EP1276920A1 - Procede electrolytique d'oxydation pour l'obtention d'un rev tement ceramique a la surface d'un metal - Google Patents

Procede electrolytique d'oxydation pour l'obtention d'un rev tement ceramique a la surface d'un metal

Info

Publication number
EP1276920A1
EP1276920A1 EP01929704A EP01929704A EP1276920A1 EP 1276920 A1 EP1276920 A1 EP 1276920A1 EP 01929704 A EP01929704 A EP 01929704A EP 01929704 A EP01929704 A EP 01929704A EP 1276920 A1 EP1276920 A1 EP 1276920A1
Authority
EP
European Patent Office
Prior art keywords
metal
signal
current
voltage
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP01929704A
Other languages
German (de)
English (en)
Other versions
EP1276920B1 (fr
Inventor
Jacques Beauvir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1276920A1 publication Critical patent/EP1276920A1/fr
Application granted granted Critical
Publication of EP1276920B1 publication Critical patent/EP1276920B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/026Anodisation with spark discharge
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/005Apparatus specially adapted for electrolytic conversion coating

Definitions

  • the present invention relates to an electrical oxidation process by plasma micro-arc in order to obtain a ceramic coating on the surface of a metal having semiconductor properties.
  • Aluminum, titanium, their alloys and all metals which have valve (diode) properties have an attractive mechanical strength / weight ratio and are suitable for a wide range of applications such as aeronautics, automotive, mechanical
  • a relatively old process (1,932) of anodic oxidation by micro-arc discharges or sparking discharges at the anode was developed in order to obtain ceramic coatings for aluminum, titanium and magnesium parts and their alloys, as a means of protection against severe abrasion and corrosion.
  • Micro-arc oxidation forms an insulating barrier film on valve effect metals such as aluminum and titanium.
  • the barrier film is broken and micro-arcs appear. If a high voltage is maintained, many micro-arcs strike and move quickly over the entire submerged surface of the sample.
  • These dielectric breaks cause chimneys which cross the oxide layer (barrier) formed.
  • Complex compounds are synthesized inside these chimneys. They consist of substrate material, surface oxides and electrolyte addition elements. Chemical interactions in the plasma phase occur in multiple surface discharges and result in the formation of an increasing coating in both directions from the surface of the substrate. This causes a gradual change in the composition of the coating properties from the metal alloy inside the substrate to a complex ceramic compound in the coating. According to the description of the history of this process,
  • Anodic Spark Deposition (ASD). They observed that the material underwent deposition of the electrolyte during the dielectric rupture of a growing insulating film on the anode. This dielectric rupture causes sparks which appear and disappear while being distributed on all the surface of the anode, giving an effect of movement.
  • a patented process in 1 974 was put in place to compete with the coating on aluminum for architectural purposes.
  • the method allows the aluminum substrate to act as an anode in a potassium-silicate solution, so that a silicate-alumina coating of gray-olive color is applied by the use of a rectified half-wave 400 V direct current.
  • the process takes place through a dielectric breakdown of the barrier layer, causing visible sparks or flickers on the anode substrate, while Bakovets, Dolgoveseva and Nikiforova postulate three parallel mechanisms during film formation: electrochemical, plasma oxidation and chemical oxidation.
  • sicodizing including the addition of carboxylic acids and vanadium components in the bath. Ceramic or tetrafluoroethylene resins were also added to the bath to provide hardness or lubrication qualities to the coating.
  • the excellent adhesion to the substrate of this type of coating is among the many advantages of this process.
  • the physical and tribological characteristics high hardness, resistance: thermal, electrical, abrasion, corrosion, etc.
  • the wide variety of alumino-silicate mixtures for coating purposes are among the many advantages of this process.
  • a suitable device makes it possible to establish the optimum programming, as a function of different parameters (nature of the alloy, or of the metal of the parts to be treated, the characteristics of the ceramic that one wishes to obtain, etc.).
  • the electrolyte is an aqueous-based solution, preferably demineralized and comprises at least one oxyacid salt of an alkali metal and one hydroxide of an alkali metal.
  • the first phase which lasts according to the alloys, from a few seconds to a few minutes, an insulating layer consisting of hydroxide is formed, this thin layer is a dielectric.
  • this dielectric layer is observed with a micro-arc activity which increases, depending on the electrical energy applied.
  • This second phase lasts, depending on the above parameters, between 1 5 and 30 minutes.
  • the formation of a thick ceramic layer is gradually obtained.
  • the composition and physical properties of the coating during this training are subject to change. We were able to identify the majority of ⁇ -AI 2 O 3 type elements on X-rays. (bohemian) and -AI 2 0 3 coumblem.
  • the generators used and described in the various publications deliver: either a rectified and / or direct current, or a single-phase or three-phase sinusoidal alternating current.
  • Capacitors in series are interposed in particular to limit the current in the secondary use circuit and a particular form of current follows.
  • alternating generators powered by three-phase current and using the three phases sequentially using thyristors or equivalent electronic devices.
  • the shape of the current is only the result of the process itself and cannot be changed in its shape.
  • Document US 5 61 6 229 relates to a method of producing a ceramic coating by this technique, in which the voltage applied to the electrodes is at least 700 V. Below this voltage value, it is not possible to obtain a coherent ceramic, but powder. This therefore results in a very high energy consumption, especially when the parts to be coated with ceramic have a large surface area.
  • the object of the invention is to provide an electrolytic oxidation process by plasma micro-arc in order to obtain a ceramic coating on the surface of a metal having semiconductor properties, such as aluminum, titanium, magnesium, hafnium, zirconium and their alloys by physico-chemical reaction of transformation of the treated metal.
  • the aim is to reduce the porosity of the ceramic layer by obtaining a very dense layer of uniform thickness over the entire surface of the part.
  • an object of the invention is to reduce the growth time of the ceramic on the surface of the metal part while reducing the electrical energy consumed.
  • the process which it relates to is characterized in that it consists in: - immersing the metal part to be coated in an electrolytic bath composed of an aqueous solution of alkali metal hydroxide, such as potassium or sodium , and an oxyacid salt of an alkali metal, the metal part forming one of the electrodes,
