EP1423559A1 - Procede de reformage de fibres composites et applications - Google Patents

Procede de reformage de fibres composites et applications

Info

Publication number
EP1423559A1
EP1423559A1 EP20020772485 EP02772485A EP1423559A1 EP 1423559 A1 EP1423559 A1 EP 1423559A1 EP 20020772485 EP20020772485 EP 20020772485 EP 02772485 A EP02772485 A EP 02772485A EP 1423559 A1 EP1423559 A1 EP 1423559A1
Authority
EP
European Patent Office
Prior art keywords
polymer
fiber
solvent
fibers
chosen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP20020772485
Other languages
German (de)
English (en)
Other versions
EP1423559B1 (fr
Inventor
Philippe Poulin
Brigitte Vigolo
Pascale Launois
Patrick Bernier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1423559A1 publication Critical patent/EP1423559A1/fr
Application granted granted Critical
Publication of EP1423559B1 publication Critical patent/EP1423559B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/14Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated alcohols, e.g. polyvinyl alcohol, or of their acetals or ketals
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2924Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]
    • Y10T428/2931Fibers or filaments nonconcentric [e.g., side-by-side or eccentric, etc.]

Definitions

  • the present invention relates generally to the post-treatment of composite fibers and in particular to a new process for reforming composite fibers comprising colloidal particles and at least one binder and / or bridging polymer, the use of the process and the fibers. reformed obtained by said process.
  • Colloidal particles are understood to mean, within the meaning of the invention, the particles defined according to international standards of the IUPAC as being particles whose size is between a few nanometers and a few micrometers.
  • the entanglement can be modified by twisting the fiber more or less and, as in the case of conventional polymer fibers, the orientation of the particles must be able to be modified by exerting pulls on the fiber, which can be produced, for example, by an extrusion process.
  • these alignments or orientations are obtained hot. Indeed, at high temperature, the fiber becomes deformable and the more mobile polymer chains can then be oriented by the traction exerted on the fibers.
  • these temperature rises can cause degradation, however small, of the polymer or particles constituting said fiber, mainly by oxidation of the constituents of the polymer or of the particles, degradation which may prove in the long term detrimental to the good resistance of the fiber and its cohesion.
  • This degradation is proportional to the duration of the treatment and a function of the various terminal chemical groups of the polymer and of the constituents of the particles.
  • the invention therefore proposes to remedy these drawbacks by providing a process for reforming composite fibers comprising colloidal particles and at least one binder and / or bridging polymer of an implementation. particularly simple, requiring little or no energy, preserving the integrity of all the constituents of the fiber and not requiring the installation of any particular equipment.
  • a process for reforming composite fibers comprising colloidal particles and at least one binder and / or bridging polymer comprises:
  • these composite fibers comprising colloidal particles and at least one binder and / or bridging polymer could perfectly be treated "cold” or even at room temperature or even slightly at room temperature by the use of simple means of deformation of said bridging and / or binder polymer.
  • Cold reforming is understood to mean at room temperature or at a temperature slightly above ambient temperature, any treatment of the fibers applied in said process at a temperature ranging from 0 ° C. to a temperature slightly above ambient, this being generally considered as being of the order of 20 to 25 ° C. Higher temperatures are advantageously between 25 ° C and 50 ° C.
  • said means for deforming said polymer consist of an addition of plasticizer.
  • Another possibility of deformation of these polymers consists in immersing said fiber in a solvent or a mixture of solvents such that the reciprocal solubility of said polymer in said solvent or said mixture of solvents conditions the optimization of said applied mechanical stresses.
  • said solvent is chosen from solvents in which the polymer is soluble or partially soluble.
  • the fiber is then softened by partial solubilization of the polymer and therefore becomes easily malleable and transformable.
  • said solvent is chosen from solvents in which the polymer is insoluble or practically insoluble.
  • one of the advantages of the method according to the invention is that the solvation of a composite fiber comprising particles and at least one binder and / or bridging polymer allows the movement of the particles relative to each other without destroying the cohesion of the polymer binding and / or bridging due to the bridging forces existing between the polymer and the particles.
  • a conventional fiber made up of particles in a polymer matrix subjected to the method according to the invention would lead to the complete dissolution of the polymer and therefore to destruction of the fiber.
  • the method can be implemented by choosing as solvent all the volume and / or weight mixtures of at least one solvent in which the polymer is soluble or partially soluble and of at least one solvent in which the polymer is insoluble or practically insoluble.
  • said solvent may contain at least one crosslinking agent.
  • crosslinking agent will lead to the hardening of said polymer while avoiding slippage without reorientation of said colloidal particles which is likely to occur if said polymer is made too plastic since the polymer does not play the role of matrix here but is by definition binder and / or bridging between the particles. There is then a stiffening of said polymer which then allows better transmission of the mechanical stresses applied to the fiber and by incidence to the colloidal particles whose reorientation is desired inside said fiber.
  • crosslinking agents will, of course, be chosen according to the nature of said polymer and that of said solvent. They may for example be salts or organic compounds.
  • the solvents used for implementing the process according to the invention will be chosen from water, acetone, ethers, dimethylformamide, tetrahydrofuran, chloroform, toluene, 1 ethanol , and / or the aqueous solutions whose pH and / or the concentrations in possible solutes are controlled.
  • said polymer will be chosen from polymers adsorbing on said colloidal particles.
  • the. binder and / or bridging polymers according to the invention will be chosen from polyvinyl alcohol, flocculating polymers commonly used in the depollution industry for liquid effluents, such as polyacrylamides, which are neutral polymers, copolymers of acrylamide and of acid acrylic, which are negatively charged, copolymers of acrylamide and cationic monomer, which are positively charged, inorganic polymers based on aluminum, and / or natural polymers such as chitosan, guar and / or starch.
  • polyacrylamides which are neutral polymers
  • copolymers of acrylamide and of acid acrylic which are negatively charged
  • copolymers of acrylamide and cationic monomer which are positively charged
  • inorganic polymers based on aluminum and / or natural polymers such as chitosan, guar and / or starch.
  • polymer a mixture of polymers which are chemically identical but which differ from one another by their molecular mass.
  • said polymer is polyvinyl alcohol (PVA), commonly used during the synthesis of composite fibers comprising particles and at least one binder and / or bridging polymer.
  • PVA polyvinyl alcohol
  • said polymer is polyvinyl alcohol with a molar mass of between 10,000 and 200,000.
  • solvents in which the PVA is soluble, acetone in which the PVA is insoluble or a mixture of water and acetone in which the PVA will have a controlled solubility.
  • the borates will constitute an example of crosslinking agents which can be used during the immersion of the fiber in water.
  • the colloidal particles will be chosen from carbon nanotubes, sulfide of tungsten, boron nitride, clay platelets, cellulose whis ers and / or silicon carbide whiskeys.
