EP1088049A2 - Metallocenkatalysiert hergestellte oligodecene, ihre herstellung und ihre verwendung als komponenten in schmierstoffen - Google Patents

Metallocenkatalysiert hergestellte oligodecene, ihre herstellung und ihre verwendung als komponenten in schmierstoffen

Info

Publication number
EP1088049A2
EP1088049A2 EP99927838A EP99927838A EP1088049A2 EP 1088049 A2 EP1088049 A2 EP 1088049A2 EP 99927838 A EP99927838 A EP 99927838A EP 99927838 A EP99927838 A EP 99927838A EP 1088049 A2 EP1088049 A2 EP 1088049A2
Authority
EP
European Patent Office
Prior art keywords
oligodecenes
linear
decene
molecular weight
oils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99927838A
Other languages
English (en)
French (fr)
Inventor
Hans Peter Rath
Helmut Mach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1088049A2 publication Critical patent/EP1088049A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M143/00Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation
    • C10M143/08Lubricating compositions characterised by the additive being a macromolecular hydrocarbon or such hydrocarbon modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • C10M107/10Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation containing aliphatic monomer having more than 4 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the present invention relates to the use of metallocene-catalyzed oligodecenes with a number-average molecular weight of 500 to 200,000 as components in lubricants, in particular in motor oils and gear oils, and to such lubricants themselves. Since some of these oligodecenes represent new substances, the invention relates to continue these new oligodecenes.
  • Hydrogenated short and medium chain oligoalkenes have long been used as components in synthetic lubricants, e.g. Motor oils, used. These are essentially di-, tri- and tetramers which are produced by oligomerization, for example using boron trifluoride as a catalyst and alcohols such as butanol or pentanol as promoters. However, this technology does not specifically lead to higher molecular weight oligomers terminated with vinylidene double bonds.
  • poly-1-olefins from C 3 - to co-olefins such as propene, 1-butene, 1-pentene or 1-hexene with a number average molecular weight of 300 to 10,000 are known, which by conventional Metallocene catalysis can be produced.
  • the 1-olefins mentioned are always used in a mixture with more volatile saturated and unsaturated hydrocarbons, for example a technical butane / butene stream or technical isobutene-containing butene streams (“raffinate 1/11” from the steam cracker) are used.
  • the poly-1-olefins obtained are also suitable, inter alia, as a constituent for lubricants.
  • EP-A 613 873 (2) describes metallocene-catalyzed oligomers made from linear ⁇ -olefins having 8 to 20 C atoms, e.g. technical 1-octene or technical 1-dodecene, with a number average molecular weight of 400 to 3000. According to (2), such oligomers are generally suitable as a base material for lubricants, but no longer with a number average molecular weight of 6000 or more.
  • WO-A 96/28486 (3) relates to copolymers of unsaturated dicarboxylic acids or their anhydrides and oligomers of 1-olefins having 3 to 14 carbon atoms, which can be prepared by metallocene catalysis. Among other things, n-decene is also mentioned as the 1-olefin. The average molecular weight of the olefin oligo- mere is 300 to 10,000.
  • the copolymers obtained from the unsaturated dicarboxylic acid (anhydrides) and the olefin oligomers are suitable as fuel and lubricant additives after derivatization with amines. 5
  • olefin oligomers produced by means of metallocene catalyst systems are known, which are based on linear and ring-shaped C 1 -C 1 -efins, for example 1-decene.
  • Their weight average molecular weight (M w ) is 100 to
  • these olefin oligomers can be functionalized with the usual chemical reactions such as hydroformylation and / or hydroamination
  • Process 15 connections which e.g. are suitable as fuel or lubricant additives.
  • the object of the present invention was to remedy the shortcomings of the prior art.
  • 35 can, with a number average molecular weight of 500 to 200,000, be found as components in lubricants, in particular in engine and gear oils, especially in multigrade engine oils and gear oils.
  • the areas of application for the oligodecenes mentioned are in particular hydraulic fluids, bed sheet oils, compressor oils, circulation oils, calender oils, rolling oils and lubricating greases.
  • the oligodecenes mentioned have a number average molecular weight (M N ) of 10,000 to 200,000, preferably 20,000 to 150,000, in particular from 25,000 to 100,000, especially from 30,000 to 80,000, particularly preferably from 35,000 to 60,000, the determination of M N usually being carried out by gel permeation chromatography (GPC), as a viscosity index improver in fully synthetic, partially synthetic and mineral motor oils, in particular in such multigrade engine oils, because they have a significantly more favorable flow behavior at high and especially at low temperatures.
  • GPC gel permeation chromatography
  • the engine oils remain more fluid; at high temperatures (operating temperature of the engine) they remain sufficiently viscous so that the lubricating film does not tear off.
  • (Fully) synthetic motor oils are to be understood in particular as those based on organic esters, synthetic hydrocarbons, poly- ⁇ -olefins and polyolefins (e.g. polyisobutene).
  • Semi-synthetic motor oils are mixtures of mineral oils with synthetic motor oils, especially with the above-mentioned synthetic motor oils.
  • the oligecenes mentioned can just as well be used in engine oils based only on mineral oils. Particularly interesting is the use in the so-called multi-grade engine oils, which are equally suitable for winter and summer operation of engines.
  • the engine oils mentioned can be used for a wide variety of applications, but in particular as four-stroke engine oils in automotive and two-wheel engines, locomotive diesel engines, etc.
  • the oligodecenes mentioned have a number average molecular weight (M N ) of 800 to 50,000, preferably from 1000 to 30,000, in particular from 1500 to 20,000, especially from 2000 to 15,000, the determination of M N usually by gel permeation - Chromatography (GPC) is used as a thickener or viscosity index improver in gear oils, especially in multigrade gear oils.
  • M N number average molecular weight
  • Thickeners” and “viscosity improvers” are synonyms when used in gear oils.
