EP1772618A1 - Common-Rail-Injektor - Google Patents

Common-Rail-Injektor Download PDF

Info

Publication number
EP1772618A1
EP1772618A1 EP06123003A EP06123003A EP1772618A1 EP 1772618 A1 EP1772618 A1 EP 1772618A1 EP 06123003 A EP06123003 A EP 06123003A EP 06123003 A EP06123003 A EP 06123003A EP 1772618 A1 EP1772618 A1 EP 1772618A1
Authority
EP
European Patent Office
Prior art keywords
nozzle
nozzle needle
chamber
common rail
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06123003A
Other languages
English (en)
French (fr)
Other versions
EP1772618B1 (de
Inventor
Dieter Kienzler
Patrick Mattes
Wolfgang Stoecklein
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7917134&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1772618(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1772618A1 publication Critical patent/EP1772618A1/de
Application granted granted Critical
Publication of EP1772618B1 publication Critical patent/EP1772618B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/042The valves being provided with fuel passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/16Sealing of fuel injection apparatus not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/006Springs assisting hydraulic closing force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting

Definitions

  • the invention relates to a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine having an injector housing with a fuel inlet communicating with a central fuel high pressure accumulator outside the injector housing and with a pressure space inside the injector housing. is injected from the high-pressure fuel in response to the position of a control valve, which ensures that in a longitudinal bore of the injector axially against the biasing force of a nozzle spring, which is accommodated in a nozzle spring chamber, movable back and forth nozzle needle lifts from a seat when the pressure in the pressure chamber is greater than the pressure in a control chamber, which is connected via an inlet throttle with the fuel inlet.
  • a high-pressure pump delivers the fuel into the central high-pressure accumulator, which is referred to as a common rail.
  • high pressure lines lead to the individual injectors, which are assigned to the engine cylinders.
  • the injectors are controlled individually by the engine electronics.
  • the rail pressure is in the pressure chamber and on the control valve. When the control valve opens, high-pressure fuel passes past the nozzle needle lifted against the biasing force of the nozzle spring in the combustion chamber.
  • the object of the invention is to provide a common rail injector with a small volume, which is simple and inexpensive to produce. In particular, a good closing behavior should be ensured even at a high nozzle needle speed.
  • the object is in a common rail injector for injecting fuel in a common rail injection system of an internal combustion engine having an injector with a fuel inlet, which communicates with a central fuel high pressure accumulator outside the injector and with a pressure chamber inside the injector , is injected from the high-pressure fuel in response to the position of a control valve, which ensures that in a longitudinal bore of the injector axially against the biasing force of a nozzle spring, which is received in a nozzle spring chamber, reciprocally movable nozzle needle from a seat lifts off, when the pressure in the pressure chamber is greater than the pressure in a control chamber, which is connected via an inlet throttle with the fuel inlet, achieved in that the control chamber is limited by a sleeve which sealing effect on the combustion chamber remote End of the nozzle needle is displaceable and is held by means of the nozzle spring in contact with the injector.
  • the sleeve provides the advantage that the control chamber and the nozzle spring chamber can be combined at the combustion chamber remote end of the nozzle needle without the volume of the control chamber depends on the space of the nozzle spring. Therefore, it is possible to install a nozzle spring with a high spring stiffness, which ensures a good closing of the nozzle needle. As a result, the injection time and the injection timing can be set exactly. In addition, the control chamber can be made very small, resulting in a fast response of the injector according to the invention. Furthermore, there is a relationship between the maximum achievable nozzle needle speed and the nozzle needle diameter. In order to get higher nozzle needle speeds, which is especially important when needle closing, the nozzle needle diameter must be reduced.
  • the nozzle needle diameter can be chosen freely and is not dependent on the dimensions of the nozzle spring. Compared to conventional jet needles, the length can be significantly reduced, which contributes to a precise stroke stop.
  • a particular embodiment of the invention is characterized in that a biting edge is formed on the surface of the sleeve, which is in contact with the injector housing. It is thereby achieved that the control chamber formed in the interior of the sleeve remains separated from the nozzle spring chamber surrounding the sleeve.
  • Another particular embodiment of the invention is characterized in that the inner diameter of the sleeve less than or equal to a guide diameter on the nozzle needle.
  • the inner diameter of the sleeve and the corresponding outer diameter on the nozzle needle can be made much smaller than in conventional injectors.
  • Another particular embodiment of the invention is characterized in that the nozzle needle is guided between the nozzle spring chamber and the pressure chamber. This provides the advantage that the nozzle needle guide no longer has a sealing function. This reduces the quality requirements of the guide, which leads to savings in production. Because there is the same pressure on both sides of the guide, there is no longer any pilot leakage.
  • Another particular embodiment of the invention is characterized in that the nozzle spring chamber communicates via a bore with the pressure chamber. As a result, the complete circumference of the nozzle needle can be used for guidance purposes.
  • a further particular embodiment of the invention is characterized in that at least one flat surface is formed on the nozzle needle between the nozzle spring chamber and the pressure chamber, past which fuel can pass from the nozzle spring chamber into the pressure chamber.
  • inlet throttle is integrated into the nozzle needle, the sleeve or the injector housing.
  • the inlet throttle is used to pressure surges during operation prevent.
  • Another particular embodiment of the invention is characterized in that the sleeve has a collar at its end remote from the combustion chamber.
  • the collar forms a first abutment for the nozzle spring.
  • Another particular embodiment of the invention is characterized in that a step is formed on the nozzle needle, which forms a stop for a spring plate.
  • the spring plate forms a second abutment for the nozzle spring.
  • Another particular embodiment of the invention is characterized in that in the nozzle needle, a circumferential groove is recessed, in which a retaining ring is supported, which forms a stop for a spring plate.
  • the outer diameter of the nozzle needle in the control chamber and the guide diameter of the nozzle needle between the nozzle spring chamber and the pressure chamber can be the same size. This is in the manufacturing, e.g. by lapping, an advantage.
  • Another particular embodiment of the invention is characterized in that the retaining ring is in two parts and is fixed in the assembled state by the spring plate. As a result, a release of the spring plate is prevented during operation in a simple manner.
  • Another particular embodiment of the invention is characterized in that the Düsennadelhub is defined by the distance between the sleeve and the spring plate.
  • This purely mechanical Düsennadelhubendanschlag provides the advantage that the Düsennadelhub is exactly reproducible. As a result, the course of injection can be reliably shaped. So-called hydraulic bonding is avoided.
  • Another particular embodiment of the invention is characterized in that the Düsennadelhub and the Düsenfedervorschreib by means of spacer elements are adjustable, which are arranged between the spring plate and the stop for the spring plate or between the nozzle spring and the abutments for the nozzle spring. As a result, the closing behavior of the injector can be improved.
  • Another particular embodiment of the invention is characterized in that the Düsennadelhub is defined by the distance between the combustion chamber remote end face of the nozzle needle and the injector.
  • This embodiment has the advantage that it is particularly easy to implement in terms of manufacturing technology.
  • Another particular embodiment of the invention is characterized in that in the combustion chamber remote end face of the nozzle needle and / or in the opposite surface of the injector housing recesses are provided whose dimensions are adapted to the volume of the control chamber.
  • the vibrations of the nozzle needle may depend on the inlet and the outlet throttle, the friction of the nozzle needle guide, the control chamber volume, etc.
  • a vibration of the nozzle needle is indeed avoided, but this is one slightly larger tax amount required. This has an unfavorable effect on the efficiency of the injector.
  • a "semi-hydraulic" stop is created. The flow cross-section remaining at the stop is just chosen so large that avoids oscillation of the nozzle needle, but the control amount at the end stop as far as possible In this case, it is advantageous that the injector according to the invention has no leakage, ie no return quantity is generated without activation of the injector.
  • Another particular embodiment of the invention is characterized in that in the combustion chamber remote end face of the nozzle needle at least one axial bore is provided which is in communication with at least one radial bore in the nozzle needle.
  • This embodiment has the advantage that it is insensitive to mechanical shrinkage, i. the flow cross section does not change over the service life.
  • the illustrated in Fig. 1 in longitudinal section first embodiment of the injector according to the invention has a generally designated 1 injector.
  • the injector housing 1 comprises a nozzle body 2, which projects with its lower free end into the combustion chamber of the internal combustion engine to be supplied. With its upper, combustion chamber remote end face of the nozzle body 2 is clamped by means of a clamping nut 5 axially against a valve body 3 and an injector 4.
  • an axial guide bore 6 is recessed.
  • a nozzle needle 8 is guided axially displaceable.
  • a sealing surface is formed, which cooperates with a sealing seat which is formed on the nozzle body 2.
  • the nozzle needle 8 has three regions with different diameters d1, d2 and d3.
  • the diameter d2 is the largest and serves to guide the nozzle needle 8 in the nozzle body 2.
  • the diameter d1 is the smallest. In the section with the
  • Diameter d1 is a collar 16 with a flat 17 formed on its outer peripheral surface.
  • the collar 16 forms a second guide for the nozzle needle 1.
  • the flattening 17 in the collar 16 is a flow connection allows in the longitudinal direction of the nozzle needle 1 from one side of the collar 16 to the other side.
  • the diameter d3 is larger than the diameter dl but smaller than the diameter d2.
  • the diameter d3 is also referred to as the control diameter.
  • the nozzle needle 8 is biased by means of a nozzle spring 19 against the nozzle needle seat in the region of the injection holes 10 and 11.
  • the nozzle spring 19 is arranged in a nozzle spring chamber 20, in which a fuel inlet 21 opens.
  • a fuel inlet 21 is supplied from a (not shown) rail with fuel, which is acted upon by high pressure.
  • the high-pressure fuel from the nozzle spring chamber 20 passes into a pressure chamber 24.
  • the pressure chamber 24 is connected via an annular space 25 with the spray holes 10 and 11 in connection, when the nozzle needle 1 against the biasing force of the nozzle spring 19 lifted from its seat is.
  • a step results on the nozzle needle 8, which forms a stop for a spring plate 26.
  • the biasing force of the nozzle spring 19 is transmitted to the nozzle needle 8.
  • the other end of the nozzle spring 19 is supported on a collar 27, which is formed on a sleeve 28.
  • the inner diameter of the sleeve 28 is slightly larger than the control diameter d3 of the nozzle needle B.
  • the dimensions of the diameters are selected so that the sleeve 28 is displaceable relative to the nozzle needle 8 under sealing action.
  • the biasing force of the nozzle spring 19 the sleeve 28 is pressed with a biting edge 29 against the valve body 3.
  • a control chamber 30 provided in the interior of the sleeve 28, which is delimited by the end face of the nozzle needle 8 remote from the combustion chamber, is sealed off from the nozzle spring chamber 20.
  • the control chamber 30 is connected via an inlet throttle 31 with the nozzle spring chamber 20.
  • the control chamber 30 is connected via an outlet throttle 32 with a (not shown) discharge space in connection.
  • the connection of the control chamber 30 with the discharge chamber depends on the position of a control valve member 33.
  • the injector shown in Fig. 1 functions as follows:
  • the diameter ratios are chosen in a known manner in that, as a result of the high pressure in the control chamber 30, the nozzle needle 8 is in contact with the nozzle needle seat with its tip 9.
  • the control valve member 33 opens, the control chamber 30 is depressurized and the nozzle needle tip 9 lifts off its seat. Then, as long as high-pressure fuel is injected through the injection holes 10 and 11 in the combustion chamber of the internal combustion engine until the control valve member 33 closes again. This has the consequence that the pressure in the control chamber 30 rises again and the nozzle needle 8 is pressed with its tip 9 again against the associated nozzle needle seat.
  • the second embodiment shown in FIG. 2 largely corresponds to the first embodiment of the invention shown in FIG.
  • the same reference numerals will be used to designate like parts.
  • a connecting bore between the nozzle spring chamber 20 and the pressure chamber 24 is missing. Instead, a flattening 36 is formed in the section of the nozzle needle 8 with the diameter d2. The flattening 36 provides a connection between the nozzle spring chamber 20 and the pressure chamber 24. Otherwise, there are no differences between the two embodiments.
  • the third embodiment shown in Fig. 3 differs from the second embodiment in that the inlet throttle is not disposed in the sleeve 28.
  • the inlet throttle in the form of holes of different orientations and different dimensions can be integrated into the nozzle needle 8.
  • the inlet throttle can also be integrated in the valve body 3.
  • the spring plate 26 is not supported directly on the nozzle needle 8, but only indirectly via a resilient retaining ring 42 having a rectangular cross-section.
  • the retaining ring 42 is formed slotted.
  • FIGS. 5 and 6 it is shown that instead of a one-piece, clip-on retaining ring, a two-part retaining ring 46 can also be used.
  • the retaining ring 46 consists of two ring halves, which are placed in the associated groove in the nozzle needle 8 and fixed by means of the spring plate 26.
  • the stroke is not, as in the embodiment shown in FIG. 1, limited by the distance H1 of the combustion chamber remote end face of the nozzle needle 8 and the opposite surface of the valve body 3, but by the distance H2 between the sleeve 28 and the spring plate 26.
  • the stroke H2 can be adjusted by a spacer 51.
  • the spacer 51 is arranged for this purpose between the shoulder, which results from the difference in diameter between d2 and d3, and the spring plate 26.
  • the spring biasing force of the nozzle spring 19 can be adjusted by means of a spacer 50.
  • the spacer 50 between the nozzle spring 19 and the collar 27 of the sleeve 28 is arranged.
  • the nozzle needle stroke results from the distance H1 between the nozzle needle 8 and the valve body 3.
  • the following solutions are provided:
  • two grooves 55 and 56 are arranged crosswise in the end face 54 of the nozzle needle 8.
  • a purely mechanical stop of the needle nozzle is realized. If the dimensions of the grooves 54 and 55 are adapted to the injector, this can become a "semi-hydraulic stop". The one at the stop remaining breakthrough cross-section is just chosen so large that a vibration of the nozzle needle 8 Although avoided, the control amount at the end stop but is lowered as much as possible.
  • a throttle bore 58 is arranged parallel to the longitudinal axis of the nozzle needle 8 in the end face 54 of the nozzle needle 8.
  • the throttle bore 58 opens into a bore 59 which extends transversely to the longitudinal axis of the nozzle needle 8.
  • the bore 59 is a blind bore, which is open to the combustion chamber distant, frustoconical end of the nozzle needle 8 out.
  • a groove 61 is recessed in the opposite face 62 of the valve body 3, instead of in the end face 54 of the nozzle needle 8 remote from the combustion chamber.
  • the groove 61 has the same function as the grooves 54 and 55 in the embodiment shown in Figs. 8 and 9.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Seats For Vehicles (AREA)