  • the method may include additional steps of extracting said fiber from the solvent and / or drying said fiber so as to obtain a fiber free of any plasticizer and / or of any trace of solvent.
  • These operations can advantageously be carried out in a known manner such as, for example, drying in an oven at a temperature slightly lower than the boiling point of the solvent.
  • the process which is the subject of the invention can be used to manufacture fibers having an orientation of said particles composing said fiber mainly in the direction of the main axis of said fiber.
  • the process which is the subject of the invention can also be used to manufacture fibers having an increased length and / or a reduced diameter compared to the original fiber.
  • the process which is the subject of the invention can be used to manufacture fibers densified and / or refined compared to the original fiber.
  • FIG. 1 shows sections of fibers comprising particles and a polymer used as a matrix before and after hot stretching
  • FIG. 2 shows sections of fibers comprising colloidal particles and a polymer bridging between the particles before and after implementation of the method according to one invention.
  • carbon nanotube fibers are used so as to prove the effectiveness and the advantages of the process according to the invention.
  • These fibers are advantageously produced according to the method of patent application FR 00 02 272 in the name of the CNRS.
  • This process includes the homogeneous dispersion of the nanotubes in a liquid medium.
  • the dispersion can be carried out in water using surfactants which adsorb at the interface of the nanotubes.
  • the nanotubes can be recondensed in the form of a ribbon or a prefiber by injecting the dispersion into another liquid which causes destabilization of the nanotubes.
  • This liquid may for example be a solution of polymers.
  • the flows involved can be modified so as to favor the alignment of the nanotubes in the prefiber or the ribbon. In addition, the flow rates and flow speeds also make it possible to control the section of the prefibers or ribbons.
  • the prefibers or ribbons thus formed can then, or not, be washed by rinses which make it possible to desorb certain adsorbed species (polymer or surfactants in particular).
  • the prefibers or ribbons can be produced continuously and extracted from their solvent so as to be dried. We then obtain dry fibers and easily manipulated carbon nanotubes.
  • the method of obtaining these fibers is known to leave traces of polymer, in general polyvinyl alcohol (PVA) as a residual polymer.
  • PVA polyvinyl alcohol
  • the cohesion of the fiber is not directly ensured by the rigidity of the polymer, but by its adsorption on neighboring carbon nanotubes, that is to say by the phenomenon known as bridging.
  • the fiber is solvated in a given solvent to subject it to twists and / or pulls.
  • a polymer fiber can be oriented by simple extrusion or hot drawing. If the fiber contains particles such as carbon nanotubes or whiskers, these also orient. The polymer then plays the role of matrix and it is the deformation of this support which leads to modifications of the fiber structures.
  • the colloidal particles are directly linked to one another.
  • the cohesion of the structure no longer comes from the polymer itself, but directly from the particles which are linked by a bridging polymer.
  • the structure of the fiber can be modified by traction or twist, if the binder polymer is plastic, or made deformable by solvation.
  • a fiber made up of carbon nanotubes and whose bridging polymer is PVA such an implementation is carried out at room temperature by simply dipping the fiber in water or in another solvent having a certain affinity for the PVA.
  • a table is given presenting the results obtained during the placing under different tractions of carbon nanotube fibers obtained with different PVA and for a range of solvents included between the two extremes constituted by water and acetone.
  • the fibers used are obtained according to the process mentioned and comprising:
  • water is qualified as a good solvent and acetone as a bad solvent.
  • the other important parameters correspond to the characteristics of fibers and carbon nanotubes. As is known in the textile industry, for example, these parameters are critical for the final properties of a yarn composed of smaller fibers. The problem here is identical insofar as the wire consists of carbon nanotubes.
  • the structural modifications are characterized by elongation measurements and by X-ray diffraction experiments which quantitatively give the average orientation of the carbon nanotubes.
  • the examples of carbon nanotube fibers were obtained by the same process using the same processing parameters with two PVAs of different molar weights, the first having a molar weight of 50,000, the second , a molar weight of 100,000.
  • the fibers thus obtained are then immersed in a solvent and subjected to traction which are expressed in grams. Pull-ups are carried out by attaching well-defined masses to the fibers. The fibers are then extracted from the solvent and thus dried under tension. The dry fibers are recovered and their structure characterized. The carbon nanotubes in the fibers are organized in bundles and form a hexagonal network perpendicular to the axis of the fiber.
  • the alignment of the bundles of carbon nanotubes relative to the axis of the fiber can be characterized by the total width at half height (FWHM) of the angular dispersion at constant wave vector on a Bragg peak of the hexagonal network (Gaussian adjustment) or by the value of the intensity diffracted along the axis of the fiber, that is to say by carbon nanotubes perpendicular to this axis.
  • FWHM total width at half height
  • the table below presents the results obtained for the alignment of carbon nanotubes according to the molar mass of PVA, the solvent used and the traction exerted on the fiber.
  • the predominant role of the binder and / or bridging polymer is thus particularly emphasized in obtaining optimized mechanical properties for the solvated fiber.
  • it is the strong adsorption of the polymer on the particles and the significant bridging which takes place on the particles which is involved here.
  • the solvated fibers support strong twists without breaking, up to more than a hundred turns per centimeter.
  • the carbon nanotube fibers are thus deformable and reformable by a simple cold treatment. These deformations, and the implementation of the process which is the subject of the invention, make it possible to control the arrangement of the nanotubes by the combination of the numerous modular variable parameters such as the torsion, the tension, the quality of the solvent, the nature and the mass of the polymer and the geometric characteristics of the fibers and ribbons used for reforming.
  • a fiber directly from its manufacture will have a minimum FWHM of 80 °, whereas after reforming according to an implementation of the method according to the invention, the fiber will have an FWHM of less than 80 ° and therefore an angular dispersion of between + 40 ° and -40 °.
  • composite fibers comprising colloidal particles and at least one binder and / or bridging polymer are therefore significantly improved. They thus become more efficient for all the applications for which they can be intended such as the making of high cables. resistance, light conducting wires, chemical detectors, force and mechanical or sound stress sensors, electromechanical actuators and artificial muscles, the development of composite materials, nanocomposites, electrodes and microelectrodes for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Artificial Filaments (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

Procédé de reformage de fibres composites comprenant des particules colloïdales et au moins un polymère liant et/ou pontant, caractérisé en ce qu'il comprend: des moyens pour déformer, à froid à température ambiante ou à une température légèrement supérieure à la température ambiante, ledit polymère de ladite fibre, et des moyens d'application, sur ladite fibre, de contraintes mécaniques.