  • Gear oils are to be understood here in particular as gear oils for the automotive sector, especially manual and automatic gear oils.
  • the oligodecenes have a very good thickening effect as well as high shear stability and very low low-temperature viscosities.
  • the oligodecenes according to the application are clearly superior to the polymethacrylates normally used for such gear oils.
  • the said oligodecenes with a number average molecular weight (M N ) of 500 to 5000, preferably from 650 to 3500, in particular from 800 to 2500, the determination of M N usually being carried out by gel permeation chromatography (GPC) as synthetic Lubricant components in lubricants, especially in engine and gear oils, especially in multigrade engine and gear oils.
  • GPC gel permeation chromatography
  • the oligodecenes are characterized by particularly low low-temperature viscosities and are clearly superior to the poly- ⁇ -olefins commonly used for this purpose.
  • the oligodecenes according to the application are mostly used in their hydrogenated form, which, however, generally has no influence on the viscosimetic data.
  • the amount of the oligodecenes mentioned in the lubricants, in particular in the motor oils or gear oils, is usually 0.1 to 95% by weight, in particular 0.5 to 90% by weight, especially 1 to 85% by weight, based on the lubricant or the engine oil or gear oil.
  • the preferred amount used is 0.1 to 40% by weight, in particular 0.5 to 20% by weight, especially 1 to 10% by weight, based on the motor oil.
  • the preferred amount used as a thickener (viscosity index improver) in gear oils the preferred amount used is 0.5 to 70% by weight, in particular 1 to 50% by weight, especially 5 to 40% by weight, based on the gear oil.
  • the preferred amount is 1 to 95% by weight, in particular 5 to 90% by weight, especially 20 to 85% by weight, particularly preferably 30 to 85 % By weight, very particularly preferably 40 to 85% by weight, based on the lubricant.
  • Other customary additives such as dispersants, corrosion inhibitors, wear protection components, detergents, antioxidants, friction modifiers and / or defoamers (foam inhibitors) may also be present in the lubricants or engine or gear oils in the amounts customary for this.
  • the essential monomer component in the oligodecenes mentioned is linear 1-decene, which alone or in a mixture with up to 40 mol%, in particular up to 20 mol%, especially up to 5 mol%, based on the amount of 1- Decene, further linear CQ - until C ⁇ 2 -1-alkenes (1-octene, 1-nonen, 1-undecene and / or 1-dodecene) can be oligo erized.
  • These 1-alkenes can be in chemically pure form (purities of usually 99 to 99.9% by weight) or as industrial mixtures in purities of usually 90 up to 99% by weight are used, the remaining constituents of the technical mixtures normally being approximately equally volatile, polymerizable or non-polymerizable components (for example unsaturated isomers, homologs or saturated hydrocarbons).
  • the 1-alkenes used are practically free of volatile components, especially free of more volatile saturated or unsaturated hydrocarbons, in particular those with fewer than 8 carbon atoms; practically free means that at most a proportion of such volatile components of less than 1% by weight, in particular less than 0.5% by weight, can occur.
  • the systems of metallocene catalyst and active gate used for oligomerization are conventional catalyst systems.
  • the desired molecular weight ranges of the oligodecenes can be adjusted in a known manner by varying the structure of the metallocene.
  • the oligomerization is usually carried out in a suitable medium ("reaction mixture"), e.g. an organic solvent, under the usual conditions for this.
  • the reaction mixture is the mixture which is present in the time after all the reaction components have been combined until the catalyst system has been destroyed after the oligomerization reaction has taken place.
  • the solubility of the catalyst system in the reaction mixture is analogous by measuring the turbidity of the reaction mixture
  • the catalyst system is largely soluble if the turbidity number is in the range from 1 to 10, preferably in the range from 1 to 3.
  • the metallocene component of the catalyst system is a complex of titanium, zirconium and hafnium in which the metal atom M is sandwiched between two optionally substituted cyclopentadienyl groups, the remaining valences of the central atom M being replaced by easily exchangeable leaving atoms or leaving groups X 1 , X 2 are saturated.
  • Suitable metallocene complexes are those with the general formula Cp 2 MX 1 X 2 , in which M is titanium, zirconium or hafnium, preferably zirconium.
  • Cp 2 represent a pair of optionally substituted cyclopentadienyl ligands. Both cyclopentadienyl ligands or only one of the two can be substituted.
  • the cyclopentadienyl rings are usually substituted symmetrically. This means that the type, number and also the position of the alkyl substituents of one Cp ring is identical to the type, number and also position of the alkyl substituents of the second Cp ring.
  • the number of alkyl groups per cyclopentadienyl ring is 1 to 4.
  • Suitable C 5 - to C 3 o-alkyl radicals are the aliphatic radicals pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octa-decyl, nonadecyl and eicosyl and their isomers , such as neo-pentyl, iso-octyl, and the cycloaliphatic radicals cyclopentyl and cyclohexyl. N-Octadecyl is particularly suitable.
  • the optionally C 5 - to C 3 o-alkyl-substituted cyclopentadienyl units can, however, also be substituted by 1 to 2 C 4 - to cio-alkylene units, which together with the cyclopentadienyl unit form a fused ring system, such as the tetrahydroindenyl system, form.
  • R 1 denotes a Ci to C 3 cr -organic group such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, tert-butyl, n-pentyl , i-pentyl, neo-pentyl, hexyl, heptyl, octyl, nonyl, cyclohexyl, phenyl or p-tolyl.
  • Preferred organosilyl radicals are trimethylsilyl and tert. -Butyldimethylsilyl, especially trimethylsilyl.
  • the symmetrical substitution pattern is not absolutely necessary, but is also not excluded.
  • Such metallocene catalysts in which the two cyclopentadienyl ligands are connected to one another via a bridge member.
  • Such bridging links mostly have 1 to 4 atoms (C atoms and / or heteroatoms such as Si, N, P, 0, S, Se or B) and optionally alkyl chains, for example 1,2-ethylidene, 1,3-propylidene or dialkylsilane -Bridges.