Abstract

Es wird ein Common-Rail-Injektor zur Einspritzung von Kraftstoff in einem Common-Rail-Einspritzsystem einer Brennkraftmaschine vorgeschlagen, der ein Injektorgehäuse (1) mit einem Kraftstoffzulauf (21) aufweist, der mit einem zentralen Kraftstoffhochdruckspeicher außerhalb des Injektorgehäuses (1) und mit einem Druckraum (24) innerhalb des Injektorgehäuses (1) in Verbindung steht. Aus dem Druckraum (24) wird mit Hochdruck beaufschlagter Kraftstoff in Abhängigkeit von der Stellung eines Steuerventils (33) eingespritzt, das dafür sorgt, dass eine in einer Längsbohrung (6) des Injektors axial gegen die Vorspannkraft einer Düsenfeder (19), die in einem Düsenfederraum (20) aufgenommen ist, hin und her bewegbare Düsennadel (8) von einem Sitz abhebt, wenn der Druck in dem Druckraum (24) größer als der Druck in einem Steuerraum (30) ist. Der Steuerraum (30) ist über eine Zulaufdrcosel (31,38,39) mit dem Kraftstoffzulauf (21) verbunden, wobei der Steuerraum (30) von einer Hülse (28) begrenzt ist, die unter Dichtwirkung an dem brennraumfernen Ende der Düsennadel (8) verschiebbar ist und mit Hilfe der Düsenfeder (19) in Anlage an das Injektorgehäuse (1) gehalten wird. Die Hülse (28) ist im Düsenfederraum (20) angeordnet. Der Kraftstoffzulauf (21) in den Druckraum (24) erfolgt durch den Düsenfederraum (20).