  • a signal voltage of generally triangular shape that is to say having at least a front slope and a rear slope, with variable form factor during the process, generating a current controlled in its intensity , its shape and its relationship between positive and negative intensity.
  • the shape of the voltage wave is thus possible to adapt the shape of the voltage wave to the different stages of the process as well as to the type of alloy and to the different electrolytic bath solutions.
  • This waveform also has a variable frequency parameter, which greatly improves the qualities of the ceramic coating compared to those obtained by known methods. Different modes of implementation of this method are possible.
  • the front and rear slopes of the voltage signal can be substantially symmetrical, or asymmetrical and of varying angles during the process. It is also possible, during the process, to change the frequency of the triangular signal between approximately 100 and 400 Hz.
  • this method consists in changing the value of the triangular voltage during the electrolysis between about 300 and 600 V rms.
  • the value of the current can also be modified or fixed independently of the voltage.
  • the different parameters (form factor, potential value, frequency, current value, UA / IC ratio) can be changed simultaneously or independently of each other during the process.
  • this method consists in separately controlling in its forms and values the electrical energy Ul in the positive phase and / or in the negative phase.
  • An electronic generator of the current source type for implementing this method comprising a block for connection to a single-phase or three-phase electrical supply from the sector and a block for connection to the electrolysis cell, is characterized in that it comprises : - a module for transforming the sinusoidal alternating signal supplied by the network into a trapezoidal or sawtooth signal,
  • this generator comprises, at the output, an isolation transformer with capacitors in series in the primary or secondary, for filtering the DC component in order to avoid saturation of the magnetic circuit while inserting optimum safety of use for the electrical protection, with connection of one of the poles to earth.
  • this generator is controlled by a processor of the PC type making it possible to manage the various parameters as the process proceeds.
  • the steep front slope makes it possible to induce the initiation of micro-arcs very actively without raising the average voltage.
  • the slow slope maintains a constant current for the time necessary for the physico-chemical reaction within the plasma.
  • Rear slope control has also repercussions on the negative current.
  • the negative current peak helps to diffuse the al ions necessary for the continuity of the formation of the ceramic layer in certain phases of the process. It is also used to obtain a reduction in residual porosity at the end of the process.
  • the symmetrical slopes of the signal favor a rapid and regular growth of the ceramic layer, and allow the inclusion of additive elements which can be added to the bath and according to the characteristics of the ceramic coating which it is desired to obtain for the optimal use of parts. This situation is much more effective than that obtained from a sinusoid or a direct current described in the documents of the prior art.
  • the implementation of the process according to the invention has the following main advantages: - optimal formation of the hydroxide layer;
  • the energy power of the network which supplies the electrical power is reduced in the same proportions as is the subscription of the metering bracket for the electrical energy consumed.
  • this same installation is capable, from an electrical energy of a certain value, of doubling the processing capacity compared to a conventional generator using the sinusoidal signal of the distribution network.
  • the voltage / current curves obtained show the fundamental differences of the positive and negative energy peaks obtained by the process. Full control of these parameters highlights the possibility of obtaining the desired values and current forms at any stage of growth of the layer during the treatment.
  • Figure 1 is a very general view of the installation
  • Figure 2 is a view of a block diagram of the current generator
  • Figures 3, 4 and 5 are three illustrative diagrams respectively of the drive voltage signal when it is balanced, of the corresponding intensity / voltage signal taken across the load and related positive and negative power curves;
  • Figures 6, 7 and 8 are three views corresponding respectively to Figures 3, 4 and 5 in the case where the front slope of the voltage signal is steeper than the rear slope;
  • Figures 9, 10 and 1 1 are three views respectively corresponding to Figures 3, 4 and 5 in the case where the rear slope of the voltage signal is greater than the front slope.
  • FIG. 1 illustrates the general arrangement of an installation, in which the tank is designated by the general reference 2 and contains an electrolytic bath 3 constituted by an aqueous solution of alkali metal hydroxide, such as potassium or sodium, and d 'an oxyacid salt of an alkali metal.
  • an electrolytic bath 3 constituted by an aqueous solution of alkali metal hydroxide, such as potassium or sodium, and d 'an oxyacid salt of an alkali metal.
  • a counter electrode (cathode) 4 and an "anode” 5 which is constituted by the part to be coated by transformation of the metal itself, this part being made of a metal or metal alloy having semiconductor properties.
  • a current supply unit 6 a voltage generator 7 and a microcomputer 8 controlling and controlling the variable parameters according to the sequences of the process.
  • FIG. 2 represents, in more detail, the generator 7.
  • the power supply is carried out on the left-hand side of FIG. 2, at the location designated by the reference 9.
  • This generator comprises a module 10 for transforming the 50 sinusoidal alternating signal into triangular or trapezoidal signal.
  • the module 1 2 is intended to make modifications to the slope and the form factor of the voltage signal.
  • the module 1 3 controls the variation of the frequency in different types of cycles, for example from 70 to 400 Hz.
  • the module 14 connected to the microcomputer 8 manages the electrical energy as a function of the configured energy and of the energy actually used.
  • the output signal is designated by the reference 1 5. It is possible to have at the output an isolation transformer, not shown with capacitor in series in the primary or secondary to filter the DC component, in order to avoid saturation of the magnetic circuit, while inserting optimal safety of use for electrical protection, with connection of one of the poles to earth.
  • FIGS. 3 to 1 1 clearly show the consequences of the variation of the front and rear slope of the voltage signal, in particular on the electrical power, and on the distribution of the positive and negative phases thereof. It is remarkable to note that the adjustment of the power is easily achieved by varying the front and rear slopes of the voltage signal.
  • the invention brings a great improvement to the existing technique by providing a very economical implementation method making it possible to produce a ceramic deposit of uniform thickness, and of excellent quality, on metal parts , even of large area.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

