176398A1 (en) 2003-09-18
CN100540526C (zh) 2009-09-16
WO2003104184A1 (en) 2003-12-18
EP2275401B1 (de) 2013-04-03
US20040006132A1 (en) 2004-01-08
US6972341B2 (en) 2005-12-06
US6818787B2 (en) 2004-11-16
JP4310271B2 (ja) 2009-08-05
JP2005529941A (ja) 2005-10-06
CN1675165A (zh) 2005-09-28
EP1554237A4 (de) 2006-11-02
EP1554237A1 (de) 2005-07-20
IL165687A (en) 2011-02-28
CN101613307A (zh) 2009-12-30

Similar Documents

Publication Publication Date Title
US7423169B2 (en) Methods for synthesis of acyloxyalkyl derivatives of GABA analogs
EP2275401B1 (de) Kristalline 1-{[(alpha-Isobutanyloxyethoxy)carbonyl]aminomethyl}-1-cyclohexanessigsäure
AU2008221505C1 (en) Prodrugs of gaba analogs, compositions and uses thereof
US7560483B2 (en) Methods for synthesis of prodrugs from 1-acyl-alkyl derivatives and compositions thereof
US7868041B2 (en) Cyclic 1-(acyloxy)-alkyl prodrugs of GABA analogs, compositions and uses thereof
US20040077553A1 (en) Prodrugs of GABA analogs, compositions and uses thereof
KR100286421B1 (ko) 고지혈증 치료 화합물의 개선된 제조방법
JPH0720927B2 (ja) 光学活性な2―アゼチジノン誘導体及びその新製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1554237

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH IE LI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: XIANG, JIA-NING

Inventor name: YAO, FENMEI

Inventor name: RAILLARD, STEPHEN P.

Inventor name: GALLOP, MARK A.

Inventor name: ZHOU, CINDY X.

Inventor name: MANTHATI, SURESH KUMAR

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20110718

17Q First examination report despatched

Effective date: 20120113

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1554237

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 604650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60343704

Country of ref document: DE

Effective date: 20130529

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2416032

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20130730

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 604650

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130703

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

26N No opposition filed

Effective date: 20140106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60343704

Country of ref document: DE

Effective date: 20140106

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E018941

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130403

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160627

Year of fee payment: 14

Ref country code: GB

Payment date: 20160624

Year of fee payment: 14

Ref country code: IE

Payment date: 20160627

Year of fee payment: 14

Ref country code: FI

Payment date: 20160627

Year of fee payment: 14

Ref country code: ES

Payment date: 20160620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 14

Ref country code: DK

Payment date: 20160627

Year of fee payment: 14

Ref country code: SE

Payment date: 20160607

Year of fee payment: 14

Ref country code: IT

Payment date: 20160614

Year of fee payment: 14

Ref country code: TR

Payment date: 20160530

Year of fee payment: 14

Ref country code: HU

Payment date: 20160526

Year of fee payment: 14

Ref country code: NL

Payment date: 20160607

Year of fee payment: 14

Ref country code: BE

Payment date: 20160614

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160629

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60343704

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20170630

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170611

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170612

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170611

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170612

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170611

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170611

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170611