Description

    Stand der Technik
  • Die Erfindung betrifft einen Common-Rail-Injektor zur Einspritzung von Kraftstoff in einem Common-Rail-Einspritzsystem einer Brennkraftmaschine, der ein Injektorgehäuse mit einem Kraftstoffzulauf aufweist, der mit einem zentralen Kraftstoffhochdruckspeicher außerhalb des Injektorgehäuses und mit einem Druckraum innerhalb des Injektorgehäuses in Verbindung steht, aus dem mit Hochdruck beaufschlagter Kraftstoff in Abhängigkeit von der Stellung eines Steuerventils eingespritzt wird, das dafür sorgt, dass eine in einer Längsbohrung des Injektors axial gegen die Vorspannkraft einer Düsenfeder, die in einem Düsenfederraum aufgenommen ist, hin und her bewegbare Düsennadel von einem Sitz abhebt, wenn der Druck in dem Druckraum größer als der Druck in einem Steuerraum ist, der über eine Zulaufdrossel mit dem Kraftstoffzulauf verbunden ist.
  • In Common-Rail-Einspritzsystemen fördert eine Hochdruckpumpe den Kraftstoff in den zentralen Hochdruckspeicher, der als Common-Rail bezeichnet wird. Von dem Hochdruckspeicher führen Hochdruckleitungen zu den einzelnen Injektoren, die den Motorzylindern zugeordnet sind. Die Injektoren werden einzeln von der Motorelektronik angesteuert. Der Raildruck steht in dem Druckraum und an dem Steuerventil an. Wenn das Steuerventil öffnet, gelangt mit Hochdruck beaufschlagter Kraftstoff an der gegen die Vorspannkraft der Düsenfeder abgehobenen Düsennadel vorbei in den Verbrennungsraum.
  • Bei herkömmlichen Injektoren, wie sie beispielsweise aus der DE 197 24 637 A1 oder der DE 197 32 802 A1 bekannt sind, kommen relativ lange Düsennadeln zum Einsatz. Im Betrieb wirken auf die Düsennadel infolge der hohen Drücke und der schnellen Lastwechsel sehr große Kräfte. Diese Kräfte führen dazu, dass die Düsennadel in Längsrichtung gedehnt und gestaucht wird. Das wiederum hat zur Folge, dass der Düsennadelhub in Abhängigkeit von der auf die Düsennadel wirkenden Kräfte variiert.
  • Aufgabe der Erfindung ist es, einen Common-Rail-Injektor mit einem kleinen Bauvolumen bereitzustellen, der einfach aufgebaut und kostengünstig herstellbar ist. Insbesondere soll auch bei einer hohen Düsennadelgeschwindigkeit ein gutes Schließverhalten gewährleistet sein.
  • Offenbarung der Erfindung
  • Die Aufgabe ist bei einem Common-Rail-Injektor zur Einspritzung von Kraftstoff in einem Common-Rail-Einspritzsystem einer Brennkraftmaschine, der ein Injektorgehäuse mit einem Kraftstoffzulauf aufweist, der mit einem zentralen Kraftstoffhochdruckspeicher außerhalb des Injektorgehäuses und mit einem Druckraum innerhalb des Injektorgehäuses in Verbindung steht, aus dem mit Hochdruck beaufschlagter Kraftstoff in Abhängigkeit von der Stellung eines Steuerventils eingespritzt wird, das dafür sorgt, dass eine in einer Längsbohrung des Injektors axial gegen die Vorspannkraft einer Düsenfeder, die in einem Düsenfederraum aufgenommen ist, hin und her bewegbare Düsennadel von einem Sitz abhebt, wenn der Druck in dem Druckraum größer als der Druck in einem Steuerraum ist, der über eine Zulaufdrossel mit dem Kraftstoffzulauf verbunden ist, dadurch gelöst, dass der Steuerraum von einer Hülse begrenzt ist, die unter Dichtwirkung an dem brennraumfernen Ende der Düsennadel verschiebbar ist und mit Hilfe der Düsenfeder in Anlage an das Injektorgehäuse gehalten wird. Die Hülse liefert den Vorteil, dass der Steuerraum und der Düsenfederraum am brennraumfernen Ende der Düsennadel kombiniert werden können, ohne dass das Volumen des Steuerraums von dem Bauraum der Düsenfeder abhängt. Deshalb ist es möglich, eine Düsenfeder mit einer hohen Federsteifigkeit einzubauen, die ein gutes Schließen der Düsennadel gewährleistet. Dadurch können die Einspritzzeit und der Einspritzzeitpunkt exakt festgelegt werden. Außerdem kann der Steuerraum sehr klein ausgeführt werden, was zu einem schnellen Ansprechverhalten des erfindungsgemäßen Injektors führt. Weiterhin besteht ein Zusammenhang zwischen der maximal erreichbaren Düsennadelgeschwindigkeit und dem Düsennadeldurchmesser. Um zu höheren Düsennadelgeschwindigkeiten zu kommen, was besonders beim Nadelschließen wichtig ist, muss der Düsennadeldurchmesser reduziert werden. Für eine Schließgeschwindigkeit von 1 m/sec ist bei einer akzeptablen Steuermenge ein Nadeldurchmesser von unter 3,5 mm nötig. Das ist technisch sehr aufwendig und daher teuer. Gemäß der vorliegenden Erfindung kann der Düsennadeldurchmesser frei gewählt werden und ist nicht abhängig von den Abmessungen der Düsenfeder. Im Vergleich zu herkömmlichen Düsennadeln kann die Länge erheblich reduziert werden, was zu einem exakten Hubanschlag beiträgt.
  • Eine besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass an der Fläche der Hülse, die sich in Anlage an dem Injektorgehäuse befindet, eine Beißkante ausgebildet ist. Dadurch wird erreicht, dass der im Inneren der Hülse ausgebildete Steuerraum von dem die Hülse umgebenden Düsenfederraum getrennt bleibt.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass der Innendurchmesser der Hülse kleiner als oder gleich einem Führungsdurchmesser an der Düsennadel ist. Je kleiner das Steuerraumvolumen gewählt werden kann, desto reaktionsfreudiger ist der Injektor. Gemäß der vorliegenden Erfindung können der Innendurchmesser der Hülse und der entsprechende Außendurchmesser an der Düsennadel viel kleiner ausgeführt werden als bei herkömmlichen Injektoren.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass die Düsennadel zwischen dem Düsenfederraum und dem Druckraum geführt ist. Das liefert den Vorteil, dass der Düsennadelführung keine Dichtfunktion mehr zukommt. Damit werden die Anforderungen an die Qualität der Führung geringer, was zu Einsparungen in der Fertigung führt. Weil auf beiden Seiten der Führung der gleiche Druck herrscht, tritt keine Führungsleckage mehr auf.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass der Düsenfederraum über eine Bohrung mit dem Druckraum in Verbindung steht. Dadurch kann der komplette Umfang der Düsennadel zu Führungszwecken benutzt werden.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass an der Düsennadel zwischen dem Düsenfederraum und dem Druckraum mindestens eine ebene Fläche ausgebildet ist, an der vorbei Kraftstoff von dem Düsenfederraum in den Druckraum gelangen kann. Diese Ausführungsart bietet insbesondere in Bezug auf die Hochdruckfestigkeit Vorteile.
  • Weitere besondere Ausführungsarten der Erfindung sind dadurch gekennzeichnet, dass die Zulaufdrossel in die Düsennadel, die Hülse oder das Injektorgehäuse integriert ist. Die Zulaufdrossel dient dazu, Druckstöße im Betrieb zu verhindern.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass die Hülse an ihrem brennraumfernen Ende einen Bund aufweist. Der Bund bildet ein erstes Widerlager für die Düsenfeder.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass an der Düsennadel eine Stufe ausgebildet ist, die einen Anschlag für einen Federteller bildet. Der Federteller bildet ein zweites Widerlager für die Düsenfeder.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass in der Düsennadel eine Umfangsnut ausgespart ist, in der sich ein Haltering abstützt, der einen Anschlag für einen Federteller bildet. Bei dieser Ausführungsart können der Außendurchmesser der Düsennadel im Steuerraum und der Führungsdurchmesser der Düsennadel zwischen dem Düsenfederraum und dem Druckraum gleich groß sein. Das ist bei der Fertigung, z.B. durch Läppen, von Vorteil.