Description

"Procédé de reformage de fibres composites et applications"
La présente invention concerne d'une manière générale le post-traitement de fibres composites et en particulier un nouveau procédé de reformage de fibres composites comprenant des particules colloïdales et au moins un polymère liant et/ou pontant, l'utilisation du procédé et les fibres reformées obtenues par ledit procédé.
On entend par particules colloïdales au sens de l'invention, les particules définies selon les normes internationales de l'UICPA comme étant des particules dont la taille est comprise entre quelques nanomètres et quelques micromètres.
On sait, que de manière générale, les propriétés des fibres composites, dépendent de façon critique de la structure et de l'arrangement de leurs composants et en particulier des particules qui les composent. Les principaux paramètres qui vont alors gouverner les propriétés de la fibre sont l'enchevêtrement des particules, leur orientation et enfin 1 ' intensité des éventuelles forces cohésives entre les particules .
Comme dans les fibres textiles classiques, l'enchevêtrement peut être modifié en torsadant plus ou moins la fibre et, comme dans le cas des fibres polymères classiques, l'orientation des particules doit pouvoir être modifiée en exerçant des tractions sur la fibre, qui peuvent être produites, par exemple, par un processus d'extrusion. Classiquement, pour de telles fibres polymères, ces alignements ou orientations sont obtenus à chaud. En effet, à haute température, la fibre devient déformable et les chaînes de polymères plus mobiles peuvent alors être orientées par la traction exercée sur les fibres.
Ces modifications structurales ou reformage nécessitent que la fibre soit suffisamment déformable, mais toutefois assez résistante de façon à subir des actions mécaniques dans des conditions simples. Dans le cas des fibres composites comprenant des particules colloïdales et au moins un polymère liant et/ou pontant, on applique en général les procédés connus de reformage de fibres à chaud. Ces méthodes nécessitent donc de travailler au moins à la température de transition vitreuse du polymère, de manière à l'assouplir et favoriser les possibilités de mouvement des particules dans/avec le polymère. Il s'ensuit une consommation énergétique importante et un équipement particulier permettant de travailler à ces températures qui sont en général suffisamment élevées pour favoriser les oxydations. Par ailleurs, ces montées en température peuvent occasionner une dégradation, si infime soit elle, du polymère ou des particules constituant ladite fibre, principalement par oxydation des constituants du polymère ou des particules, dégradation qui peut s'avérer à la longue préjudiciable à la bonne tenue de la fibre et à sa cohésion. Cette dégradation est proportionnelle à la durée du traitement et fonction des différents groupements chimiques terminaux du polymère et des constituants des particules .
L'invention se propose donc de remédier à ces inconvénients en fournissant un procédé de reformage de fibres composites comprenant des particules colloïdales et au moins un polymère liant et/ou pontant d'une mise en œuvre particulièrement simple, ne nécessitant pas ou peu d'énergie, préservant l'intégrité de tous les constituants de la fibre et ne demandant pas l'installation d'un équipement particulier.
A cet effet et conformément à l'invention, un procédé de reformage des fibres composites comprenant des particules colloïdales et au moins un polymère liant et/ou pontant comprend :
des moyens pour déformer, à froid, à température ambiante, ou à une température légèrement supérieure à la température ambiante, ledit polymère de ladite fibre, et
- des moyens d'application, sur ladite fibre, de contraintes mécaniques .
En effet, les inventeurs ont découvert, ce qui fait l'objet de l'invention, que ces fibres composites comprenant des particules colloïdales et au moins un polymère liant et/ou pontant pouvaient parfaitement être traitées "à froid" ou encore à température ambiante ou même légèrement à la température ambiante par l'utilisation de moyens simples de déformation dudit polymère pontant et/ou liant.
On entend par reformage à froid, à température ambiante ou à température légèrement supérieure à la température ambiante tout traitement des fibres appliquées dans ledit procédé à une température allant de 0°C à une température légèrement supérieure à l'ambiante celle-ci étant généralement considérée comme étant de l'ordre de 20 à 25°C. Des températures supérieures sont avantageusement comprises entre 25°C et 50°C. De manière préférentielle, lesdits moyens pour déformer ledit polymère sont constitués par un ajout de plastifiant.
En effet, la plupart des polymères ont des affinités pour certains plastifiants appliqués à froid qui, permettent d'assouplir leur conformation.
Une autre possibilité de déformation de ces polymères consiste en une immersion de ladite fibre dans un solvant ou un mélange de solvants tel que la solubilité réciproque dudit polymère dans ledit solvant ou ledit mélange de solvants conditionne l'optimisation desdites contraintes mécaniques appliquées.
De manière avantageuse, et selon les contraintes mécaniques auxquelles on souhaite soumettre la fibre, ledit solvant est choisi parmi les solvants dans lequel le polymère est soluble ou partiellement soluble.
La fibre est alors assouplie par solubilisation partielle du polymère et devient donc facilement malléable et transformable .
Selon un autre mode de mise en œuvre du procédé, ledit solvant est choisi parmi les solvants dans lequel le polymère est insoluble ou pratiquement insoluble.
En effet, si l'on souhaite soumettre la fibre à des contraintes importantes sans risquer de la rompre ou de la détériorer de manière définitive, il est souhaitable de ne pas dissoudre complètement ledit polymère mais simplement de le solvater partiellement de manière à lui conférer une certaine souplesse et donc autoriser l'application de contraintes mécaniques, tout en maintenant sa cohésion.
En effet, un des avantages du procédé selon l'invention est que la solvatation d'une fibre composite comprenant des particules et au moins un polymère liant et/ou pontant autorise le mouvement des particules les unes par rapport aux autres sans détruire la cohésion du polymère liant et/ou pontant du fait des forces de pontage existant entre le polymère et les particules.
Une fibre classique constituée de particules dans une matrice .polymérique soumise au procédé selon l'invention conduirait à la dissolution complète du polymère et donc à une destruction de la fibre.
Bien entendu, le procédé pourra être mis en œuvre en choisissant comme solvant tous les mélanges volumiques et/ou pondéraux d'au moins un solvant dans lequel le polymère est soluble ou partiellement soluble et d'au moins un solvant dans lequel le polymère est insoluble ou pratiquement insoluble.
Ainsi, toute une gamme de déformation est alors obtenue, permettant l'application d'une gamme correspondante de contrainte fonction des propriétés désirées de la fibre finale .