  • Easily exchangeable, formally negatively charged leaving atoms or leaving groups atoms or leaving groups X 1 , X 2 of the metallocene complexes of the general formula CpMX 1 X 2 may be mentioned: hydrogen, halogen such as fluorine, bromine, iodine and preferably chlorine.
  • alcoholates such as methanolate, ethanolate, n- and i-propanolate, phenolate, trifluoromethylphenolate, naphtholate and silanolate.
  • Ci to Cio alkyl radicals in particular methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, neo -Pentyl, hexyl, preferably methyl, tert-butyl and neo-pentyl, furthermore alicyclic C 3 - to -CC hydrocarbon radicals such as cyclopropyl, cyclobutyl, cyclopentyl and in particular cyclohexyl or C 5 - to C 2 Q-bicycloalkyl such as bicyclopentyl and especially bicycloheptyl and bicyclooctyl.
  • aliphatic Ci to Cio alkyl radicals in particular methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pent
  • substituents X 1 , X 2 with aromatic structural units are C 6 - to cis-aryl, preferably phenyl or naphthyl, alkyl - aryl or arylalkyl, each having 1 to 10 C atoms in the alkyl radical and 6 to 20 C atoms in the aryl radical, such as for example tolyl and benzyl.
  • metallocene complexes are: bis (n-octadecylcyclopentadienyl) zirconium dichloride, bis (trimethylsilyl-cyclopentadienyl) zirconium dichloride, bis (tetrahydroindenyl) zirconium dichloride, bis [(tert-butyldimethyladilium) dichloride).
  • the metallocene complexes mentioned can be easily prepared by known processes, e.g. Brauer (ed.): Handbuch der Preparative Inorganic Chemistry, Volume 2, 3rd edition, pages 1395 to 1397, Enke, Stuttgart 1978.
  • a preferred process is based on the lithium salts of the appropriately substituted cyclopentadienyls, which are reacted with the transition metal halides.
  • the catalyst systems also contain activators which are known per se and are also called cocatalysts in the literature. They generally alkylate them Transition metal component of the catalyst system and / or abstract a ligand X from the transition metal component, so that ultimately a catalyst system for the oligomerization of olefinically unsaturated hydrocarbons can arise.
  • activators which are known per se and are also called cocatalysts in the literature. They generally alkylate them Transition metal component of the catalyst system and / or abstract a ligand X from the transition metal component, so that ultimately a catalyst system for the oligomerization of olefinically unsaturated hydrocarbons can arise.
  • Organometallic compounds of the 1st to 3rd main group or the 2nd subgroup of the periodic table are generally suitable for this task, but other acceptor compounds such as, for example, carbocation salts can also be used.
  • suitable activator compounds are organoaluminum and organoboron compounds as well as carbocation salts. Preference is given to open-chain or cyclic oligomeric alumoxane compounds which can be obtained by reacting aluminum tri-alkylene, in particular trimethyl or triethyl aluminum, with water.
  • R 2 is hydrogen, C 1 -C 4 -alkyl, preferably C 1 -C 4 -alkyl, in particular methyl, ethyl or butyl.
  • R 2 can also represent arylalkyl or alkylaryl, each having 1 to 10 carbon atoms in the alkyl radical and 6 to 20 carbon atoms in the aryl radical.
  • Aluminum alkyls Al (R 2 ) 3 are furthermore suitable, in which R 2 can mean fluorine, chlorine, bromine or iodine in addition to the radicals defined above, with the proviso that at least one radical R 2 is a C-organic radical or a hydrogen atom .
  • Particularly preferred compounds are trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, di-isobutyl aluminum hydride and diethyl aluminum chloride.
  • organic boron compounds are also very suitable as activators, for example tris -arylboron compounds, preferably tris (pentafluoropheny1) boron, furthermore salts of carbonium ions, preferably triphenylmethyltetraarylborate, in particular triphenylmethyltetra (pentafluorophenyD orate.
  • tris -arylboron compounds preferably tris (pentafluoropheny1) boron
  • furthermore salts of carbonium ions preferably triphenylmethyltetraarylborate, in particular triphenylmethyltetra (pentafluorophenyD orate.
  • Al, B or C compounds mentioned are known or can be obtained in a manner known per se.
  • activators they can be used alone or as mixtures in the catalyst system.
  • the activator component is preferably used in a molar excess with respect to the metallocene complex.
  • the molar ratio of activator to metallocene complex is generally 100: 1 to 10,000: 1, preferably 100: 1 to 1,000: 1:
  • the constituents of the catalyst systems described can be introduced into the oligomerization reactor individually or as a mixture in any order.
  • the metallocene complex is preferably mixed with at least one activator component before it enters the reactor, that is to say preactivated.
  • the oligodecenes can be prepared in the customary reactors used for the oligomerization of olefins, either batchwise or preferably continuously. Suitable reactors include continuously operated stirred kettles, it also being possible to use a series of several stirred kettles connected in series.
  • the oligomerization can be carried out in a suspension, in liquid monomers and in inert solvents.
  • solvents in particular liquid organic hydrocarbons such as benzene, ethylbenzene or toluene are used.
  • the oligomerizations are preferably carried out in a reaction mixture in which the liquid monomer is present in excess.
  • the oligomerization is generally carried out at temperatures from -20 ° C to 200 ° C, in particular from 0 to 140 ° C, especially at 30 ° C to 110 ° C, it can usually be carried out using the low-pressure or medium-pressure process .
  • the amount of catalyst used is not critical.
  • the oligodecenes produced by metallocene catalysis contain unsaturated double bonds due to the oligomerization mechanism; the proportion of terminal vinylidene double bonds is particularly high. If these double bonds interfere when used as motor oil or lubricating oil components, they can be converted into saturated structures by conventional hydrogenation processes.
  • the oligodecenes used according to the invention have the above-mentioned number average molecular weight (M N ).