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass der Haltering zweiteilig ist und in zusammengebautem Zustand durch den Federteller fixiert wird. Dadurch wird in einfacher Art und Weise ein Lösen des Federtellers im Betrieb verhindert.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass der Düsennadelhub durch den Abstand zwischen der Hülse und dem Federteller definiert ist. Dieser rein mechanische Düsennadelhubendanschlag liefert den Vorteil, dass der Düsennadelhub exakt reproduzierbar ist. Dadurch kann der Einspritzverlauf zuverlässig geformt werden. Ein sogenanntes hydraulisches Kleben wird vermieden.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass der Düsennadelhub und die Düsenfedervorspannung mit Hilfe von Distanzelementen einstellbar sind, die zwischen dem Federteller und dem Anschlag für den Federteller bzw. zwischen der Düsenfeder und den Widerlagern für die Düsenfeder angeordnet sind. Dadurch kann das Schließverhalten des Injektors verbessert werden.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass der Düsennadelhub durch den Abstand zwischen der brennraumfernen Stirnfläche der Düsennadel und dem Injektorgehäuse definiert ist. Diese Ausführungsart hat den Vorteil, dass sie fertigungstechnisch besonders einfach zu realisieren ist.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass in der brennraumfernen Stirnfläche der Düsennadel und/oder in der gegenüberliegenden Fläche des Injektorgehäuses Ausnehmungen vorgesehen sind, deren Abmessungen an das Volumen des Steuerraums angepasst sind. Um im Betrieb des Injektors ein möglichst lineares Mengenkennfeld zu erzielen, ist es sinnvoll, den Düsennadelhubanschlag nicht rein hydraulisch auszuführen. Bei einem rein hydraulischen Düsennadelhubanschlag kann es vorkommen, dass die Düsennadel in der geöffneten Stellung auf einem Druckpolster "schwebt". Das kann zu Schwingungen der Düsennadel führen. Die Schwingungen wiederum ergeben nichtlineare Mengenkennfelder. Da es sich hierbei um eine dynamische Bewegung handelt, ergibt sich eine größere Toleranzabhängigkeit. Die Schwingungen der Düsennadel können abhängen von der Zulauf- und der Ablaufdrossel, der Reibung der Düsennadelführung, dem Steuerraumvolumen usw.. Bei einem rein mechanischen Anschlag wird eine Schwingung der Düsennadel zwar vermieden, allerdings ist dafür eine etwas größere Steuermenge erforderlich. Das wirkt sich ungünstig auf den Wirkungsgrad des Injektors aus. Durch die Ausnehmungen, die z.B. die Form von Kreuzschlitzen haben können, wird ein " "halbhydraulischer" Anschlag geschaffen. Der beim Anschlag verbleibende Durchflussquerschnitt wird gerade so groß gewählt, dass eine Schwingung der Düsennadel zwar vermieden, die Steuermenge beim Endanschlag jedoch so weit wie möglich abgesenkt wird. Hierbei ist von Vorteil, dass der erfindungsgemäße Injektor keine Leckage hat, d.h. ohne Ansteuerung des Injektors wird keine Rücklaufmenge erzeugt.
  • Eine weitere besondere Ausführungsart der Erfindung ist dadurch gekennzeichnet, dass in der brennraumfernen Stirnfläche der Düsennadel mindestens eine axiale Bohrung vorgesehen ist, die mit mindestens einer radialen Bohrung in der Düsennadel in Verbindung steht. Diese Ausführungsart hat den Vorteil, dass sie unempfindlich gegen mechanisches Einlaufen ist, d.h. der Durchflussquerschnitt verändert sich über die Lebensdauer nicht.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung, in der unter Bezugnahme auf die Zeichnung verschiedene Ausführungsbeispiele der Erfindung im Einzelnen beschrieben sind. Dabei können die in den Ansprüchen und in der Beschreibung erwähnten Merkmale jeweils einzeln für sich oder in beliebiger Kombination erfindungswesentlich sein.
  • Zeichnung
  • In der Zeichnung zeigen:
    • Figur 1 ein erstes Ausführungsbeispiel im Längsschnitt durch den Injektor mit einer Bohrung zwischen dem Düsenfederraum und dem Druckraum;
    • Figur 2 ein zweites Ausführungsbeispiel im Längsschnitt durch den Injektor mit einer Abflachung an der Düsennadel zwischen dem Düsenfederraum und dem Druckraum;
    • Figur 3 ein weiteres Ausführungsbeispiel im Längsschnitt durch den Injektor, wobei die Zulaufdrossel in die Düsennadel oder in das Injektorgehäuse integriert ist;
    • Figur 4 ein weiteres Ausführungsbeispiel im Längsschnitt durch den Injektor, wobei der Führungsdurchmesser gleich dem Steuerdurchmesser ist;
    • Figur 5 eine Variante des in Fig. 4 dargestellten Ausführungsbeispiels mit einem zweiteiligen Haltering;
    • Figur 6 die Ansicht eines Schnitts entlang der Linie VI-VI in Fig. 5;
    • Figur 7 ein weiteres Ausführungsbeispiel im Längsschnitt durch den Injektor mit Distanzelementen zur Einstellung des Düsennadelhubs und der Düsenfedervorspannkraft;
    • Figur 8 ein weiteres Ausführungsbeispiel im Längsschnitt durch den Injektor mit Kreuznuten in der brennraumfernen Stirnfläche der Düsennadel;
    • Figur 9 die brennraumferne Stirnfläche der Düsennadel aus Fig. 8 in der Draufsicht;
    • Fig. 10 ein weiteres Ausführungsbeispiel im Längsschnitt durch den Injektor mit Bohrungen in der brennraumfernen Stirnfläche; und
    • Fig. 11 ein weiteres Ausführungsbeispiel im Längsschnitt durch den Injektor mit einer Nut in dem Injektorgehäuse.
  • Beschreibung
  • Das in Fig. 1 im Längsschnitt dargestellte erste Ausführungsbeispiel des erfindungsgemäßen Injektors weist ein insgesamt mit 1 bezeichnetes Injektorgehäuse auf. Das Injektorgehäuse 1 umfasst einen Düsenkörper 2, der mit seinem unteren freien Ende in den Brennraum der zu versorgenden Brennkraftmaschine ragt. Mit seiner oberen, brennraumfernen Stirnfläche ist der Düsenkörper 2 mittels einer Spannmutter 5 axial gegen einen Ventilkörper 3 und einen Injektorkörper 4 verspannt.
  • In dem Düsenkörper 2 ist eine axiale Führungsbohrung 6 ausgespart. In der Führungsbohrung 6 ist eine Düsennadel 8 axial verschiebbar geführt. An der Spitze 9 der Düsennadel 8 ist eine Dichtfläche ausgebildet, die mit einem Dichtsitz zusammenwirkt, der an dem Düsenkörper 2 ausgebildet ist. Wenn sich die Spitze 9 der Düsennadel 8 mit ihrer Dichtfläche in Anlage an dem Dichtsitz befindet, sind zwei Spritzlöcher 10 und 11 in dem Düsenkörper 2 verschlossen. Wenn die Düsennadelspitze 9 von ihrem Sitz abhebt, wird mit Hochdruck beaufschlagter Kraftstoff durch die Spritzlöcher 10 und 11 in den Brennraum der Brennkraftmaschine eingespritzt.
  • Ausgehend von der Spitze 9 weist die Düsennadel 8 drei Bereiche mit unterschiedlichen Durchmessern d1, d2 und d3 auf. Der Durchmesser d2 ist am größten und dient zur Führung der Düsennadel 8 in dem Düsenkörper 2. Der Durchmesser d1 ist am kleinsten. In dem Abschnitt mit dem
  • Durchmesser d1 ist ein Bund 16 mit einer Abflachung 17 an seiner äußeren Umfangsfläche ausgebildet. Der Bund 16 bildet eine zweite Führung für die Düsennadel 1. Durch die Abflachung 17 in dem Bund 16 wird eine Strömungsverbindung in Längsrichtung der Düsennadel 1 von der einen Seite des Bundes 16 zur anderen Seite ermöglicht. Der Durchmesser d3 ist größer als der Durchmesser dl, aber kleiner als der Durchmesser d2. Der Durchmesser d3 wird auch als Steuerdurchmesser bezeichnet.
  • Die Düsennadel 8 ist mit Hilfe einer Düsenfeder 19 gegen den Düsennadelsitz im Bereich der Spritzlöcher 10 und 11 vorgespannt. Die Düsenfeder 19 ist in einem Düsenfederraum 20 angeordnet, in den ein Kraftstoffzulauf 21 mündet. Durch einen Pfeil 22 ist angedeutet, dass der Kraftstoffzulauf 21 aus einem (nicht dargestellten) Rail mit Kraftstoff versorgt wird, der mit Hochdruck beaufschlagt ist. Über eine Bohrung 23 gelangt der mit Hochdruck beaufschlagte Kraftstoff aus dem Düsenfederraum 20 in einen Druckraum 24. Der Druckraum 24 steht über einen Ringraum 25 mit den Spritzlöchern 10 und 11 in Verbindung, wenn die Düsennadel 1 entgegen der Vorspannkraft der Düsenfeder 19 von ihrem Sitz abgehoben ist.