De manière avantageuse, ledit solvant pourra contenir au moins un agent réticulant .
En effet, ledit polymère pouvant être particulièrement soluble dans certains solvants, l'ajout d'un agent réticulant conduira au durcissement dudit polymère tout en évitant les glissement sans réorientation desdites particules colloïdales qui risque de se produire si ledit polymère est rendu trop plastique puisque le polymère ne joue pas ici le rôle de matrice mais qu'il est par définition liant et/ou pontant entre les particules. On a alors une rigidification dudit polymère qui autorise alors une meilleure transmission des contraintes mécaniques appliquées à la fibre et par incidence aux particules colloïdales dont on souhaite la réorientation à l'intérieure de ladite fibre. Ces agents réticulant seront, bien entendu, choisis en fonction de la nature dudit polymère et de celle dudit solvant. Ils pourront par exemple être des sels ou des composés organiques.
Préferentiellement et en fonction du polymère, les solvants utilisés pour la mise en œuvre du procédé selon l'invention seront choisis parmi l'eau, l'acétone, les éthers, le diméthylformamide, le tetrahydrofurane, le chloroforme, le toluène, 1 ' éthanol , et/ou les solutions aqueuses dont le pH et/ou les concentrations en éventuels solutés sont contrôlés .
De préférence, ledit polymère sera choisi parmi les polymères s ' adsorbant sur lesdites particules colloïdales.
Par exemple, les. polymères liants et/ou pontant selon l'invention seront choisis parmi le polyvinylalcool , les polymères floculants couramment utilisés dans l'industrie de dépollution des effluents liquides, comme les polyacrylamides, qui sont des polymères neutres, les copolymères d'acrylamide et d'acide acrylique, qui sont chargés négativement, les copolymères d'acrylamide et de monomère cationiques, qui sont chargés positivement, les polymères inorganiques à base d'aluminium, et/ou les polymères naturels comme le chitosan, le guar et/ou 1 'amidon.
On pourra également choisir comme polymère un mélange de polymères chimiquement identiques mais se différenciant les uns des autres par leur masse moléculaire.
De manière préférentielle, ledit polymère est du polyvinylalcool (PVA) , couramment utilisé lors de la synthèse de fibres composites comprenant des particules et au moins un polymère liant et/ou pontant.
Plus particulièrement encore, ledit polymère est du polyvinylalcool de masse molaire comprise entre 10 000 et 200 000.
Dans le cas du polyvinylalcool, un exemple de choix de solvants pourra être le suivant : l'eau, dans lequel le PVA est soluble, l'acétone dans lequel le PVA est insoluble ou un mélange d'eau et d'acétone dans lequel le PVA aura une solubilité contrôlée.
Toujours dans le cas du polyvinylalcool, les borates constitueront un exemple d'agents réticulant utilisables lors de l'immersion de la fibre dans l'eau.
De manière connue en soi dans le domaine du post-traitement des fibres, les contraintes mécaniques sont des torsions et/ou des tractions.
Préferentiellement , les particules colloïdales seront choisies parmi les nanotubes de carbone, le sulfure de tungstène, le nitrure de bore, les plaquettes d'argile, les whis ers de cellulose et/ou les whiskers de carbure de silicium.
De manière classique, le procédé pourra comprendre des étapes supplémentaires d'extraction de ladite fibre hors du solvant et/ou de séchage de ladite fibre de manière à obtenir une fibre débarrassée de tout plastifiant et/ou de toute trace de solvant. Ces opérations pourront avantageusement s'effectuer de manière connue comme, par exemple, un séchage en étuve à une température légèrement inférieure à la température d'ébullition du solvant..
Le procédé objet de l'invention pourra être utilisé pour fabriquer des fibres ayant une orientation desdites particules composant ladite fibre majoritairement dans le sens de l'axe principal de ladite fibre.
Le procédé objet de l'invention pourra également être utilisé pour fabriquer des fibres ayant une longueur accrue et/ou un diamètre réduit par rapport à la fibre originale.
Enfin, le procédé objet de l'invention pourra être utilisé pour fabriquer des fibres densifiées et/ou affinées par rapport à la fibre originale .
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-après, en référence au dessin qui illustre un exemple de mise en œuvre du procédé selon l'invention, dépourvu de tout caractère limitatif. Sur le dessin :
- la figure 1, représente des coupes de fibres comprenant des particules et un polymère utilisé en tant que matrice avant et après étirement à chaud, et
- la figure 2 représente des coupes de fibres comprenant des particules colloïdales et un polymère pontant entre les particules avant et après mise en œuvre du procédé selon 1 ' invention.
Dans l'exemple ci-après décrit, des fibres de nanotubes de carbone sont utilisées de manière à prouver l'efficacité et les avantages du procédé selon l'invention.
Ces fibres sont avantageusement élaborées selon le procédé de la demande de brevet FR 00 02 272 au nom du CNRS. Ce procédé comprend la dispersion de façon homogène des nanotubes dans un milieu liquide. La dispersion peut être réalisée dans l'eau en utilisant des tensioactifs qui s'adsorbent à l'interface des nanotubes. Une fois dispersés, les nanotubes peuvent être recondensés sous forme d'un ruban ou d'une préfibre en injectant la dispersion dans un autre liquide qui provoque la déstabilisation des nanotubes. Ce liquide peut être par exemple une solution de polymères. Les écoulements mis en jeu peuvent être modifiés de façon à favoriser l'alignement des nanotubes dans la préfibre ou le ruban. De plus, les débits et les vitesses d'écoulements permettent aussi de contrôler la section des préfibres ou rubans.
Les préfibres ou rubans ainsi formés peuvent ensuite être, ou non, lavés par des rinçages qui permettent de désorber certaines espèces adsorbées (polymère ou tensioactifs notamment) . Les préfibres ou les rubans peuvent être produits de façon continue et extraits de leur solvant de façon à être séchés. On obtient alors des fibres sèches et facilement manipulables de nanotubes de carbone.
Le mode d'obtention de ces fibres est connu pour laisser des traces de polymère, en général du polyvinylalcool (PVA) en tant que polymère résiduel . La cohésion de la fibre n'est pas directement assurée par la rigidité du polymère, mais par son adsorption sur des nanotubes de carbone voisins, c'est-à-dire par le phénomène connu sous le nom de pontage .
Le séchage dans la fabrication initiale de la fibre induit des modifications importantes qui perturbent l'alignement des nanotubes de carbone et, quel que soit le mode d'obtention de ces fibres, celles-ci ne présentent que peu de différence d'orientation des nanotubes de carbone.
Pour améliorer l'orientation, il est nécessaire de reformer la fibre dans une étape ultérieure par les actions mécaniques précédemment décrites dans la mise en œuvre du procédé .
En particulier, on solvate la fibre dans un solvant donné pour la soumettre à des torsions et/ou des tractions.