  • the number average molecular weight is usually determined by gel permeation chromatography (GPC).
  • the molecular weight distribution M W / M N (weight average / number average) is generally 1.3 to 5, a narrow distribution being more widely distributed, for example by extraction processes Samples are created and a broad distribution can also be obtained by mixing. If uniform catalyst systems are used, the distribution is generally from 1.5 to 3.0. Under certain circumstances, a broader distribution can be more advantageous, because the same thickening effect in the engine or lubricating oil usually requires more oligomer with a narrow distribution and the same molecular weight.
  • a wide distribution with a low-molecular flank in the molecular weight distribution can also be advantageous for an often additionally occurring dispersing action in the motor or lubricating oil.
  • bimodal distributions generated by blends can also have an advantageous effect.
  • Narrower distributions can also be advantageous due to better shear stability, especially with gear oils.
  • the present invention further relates to oligodecenes which are obtained by oligomerizing linear 1-decene, up to 40 mol%, based on the amount of linear 1-Decene, further linear Cs to C ⁇ -1 olefins can be polymerized in, are available in the presence of a titanium, zirconium or hafnium metal locene catalyst and an activator based on organoaluminum, organic boron or carbocationic compounds may have been hydrogenated after the oligomerization, with a number average molecular weight of 30,000 to 200,000, in particular from 35,000 to 150,000.
  • the present invention also relates to a process for the preparation of these oligodecenes, which is characterized in that linear 1-decene or a mixture of linear 1-decene and up to 40 mol%, based on the amount of linear 1-decene, further linear CQ - to C ⁇ 2 -1-alkenes metallocene-catalysed - as described above - oligomerized and, if desired, hydrogenated subsequently.
  • an oligodecene with an M N according to GPC of 3500 was produced using bis (n-octadecylcyclopentadienyl) zirconium dichloride / methylalumoxane.
  • an oligodecene with an M ⁇ according to GPC of 6450 was prepared using bis (n-octadecylcyclopentadienyl) zirconium dichloride / methylalumoxane.
  • Example 5
  • an oligodecene with an M N according to GPC of 850 was produced using bis (n-octadecylcyclopentadienyl) zirconium dichloride / methylalnmoxane.
  • Ashless dispersants 5.0% usual overbased sulfonate 2.8% zinc dithiophosphate 2.0% common antioxidant 0.4% common friction modifier 0.1% common foam inhibitor 0.002
  • M N 3500 from Example 3
  • Viscosity index improver Viscosity index improver
  • a fully synthetic multigrade motor oil (5W / 40) with the following composition:
  • Polyisobutene (M N 2300) as 3.85% thickener common polymethacrylate as 1.0% thickener common pour point improver 0.2%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Verwendung von Oligodecenen, welche durch Oligomerisierung von linearem 1-Decen, wobei bis zu 40 mol-%, bezogen auf die Menge an linearem 1-Decen, weitere lineare C8- bis C12-1-Alkene mit einpolymerisiert werden können, in Gegenwart eines Titan-, Zirkonium- oder Hafnium-Metallocen-Katalysators und eines Aktivators auf Basis von aluminiumorganischen, bororganischen oder carbokationischen Verbindungen erhältlich sind und im Anschluß an die Oligomerisierung hydriert worden sein können, mit einem zahlengemittelten Molekulargewicht von 500 bis 200.000 als Komponenten in Schmierstoffen, insbesondere Motorenölen und Getriebeölen.

Description

METALLOCENKATALYSIERT HERGESTELLTE OLIGODECENE, IHRE HERSTELLUNG UND IHRE VERWENDUNG ALS KOMPONENTEN IN SCHMIERSTOFFEN
Beschreibung
Die vorliegende Erfindung betrifft die Verwendung von metallocenkatalysiert hergestellten Oligodecenen mit einem zahlen- gemittelten Molekulargewicht von 500 bis 200.000 als Komponenten in Schmierstoffen, insbesondere in Motorenölen und Getriebeölen, sowie solche Schmierstoffe selbst. Da ein Teil dieser Oligode- cene neue Stoffe darstellt, betrifft die Erfindung weiterhin diese neuen Oligodecene.
Hydrierte kurz- und mittelkettige Oligoalkene werden seit langem als Komponenten in synthetischen Schmierstoffen, z.B. Motorenölen, eingesetzt. Es handelt sich hierbei im wesentlichen um Di-, Tri- und Tetramere, die durch Oligomerisierung beispielsweise mit Bortrifluorid als Katalysator und Alkoholen wie Butanol oder Pentanol als Promotoren hergestellt werden. Diese Technologie führt jedoch nicht gezielt zu höhermolekularen, mit Vinyliden- doppelbindungen terminieren Oligomeren.
Aus der O-A 93/24539 (1) sind Poly- 1-olefine aus C3- bis Co-Olefinen wie Propen, 1-Buten, 1-Penten oder 1-Hexen mit einem zahlengemittelten Molekulargewicht von 300 bis 10.000 bekannt, welche durch übliche Metallocen-Katalyse hergestellt werden. Eingesetzt werden die genannten 1-Olefine stets im Gemisch mit leichter flüchtigen gesättigten und ungesättigten Kohlenwasser- Stoffen, beispielsweise werden ein technischer Butan/Bute -Strom oder technische isobutenhaltige Buten-Ströme ("Raffinat 1/11" aus dem Steamcracker) verwendet. Die erhaltenen Poly- 1-olefine eignen sich unter anderem auch als Bestandteil für Schmierstoffe.
In der EP-A 613 873 (2) werden metallocenkatalysiert hergestellte Oligomere aus linearen α-Olefinen mit 8 bis 20 C-Atomen, z.B. technischem 1-Octen oder technischem 1-Dodecen, mit einem zahlengemittelten Molekulargewicht von 400 bis 3000 beschrieben. Solche Oligomere eignen sich gemäß (2) generell als Grundmaterial für Schmierstoffe, jedoch nicht mehr bei einem zahlengemittelten Molekulargewicht von 6000 oder mehr.