  • Infolge des Größenunterschiedes zwischen dem Durchmesser d2 und dem Durchmesser d3 ergibt sich an der Düsennadel 8 eine Stufe, die einen Anschlag für einen Federteller 26 bildet. Über den Federteller 26 wird die Vorspannkraft der Düsenfeder 19 auf die Düsennadel 8 übertragen. Das andere Ende der Düsenfeder 19 stützt sich an einem Bund 27 ab, der an einer Hülse 28 ausgebildet ist. Der Innendurchmesser der Hülse 28 ist geringfügig größer als der Steuerdurchmesser d3 der Düsennadel B. Die Abmessungen der Durchmesser sind so gewählt, dass die Hülse 28 relativ zu der Düsennadel 8 unter Dichtwirkung verschiebbar ist. Infolge der Vorspannkraft der Düsenfeder 19 wird die Hülse 28 mit einer Beißkante 29 gegen den Ventilkörper 3 gedrückt. Dadurch wird ein im Inneren der Hülse 28 vorgesehener Steuerraum 30, der durch die brennraumferne Stirnfläche der Düsennadel 8 begrenzt ist, gegenüber dem Düsenfederraum 20 abgedichtet.
  • Der Steuerraum 30 ist über eine Zulaufdrossel 31 mit dem Düsenfederraum 20 verbunden. Außerdem steht der Steuerraum 30 über eine Ablaufdrossel 32 mit einem (nicht dargestellten) Entlastungsraum in Verbindung. Die Verbindung des Steuerraums 30 mit dem Entlastungsraum hängt von der Stellung eines Steuerventilgliedes 33 ab.
  • Der in Fig. 1 dargestellte Injektor funktioniert wie folgt:
  • Über den Kraftstoffzulauf 21 gelangt mit Hochdruck beaufschlagter Kraftstoff in den Düsenfederraum 20. Von dort gelangt der mit Hochdruck beaufschlagte Kraftstoff einerseits über die Zulaufdrossel 31 in den Steuerraum 30 und andererseits über die Bohrung 23 in den Druckraum 24. Die Durchmesserverhältnisse sind in bekannter Weise so gewählt, dass sich die Düsennadel 8 infolge des Hochdruckes in dem Steuerraum 30 mit ihrer Spitze 9 in Anlage an dem Düsennadelsitz befindet. Wenn das Steuerventilglied 33 öffnet, wird der Steuerraum 30 druckentlastet, und die Düsennadelspitze 9 hebt von ihrem Sitz ab. Dann wird so lange mit Hochdruck beaufschlagter Kraftstoff durch die Spritzlöcher 10 und 11 in den Brennraum der Brennkraftmaschine eingespritzt, bis das Steuerventilglied 33 wieder schließt. Das hat dann zur Folge, dass der Druck in dem Steuerraum 30 wieder ansteigt und die Düsennadel 8 mit ihrer Spitze 9 wieder gegen den zugehörigen Düsennadelsitz gedrückt wird.
  • Das in Fig. 2 dargestellte zweite Ausführungsbeispiel entspricht weitestgehend dem in Fig. 1 dargestellten ersten Ausführungsbeispiel der Erfindung. Der Einfachheit halber werden zur Bezeichnung gleicher Teile dieselben Bezugszeichen verwendet. Außerdem wird, um Wiederholungen zu vermeiden, auf die vorstehende Beschreibung des ersten Ausführungsbeispiels verwiesen. Im Folgenden wird nur auf die Unterschiede zwischen den beiden Ausführungsbeispielen eingegangen. Bei der ausführlichen Beschreibung der in den Fig. 3 - 11 dargestellten Ausführungsbeispiele wird analog vorgegangen.
  • Bei dem in Fig. 2 dargestellten zweiten Ausführungsbeispiel fehlt eine Verbindungsbohrung zwischen dem Düsenfederraum 20 und dem Druckraum 24. Stattdessen ist in dem Abschnitt der Düsennadel 8 mit dem Durchmesser d2 eine Abflachung 36 ausgebildet. Die Abflachung 36 sorgt für eine Verbindung zwischen dem Düsenfederraum 20 und dem Druckraum 24. Ansonsten gibt es keine Unterschiede zwischen den beiden Ausführungsbeispielen.
  • Das in Fig. 3 dargestellte dritte Ausführungsbeispiel unterscheidet sich von dem zweiten Ausführungsbeispiel dadurch, dass die Zulaufdrossel nicht in der Hülse 28 angeordnet ist. Bei 38 ist in Fig. 3 angedeutet, dass die Zulaufdrossel in Form von Bohrungen unterschiedlicher Ausrichtungen und unterschiedlicher Abmessungen in die Düsennadel 8 integriert sein kann. Bei 39 ist angedeutet, dass die Zulaufdrossel auch in dem Ventilkörper 3 integriert sein kann.
  • Bei dem in Fig. 4 dargestellten vierten Ausführungsbeispiel stützt sich der Federteller 26 nicht direkt auf der Düsennadel 8 ab, sondern nur indirekt über einen federnden Haltering 42 mit einem rechteckförmigen Querschnitt. Um ein Einsetzen des Halterings 42 in eine in der Düsennadel 8 ausgebildete Umfangsnut zu ermöglichen, ist der Haltering 42 geschlitzt ausgebildet.
  • In den Fig. 5 und 6 ist dargestellt, dass statt eines einteiligen, aufklipsbaren Halterings auch ein zweiteiliger Haltering 46 verwendet werden kann. Der Haltering 46 besteht aus zwei Ringhälften, die in die zugehörige Nut in der Düsennadel 8 gelegt und mit Hilfe des Federtellers 26 fixiert werden.
  • Bei dem in Fig. 7 dargestellten Ausführungsbeispiel wird der Hub nicht, wie bei dem in Fig. 1 dargestellten Ausführungsbeispiel, durch den Abstand H1 der brennraumfernen Stirnfläche der Düsennadel 8 und der gegenüberliegenden Fläche des Ventilkörpers 3 begrenzt, sondern durch den Abstand H2 zwischen der Hülse 28 und dem Federteller 26. In Fig. 7 ist außerdem zu sehen, dass der Hub H2 durch eine Distanzscheibe 51 eingestellt werden kann. Die Distanzscheibe 51 ist zu diesem Zweck zwischen dem Absatz, der sich durch die Durchmesserdifferenz zwischen d2 und d3 ergibt, und dem Federteller 26 angeordnet. Darüber hinaus kann die Federvorspannkraft der Düsenfeder 19 mit Hilfe einer Distanzscheibe 50 eingestellt werden. Zu diesem Zweck ist die Distanzscheibe 50 zwischen der Düsenfeder 19 und dem Bund 27 der Hülse 28 angeordnet. Durch diese Einstellmöglichkeiten kann ein hydraulisches Kleben bzw. eine vollständige Druckbeaufschlagung der Düsennadel 8 in dem Steuerraum 30 unterbunden werden. Daraus resultiert ein besseres Schließverhalten des Injektors.
  • Bei den in den Fig. 8 - 11 dargestellten Ausführungsbeispielen ergibt sich der Düsennadelhub, wie bei dem in Fig. 1 dargestellten Ausführungsbeispiel, aus dem Abstand H1 zwischen der Düsennadel 8 und dem Ventilkörper 3. Um zu verhindern, dass die Düsennadel 8 in der geöffneten Stellung auf einem Druckpolster schwebt, werden die folgenden Lösungsvorschläge bereitgestellt:
  • Bei dem in den Fig. 8 und 9 dargestellten Ausführungsbeispiel sind in der Stirnfläche 54 der Düsennadel 8 zwei Nuten 55 und 56 kreuzweise angeordnet. Dadurch wird ein rein mechanischer Anschlag der Nadeldüse realisiert. Wenn die Abmessungen der Nuten 54 und 55 an den Injektor angepasst werden, kann daraus ein "halbhydraulischer Anschlag" werden. Der beim Anschlag verbleibende Durchbruchsquerschnitt wird gerade so groß gewählt, dass eine Schwingung der Düsennadel 8 zwar vermieden, die Steuermenge beim Endanschlag jedoch so weit wie möglich abgesenkt wird.
  • Bei dem in Fig. 10 dargestellten Ausführungsbeispiel ist in der Stirnfläche 54 der Düsennadel 8 eine Drosselbohrung 58 parallel zur Längsachse der Düsennadel 8 angeordnet. Die Drosselbohrung 58 mündet in eine Bohrung 59, die sich quer zur Längsachse der Düsennadel 8 erstreckt. Bei der Bohrung 59 handelt es sich um eine Sackbohrung, die zu dem brennraumfernen, kegelstumpfartigen Ende der Düsennadel 8 hin geöffnet ist. Dieses Ausführungsbeispiel hat den Vorteil, dass es unempfindlich gegen mechanisches Einlaufen ist.
  • Bei dem in Fig. 11 dargestellten Ausführungsbeispiel ist eine Nut 61 anstatt in der brennraumfernen Stirnfläche 54 der Düsennadel 8 in der gegenüberliegenden Fläche 62 des Ventilkörpers 3 ausgespart. Die Nut 61 hat die gleiche Funktion wie die Nuten 54 und 55 bei dem in den Fig. 8 und 9 dargestellten Ausführungsbeispiel.