PROCEDE ELECTROLYTIQUE D'OXYDATION POUR L'OBTENTION D' UN REVÊTEMENT CERAMIQUE A LA SURFACE D'UN METAL
La présente invention a pour objet un procédé électrique d'oxydation par micro-arc plasma en vue d'obtenir un revêtement céramique à la surface d'un métal ayant des propriétés de semi-conducteur.
L'aluminium, le titane, leurs alliages et tous les métaux qui présentent des propriétés de valve (diode) ont un rapport résistance mécanique/poids intéressant et conviennent à un large domaine d'applications tels que l'aéronautique, l'automobile, la mécanique
(notamment pour des pièces mobiles, avec des charges et des contraintes de déformation mécaniques importantes), etc.
Cependant, comme ces métaux ne présentent pas naturellement des propriétés tribologiques et mécaniques adaptées (dureté, coefficient de friction, résistance a l'abrasion, etc), des revêtements sont souvent utilisés pour en améliorer les caractéristiques limites de ces matériaux.
Ils permettent souvent de satisfaire à des exigences complémentaires, telles que la résistance à la corrosion en milieu acide et/ou alcalin, la possibilité de supporter passagèrement des températures élevées, ou l'obtention de propriétés diélectriques.
Plusieurs procédés de revêtement électrolytique sont employés actuellement. Le plus utilisé, en protection contre l'usure et/ou la corrosion, est l'anodisation dure. Elle présente toutefois des limites d 'utilisation assez rapidement atteintes. Ce procédé d'anodisation permet de former des couches d'oxyde protectrices sur les pièces en aluminium. Cependant, les revêtements produits par cette méthode sont limités en épaisseur et ne présentent qu'une dureté moyenne (maximum d'environ 500 Hv) .
Un certain nombre d'autres techniques ont été développées pour produire des revêtements plus performants, notamment en céramique, afin de répondre à des exigences d'utilisation plus sévères : la projection plasma par décharge d 'arcs, la projection par flammes ou les techniques de dépôts sous-vide.
Cependant, l'inconvénient est que pour obtenir une bonne adhésion du revêtement, ces techniques requièrent une température de substrat élevée, ainsi que des procédés préalables pour préparer la surface. Par ailleurs, ces procédés ne peuvent pas concurrencer l'anodisation traditionnelle en termes d'uniformité du revêtement et/ou en coûts de production.
Un procédé relativement ancien ( 1 932) d'oxydation anodique par décharges de micro-arcs ou décharges d'étincelles à l'anode a été développé afin d'obtenir des revêtements céramiques pour les pièces en aluminium, titane et magnésium et leurs alliages, comme moyen de protection contre l'abrasion sévère et la corrosion.
L'oxydation micro-arcs forme sur les métaux à effet de valve, comme l'aluminium et le titane, un film barrière isolant. En augmentant le potentiel anodique à plus de 200 V, le film barrière est rompu et des micro-arcs apparaissent. Si une tension élevée est maintenue, de nombreux micro-arcs s'amorcent et se déplacent rapidement sur toute la surface immergée de l'échantillon. Ces ruptures diélectriques provoquent des cheminées qui traversent la couche d'oxydes (barrière) formée. Des composés complexes sont synthétisés à l'intérieur de ces cheminées. Ils se composent de matériau du substrat, d'oxydes de surface et d'éléments d'addition de l'électrolyte. Des interactions chimiques en phase plasma se produisent dans les multiples décharges de surface et ont pour résultat la formation d'un revêtement croissant dans les deux directions à partir de la surface du substrat. Ceci provoque un changement graduel dans la composition des propriétés du revêtement depuis l'alliage métallique à l'intérieur du substrat jusqu'à un composé céramique complexe dans le revêtement. D'après la description de l'historique de ce procédé,
Gunterschulze et Betz ont été les premiers à évoquer en 1 932, le procédé de dépôt anodique par étincelage appelé Anodic Spark Déposition (ASD). Ils ont observé que le matériau subissait un dépôt de l'électrolyte pendant la rupture diélectrique d'un film isolant croissant sur l'anode. Cette rupture diélectrique provoque des étincelles qui apparaissent et disparaissent en se répartissant sur toute la surface de l'anode, donnant un effet de mouvement.
Les premières applications pratiques de l'ASD a été leur utilisation comme revêtement anti-corrosion sur les alliages de magnésium, qui date de 1 936. et ont été inclus dans une spécification militaire en 1 963. Depuis, les principaux efforts de recherches ont été menés par Gruss, McNeill et collaborateurs au Frankford Arsenal à Philadelphie, et par Brown, Wirtz, Kriven et collaborateurs à l'Université de I* Illinois à Urbana-Champaign. Parallèlement, des recherches ont été menées en Allemagne de l'Est, principalement par Krysmann, Kurze, Dittrich et collaborateurs. Le procédé en allemand est appelé "Oxydation anodique par décharges d'étincelles", dont l'acronyme est ANOF. Les rapports de ces travaux dans la littérature internationale font référence à des brevets en langue allemande.
Il est clair que ces recherches apportent des progrès significatifs, cependant ils restent malgré tout sommaires et les composés du revêtement formé, n'ont pas été clairement identifiés (seuls les constituants α-AI203. et γ-AI2O3(OH) (Bohémite) ont été identifiés par rayons X) .
Un procédé breveté en 1 974 a été mis en place pour concurrencer le revêtement sur aluminium à des fins architecturales. La méthode permet au substrat aluminium d'agir comme anode dans une solution potassium-silicate, afin qu'un revêtement silicate-alumine de couleur gris-olive soit appliqué par l'utilisation d'un courant direct de 400 V demi-onde rectifié. Le procédé a lieu par une rupture diélectrique de la couche barrière, provoquant des étincelles ou scintillements visibles sur le substrat anodique, alors que Bakovets, Dolgoveseva et Nikiforova postulent trois mécanismes parallèles durant la formation du film : électrochimique, oxydation plasma et oxydation chimique.
Plusieurs modifications ont été apportées à ce procédé appelé "silicodisant", comprenant l'addition d'acides carboxyliques et de composants vanadium dans le bain. Des résines de céramique ou de tetrafluoroethylene ont été également ajoutées dans le bain afin d'apporter des qualités de dureté ou de lubrification au revêtement.
L'inconvénient pour de tels procédés est l'utilisation, en terme de forme de signal, d'un courant continu (DC) de quelques mA, sous des tensions inférieures à 500 V. Il en résulte un arrêt de l'étincelage après quelques minutes (la plus grande quantité de dépôt se forme dans les premières minutes). De telles conditions opératoires ne permettent de produire que de très faibles épaisseurs de revêtement et limitent ainsi ses propriétés physiques.
D'autres procédés décrivent l'utilisation, dans des bains électrolytiques de compositions variables, des tensions alternatives qui peuvent dépasser 1000 V, associées à un courant continu ou alternatif.
Il faut noter également que l'utilisation dans certains cas de tensions élevées avec des densités de courant importantes font que ces procédés sont difficilement exploitables industriellement.