Comme le montre la figure 1, dans les procédés connus, une fibre de polymère peut être orientée par simple extrusion ou étirage à chaud. Si la fibre contient des particules comme des nanotubes de carbone ou des whiskers, ceux-ci s'orientent également. Le polymère joue alors le rôle de matrice et c'est la déformation de ce support qui entraîne les modifications de structures de la fibre.
Comme le montre la figure 2, et selon la mise en œuvre du procédé selon l'invention, les particules colloïdales sont directement liées entre elles les unes aux autres. La cohésion de la structure ne vient plus du polymère lui- même, mais directement des particules qui sont liées par un polymère pontant. La structure de la fibre peut être modifiée par traction ou torsion, si le polymère liant est plastique, ou rendu déformable par solvatation.
Par exemple, pour une fibre constituée de nanotubes de carbone et dont le polymère pontant est le PVA, une telle mise en œuvre s'effectue à température ambiante en trempant simplement la fibre dans de l'eau ou dans un autre solvant ayant une certaine affinité pour le PVA.
D'autres solvants, comme l'acétone, dans lequel le PVA n'est pas soluble peuvent également être appliqués.
A titre d'exemple, est donné un tableau présentant les résultats obtenus lors de la mise sous différentes tractions de fibres de nanotubes de carbone obtenues avec différents PVA et pour une gamme de solvants comprise entre les deux extrêmes constitués par l'eau et l'acétone.
Les fibres utilisées sont obtenues selon le procédé mentionné et comprenant :
la dispersion de nanotubes (0,4% massique) dans une solution aqueuse de SDS (1,1% en masse),
- l'injection de la dispersion de nanotubes à un débit de 100 ml/h à travers un orifice de 0,5 mm dans un écoulement d'une solution de PVA à une vitesse de 6,3 m/min. Deux types de PVA sont utilisés un de masse 50000 et un de masse 100000 grammes. Le ruban est ensuite rincé à l'eau pure plusieurs fois et extrait de l'eau de façon à former un fil sec.
Dans cette mise en œuvre du procédé selon l'invention, l'eau est qualifiée de bon solvant et l'acétone de mauvais solvant .
Les autres paramètres importants correspondent aux caractéristiques des fibres et des nanotubes de carbone. Comme il est connu dans l'industrie textile, par exemple, ces paramètres sont critiques pour les propriétés finales d'un fil composé de fibres plus petites. Le problème est ici identique dans la mesure où le fil est constitué de nanotubes de carbone .
Les modifications structurales sont caractérisées par des mesures d'allongements et par des expériences de diffraction de Rayons X qui donnent quantitativement l'orientation moyenne des nanotubes de carbone.
Dans le tableau ci-après, les exemples de fibres de nanotubes de carbone ont été obtenues par le même procédé en utilisant les même paramètres de mise en œuvre avec deux PVA de poids molaires différents, le premier ayant un poids molaire de 50000, le second, un poids molaire de 100000.
Les fibres ainsi obtenues sont alors immergées dans un solvant et soumises à des tractions qui sont exprimées en grammes. Les tractions sont réalisées en accrochant des masses bien définies aux fibres. Les fibres sont ensuite extraites du solvant et mises ainsi à sécher sous tension. Les fibres sèches sont récupérées et leur structure caractérisée. Les nanotubes de carbone dans les fibres sont organisés en fagots et forment un réseau hexagonal perpendiculairement à l'axe de la fibre. L'alignement des fagots de nanotubes de carbone par rapport à l'axe de la fibre peut être caractérisé par la largeur totale à mi-hauteur (FWHM) de la dispersion angulaire à vecteur d'onde constant sur un pic de Bragg du réseau hexagonal (ajustement Gaussien) ou par la valeur de l'intensité diffractée le long de l'axe de la fibre, c'est-à-dire par des nanotubes de carbone perpendiculaires à cet axe.
Le tableau ci-après présentent les résultats obtenus pour l'alignement des nanotubes de carbone selon la masse molaire du PVA, le solvant utilisé et la traction exercée sur la fibre.
On constate que plus le solvant est bon pour le PVA, plus la fibre solvatée est facilement déformable.
En revanche, un mauvais solvant permet d'appliquer des contraintes plus importantes avec des déformations moindres ou équivalentes. Le couplage de la qualité du solvant avec la nature du polymère est donc un paramètre qui permet d'optimiser à la fois les contraintes mécaniques à imposer et les déformations souhaitées.
Plus la masse du polymère est élevée, plus la fibre solvatée est résistante et peut donc subir des contraintes plus importantes sans se rompre ou se détériorer et son module élastique est plus important .
Le rôle prépondérant du polymère liant et/ou pontant est ainsi particulièrement souligné dans l'obtention de propriétés mécaniques optimisées pour la fibre solvatée. En particulier, c'est la forte adsorption du polymère sur les particules et le pontage important qui s'effectue sur les particules qui est ici mis en jeu.
Bien évidemment, on constate également que plus la traction appliquée est importante, plus l'allongement obtenu est grand.
D'autre part, plus l'allongement est grand, meilleur est l'alignement des nanotubes de carbones. On constate également qu'à allongement constant, l'alignement est meilleur pour des mélanges bon solvant - mauvais solvant que pour le bon solvant utilisé seul.
Les fibres solvatées supportent de fortes torsions sans se rompre, jusqu'à plus de cent tours par centimètre.
Ces torsions permettent d'affiner et de densifier les fibres.
Les fibres de nanotubes de carbone sont ainsi déformables et réformables par un simple traitement à froid. Ces déformations, et la mise en œuvre du procédé objet de l'invention permettent de contrôler l'arrangement des nanotubes par la combinaison des nombreux paramètres variables modulables comme la torsion, la tension, la qualité du solvant, la nature et la masse du polymère et les caractéristiques géométriques des fibres et des rubans utilisés pour le reformage.
Une fibre directement issue de sa fabrication aura un FWHM minimum de 80°, alors qu'après un reformage selon une mise en œuvre du procédé selon l'invention, la fibre aura un FWHM inférieur a 80° et donc une dispersion angulaire comprise entre +40° et -40°.
Les propriétés physiques des fibres composites comprenant des particules colloïdales et au moins un polymère liant et/ou pontant sont donc améliorées de manière significative. Elles deviennent ainsi plus performantes pour toutes les applications auxquelles elles peuvent être destinées comme la confection de câbles de haute résistance, de fils conducteurs légers, de détecteurs chimiques, de capteurs de force et de contraintes mécaniques ou sonores, d'actionneurs électromécaniques et muscles artificiels, l'élaboration de matériaux composites, de nanocomposites, d'électrodes et de microélectrodes par exemple .
Il demeure bien entendu que la présente invention n'est pas limitée aux exemples de réalisation décrits ou représentés ci-dessus, mais qu'elle en englobe toutes les variantes.