Claims (16)

  1. Common-Rail-Injektor zur Einspritzung von Kraftstoff in einem Common-Rail-Einspritzsystem einer Brennkraftmaschine, der ein Injektorgehäuse (1) mit einem Kraftstoffzulauf (21) aufweist, der mit einem zentralen Kraftstoffhochdruckspeicher außerhalb des Injektorgehäuses (1) und mit einem Druckraum (24) innerhalb des Injektorgehäuses (1) in Verbindung steht, aus dem mit Hochdruck beaufschlagter Kraftstoff in Abhängigkeit von der Stellung eines Steuerventils (33) eingespritzt wird, das dafür sorgt, dass eine in einer Längsbohrung (6) des Injektors axial gegen die Vorspannkraft einer Düsenfeder (19), die in einem Düsenfederraum (20) aufgenommen ist, hin und her bewegbare Düsennadel (8) von einem Sitz abhebt, wenn der Druck in dem Druckraum (24) größer als der Druck in einem Steuerraum (30) ist, der über eine Zulaufdrossel (31, 38, 39) mit dem Kraftstoffzulauf verbunden ist, wobei der Steuerraum (30) von einer Hülse (28) begrenzt ist, die unter Dichtwirkung an dem brennraumfernen Ende der Düsennadel (8) verschiebbar ist und mit Hilfe einer Feder (19) in Anlage an das Injektorgehäuse (1) gehalten wird, dadurch gekennzeichnet, dass die Hülse (28) durch die Düsenfeder (19) in Anlage an das Injektorgehäuse (1) gehalten wird, dass die Hülse (28) im Düsenfederraum (20) angeordnet ist und dass der Kraftstoffzulauf (21) in den Druckraum (24) durch den Düsenfederraum (20) erfolgt.
  2. Common-Rail-Injektor nach Anspruch 1, dadurch gekennzeichnet, dass an der Fläche der Hülse (28), die sich in Anlage an dem Injektorgehäuse (1) befindet, eine Beißkante (29) ausgebildet ist.
  3. Common-Rail-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Innendurchmesser (d3) der Hülse (28) kleiner als oder gleich einem Führungsdurchmesser (d2) an der Düsennadel (8) ist.
  4. Common-Rail-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Düsennadel (8) zwischen dem Düsenfederraum (20) und dem Druckraum (24) geführt ist.
  5. Common-Rail-Injektor nach Anspruch 4, dadurch gekennzeichnet, dass der Düsenfederraum (20) über eine Bohrung (23) im Injektorgehäuse (1) mit dem Druckraum (24) in Verbindung steht.
  6. Common-Rail-Injektor nach Anspruch 4, dadurch gekennzeichnet, dass an der Düsennadel (8) zwischen dem Düsenfederraum (20) und dem Druckraum (24) mindestens eine ebene Fläche (36) ausgebildet ist, an der vorbei Kraftstoff von dem Düsenfederraum (20) in den Druckraum (24) gelangen kann.
  7. Common-Rail-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zulaufdrossel (31, 38, 39) in die Hülse (28), die Düsennadel (8) oder das Injektorgehäuse (1) integriert ist.
  8. Common-Rail-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hülse (28) an ihrem brennraumfernen Ende einen Bund (29) aufweist.
  9. Common-Rail-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der Düsennadel (8) eine Stufe ausgebildet ist, die einen Anschlag für einen Federteller (26) bildet.
  10. Common-Rail-Injektor nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in der Düsennadel (8) eine Umfangsnut ausgespart ist, in der sich ein Haltering (42, 46) abstützt, der einen Anschlag für einen Federteller (26) bildet.
  11. Common-Rail-Injektor nach Anspruch 10, dadurch gekennzeichnet, dass der Haltering (46) zweiteilig ist und in zusammengebautem Zustand durch den Federteller (26) fixiert wird.
  12. Common-Rail-Injektor nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der Düsennadelhub (H2) durch den Abstand zwischen der Hülse (28) und dem Federteller (26) definiert ist.
  13. Common-Rail-Injektor nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass der Düsennadelhub (H2) und die Düsenfedervorspannung mit Hilfe von Distanzelementen (50, 51) einstellbar sind, die zwischen dem Federteller (26) und dem Anschlag für den Federteller bzw. zwischen der Düsenfeder (19) und den Widerlagern für die Düsenfeder (19) angeordnet sind.
  14. Common-Rail-Injektor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Düsennadelhub (H1) durch den Abstand zwischen der brennraumfernen Stirnfläche (54) der Düsennadel (8) und dem Injektorgehäuse (1) definiert ist.
  15. Common-Rail-Injektor nach Anspruch 14, dadurch gekennzeichnet, dass in der brennraumfernen Stirnfläche (54) der Düsennadel (8) und/oder in der gegenüberliegenden Fläche (62) des Injektorgehäuses (1) Ausnehmungen (55, 56; 61) vorgesehen sind, deren Abmessungen an das Volumen des Steuerraums (30) angepasst sind.
  16. Common-Rail-Injektor nach Anspruch 14, dadurch gekennzeichnet, dass in der brennraumfernen Stirnfläche (54) der Düsennadel (8) mindestens eine axiale Bohrung (58) vorgesehen ist, die mit mindestens einer radialen Bohrung (59) in der Düsennadel (8) in Verbindung steht.
EP06123003A 1999-08-04 2000-08-02 Common-Rail-Injektor Expired - Lifetime EP1772618B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19936668A DE19936668A1 (de) 1999-08-04 1999-08-04 Common-Rail-Injektor
EP00958210A EP1117920B1 (de) 1999-08-04 2000-08-02 Common-rail-injektor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP00958210A Division EP1117920B1 (de) 1999-08-04 2000-08-02 Common-rail-injektor

Publications (2)

Publication Number Publication Date
EP1772618A1 true EP1772618A1 (de) 2007-04-11
EP1772618B1 EP1772618B1 (de) 2008-11-05

Family

ID=7917134

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06123003A Expired - Lifetime EP1772618B1 (de) 1999-08-04 2000-08-02 Common-Rail-Injektor
EP00958210A Expired - Lifetime EP1117920B1 (de) 1999-08-04 2000-08-02 Common-rail-injektor