Par contre, l'excellente adhésion au substrat de ce type de revêtement, les caractéristiques physiques et tribologiques (grande dureté, résistance : thermique, électrique, à l'abrasion, à la corrosion, etc .... ), la grande variété de mélanges alumino-silicate à des fins de revêtement, et le fait que le revêtement puisse se faire à l'intérieur de surfaces étroites et de géométrie complexe, figurent parmi les nombreux avantages de ce procédé. Nous décrivons ci-après un type différent de procédé micro-arc capable de suivre, d'imposer et de contrôler l'évolution d'un process de revêtement céramique dans ses différentes phases. Un dispositif adapté permet d'établir les programmations optimum, en fonction de différents paramètres (nature de l'alliage, ou du métal des pièces à traiter, des caractéristiques de la céramique que l'on souhaite obtenir, etc) .
Trois phases principales de procédé peuvent être identifiées, suivant les descriptions que l'on trouve dans les nombreux ouvrages scientifiques et autres publications sur le sujet généralement appelé MICRO ARC OXYDATION et décrit précédemment. Les pièces à traiter et les électrodes plongées dans l'électrolyte constituent un dipôle, auquel on applique l'énergie électrique fournie par un générateur.
L'électrolyte est une solution à base aqueuse, déminéralisée de préférence et comporte au moins un sel oxyacide d'un métal alcalin et un hydroxyde d'un métal alcalin. Une grande variété de solutions sont décrites dans les nombreuses publications sur le sujet.
Dans la première phase qui dure suivant les alliages de quelques secondes à quelques minutes se forme une couche isolante constituée d'hydroxyde, cette couche fine est un diélectrique. Dans la deuxième phase, on observe un claquage de cette couche diélectrique avec une activité micro-arc qui va en s'amplifiant, suivant l'énergie électrique appliquée.
Cette deuxième phase dure, suivant les paramètres précités, entre 1 5 et 30 minutes.
Dans la troisième phase, on obtient graduellement la formation d'une couche de céramique épaisse. La composition et les propriétés physiques du revêtement au cours de cette formation sont évolutives. On a pu identifier aux rayons X la présence majoritaire des éléments de type γ- AI2O3. (bohémite) et -AI203 corendum.
Lorsque l'on utilise un générateur délivrant une énergie électrique continue ou alternative à paramètres fixes, on constate une chute de l'intensité au cours du process avec différenciation des courbes tension-courant relevées sur oscilloscope. Ceci est le résultat du procédé lui-même indépendamment de toute intervention. Dans ce cas, un des facteurs déterminants est la propriété diélectrique et l'épaisseur de la couche de céramique formée.
Les générateurs utilisés et décrits dans les différentes publications délivrent : soit un courant redressé et/ou continu, soit un courant alternatif monophasé ou triphasé sinusoïdal. Des condensateurs en série sont interposés notamment pour limiter le courant dans le circuit secondaire d'utilisation et il s'en suit une forme particulière du courant. Il est également décrit des générateurs alternatifs alimentés sur courant triphasé et utilisant séquentiellement les trois phases à l'aide de thyristors ou dispositifs électroniques équivalents. La forme du courant n'est que le résultat du procédé lui-même et n'est pas modifiable dans sa forme.
Le document US 5 61 6 229 concerne un procédé de réalisation d'un revêtement céramique par cette technique, dans lequel la tension appliquée aux électrodes est d'au moins 700 V. En dessous de cette valeur de tension, il n'est pas possible d'obtenir une céramique cohérente, mais de la poudre. Il en résulte donc une consommation d'énergie très importante, notamment lorsque les pièces à revêtir de céramique sont de surface importante.
Le but de l'invention est de fournir un procédé électrolytique d'oxydation par micro-arc plasma en vue d'obtenir un revêtement céramique à la surface d'un métal ayant des propriétés semi-conducteur, tel qu'aluminium, titane, magnésium, hafnium, zirconium et leurs alliages par réaction physico-chimique de transformation du métal traité. Le but est de diminuer la porosité de la couche céramique en obtenant une couche très dense et d'épaisseur homogène sur toute la surface de la pièce. En outre, un but de l'invention est de réduire le temps de croissance de la céramique à la surface de la pièce métallique tout en diminuant l'énergie électrique consommée.
A cet effet, le procédé qu'elle concerne, est caractérisé en ce qu'il consiste à : - immerger la pièce métallique à revêtir dans un bain électrolytique composé d'une solution aqueuse d 'hydroxyde de métal alcalin, tel que potassium ou sodium, et d'un sel oxyacide d'un métal alcalin, la pièce métallique formant l'une des électrodes,
- et à appliquer aux électrodes une tension de signal de forme générale triangulaire, c'est-à-dire présentant au moins une pente avant et une pente arrière, à facteur de forme variable au cours du procédé, engendrant un courant contrôlé dans son intensité, sa forme et son rapport entre l'intensité positive et l'intensité négative.
Il est ainsi possible d'adapter la forme d 'onde de tension aux différentes étapes du procédé ainsi qu'au type d'alliage et aux différentes solutions de bain électrolytique. Cette forme d'onde a, de plus et conjointement, un paramètre variable en fréquence, ce qui améliore dans de grandes proportions les qualités du revêtement céramique comparées à celles obtenues par des procédés connus. Différents modes de mise en oeuvre de ce procédé sont possibles. C'est ainsi que les pentes avant et arrière du signal de tension peuvent être sensiblement symétriques, ou asymétriques et d'angles variables au cours du procédé. Il est également possible, au cours du procédé, de faire évoluer la fréquence du signal triangulaire entre environ 100 et 400 Hz.
Suivant un mode de mise en oeuvre de ce procédé, celui-ci consiste à faire évoluer la valeur de la tension triangulaire au cours de l'électrolyse entre environ 300 et 600 V efficaces.
La valeur du courant peut également être modifiée ou fixée indépendamment de la tension. Les différents paramètres (facteur de forme, valeur du potentiel, fréquence, valeur du courant, rapport UA/IC) peuvent être modifiés simultanément ou indépendamment les uns des autres au cours du procédé.
Suivant une autre de ces caractéristiques, ce procédé consiste à contrôler séparément dans ses formes et valeurs l'énergie électrique Ul en phase positive et/ou en phase négative.
Un générateur électronique de type source de courant pour la mise en oeuvre de ce procédé comportant un bloc de liaison à une alimentation électrique monophasée ou triphasée du secteur et un bloc de liaison à la cuve d'électrolyse, est caractérisé en ce qu'il comprend : - un module de transformation du signal alternatif sinusoïdal fourni par le réseau en un signal de forme trapézoïdale ou en dents de scie,
- un module de modification de la pente et du facteur de forme du signal,
- un module de variation de la fréquence dans différents types de cycles, et
- un module de gestion de l'énergie électrique en fonction de l'énergie paramétrée et de l'énergie utilisée.
Avantageusement, ce générateur comprend, en sortie, un transformateur d'isolement avec condensateurs en série dans le primaire ou le secondaire, pour filtrer la composante continue afin d'éviter la saturation du circuit magnétique tout en insérant une sécurité d'utilisation optimale pour la protection électrique, avec liaison d'un des pôles à la terre.
Suivant une autre caractéristique de l'invention, ce générateur est contrôlé par un processeur de type PC permettant de gérer les différents paramètres au fur et à mesure du déroulement du procédé.