Die WO-A 96/28486 (3) betrifft Copolymerisate aus ungesättigten Dicarbonsäuren oder deren Anhydriden und Oligomeren von 1-Olefinen mit 3 bis 14 C-Atomen, welche durch Metallocenkatalyse hergestellt werden können. Als 1-Olefin wird unter anderem auch n-Decen genannt. Das mittlere Molekulargewicht der Olefinoligo- mere beträgt 300 bis 10.000. Die aus den ungesättigten Dicarbon- säure (anhydride) n und den Olefinoligomeren erhaltenen Copolymeri- sate eignen sich nach Derivatisierung mit A inen als Kraft- und Schmierstoffadditive. 5
Aus der WO-A 96/23751 (4) sind mittels Metallocenkatalysator- systemen hergestellte Olefinoligomere bekannt, welche auf linearen und ringförmigen C - bis Cι -01efinen, z.B. 1-Decen, basieren. Ihr gewichtsgemitteltes Molekulargewicht (Mw) liegt bei 100 bis
10 20.000 bei einer Molekulargewichtsverteilung MW/MN (Gewichts - mittelwert/Zahlenmittelwert) von 1,0 bis 2,4. Ihr Polymerisationsgrad liegt im Bereich von 2 bis 200. Diese Olefinoligomere lassen sich gemäß (4) mit den üblichen chemischen Reaktionen wie Hydroformylierung und/oder Hydroaminierung zu funktionalisierten
15 Verbindungen weiterverarbeiten, welche z.B. als Kraft- oder Schmierstoffadditive geeignet sind.
Die aus dem Stand der Technik bekannten Systeme genügen jedoch nur bedingt den heutigen hohen Anforderungen an Komponenten für 20 Getriebeöle und Motorenöle und andere Schmierstoffe, insbesondere das Viskosität-Temperatur-Verhalten ist noch verbesserungsbedürftig.
Aufgabe der vorliegenden Erfindung war es, den Mängeln des 25 Standes der Technik abzuhelfen.
Demgemäß wurde die Verwendung von Oligodecenen, welche durch Oligomerisierung von linearem 1-Decen, wobei bis zu 40 mol-%, bezogen auf die Menge an linearem 1-Decen, weitere lineares
30 C8" bis Cι2-1-Alkene mit einpolymerisiert werden können, in Gegenwart eines Titan-, Zirkonium- oder Hafnium-Metallocen-Kataly- sators und eines Aktivators auf Basis von aluminiumorganischen, bororganischen oder carbokationischen Verbindungen erhältlich sind und im Anschluß an die Oligomerisierung hydriert worden sein
35 können, mit einem zahlengemittelten Molekulargewicht von 500 bis 200.000 als Komponenten in Schmierstoffen, insbesondere in Motoren- und Getriebeölen, vor allem in Mehrbereichs -Motorenölen und -Getriebeölen, gefunden.
40 Neben Motoren- und Getriebeölen kommen als Einsatzgebiete für die genannten Oligodecene insbesondere auch Hydraulikflüssigkeiten, Bettbahnöle, Kompressorenöle, Umlauföle, Kalanderöle, Walzöle und Schmierfette in Betracht.
45 In einer bevorzugten Ausführungsform werden die genannten Oligodecene mit einem zahlengemittelten Molekulargewicht (MN) von 10.000 bis 200.000, vorzugsweise von 20.000 bis 150.000, insbesondere von 25.000 bis 100.000, vor allem von 30.000 bis 80.000, besonders bevorzugt von 35.000 bis 60.000, wobei die Bestimmung von MN üblicherweise durch Gelpermeationschromato- graphie (GPC) erfolgt, als Viskositätsindex-Verbesserer in voll- synthetischen, teilsynthetischen und mineralischen Motorenölen, insbesondere in derartigen Mehrbereichs -Motorenölen, eingesetzt, da sie ein deutlich günstigeres Fließverhalten bei hohen und vor allem bei tiefen Temperaturen bewirken. Bei tiefen Temperaturen, beispielsweise bei 0 bis -30°C (Inbetriebnahme des Motors bei Frost) , bleiben die Motorenöle dünnflüssiger; bei hohen Temperaturen (Betriebstemperatur des Motors) bleiben sie ausreichend zähflüssig, damit der Schmierfilm nicht abreißt.
Unter (voll) synthetischen Motorenölen sollen insbesondere solche auf Basis von organischen Estern, synthetischen Kohlenwasserstoffen, Poly-α-olefinen und Polyolefinen (z.B. Polyisobuten) verstanden werden. Teilsynthetische Motorenöle sind Mischungen von Mineralölen mit synthetischen Motorenölen, insbesondere mit den oben genannten synthetischen Motorenölen. Die genannten Oli- godecene lassen sich ebensogut in nur auf Mineralölen basierenden Motorölen verwenden. Besonders interessant ist der Einsatz in den sogenannten Mehrbereichs -Motorenölen, welche für den Winter- und Sommerbetrieb von Motoren gleichermaßen geeignet sind.
Die genannten Motorenöle können für die verschiedensten Anwendungszwecke eingesetzt werden, insbesondere jedoch als Viertakt - motorenöle in Automobil- und Zweiradmotoren, Lokomotivdieselmotoren, etc.