Claims

REVENDICATIONS
1. Procédé de reformage de fibres composites comprenant des particules colloïdales et au moins un polymère liant et/ou pontant, caractérisé en ce qu'il comprend :
- des moyens pour déformer, à froid à température ambiante ou à une température légèrement supérieure à la température ambiante, ledit polymère de ladite fibre, et des moyens d'application, sur ladite fibre, de contraintes mécaniques.
2. Procédé selon la revendication 1, caractérisé en ce que lesdits moyens pour déformer ledit polymère sont constitués par un ajout de plastifiant.
3. Procédé selon la revendication 1, caractérisé en ce que lesdits moyens pour déformer ledit polymère sont constitués par une immersion de ladite fibre dans un solvant ou un mélange de solvants tel que la solubilité réciproque dudit polymère dans ledit solvant ou ledit mélange de solvant conditionne l'optimisation desdites contraintes mécaniques appliquées .
4. Procédé selon la revendication 3 , caractérisé en ce que ledit solvant est choisi parmi les solvants dans lequel le polymère est soluble ou partiellement soluble.
5. Procédé selon la revendication 3, caractérisé en ce que ledit solvant est choisi parmi les solvants dans lequel le polymère est insoluble ou pratiquement insoluble.
6. Procédé selon la revendication 3 , caractérisé en ce que ledit solvant est choisi parmi les mélanges d'au moins un solvant défini à la revendication 4 et d'au moins un solvant défini à la revendication 5.
7. Procédé selon l'une, quelconque, des revendications 3 à 6, caractérisé en ce que ledit solvant contient au moins un agent réticulant .
8. Procédé selon l'une, quelconque, des revendications 3 à 7, caractérisé en ce que ledit solvant est choisi parmi l'eau, l'acétone, les éthers, le diméthylformamide, le tetrahydrofurane, le chloroforme, le toluène, l'éthanol, et/ou les solutions aqueuses dont le pH et/ou les concentrations en éventuels solutés sont contrôlés.
9. Procédé selon l'une, quelconque, des revendications 1 à 8, caractérisé en ce que ledit polymère est un polymère s ' adsorbant sur lesdites particules colloïdales.
10. Procédé selon la revendication 9, caractérisé en ce que ledit polymère est choisi parmi le polyvinylalcool, les polymères floculants couramment utilisés dans l'industrie de dépollution des effluents liquides, comme les polyacrylamides, qui sont des polymères neutres, les copolymères d'acrylamide et d'acide acrylique, qui sont chargés négativement, les copolymères d'acrylamide et de monomère cationiques, qui sont chargés positivement, les polymères inorganiques à base d'aluminium, et/ou les polymères naturels comme le chitosan, le guar et/ou l'amidon.
11 . Procédé selon la revendication 10 , caractérisé en ce que ledit polymère est du polyvinylalcool (PVA) de masse molaire comprise entre 10 000 et 200 000.
12. Procédé selon la revendication 11, caractérisé en ce que ledit solvant est choisi parmi l'eau, l'acétone ou un mélange d'eau et d'acétone.
13. Procédé selon l'une, quelconque, des revendications 1 à
12, caractérisé en ce que la température est comprise entre 0°C et 50°C.
14. Procédé selon l'une, quelconque, des revendications 1 à
13, caractérisé en ce que les contraintes mécaniques sont des torsions et/ou des tractions.
15. Procédé selon l'une, quelconque, des revendications 1 à
14, caractérisé en ce que lesdites particules sont choisies parmi les nanotubes de carbone, le sulfure de tungstène, le nitrure de bore, les plaquettes d'argile, les whiskers de cellulose et/ou les whiskers de carbure de silicium.
16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce qu'il comprend des étapes supplémentaires d'extraction de ladite fibre et/ou de séchage de ladite fibre.
17. Utilisation du procédé selon l'une quelconque des revendications 1 à 16, pour fabriquer des fibres ayant une orientation desdites particules composant ladite fibre majoritairement dans le sens de l'axe principal de ladite fibre .
18. Utilisation du procédé selon l'une quelconque des revendications 1 à 16, pour fabriquer des fibres ayant une longueur accrue et/ou un diamètre réduit par rapport à la fibre originale.
19. Utilisation du procédé selon l'une quelconque des revendications 1 à 16, pour fabriquer des fibres densifiées et/ou affinées par rapport à la fibre originale.
20. Fibre composite comprenant des particules colloïdales et au moins un polymère liant et/ou pontant, caractérisée en ce que le FWMH de ladite fibre est inférieur à 80°.
21. Fibre selon la revendication 20, caractérisée en ce que la dispersion angulaire desdites particules est comprise entre +40° et -40° .
EP02772485A 2001-08-08 2002-08-05 Procede de reformage de fibres composites et applications Expired - Lifetime EP1423559B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0110611A FR2828500B1 (fr) 2001-08-08 2001-08-08 Procede de reformage de fibres composites et applications
FR0110611 2001-08-08
PCT/FR2002/002804 WO2003014431A1 (fr) 2001-08-08 2002-08-05 Procede de reformage de fibres composites et applications

Publications (2)

Publication Number Publication Date
EP1423559A1 true EP1423559A1 (fr) 2004-06-02
EP1423559B1 EP1423559B1 (fr) 2011-03-16

Family

ID=8866390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02772485A Expired - Lifetime EP1423559B1 (fr) 2001-08-08 2002-08-05 Procede de reformage de fibres composites et applications

Country Status (16)