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP00958210A Expired - Lifetime EP1117920B1 (de) 1999-08-04 2000-08-02 Common-rail-injektor

Country Status (8)

Country Link
US (1) US6705551B1 (de)
EP (2) EP1772618B1 (de)
JP (1) JP4746230B2 (de)
KR (1) KR20010075570A (de)
AT (2) ATE355455T1 (de)
CZ (1) CZ20011135A3 (de)
DE (3) DE19936668A1 (de)
WO (1) WO2001011222A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016004A1 (de) * 2007-07-31 2009-02-05 Robert Bosch Gmbh Kraftstoffinjektor mit einer auf dem kegelventilsitz einer düsennadel aufsitzenden zentrierhülse als führung für die düsennadel

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10032517A1 (de) 2000-07-05 2002-01-24 Bosch Gmbh Robert Injektor mit Steuerteilführung
WO2002044546A1 (de) * 2000-11-28 2002-06-06 Siemens Aktiengesellschaft Steuerraum und steuerkolben für ein enspritzventil einer brennkraftmaschine
DE10111783B4 (de) * 2001-03-12 2005-10-20 Bosch Gmbh Robert Einspritzdüse
DE10115169A1 (de) * 2001-03-27 2002-10-17 Mtu Friedrichshafen Gmbh Modular aufgebauter Kraftstoff-Injektor
DE10121340A1 (de) * 2001-05-02 2002-11-14 Bosch Gmbh Robert Common-Rail-Injektor
DE10122245A1 (de) * 2001-05-08 2002-12-12 Bosch Gmbh Robert Leckagereduzierter druckgesteuerter Kraftstoffinjektor
DE10122256A1 (de) * 2001-05-08 2002-11-21 Bosch Gmbh Robert Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen, insbesondere Common-Rail-Injektor, sowie Kraftstoffsystem und Brennkraftmaschine
DE10123526A1 (de) * 2001-05-15 2002-11-28 Bosch Gmbh Robert Common-Rail-Injektor
DE10131953A1 (de) 2001-07-02 2003-01-23 Siemens Ag Steuermodul für einen Injektor eines Speichereinspritzsystems
US6698666B2 (en) * 2001-09-20 2004-03-02 Denso Corporation Fuel injection valve
DE10152268A1 (de) * 2001-10-20 2003-04-30 Bosch Gmbh Robert Einspritzventil
DE10152253B4 (de) * 2001-10-20 2014-10-09 Robert Bosch Gmbh Ventil zum Steuern von Flüssigkeiten
DE10155187B4 (de) * 2001-11-12 2007-08-16 L'orange Gmbh Einspritzinjektor für Brennkraftmaschinen
DE10164394A1 (de) * 2001-12-28 2003-07-17 Bosch Gmbh Robert Kraftstoffeinspritzventil für eine Brennkraftmaschine
CN1636109A (zh) 2002-02-22 2005-07-06 Crt公共铁路技术公司 内燃机用的燃料喷射阀
DE10220931C1 (de) * 2002-05-10 2003-11-27 Siemens Ag Injektor zur Kraftstoffeinspritzung
US20050087624A1 (en) * 2002-05-10 2005-04-28 Siemens Aktiengesellschaft Injector for fuel injection
US7278593B2 (en) * 2002-09-25 2007-10-09 Caterpillar Inc. Common rail fuel injector
US7331329B2 (en) * 2002-07-15 2008-02-19 Caterpillar Inc. Fuel injector with directly controlled highly efficient nozzle assembly and fuel system using same
DE10241462A1 (de) * 2002-09-06 2004-03-18 Robert Bosch Gmbh Injektor zur Einspritzung von Kraftstoff in Brennräume von Brennkraftmaschinen, insbesondere servoventilgesteuerter Common-Rail-Injektor
US7108206B2 (en) * 2002-12-04 2006-09-19 Caterpillar Inc. Valve assembly and fuel injector using same
DE10330257A1 (de) * 2003-07-04 2005-01-20 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10353169A1 (de) * 2003-11-14 2005-06-16 Robert Bosch Gmbh Injektor zur Einspritzung von Kraftstoff in Brennräume von Brennkraftmaschinen, insbesondere piezogesteuerter Common-Rail-Injektor
WO2005075810A1 (de) 2004-02-05 2005-08-18 Siemens Aktiengesellschaft Einspritzventil
DE102004051406B4 (de) * 2004-10-21 2008-03-20 Siemens Ag Kraftstoffinjektor mit einer im Düsenkörper geführten Hohlnadel einer Registerdüse
DE102006009659A1 (de) * 2005-07-25 2007-02-01 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine mit Kraftstoff-Direkteinspritzung
DE102005035347B3 (de) 2005-07-28 2006-08-10 L'orange Gmbh Kraftstoffinjektor
DE102005054739B4 (de) * 2005-11-17 2017-06-08 Robert Bosch Gmbh Injektor zur Einspritzung von Kraftstoff in Brennräume von Brennkraftmaschinen, insbesondere piezoaktorgesteuerter Common-Rail-Injektor
DE102006026877A1 (de) * 2006-06-09 2007-12-13 Robert Bosch Gmbh Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine
DE102006029392A1 (de) * 2006-06-27 2008-01-03 Robert Bosch Gmbh Injektor
DE102006036447A1 (de) * 2006-08-04 2008-02-07 Robert Bosch Gmbh Injektor für ein Kraftstoffeinspritzsystem
DE102006050163A1 (de) * 2006-10-25 2008-04-30 Robert Bosch Gmbh Injektor mit axial-druckausgeglichenem Steuerventil
JP4400670B2 (ja) * 2007-02-08 2010-01-20 株式会社デンソー 燃料噴射弁
US7770818B2 (en) 2007-02-08 2010-08-10 Denso Corporation Fuel injection valve
DE102007029793A1 (de) 2007-06-27 2008-07-17 L'orange Gmbh Kraftstoffinjektor
JP2009091964A (ja) * 2007-10-05 2009-04-30 Yanmar Co Ltd 燃料噴射装置のインジェクタ
US7963464B2 (en) * 2008-01-23 2011-06-21 Caterpillar Inc. Fuel injector and method of assembly therefor
DE102008001330A1 (de) * 2008-04-23 2009-10-29 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
JP4962872B2 (ja) * 2008-07-14 2012-06-27 株式会社デンソー 燃料噴射装置
DE102008041165A1 (de) * 2008-08-11 2010-02-18 Robert Bosch Gmbh Einspritzventilglied
US9163597B2 (en) * 2008-10-01 2015-10-20 Caterpillar Inc. High-pressure containment sleeve for nozzle assembly and fuel injector using same
DE102009007379A1 (de) * 2009-02-04 2010-08-19 Continental Automotive Gmbh Einspritzventil
JP5120293B2 (ja) * 2009-02-20 2013-01-16 株式会社デンソー 燃料噴射弁
JP5321477B2 (ja) * 2009-02-27 2013-10-23 株式会社デンソー インジェクタ
JP5549293B2 (ja) * 2010-03-15 2014-07-16 株式会社デンソー 燃料噴射装置
WO2012009673A1 (en) * 2010-07-15 2012-01-19 Cummins Intellectual Properties, Inc. Fuel injector having balanced and guided plunger
US8602319B2 (en) * 2010-10-07 2013-12-10 Caterpillar Inc. Needle valve member with frustoconical guide segment and fuel injector using same
JP5304861B2 (ja) * 2010-12-17 2013-10-02 株式会社デンソー 燃料噴射装置
DE102010064039A1 (de) * 2010-12-23 2012-06-28 Robert Bosch Gmbh Brennstoffeinspritzventil
CN102330627A (zh) * 2011-10-16 2012-01-25 中国兵器工业集团第七0研究所 一种用于水平双对置柴油机的共轨喷油器喷油嘴
DE102011086339A1 (de) * 2011-11-15 2013-05-16 Robert Bosch Gmbh Kraftstoffinjektor, insbesondere Common-Rail-Injektor
DE102012220025A1 (de) * 2012-06-29 2014-01-02 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DK177669B1 (da) * 2012-09-25 2014-02-10 Hans Jensen Lubricators As Injektionsdyse til brug ved olieinjicering af olie for smøring af cylindre i større motorer samt anvendelse heraf
EP2722518A1 (de) * 2012-10-22 2014-04-23 Delphi International Operations Luxembourg S.à r.l. Kraftstoffeinspritzdüse mit einem Drosselement
DE102013212269A1 (de) * 2013-06-26 2014-12-31 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
GB201402921D0 (en) * 2014-02-19 2014-04-02 Delphi Int Operations Luxembourg Sarl Fuel injector
DE102014209961A1 (de) * 2014-05-26 2015-11-26 Robert Bosch Gmbh Düsenbaugruppe für einen Kraftstoffinjektor sowie Kraftstoffinjektor
DE102014209997A1 (de) 2014-05-26 2015-11-26 Robert Bosch Gmbh Common-Rail-Injektor
DE102014211351A1 (de) * 2014-06-13 2015-12-17 Robert Bosch Gmbh Düsenbaugruppe für einen Kraftstoffinjektor sowie Kraftstoffinjektor
DE102014226407A1 (de) 2014-12-18 2016-06-23 Robert Bosch Gmbh Einspritzdüse für Kraftstoffe
WO2016188577A1 (de) 2015-05-28 2016-12-01 Robert Bosch Gmbh Common-rail-injektor
CN108397325A (zh) * 2018-02-09 2018-08-14 中国第汽车股份有限公司 一种共轨喷油器节流控制阀
CN109555620B (zh) * 2018-10-22 2023-09-22 中船动力研究院有限公司 带有自动保护装置的燃气喷射阀及其工作方法
GB2580624B (en) * 2019-01-17 2021-09-15 Delphi Tech Ip Ltd Fuel injector
DE102020215276A1 (de) * 2020-12-03 2022-06-23 Mahle International Gmbh Ventilkörper für ein Expansionsventil