In einer weiteren bevorzugten Ausführungsform werden die genannten Oligodecene mit einem zahlengemittelten Molekulargewicht (MN) von 800 bis 50.000, vorzugsweise von 1000 bis 30.000, insbesondere von 1500 bis 20.000, vor allem von 2000 bis 15.000, wobei die Bestimmung von MN üblicherweise durch Gelpermeations - Chromatographie (GPC) erfolgt, als Verdicker oder Viskositätsindex-Verbesserer in Getriebeölen, insbesondere in Mehrbereichs - Getriebeölen, eingesetzt. "Verdicker" und "Viskositätsinde -Verbesserer" sind in Bezug auf den Einsatz in Getriebeölen Synonyme. Unter Getriebeölen sind hier insbesondere Getriebeöle für den Automotivbereich, vor allem Schalt- und Automatikgetriebeöle, zu verstehen. Die Oligodecene weisen hierin eine sehr gute Verdik- kungswirkung sowie hohe Scherstabilität und sehr niedrige Tieftemperaturviskositäten auf. Hierin sind die anmeldungsgemäßen Oligodecene den üblicherweise für derartige Getriebeöle verwende- ten Polymethacrylaten deutlich überlegen. In einer weiteren bevorzugten Ausführungsform werden die genannten Oligodecene mit einem zahlengemittelten Molekulargewicht (MN) von 500 bis 5000, vorzugsweise von 650 bis 3500, insbesondere von 800 bis 2500, wobei die Bestimmung von MN üblicherweise durch Gelpermeationschromatographie (GPC) erfolgt, als synthetische Schmierkomponente in Schmierstoffen, insbesondere in Motoren- und Getriebeölen, vor allem in Mehrbereichs -Motoren- und -Getriebeölen, eingesetzt. Als solche Motoren- und Getriebeöle kommen normalerweise die oben genannten in Betracht. Die Oligodecene zeichnen sich hierbei durch besonders niedrige Tieftemperaturvis - kositäten aus und sind den üblicherweise hierfür verwendeten Poly-α-olefinen deutlich überlegen. Zur Erhöhung der thermo-oxi- dativen Stabilität solcher synthetischen Schmierkomponenten werden die anmeldungsgemäßen Oligodecene meist in ihrer hydrier- ten Form eingesetzt, was allerdings in der Regel keinen Einfluß auf die viskosimetischen Daten hat.
Die Einsatzmenge der genannten Oligodecene in den Schmierstoffen, insbesondere in den Motorenölen bzw. Getriebeölen, beträgt üblicherweise 0,1 bis 95 Gew.-%, insbesondere 0,5 bis 90 Gew. -%, vor allem 1 bis 85 Gew. -%, bezogen auf den Schmierstoff oder das Motorenöl bzw. Getriebeöl. Bei Verwendung als Viskositätsindex- Verbesserer in Motorenölen beträgt die bevorzugte Einsatzmenge 0,1 bis 40 Gew. -%, insbesondere 0,5 bis 20 Gew. -%, vor allem 1 bis 10 Gew. -%, bezogen auf das Motorenöl. Bei Verwendung als Verdicker (Viskositätsindex-Verbesserer) in Getriebeölen beträgt die bevorzugte Einsatzmenge 0,5 bis 70 Gew. -%, insbesondere 1 bis 50 Gew.-%, vor allem 5 bis 40 Gew. -%, bezogen auf das Getriebeöl. Bei Verwendung als synthetische Schmierkomponente in Schmier- Stoffen wie Motoren- und Getriebeölen beträgt die bevorzugte Einsatzmenge 1 bis 95 Gew. -%, insbesondere 5 bis 90 Gew. -%, vor allem 20 bis 85 Gew. -%, besonders bevorzugt 30 bis 85 Gew. -%, ganz besonders bevorzugt 40 bis 85 Gew.- , bezogen auf den Schmierstoff. Weitere übliche Additive wie Dispergatoren, Korro- sionsinhibitoren, Verschleißschutz -Komponenten, Detergentien, Antioxidantien, Friction Modifier und/oder Entschäumer (Schaumi- nihibitoren) können in den hierfür üblichen Mengen in den Schmierstoffen oder Motoren- bzw. Getriebeölen mit anwesend sein.
Die wesentliche Monomerkomponente in den genannten Oligodecenen ist lineares 1-Decen, welches allein oder in Mischung mit bis zu 40 mol-%, insbesondere bis zu 20 mol-%, vor allem bis zu 5 mol-%, bezogen auf die Menge an 1-Decen, weiterer linearer CQ - bis Cι2-1-Alkene (1-Octen, 1-Nonen, 1-Undecen und/oder 1-Dodecen) oligo erisiert werden kann. Diese 1-Alkene können in chemisch reiner Form (Reinheiten von üblicherweise 99 bis 99,9 Gew. -%) oder als technische Gemische in Reinheiten von üblicherweise 90 bis 99 Gew. -% eingesetzt werden, wobei bei den technischen Gemischen die restlichen Bestandteile normalerweise in etwa gleich flüchtige, polymersationsfähige oder nicht-polymerisationsfähige Komponenten (beispielsweise ungesättigte Isomere, Homologe oder gesättigte Kohlenwasserstoffe) sind. In der Regel sind die eingesetzten 1-Alkene praktisch frei von flüchtigen Komponenten, vor allem frei von flüchtigeren gesättigten oder ungesättigten Kohlenwasserstoffen, insbesondere solchen mit weniger als 8 C-Atomen; praktisch frei bedeutet, daß höchstens ein Anteil an solchen flüchtigen Komponenten von unter 1 Gew.-%, insbesondere unter 0,5 Gew.-%, auftreten kann.
Die zur Oligomerisierung verwendeten Systeme aus Metallocen-Katalysator und Aktiv tor sind übliche Katalysatorsysteme. Durch Va- riation der Struktur des Metallocens lassen sich in bekannter Weise die gewünschten Molekulargewichtsbereiche der Oligodecene einstellen. Die Oligomerisierung wird in der Regel in einem geeigneten Medium ("Reaktionsgemisch"), z.B. einem organischen Lösungsmittel, unter den hierfür üblichen Bedingungen durch- geführt.
An die Katalysatorsysteme werden keine besonderen Anforderungen gestellt, außer daß sie in dem Reaktionsgemisch weitgehend löslich sind. Das Reaktionsgemisch ist die Mischung, welche in der Zeit nach dem Zusammengeben aller Reaktionskomponenten bis spätestens zum Zerstören des Katalysatorsystems nach erfolgter Oligomerisierungsreaktion vorliegt .