Country Link
US (1) US7288317B2 (fr)
EP (1) EP1423559B1 (fr)
JP (1) JP4518792B2 (fr)
KR (1) KR100933537B1 (fr)
CN (1) CN1309882C (fr)
AT (1) ATE502139T1 (fr)
AU (1) AU2002337253B2 (fr)
BR (1) BR0211727B1 (fr)
CA (1) CA2457367C (fr)
DE (1) DE60239471D1 (fr)
ES (1) ES2365726T3 (fr)
FR (1) FR2828500B1 (fr)
HU (1) HU229645B1 (fr)
NO (1) NO333728B1 (fr)
NZ (1) NZ530823A (fr)
WO (1) WO2003014431A1 (fr)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1336672A1 (fr) * 2002-02-15 2003-08-20 Dsm N.V. Procédé de fabrication de produits allongés à haute ténacité contenant des nanotubes de carbone
FR2851260B1 (fr) * 2003-02-19 2005-07-01 Nanoledge Dispositif pour la fabrication de fibres et/ou de rubans, a partir de particules placees en suspension dans une solution
FR2854409B1 (fr) * 2003-04-30 2005-06-17 Centre Nat Rech Scient Procede d'obtention de fibres a haute teneur en particules colloidales et fibres composites obtenues
US20050061496A1 (en) * 2003-09-24 2005-03-24 Matabayas James Christopher Thermal interface material with aligned carbon nanotubes
FR2877351B1 (fr) * 2004-10-29 2007-02-09 Centre Nat Rech Scient Cnrse Fibres composites comprenant au moins des nanotubes de carbone, leur procede d'obtention et leurs applications
FR2877262B1 (fr) 2004-10-29 2007-04-27 Centre Nat Rech Scient Cnrse Fibres composites et fibres dissymetriques a partir de nanotubes de carbonne et de particules colloidales
AU2006336412A1 (en) * 2005-05-03 2007-08-02 Nanocomp Technologies, Inc. Nanotube composite materials and methods of manufacturing same
EP2860153B1 (fr) 2005-07-28 2018-05-16 Nanocomp Technologies, Inc. Appareil et procédé de formation et de collecte de feuilles non tissées nanofibreuses
NO20065147L (no) * 2006-11-08 2008-05-09 Ntnu Tech Transfer As Nanokompositter basert på cellulosewhiskers og celluloseplast
US9061913B2 (en) 2007-06-15 2015-06-23 Nanocomp Technologies, Inc. Injector apparatus and methods for production of nanostructures
CA2693403A1 (fr) * 2007-07-09 2009-03-05 Nanocomp Technologies, Inc. Alignement chimiquement assiste de nanotubes dans des structures extensibles
JP2011508364A (ja) 2007-08-07 2011-03-10 ナノコンプ テクノロジーズ インコーポレイテッド 非金属電気伝導性および熱伝導性ナノ構造体ベースアダプター
US8308930B2 (en) * 2008-03-04 2012-11-13 Snu R&Db Foundation Manufacturing carbon nanotube ropes
CA2723619A1 (fr) 2008-05-07 2009-11-12 Nanocomp Technologies, Inc. Dispositifs de chauffage a nanofil et procede d'utilisation
EP2274464A4 (fr) 2008-05-07 2011-10-12 Nanocomp Technologies Inc Feuilles composites à nanostructures et procédés d'utilisation
US8673258B2 (en) * 2008-08-14 2014-03-18 Snu R&Db Foundation Enhanced carbon nanotube
US8357346B2 (en) * 2008-08-20 2013-01-22 Snu R&Db Foundation Enhanced carbon nanotube wire
US8021640B2 (en) 2008-08-26 2011-09-20 Snu R&Db Foundation Manufacturing carbon nanotube paper
JP5257813B2 (ja) * 2009-03-13 2013-08-07 国立大学法人信州大学 ポリビニルアルコール系コンポジット繊維およびその製造方法
GB201007571D0 (en) 2010-05-06 2010-06-23 Q Flo Ltd Chemical treatment of of carbon nanotube fibres
JP5848878B2 (ja) * 2011-02-14 2016-01-27 ニッタ株式会社 Cnt入り樹脂繊維およびこれを用いた不織布とその製造方法
US9303171B2 (en) 2011-03-18 2016-04-05 Tesla Nanocoatings, Inc. Self-healing polymer compositions
US9953739B2 (en) 2011-08-31 2018-04-24 Tesla Nanocoatings, Inc. Composition for corrosion prevention
US10570296B2 (en) 2012-03-19 2020-02-25 Tesla Nanocoatings, Inc. Self-healing polymer compositions
US10543509B2 (en) 2012-04-09 2020-01-28 Nanocomp Technologies, Inc. Nanotube material having conductive deposits to increase conductivity
KR20140030975A (ko) * 2012-09-04 2014-03-12 삼성전자주식회사 신축성 전도성 나노섬유 및 그 제조방법
WO2014204561A1 (fr) 2013-06-17 2014-12-24 Nanocomp Technologies, Inc. Agents exfoliants-dispersants pour nanotubes, faisceaux et fibres
EP3253709A4 (fr) 2015-02-03 2018-10-31 Nanocomp Technologies, Inc. Structures à nanotubes de carbone et procédés de production de ceux-ci
US10581082B2 (en) 2016-11-15 2020-03-03 Nanocomp Technologies, Inc. Systems and methods for making structures defined by CNT pulp networks
US11279836B2 (en) 2017-01-09 2022-03-22 Nanocomp Technologies, Inc. Intumescent nanostructured materials and methods of manufacturing same
RU2721501C1 (ru) 2017-07-28 2020-05-19 Кимберли-Кларк Ворлдвайд, Инк. Гигиеническое впитывающее изделие для женщин, содержащее нанопористые сверхвпитывающие частицы
MX2020012614A (es) 2018-06-27 2021-01-29 Kimberly Clark Co Particulas superabsorbentes nanoporosas.