Les variations conjuguées de la fréquence, tension, facteur de forme du signal et du courant jouent un rôle essentiel dans le procédé selon l'invention.
Le balayage des fréquences conjugué aux variations de la pente avant de notre signal triangulaire permet d'exciter tour à tour des zones intérieures peu actives et des zones extérieures à grands vecteurs d'excitation naturelle.
La pente avant raide permet d'induire l'amorçage des micro-arcs de façon très active sans élévation de la tension moyenne. La pente lente maintient un courant constant pendant le temps nécessaire à la réaction physico-chimique au sein du plasma. Le contrôle de la pente arrière a également des répercussions sur le courant négatif. Le pic négatif de courant aide à diffuser les ions al nécessaires à la continuité de la formation de la couche de céramique dans certaines phases du processus. Il sert également à obtenir une réduction de porosité résiduelle en fin de procédé. Les pentes symétriques du signal favorisent une croissance rapide et régulière de la couche de céramique, et permettent l'inclusion d'éléments additifs que l'on peut ajouter dans le bain et suivant les caractéristiques du revêtement céramique que l'on souhaite obtenir pour l'utilisation optimale des pièces. Cette situation est beaucoup plus efficace que celle obtenue à partir d'une sinusoïde ou d'un courant continu décrits dans les documents de l'art antérieur.
La mise en oeuvre du procédé selon l'invention présente les principaux avantages suivants : - formation optimale de la couche d'hydroxyde ;
- réduction significative de la rugosité de la surface de la couche ;
- amélioration de l'adhésion du revêtement au substrat ;
- croissance progressive de la couche d'oxyde ; - croissance rapide de la couche de céramique de type α-AI203
(corendum) ;
- permet de contrôler et réduire efficacement le taux de porosité résiduel inhérent au procédé fondamental de micro-arc lui-même et ce surtout avec certains alliages ; - amélioration du traitement sur des catégories d'aluminium fortement alliés ;
- obtention d'une couche plus épaisse et plus dense dans un temps réduit de plus de moitié (50 %) ;
- permet de relancer les micro-arcs en phase avancée du traitement pour obtenir des épaisseurs plus importantes (suivant les alliages) de 40 μm à 300 μm sans destruction de la couche existante ;
- réduction de la consommation d'énergie de plus de 50 % ;
- réduction d 'un facteur de 35 % de la puissance calorifique émise ; - obtention d'une meilleure homogénéité hors des lignes de fuite du courant dues aux angles et aux contours des pièces à traiter ; - possibilité d'imprégnation sous vide, au trempé ou au pistolage ou autre, de résine polymère élastomère ou autre composé organique.
Pour une capacité comparée identique matérialisée en dm2 de surface traitée, il est possible d'utiliser avec ce nouveau procédé une section de câble d'alimentation réduite de 50 %.
La puissance énergétique du réseau qui fournit l'alimentation électrique est réduite dans les mêmes proportions ainsi que l'abonnement de la tranche de comptage de l'énergie électrique consommée.
Il s'en suit une forte économie et une diminution substantielle du coût de revient du traitement avec une qualité accrue. Quand on sait que l'un des principaux écueils industriels réside dans cette grande consommation d'énergie électrique, ce procédé offre déjà dans ce domaine un avantage important.
Vu sous un autre aspect, cette même installation est capable, à partir d'une énergie électrique d 'une certaine valeur, de doubler la capacité de traitement par rapport à un générateur classique utilisant le signal sinusoïdal du réseau de distribution. Les courbes de tension/courant obtenues montrent les différences fondamentales des pics d'énergie positifs et négatifs obtenus par le procédé. Un contrôle total de ces paramètres met en évidence la possibilité d'obtenir les valeurs et les formes de courant souhaitées à n'importe quelle étape de croissance de la couche au cours du traitement.
L'invention est expliquée, ci-après, en référence au dessin schématique annexé représentant une forme d'exécution du dispositif pour la mise en oeuvre du procédé ainsi que quelques courbes illustrant le procédé :
Figure 1 est une vue très générale de l'installation ;
Figure 2 est une vue d'un schéma-bloc du générateur de courant ; Figures 3, 4 et 5 sont trois diagrammes illustratifs respectivement du signal de tension d'attaque lorsque celui-ci est équilibré, du signal d'intensité/tension correspondant prise aux bornes de la charge et courbes de puissance positives et négatives y relatives ;
Figures 6, 7 et 8 sont trois vues correspondant respectivement à figures 3, 4 et 5 dans le cas où la pente avant du signal de tension est plus forte que la pente arrière ; Figures 9, 10 et 1 1 sont trois vues correspondant respectivement à figures 3, 4 et 5 dans le cas où la pente arrière du signal de tension est plus importante que la pente avant.
La figure 1 illustre l'agencement général d'une installation, dans laquelle la cuve est désignée par la référence générale 2 et contient un bain électrolytique 3 constitué par une solution aqueuse d'hydroxyde de métal alcalin, tel que potassium ou sodium, et d'un sel oxyacide d'un métal alcalin. A l'intérieur de l'électrolyte plongent une contre-électrode (cathode) 4 et une "anode" 5 qui est constituée par la pièce à revêtir par transformation du métal lui-même, cette pièce étant réalisée en un métal ou alliage métallique ayant des propriétés de semi-conducteur. A la figure 1 , sont également représentés un bloc d'alimentation en courant 6, un générateur de tension 7 et un micro-ordinateur 8 commandant et contrôlant les paramètres variables suivant les séquences du procédé. La figure 2 représente, de façon plus détaillée, le générateur 7.
L'alimentation est réalisée à la partie gauche de la figure 2, à l'emplacement désigné par la référence 9. Ce générateur comprend un module 10 de transformation du signal 50 périodes alternatif sinusoïdal en signal triangulaire ou trapézoïdal. Le module 1 2 est destiné à réaliser des modifications de la pente et du facteur de forme du signal de tension. Le module 1 3 commande la variation de la fréquence dans différents types de cycles, par exemple de 70 à 400 Hz.
Le module 14 relié au micro-ordinateur 8 assure la gestion de l'énergie électrique en fonction de l'énergie paramétrée et de l'énergie réellement utilisée. Le signal de sortie est désigné par la référence 1 5. Il est possible de disposer en sortie un transformateur d'isolement, non représenté avec condensateur en série dans le primaire ou le secondaire pour filtrer la composante continue, afin d'éviter la saturation du circuit magnétique, tout en insérant une sécurité d'utilisation optimale pour la protection électrique, avec liaison d'un des pôles à la terre.
Les courbes illustrées aux figures 3 à 1 1 montrent bien les conséquences de la variation de pente avant et arrière du signal de tension, notamment sur la puissance électrique, et sur la répartition des phases positives et négatives de celle-ci. Il est remarquable de noter que l'ajustement de la puissance est réalisé facilement en faisant varier les pentes avant et arrière du signal de tension. Comme il ressort de ce qui précède, l'invention apporte une grande amélioration à la technique existante en fournissant un procédé de mise en oeuvre très économique permettant de réaliser un dépôt céramique d'épaisseur homogène, et d'excellente qualité, sur des pièces métalliques, même de grande surface.