Die Löslichkeit des Katalysatorsystems im Reaktionsgemisch wird durch die Messung der Trübung des Reaktionsgemisches analog
DIN 38404 bestimmt. Eine weitgehende Löslichkeit des Katalysatorsystems liegt vor, wenn die Trübungszahl im Bereich von 1 bis 10, vorzugsweise im Bereich von 1 bis 3, liegt.
Bei der Metallocenkomponente des Katalysatorsystems handelt es sich um Komplexe des Titans, Zirkoniums und Hafniums, bei denen das Metallatom M sandwichartig zwischen zwei gegebenenfalls substituierten Cyclopentadienyl-Gruppen gebunden ist, wobei die restlichen Valenzen des Zentralatoms M durch leicht austauschbare Abgangsatome oder Abgangsgruppen X1, X2 abgesättigt sind.
Geeignete Metallocenkomplexe sind solche mit der allgemeinen Formel Cp2MX1X2, in welchem M Titan, Zirkonium oder Hafnium, vorzugsweise Zirkonium, bedeuten. Cp2 stehen für ein Paar von gegebenenfalls substituierten Cyclo- pentadienyl-Liganden. Hierbei können beide Cyclopentadienyl - Liganden oder nur einer der beiden substituiert sein.
Für den Fall, daß die Substituenten C5- bis C3o-Alkylgruppen bedeuten, sind die Cyclopentadienylringe üblicherweise symmetrisch substituiert. Dies bedeutet, daß sowohl Art, Anzahl als auch die Position der Alkyl -Substituenten des einen Cp -Ringes identisch ist mit Art, Anzahl und auch Position der Alkyl -Substituenten des zweiten Cp-Ringes. Die Anzahl der Alkylgruppen pro Cyclopenta- dienylring beträgt 1 bis 4.
Geeignete C5- bis C3o-Alkylreste sind die aliphatischen Reste Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octa- decyl, Nonadecyl und Eicosyl sowie ihre Isomere, wie beispielsweise neo- Pentyl, iso-Octyl, sowie die cycloaliphatischen Reste Cyclopentyl und Cyclohexyl. Besonders gut geeignet ist n-Octade- cyl.
Die gegebenenfalls C5- bis C3o-alkylsubstituierten Cyclopentadi- enyleinheiten können aber auch mit je 1 bis 2 C4- bis Cio-Alkylen- einheiten substituiert sein, die zusammen mit der Cyclopentadi- enyleinheit ein anneliertes Ringsystem, wie beispielsweise das Tetrahydroindenylsystem, bilden.
Als substituierte Cyclopentadienyl- iganden kommen aber auch solche Paare in Frage, in welchen mindestens einen Cyclopentadienyl - einheit mit mindestens einer Organosilylgruppe -Si(R1)3 substi- tuiert ist. R1 bedeutet dann eine Ci- bis C3crKohlenstoff -organische Gruppe wie Methyl, Ethyl, n-Propyl, i-Propyl, n-Butyl, i-Bu- tyl, sec.-Butyl, tert.-Butyl, n-Pentyl, i-Pentyl, neo-Pentyl, Hexyl, Heptyl, Octyl, Nonyl, Cyclohexyl, Phenyl oder p-Tolyl. Bevorzugte Organosilylreste sind Trimethylsilyl und tert. -Butyldi- methylsilyl, insbesondere Trimethylsilyl.
Für den Fall der Organosilylsubstitution an den Cyclopentadienyl - einheiten ist das symmetrische Substitutionsmuster nicht zwingend notwendig, aber auch nicht ausgeschlossen.
Von besonderem Interesse sind solche Metallocen-Katalysatoren, bei denen beide Cyclopentadienyl-Liganden über ein Brückenglied miteinander verbunden sind. Solche Brückenglieder haben meist 1 bis 4 Atome (C -Atome und/oder Heteroatome wie Si, N, P, 0, S, Se oder B) und gegebenenfalls Alkylsei enketten, z.B. 1,2-Ethyliden, 1, 3-Propyliden oder Dialkylsilan-Brücken. Als leicht austauschbare, formal negativ geladene Abgangsatome oder Abgangsgruppen X1, X2 der Metallocenkomplexe der allgemeinen Formel CpMX1X2 seien genannt: Wasserstoff, Halogen wie Fluor, Brom, Iod und vorzugsweise Chlor. Darüber hinaus seien genannt: Alkoholate wie Methanolat, Ethanolat, n- und i-Propanolat, Phenolat, Trifluormethylphenolat, Naphtholat und Silanolat.
Weiterhin empfehlen sich für X1, X2 besonders aliphatische Ci- bis Cio -Alkyl -Reste, insbesondere Methyl, Ethyl, Propyl, iso-Propyl, Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, Pentyl, neo-Pentyl, Hexyl, vorzugsweise Methyl, tert.-Butyl und neo-Pentyl, desweiteren alicyclische C3- bis Cι -Kohlenwasserstoffreste wie Cyclo- propyl, Cyclobutyl, Cyclopentyl und insbesondere Cyclohexyl oder C5- bis C2Q-Bicycloalkyl wie Bicyclopentyl und insbesondere Bicycloheptyl und Bicyclooctyl .
Als Substituenten X1, X2 mit aromatischen Struktureinheiten seien genannt C6- bis Cis-Aryl, bevorzugt Phenyl oder Naphthyl, Alkyl - aryl oder Arylalkyl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest wie beispielsweise Tolyl und Benzyl .