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1174959A (en) * 1966-09-16 1969-12-17 Carborundum Co Whisker Orientation and Shaped Bodies containing Uniaxially Oriented Whiskers
US3660556A (en) * 1968-07-26 1972-05-02 Kurashiki Rayon Co Process for producing polyvinyl alcohol filaments
FR2088130A7 (en) * 1970-05-21 1972-01-07 Sfec Alumina threads - drawn from aluminium hydroxide gel
DE3856333T2 (de) * 1987-01-23 1999-09-09 Fuji Photo Film Co Ltd Verpackungsmaterial für lichtempfindliches Material
US4898761A (en) * 1987-09-11 1990-02-06 Reemay, Inc. Barrier fabric and method
CN1003872B (zh) * 1987-10-30 1989-04-12 北京维尼纶厂 6-30万袋聚乙烯醇长丝束生产工艺
JP2578873B2 (ja) * 1988-01-19 1997-02-05 昭和電工株式会社 微細繊維含有熱可塑性樹脂成形物の製造方法
JPH03260109A (ja) * 1990-03-05 1991-11-20 Nkk Corp 気相成長炭素繊維混入有機繊維
US5759462A (en) * 1994-10-14 1998-06-02 Amoco Corporaiton Electrically conductive tapes and process
JPH08284021A (ja) * 1995-02-10 1996-10-29 Kuraray Co Ltd ポリビニルアルコールとセルロース系ポリマーよりなる易フィブリル化繊維
EP0795633B1 (fr) * 1995-09-05 2000-04-05 KURARAY Co. LTD. Fibres a base d'alcool de polyvinyle ayant une excellente resistance a l'eau bouillante et procede de production
JPH09282938A (ja) * 1996-04-17 1997-10-31 Yazaki Corp 導電性多孔質材料、及びその製造方法
US6124058A (en) * 1996-05-20 2000-09-26 Kuraray Co., Ltd. Separator for a battery comprising a fibrillatable fiber
CN1081686C (zh) * 1998-04-14 2002-03-27 中国石油化工总公司 聚乙烯醇湿法交联纺丝工艺
DK1127034T3 (da) * 1998-11-06 2003-08-25 Patrick Mueller Fremgangsmåde til opberedning af en blanding af substanser indeholdende strukturbestanddele og organisk materiale
EP1054036A1 (fr) * 1999-05-18 2000-11-22 Fina Research S.A. Polymères renforcées
SG91279A1 (en) * 1999-06-09 2002-09-17 Kuraray Co Polyvinyl alcohol polymer production method and polyvinyl alcohol polymer
US6299812B1 (en) * 1999-08-16 2001-10-09 The Board Of Regents Of The University Of Oklahoma Method for forming a fibers/composite material having an anisotropic structure
FR2805179B1 (fr) * 2000-02-23 2002-09-27 Centre Nat Rech Scient Procede d'obtention de fibres et de rubans macroscopiques a partir de particules colloidales, et notamment de nanotubes de carbone
JP3656732B2 (ja) * 2000-04-21 2005-06-08 日産自動車株式会社 エネルギー変換繊維体および吸音材
JP4581181B2 (ja) * 2000-05-23 2010-11-17 東レ株式会社 炭素繊維強化樹脂複合体および成形品、ならびに炭素繊維の回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03014431A1 *

Also Published As

Publication number Publication date
BR0211727A (pt) 2004-09-21
CA2457367C (fr) 2011-01-11
WO2003014431A1 (fr) 2003-02-20
NZ530823A (en) 2008-03-28
EP1423559B1 (fr) 2011-03-16
ATE502139T1 (de) 2011-04-15
US7288317B2 (en) 2007-10-30
CN1309882C (zh) 2007-04-11
AU2002337253B2 (en) 2007-04-26
CA2457367A1 (fr) 2003-02-20
HU229645B1 (hu) 2014-03-28
KR20040026706A (ko) 2004-03-31
HUP0501027A2 (en) 2006-01-30
NO20040548L (no) 2004-03-26
FR2828500A1 (fr) 2003-02-14
JP2005526186A (ja) 2005-09-02
DE60239471D1 (de) 2011-04-28
NO333728B1 (no) 2013-09-02
ES2365726T3 (es) 2011-10-10
US20040177451A1 (en) 2004-09-16
JP4518792B2 (ja) 2010-08-04
HUP0501027A3 (en) 2007-08-28
BR0211727B1 (pt) 2013-09-10
KR100933537B1 (ko) 2009-12-23
CN1589340A (zh) 2005-03-02
FR2828500B1 (fr) 2004-08-27

Similar Documents

Publication Publication Date Title
CA2457367C (fr) Procede de reformage de fibres composites et applications
EP1618233B1 (fr) Procede d obtention de fibres a haute teneur en particules c olloidales et fibres composites obtenues
EP1268894B1 (fr) Procede d'obtention de fibres et de rubans macroscopiques a partir de particules collo dales, et notamment de nanotubes de carbone
EP2099849B1 (fr) Procede pour ameliorer l'adherence de fibres de carbone vis-a-vis d'une matrice organique
EP2231542B1 (fr) Tissu de fils et son procede de fabrication
EP1805355A1 (fr) Fibres composites comprenant au moins des nanotubes de carbone, leur procede d'obtention et leurs applications
EP1885790A1 (fr) Procede de dispersion de nanotubes de carbone dans une matrice polymerique
FR2921075A1 (fr) Procede continu d'obtention de fibres composites a base de particules colloidales et dispositif pour sa mise en oeuvre
EP2480630A1 (fr) Materiau composite utilisant un elastomere mesomorphe et son procede de fabrication
FR2713626A1 (fr) Procédé de fabrication de fils de verre ensimés et fils de verre en résultant.
FR2713647A1 (fr) Procédé de fabrication d'un matériau composite et matériau en résultant.
WO2014001699A1 (fr) Procede de fabrication d'une poudre de cellulose fibrillee adaptee a etre dispersee en milieu aqueux
FR2780165A1 (fr) Fibre optique munie d'un revetement de protection et procede de fabrication de cette fibre
EP2028236B1 (fr) Ensemble comportant des agrégats J
WO2024013066A1 (fr) Enduction d'une fibre notamment optique par un revetement a base de nitrure de bore
EP4263458A1 (fr) Utilisation de fibres composite verre-resine pour le renforcement du beton

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040211

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: POULIN, PHILIPPE

Inventor name: BERNIER, PATRICK

Inventor name: LAUNOIS, PASCALE

Inventor name: VIGOLO, BRIGITTE

17Q First examination report despatched

Effective date: 20090812

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60239471

Country of ref document: DE

Date of ref document: 20110428

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60239471

Country of ref document: DE

Effective date: 20110428

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110616

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2365726

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20111010

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110718

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20111219

BERE Be: lapsed

Owner name: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNR

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60239471

Country of ref document: DE

Effective date: 20111219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180920

Year of fee payment: 17

Ref country code: FR

Payment date: 20180830

Year of fee payment: 17

Ref country code: DE

Payment date: 20180813

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180821

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60239471

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190805

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190806