Claims

REVENDICATIONS
1 . Procédé électrolytique d'oxydation par micro-arc plasma en vue d'obtenir un revêtement céramique à la surface d'un métal, ayant des propriétés de semi-conducteur, tel qu'aluminium, titane, magnésium, hafnium, zirconium et leurs alliages, par réaction physico-chimique de transformation du métal traité, caractérisé en ce qu'il consiste à :
- immerger la pièce métallique (5) à revêtir dans un bain électrolytique (3) composé d'une solution aqueuse d'hydroxyde de métal alcalin, tel que potassium ou sodium, et d'un sel oxyacide d'un métal alcalin, la pièce métallique formant l'une des électrodes,
- et à appliquer aux électrodes une tension de signal de forme générale triangulaire, c'est-à-dire présentant au moins une pente avant et une pente arrière, à facteur de forme variable au cours du procédé, engendrant un courant contrôlé dans son intensité, sa forme et son rapport entre l'intensité positive et l'intensité négative.
2. Procédé selon la revendication 1 , caractérisé en ce que les pentes avant et arrière du signal de tension sont sensiblement symétriques.
3. Procédé selon la revendication 1 , caractérisé en ce que les pentes avant et arrière du signal de tension sont asymétriques et d'angles variables au cours de l'électrolyse.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce qu'il consiste à faire évoluer la valeur de la tension triangulaire entre 300 et 600 V efficaces, au cours du procédé.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce qu'il consiste à faire varier la fréquence du signal triangulaire entre 100 et 400 Hz, au cours du procédé.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce qu'il consiste à faire évoluer ou à fixer la valeur du courant indépendamment de la valeur de la tension.
7. Procédé selon l'ensemble des revendications 1 à 6, caractérisé en ce qu'il consiste à faire varier indépendamment au cours du procédé les différents paramètres : facteur de forme, valeur du potentiel, fréquence, valeur du courant.
8. Procédé selon l'ensemble des revendications 1 à 6, caractérisé en ce qu'il consiste à faire varier simultanément au cours du procédé au moins certains des différents paramètres : facteur de forme, valeur du potentiel, fréquence, valeur du courant, rapport UA/IC.
9. Procédé selon l'une des revendications 1 à 8, caractérisé en ce qu'il consiste à contrôler séparément dans ses formes et valeurs l'énergie électrique Ul en phase positive et/ou en phase négative.
10. Générateur électronique de type source de courant pour la mise en oeuvre du procédé selon l'une des revendications 1 à 9, comportant un bloc de liaison (9) à une alimentation électrique monophasée ou triphasée du secteur et un bloc de liaison à la cuve d'électrolyse, caractérisé en ce qu'il comprend :
- un module ( 10) de transformation du signal alternatif sinusoïdal fourni par le réseau en un signal de forme trapézoïdale ou en dents de scie,
- un module (1 2) de modification de la pente et du facteur de forme du signal,
- un module ( 1 3) de variation de la fréquence dans différents types de cycles, et
- un module ( 14) de gestion de l'énergie électrique en fonction de l'énergie paramétrée et de l'énergie utilisée.
1 1 . Générateur selon la revendication 10, caractérisé en ce qu'il comprend, en sortie, un transformateur d'isolement avec condensateurs en série dans le primaire ou le secondaire, pour filtrer la composante continue afin d'éviter la saturation du circuit magnétique tout en insérant une sécurité d'utilisation optimale pour la protection électrique, avec liaison d'un des pôles à la terre.
1 2. Générateur selon l'une des revendications 1 0 et 1 1 , caractérisé en ce qu'il est contrôlé par un processeur (8) de type PC permettant de gérer les différents paramètres au fur et à mesure du déroulement du procédé.
EP01929704A 2000-04-26 2001-04-25 Procede electrolytique d'oxydation pour l'obtention d'un revetement ceramique a la surface d'un metal Expired - Lifetime EP1276920B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0005321A FR2808291B1 (fr) 2000-04-26 2000-04-26 Procede electrolytique d'oxydation pour l'obtention d'un revetement ceramique a la surface d'un metal
FR0005321 2000-04-26
PCT/FR2001/001269 WO2001081658A1 (fr) 2000-04-26 2001-04-25 Procede electrolytique d'oxydation pour l'obtention d'un revêtement ceramique a la surface d'un metal

Publications (2)

Publication Number Publication Date
EP1276920A1 true EP1276920A1 (fr) 2003-01-22
EP1276920B1 EP1276920B1 (fr) 2011-07-20

Family

ID=8849614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01929704A Expired - Lifetime EP1276920B1 (fr) 2000-04-26 2001-04-25 Procede electrolytique d'oxydation pour l'obtention d'un revetement ceramique a la surface d'un metal

Country Status (13)

Country Link
US (1) US6808613B2 (fr)
EP (1) EP1276920B1 (fr)
JP (1) JP2003531302A (fr)
KR (1) KR100868547B1 (fr)
CN (1) CN100482867C (fr)
AT (1) ATE517200T1 (fr)
AU (1) AU775598B2 (fr)
BR (1) BR0110339A (fr)
CA (1) CA2405485A1 (fr)
FR (1) FR2808291B1 (fr)
IL (2) IL152307A0 (fr)
RU (1) RU2268325C2 (fr)
WO (1) WO2001081658A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124806A1 (fr) 2021-07-02 2023-01-06 Lag2M Equipment de traitement au défilé de pièces par oxydation micro-arc