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065772A (en) * 1979-12-21 1981-07-01 Komatsu Mfg Co Ltd Fuel Injection Valves
US4572433A (en) * 1984-08-20 1986-02-25 General Motors Corporation Electromagnetic unit fuel injector
US4826080A (en) * 1985-12-02 1989-05-02 Ganser Marco A Fuel injection device for internal combustion engines
EP0385398A2 (de) * 1989-02-28 1990-09-05 WEBER S.r.l. Elektromagnetischer Kraftstoffinjektor eines Dieselmotors
EP0385399A2 (de) * 1989-03-03 1990-09-05 ELASIS SISTEMA RICERCA FIAT NEL MEZZOGIORNO Società Consortile per Azioni Elektromagnetischer Kraftstoffinjektor eines Dieselmotors
US5464156A (en) * 1991-12-24 1995-11-07 Elasis Sistema Ricerca Fiat Nel Mizzogiorno Societa Consortile Per Azioni Electromagnetic fuel injection valve
US5685483A (en) * 1994-06-06 1997-11-11 Ganser-Hydromag Fuel injection valve for internal combustion engines

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5472142A (en) * 1992-08-11 1995-12-05 Nippondenso Co., Ltd. Accumulator fuel injection apparatus
DE4336108C1 (de) * 1993-10-22 1994-12-01 Daimler Benz Ag Magnetvenitl an einer für Brennkraftmaschinen vorgesehenen Kraftstoffeinspritzdüse
US5779149A (en) * 1996-07-02 1998-07-14 Siemens Automotive Corporation Piezoelectric controlled common rail injector with hydraulic amplification of piezoelectric stroke
JPH10266921A (ja) * 1997-03-25 1998-10-06 Isuzu Motors Ltd 燃料噴射装置
DE19724637A1 (de) 1997-06-11 1998-12-17 Bosch Gmbh Robert Einspritzventil
DE19732802A1 (de) 1997-07-30 1999-02-04 Bosch Gmbh Robert Kraftstoffeinspritzvorrichtung für Brennkraftmaschinen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2065772A (en) * 1979-12-21 1981-07-01 Komatsu Mfg Co Ltd Fuel Injection Valves
US4572433A (en) * 1984-08-20 1986-02-25 General Motors Corporation Electromagnetic unit fuel injector
US4826080A (en) * 1985-12-02 1989-05-02 Ganser Marco A Fuel injection device for internal combustion engines
EP0385398A2 (de) * 1989-02-28 1990-09-05 WEBER S.r.l. Elektromagnetischer Kraftstoffinjektor eines Dieselmotors
EP0385399A2 (de) * 1989-03-03 1990-09-05 ELASIS SISTEMA RICERCA FIAT NEL MEZZOGIORNO Società Consortile per Azioni Elektromagnetischer Kraftstoffinjektor eines Dieselmotors
US5464156A (en) * 1991-12-24 1995-11-07 Elasis Sistema Ricerca Fiat Nel Mizzogiorno Societa Consortile Per Azioni Electromagnetic fuel injection valve
US5685483A (en) * 1994-06-06 1997-11-11 Ganser-Hydromag Fuel injection valve for internal combustion engines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016004A1 (de) * 2007-07-31 2009-02-05 Robert Bosch Gmbh Kraftstoffinjektor mit einer auf dem kegelventilsitz einer düsennadel aufsitzenden zentrierhülse als führung für die düsennadel

Also Published As

Publication number Publication date
DE50014113D1 (en) 2007-04-12
WO2001011222A1 (de) 2001-02-15
EP1117920A1 (de) 2001-07-25
JP2003506622A (ja) 2003-02-18
ATE355455T1 (de) 2006-03-15
ATE413526T1 (de) 2008-11-15
DE19936668A1 (de) 2001-02-22
DE50015444D1 (de) 2008-12-18
EP1772618B1 (de) 2008-11-05
US6705551B1 (en) 2004-03-16
EP1117920B1 (de) 2007-02-28
CZ20011135A3 (cs) 2002-01-16
KR20010075570A (ko) 2001-08-09
JP4746230B2 (ja) 2011-08-10

Similar Documents

Publication Publication Date Title
EP1772618B1 (de) Common-Rail-Injektor
EP1756415B1 (de) Kraftstoffinjektor mit variabler aktorübersetzung
EP0900332A1 (de) Ventil zum steuern von flüssigkeiten
EP0959243A1 (de) Steuerventil für Kraftstoffeinspritzventil
EP1117922B1 (de) Common-rail-injektor
EP2310662A1 (de) Kraftstoff-injektor
DE10205218A1 (de) Ventil zur Steuerung einer Verbindung in einem Hochdruckflüssigkeitssystem, insbesondere einer Kraftstoffeinspitzeinrichtung für eine Brennkraftmaschine
EP1144842B1 (de) Injektor für ein kraftstoffeinspritzsystem für brennkraftmaschinen mit in den ventilsteuerraum ragender düsennadel
DE19954288A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
EP1117921A1 (de) Common-rail-injektor
DE10353045A1 (de) Kraftstoffeinspritzventil
EP1276987A1 (de) Kraftstoffeinspritzventil fur brennkraftmaschinen
EP1961953A1 (de) Mehrwegeventil
EP2426348B1 (de) Brennstoffeinspritzventil
EP1740821B1 (de) Common-rail-injektor
EP3387247B1 (de) Elektromagnetisch betätigbares einlassventil und hochdruckpumpe mit einlassventil
DE10123526A1 (de) Common-Rail-Injektor
DE10050599B4 (de) Einspritzventil mit einem Pumpkolben
EP1210511A1 (de) Kraftstoffeinspritzvorrichtung für brennkraftmaschinen
EP3184803B1 (de) Kraftstoffinjektor
EP2256332A2 (de) Kraftstoffinjektor mit Druckverstärkerkolben
EP1891322A1 (de) Common-rail-injektor
DE102017200546A1 (de) Schaltventil für einen Kraftstoffinjektor sowie Kraftstoffinjektor
EP1601870A1 (de) Kraftstoffeinspritzventil für eine brennkraftmaschine
DE102012210220A1 (de) Kraftstoffinjektor mit direkt gesteuerter Düsennadel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1117920

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 20071011

17Q First examination report despatched

Effective date: 20071107

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1117920

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50015444

Country of ref document: DE

Date of ref document: 20081218

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090406

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090205

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090806

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180823

Year of fee payment: 19

Ref country code: FR

Payment date: 20180824

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180821

Year of fee payment: 19

Ref country code: GB

Payment date: 20180828

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181024

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50015444

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 413526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190802

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190802