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2386907B (en) * 2002-03-27 2005-10-26 Isle Coat Ltd Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
AU2002329410A1 (en) * 2002-03-27 2003-10-13 Isle Coat Limited Process and device for forming ceramic coatings on metals and alloys, and coatings produced by this process
JP4365415B2 (ja) * 2004-01-12 2009-11-18 アレクサンドロビチ ニキフォロフ,アレクセイ マイクロアーク酸化によるバルブ金属部品の高接着性の厚い保護コーティングを生産する方法
DE102004026159B3 (de) * 2004-05-28 2006-02-16 Infineon Technologies Ag Verfahren zur Herstellung von elektronischen Bauelementen, deren Verwendung zur Herstellung integrierter Schaltungen und damit hergestelltes elektronisches Bauelement
FR2877018B1 (fr) * 2004-10-25 2007-09-21 Snecma Moteurs Sa Procede d'oxydation micro arc pour la fabrication d'un revetement sur un substrat metallique, et son utilisation
EP1818428B1 (fr) * 2004-11-05 2014-02-26 Nihon Parkerizing Co., Ltd. PROCÉDÉ DE REVÊTEMENT CÉRAMIQUE ÉLECTROLYTIQUE POUR MÉTAL, ÉLECTROLYTE POUR UTILISATION DANS UN REVÊTEMENT CÉRAMIQUE ÉLECTROLYTIQUE POUR MÉTAL ET MATéRIAU DE MéTAL
DE102005011322A1 (de) * 2005-03-11 2006-09-14 Dr.Ing.H.C. F. Porsche Ag Verfahren zur Herstellung von Oxyd- und Silikatschichten auf Metalloberflächen
FR2889205B1 (fr) * 2005-07-26 2007-11-30 Eads Astrium Sas Soc Par Actio Revetement pour dispositif externe de controle thermo-optique d'elements de vehicules spatiaux, son procede de formation par micro-arcs en milieu ionise, et dispositif recouvert de ce revetement
CN1769526B (zh) * 2005-12-02 2010-08-25 中国科学院物理研究所 钢铁管件内壁陶瓷化处理方法及其装置
US7910221B2 (en) * 2006-02-08 2011-03-22 La Jolla Bioengineering Institute Biocompatible titanium alloys
KR100780280B1 (ko) * 2006-03-30 2007-11-28 주식회사 아이메탈아이 금속체의 표면처리방법
US20080047837A1 (en) * 2006-08-28 2008-02-28 Birss Viola I Method for anodizing aluminum-copper alloy
DE102006052170A1 (de) * 2006-11-02 2008-05-08 Steinert Elektromagnetbau Gmbh Anodische Oxidschicht für elektrische Leiter, insbesondere Leiter aus Aluminium, Verfahren zur Erzeugung einer anodischen Oxidschicht und elektrischer Leiter mit anodischer Oxidschicht
US20080248214A1 (en) * 2007-04-09 2008-10-09 Xueyuan Nie Method of forming an oxide coating with dimples on its surface
TWI335674B (en) * 2007-07-11 2011-01-01 Univ Nat Taiwan Methos for forming an insulating layer over a silicon carbide substrate, silicon carbide transistors and methods for fabricating the same
CN101365305A (zh) * 2007-08-07 2009-02-11 鸿富锦精密工业(深圳)有限公司 便携式电子装置外壳及其制备方法
US20090056090A1 (en) * 2007-09-05 2009-03-05 Thomas Bunk Memorial article and method thereof
GB0720982D0 (en) * 2007-10-25 2007-12-05 Plasma Coatings Ltd Method of forming a bioactive coating
ZA200906786B (en) * 2008-10-16 2010-05-26 Internat Advanced Res Ct Arci A process for continuous coating deposition and an apparatus for carrying out the process
GB2469115B (en) * 2009-04-03 2013-08-21 Keronite Internat Ltd Process for the enhanced corrosion protection of valve metals
CN102362015B (zh) * 2009-04-10 2014-06-18 株式会社爱发科 构成机械增压泵、涡轮分子泵或干式泵的部件的表面处理方法及通过该表面处理方法处理过的机械增压泵、涡轮分子泵或干式泵
CN101660190B (zh) * 2009-09-18 2010-12-29 西北有色金属研究院 一种外科植入用钛及钛合金表面黑色保护膜的制备方法
CN101845655B (zh) * 2010-06-01 2011-09-28 西安理工大学 一种低能耗阳极渐入式微弧氧化处理方法及装置
FR2966533B1 (fr) 2010-10-21 2014-02-21 Astrium Sas Organe de frottement pour l'assemblage de deux pieces.
CN102181907B (zh) * 2011-04-22 2012-07-11 北京交通大学 一种am60镁合金表面薄层处理方法
CN102127789B (zh) * 2011-04-22 2012-06-27 北京交通大学 一种am60镁合金表面厚层处理方法
CN102127791B (zh) * 2011-04-22 2012-06-27 北京交通大学 一种az91镁合金表面厚层处理方法
CN102140665B (zh) * 2011-04-22 2012-07-11 北京交通大学 一种am60镁合金表面薄层厚度均匀处理方法
CN102181909B (zh) * 2011-04-22 2012-07-11 北京交通大学 一种az91镁合金表面薄层处理方法
KR101336443B1 (ko) * 2011-04-26 2013-12-04 영남대학교 산학협력단 고내식성 마그네슘 합금 산화피막의 제조방법
CN102330095B (zh) * 2011-08-29 2013-10-09 中国科学院合肥物质科学研究院 一种钢基材料表面的Al2O3涂层制备方法
CN103695981B (zh) * 2012-09-27 2016-03-23 中国科学院金属研究所 一种铝合金表面微弧氧化膜功能化设计的方法
CN103695980B (zh) * 2012-09-27 2016-04-13 中国科学院金属研究所 一种铝合金表面单层微弧氧化陶瓷膜的制备方法
US9123651B2 (en) 2013-03-27 2015-09-01 Lam Research Corporation Dense oxide coated component of a plasma processing chamber and method of manufacture thereof
CN103334143B (zh) * 2013-07-15 2016-01-20 湖南大学 一种锆合金表面快速制备耐磨氧化锆和氧化铝混合涂层的微弧氧化方法
JP2015137739A (ja) * 2014-01-23 2015-07-30 大陽日酸株式会社 摺動部用部材およびその製造方法
US10077717B2 (en) 2014-10-01 2018-09-18 Rolls-Royce Corporation Corrosion and abrasion resistant coating
CN108368632B (zh) 2015-12-16 2020-09-25 汉高股份有限及两合公司 用于在铝上沉积钛基保护涂层的方法
RU167518U1 (ru) * 2015-12-30 2017-01-10 Федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина)" (СПбГЭТУ "ЛЭТИ") Установка для получения пористых анодных оксидов металлов и полупроводников
SG11202005062SA (en) 2016-07-13 2020-06-29 Alligant Scientific Llc Electrochemical methods, devices and compositions
CN106801241A (zh) * 2017-02-13 2017-06-06 广东飞翔达科技有限公司 一种在金属零件上产生陶瓷保护涂层的装置以及方法
FR3087208B1 (fr) 2018-10-16 2020-10-30 Irt Antoine De Saint Exupery Procede de traitement de surface de pieces en aluminium
CN109183115A (zh) * 2018-10-19 2019-01-11 北京杜尔考特科技有限公司 一种表面覆有超硬微弧氧化陶瓷膜的铝合金的制备方法
CN110361313B (zh) * 2019-07-11 2022-04-05 上海应用技术大学 一种定量评价磷化膜孔隙率的电化学测试方法
FR3110605B1 (fr) 2020-05-20 2023-06-30 Lag2M Procede et installation de traitement de pieces metalliques par oxydation micro-arc
FR3111146A1 (fr) 2021-06-03 2021-12-10 Lag2M Installation de traitement de pieces metalliques par oxydation micro-arc
CN113881995B (zh) * 2021-11-01 2023-03-24 中国电子科技集团公司第三十八研究所 一种冷板风道内部微弧氧化的方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE257274C (fr) 1900-01-01
US4468293A (en) * 1982-03-05 1984-08-28 Olin Corporation Electrochemical treatment of copper for improving its bond strength
US4923574A (en) * 1984-11-13 1990-05-08 Uri Cohen Method for making a record member with a metallic antifriction overcoat
DD257274B1 (de) * 1987-02-02 1991-05-29 Karl Marx Stadt Tech Hochschul Verfahren zur herstellung dekorativer oberflaechen auf metallen
US5147515A (en) * 1989-09-04 1992-09-15 Dipsol Chemicals Co., Ltd. Method for forming ceramic films by anode-spark discharge
SU1767043A1 (ru) * 1990-01-25 1992-10-07 Филиал Всесоюзного Научно-Исследовательского Проектно-Конструкторского И Технологического Института Электромашиностроения Способ микродугового анодировани
US5071527A (en) * 1990-06-29 1991-12-10 University Of Dayton Complete oil analysis technique
US5141602A (en) * 1991-06-18 1992-08-25 International Business Machines Corporation High-productivity method and apparatus for making customized interconnections
RU2023762C1 (ru) * 1991-06-27 1994-11-30 Научно-техническое бюро "Энергия" Московского межотраслевого объединения "Ингеоком" Способ нанесения покрытий на алюминиевые сплавы
JP2875680B2 (ja) * 1992-03-17 1999-03-31 株式会社東芝 基材表面の微小孔又は微細凹みの充填又は被覆方法
JPH06297639A (ja) * 1993-04-13 1994-10-25 Sky Alum Co Ltd フィルム積層アルミニウム材およびフィルム積層用アルミニウム材の製造方法
RU2070622C1 (ru) * 1993-06-24 1996-12-20 Василий Александрович Большаков Способ нанесения керамического покрытия на металлическую поверхность микродуговым анодированием и электролит для его осуществления
WO1995018250A1 (fr) * 1993-12-29 1995-07-06 Nauchno-Issledovatelsky Inzhenerny Tsentr 'agromet' Procede de production d'un revetement sur des metaux a conductivite unipolaire
IL109857A (en) * 1994-06-01 1998-06-15 Almag Al Electrolytic process and apparatus for coating metals
US5605615A (en) * 1994-12-05 1997-02-25 Motorola, Inc. Method and apparatus for plating metals
US5720866A (en) * 1996-06-14 1998-02-24 Ara Coating, Inc. Method for forming coatings by electrolyte discharge and coatings formed thereby
CA2283467A1 (fr) * 1997-03-11 1998-09-17 Almag Al Procede et appareil pour le revetement de metaux
AU747068C (en) * 1997-12-17 2002-11-07 Isle Coat Limited Method for producing hard protection coatings on articles made of aluminium alloys
US6197178B1 (en) * 1999-04-02 2001-03-06 Microplasmic Corporation Method for forming ceramic coatings by micro-arc oxidation of reactive metals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0181658A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3124806A1 (fr) 2021-07-02 2023-01-06 Lag2M Equipment de traitement au défilé de pièces par oxydation micro-arc

Also Published As

Publication number Publication date
KR20030011316A (ko) 2003-02-07
EP1276920B1 (fr) 2011-07-20
IL152307A (en) 2006-07-05
CA2405485A1 (fr) 2001-11-01
BR0110339A (pt) 2003-12-30
WO2001081658A1 (fr) 2001-11-01
US6808613B2 (en) 2004-10-26
KR100868547B1 (ko) 2008-11-13
AU775598B2 (en) 2004-08-05
IL152307A0 (en) 2003-05-29
US20020112962A1 (en) 2002-08-22
FR2808291B1 (fr) 2003-05-23
RU2268325C2 (ru) 2006-01-20
CN1426496A (zh) 2003-06-25
AU5640701A (en) 2001-11-07
JP2003531302A (ja) 2003-10-21
CN100482867C (zh) 2009-04-29
ATE517200T1 (de) 2011-08-15
FR2808291A1 (fr) 2001-11-02

Similar Documents

Publication Publication Date Title
EP1276920B1 (fr) Procede electrolytique d'oxydation pour l'obtention d'un revetement ceramique a la surface d'un metal
JP2003531302A5 (fr)
Arrabal et al. Characterization of AC PEO coatings on magnesium alloys
Kaseem et al. Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance
KR101342413B1 (ko) 세라믹스 피복금속 및 그 제조방법
US9677187B2 (en) Non-metallic coating and method of its production
CA2315792A1 (fr) Procede permettant d'obtenir des revetements de protection durs sur des articles faits d'alliages d'aluminium
Jiang et al. Micro-arc oxidation (MAO) to improve the corrosion resistance of magnesium (Mg) alloys
Loghman et al. Corrosion Behavior of PEO Coatings on 6061 Al Alloy: Effect of Sodium Fluoride Addition to Aluminate based Electrolyte.
Liu et al. Towards dense corrosion-resistant plasma electrolytic oxidation coating on Mg-Gd-Y-Zr alloy by using ultra-high frequency pulse current
Tousch et al. Influence of carbon nanotubes on the plasma electrolytic oxidation process of aluminum under “soft” sparking conditions
RU2168039C2 (ru) Двигатель внутреннего сгорания с уменьшенным теплоотводом и способ его изготовления
RU2389830C2 (ru) Способ микродугового оксидирования
Bakhtiari-Zamani et al. Comparing Morphology and Corrosion Behavior of Nanostructured Coatings Obtained via Plasma Electrolytic Oxidation with Direct and Pulse Currents on Commercial Titanium Substrate
WO2020079358A1 (fr) Procédé de traitement de surface de pièces en aluminium
KR20110135680A (ko) 플라즈마전해 양극산화방법
RU2324771C1 (ru) Способ электролитического микроплазменного нанесения покрытий на электропроводящее изделие
RU2718820C1 (ru) Способ получения электрохимическим оксидированием покрытий на вентильных металлах или сплавах
FR3059342A1 (fr) Pieces avec revetement ceramique sur surfaces en titane ou en un alliage de titane, obtention par anodisation micro-arc et electrolyte convenant a leur obtention
RU2110611C1 (ru) Способ получения покрытия на титане и его сплавах
Moore Synthesis of nickel-titanium intermetallic surface coatings via electrolytic plasma processing
RU2039133C1 (ru) Способ анодирования алюминия и его сплавов
Henrion et al. Investigation of the aluminium plasma electrolytic oxidation process
Shi et al. The influence of anodising parameters on the corrosion performance of anodised coatings on magnesium alloy AZ91D
FR2741361A1 (fr) Procede pour traitement thermochimique de surface par immersion dans un plasma, installation pour ce procede, utilisations et pieces obtenues

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20050421

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60144995

Country of ref document: DE

Effective date: 20110908

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110720

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 517200

Country of ref document: AT

Kind code of ref document: T

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111021

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

26N No opposition filed

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60144995

Country of ref document: DE

Effective date: 20120423

BERE Be: lapsed

Owner name: BEAUVIR, JACQUES

Effective date: 20120430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60144995

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110720

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: LAG2M, FR

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121101

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170428

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200429

Year of fee payment: 20