Einzelne Beispiele für geeignete Metallocenkomplexe sind: Bis(n- octadecylcyclopentadienyl) zirkoniumdichlorid, Bis (trimethylsilyl- cyclopentadienyl) zirkoniumdichlorid, Bis (tetrahydroindenyl) zirkoniumdichlorid, Bis [ (tert. -butyldimethylsilyl) cyclopentadienyl] zirkoniumdichlorid. Bis (di- tert. -butylcyclopentadie- nyl) zirkoniumdichlorid, (Ethyliden-bisindenyl) zirkoniumdichlorid, Ethyliden-bis (tetrahydroindenyl) zirkoniumdichlorid und Bis [3,3 (2-methyl-benzindenyl) ] dimethylsilandiyl- zirkoniumdichlorid.
Die genannten Metallocenkomplexe können auf einfache Weise nach bekannten Verfahren, z.B. Brauer (Hrsg.): Handbuch der Präpara- tiven Anorganischen Chemie, Band 2, 3. Auflage, Seite 1395 bis 1397, Enke, Stuttgart 1978, synthetisiert werden. Ein bevorzugtes Verfahren geht von den Lithiumsalzen der entsprechend substituierten Cyclopentadienyle aus, welche mit den Übergangsmetallha- logeniden umgesetzt werden.
Zweckmäßigerweise wird nur ein Metallocenkomplex in der Oligome- risierungsreaktion eingesetzt, es ist aber auch möglich, Mischungen verschiedener Metallocenkomplexe zu verwenden.
Neben den Metallocenkomplexen enthalten die Katalysatorsysteme noch Aktivatoren, die an sich bekannt sind und im Schrifttum auch Cokatalysatoren genannt werden. Im allgemeinen alkylieren sie die Übergangsmetallkomponente des Katalysatorsystems und/oder abstrahieren einen Liganden X von der Übergangsmetallkomponente, so daß letztendlich ein Katalysatorsystem für die Oligomerisierung von olefinisch ungesättigten Kohlenwasserstoffen entstehen kann. Für diese Aufgabe sind im allgemeinen metallorganische Verbindungen der 1. bis 3. Hauptgruppe oder der 2. Nebengruppe des Periodensystems geeignet, jedoch können auch andere Akzeptorverbindungen wie beispielsweise Carbokationen- Salze eingesetzt werden.
Im vorliegenden Fall gut geeignete Aktivatorverbindungen sind aluminiumorganische und bororganische Verbindungen sowie Carbokationen- Salze. Bevorzugt werden offenkettige oder cyclische oligomere Alumoxanverbindungen, die durch Umsetzung von Aluminiumtri - alkylen, insbesondere Trimethyl- oder Triethylaluminium, mit Wasser erhalten werden können.
Als Cokatalysatoren sind im allgemeinen auch Aluminiumorganyle der allgemeinen Formel A1(R2)3 geeignet, wobei R2 Wasserstoff, Ci- bis CIQ -Alkyl, vorzugsweise Cj- bis C4 -Alkyl, insbesondere Methyl, Ethyl oder Butyl, bedeutet. Darüber hinaus kann R2 auch für Aryl- alkyl oder Alkylaryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest stehen.
Weiterhin sind Aluminiumalkyle Al(R2)3 geeignet, in denen R2 außer den oben definierten Resten noch Fluor, Chlor, Brom oder Iod bedeuten kann, mit der Maßgabe, daß mindestens ein Rest R2 ein C- organischer Rest oder ein Wasserstoffatom ist. Besonders bevorzugte Verbindungen sind Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Di-isobutylaluminiumhydrid und Diethyl- aluminiumchlorid.
Außerdem sind als Aktivatoren noch bororganische Verbindungen gut geeignet, beispielsweise Tris -arylborverbindungen, bevorzugt Tris (pentafluoropheny1) bor, weiterhin Salze von Carboniumionen, bevorzugt Triphenylmethyltetraarylborat, insbesondere Triphenyl - methyltetra (pentafluorophenyD orat.
Die genannten AI-, B- oder C-Verbindungen sind bekannt oder in an sich bekannter Weise erhältlich.
Als Aktivatoren können sie für sich allein oder als Mischungen im Katalysatorsystem eingesetzt werden. Vorzugsweise setzt man die Aktivatorkomponente im molaren Überschuß bezüglich des Metallocenkomplexes ein. Das Molverhältnis von Aktivator zu Metallocenkomplex beträgt im allgemeinen 100 : 1 bis 10.000 : 1, vorzugsweise 100 : 1 bis 1.000 : 1:
Die Bestandteile der beschriebenen Katalysatorsysteme können in beliebiger Reihenfolge einzeln oder als Gemisch in den Oligomeri- sierungsreaktor eingebracht werden. Vorzugsweise wird der Metallocenkomplex mit mindestens einer Aktivatorkomponente vor dem Eintritt in den Reaktor gemischt, das bedeutet voraktiviert.
Die Herstellung der Oligodecene kann in den üblichen, für die Oligomerisation von Olefinen verwendeten Reaktoren entweder diskontinuierlich oder bevorzugt kontinuierlich durchgeführt werden. Geeignete Reaktoren sind u.a. kontinuierlich betriebene Rührkessel, wobei man gegebenenfalls auch eine Reihe von mehreren hintereinander geschalteten Rührkesseln verwenden kann.
Die Oligomerisation kann in einer Suspension, in flüssigen Mono- meren und in inerten Lösungsmitteln durchgeführt werden. Bei der Oligomerisation in Lösungsmitteln werden insbesondere flüssige organische Kohlenwasserstoffe wie Benzol, Ethylbenzol oder Toluol verwendet. Vorzugsweise werden die Oligomerisierungen in einem Reaktionsgemisch durchgeführt, in welchem das flüssige Monomere im Überschuß vorliegt.
Da die Oligomerisierung in der Regel bei Temperaturen von -20°C bis 200°C, insbesondere von 0 bis 140°C, vor allem bei 30°C bis 110°C, vorgenommen wird, kann man sie meist im Niederdruck- oder Mitteldruckverfahren durchführen. Die Menge an eingesetztem Katalysator ist nicht kritisch.
Die durch Metallocenkatalyse hergestellten Oligodecene enthalten aufgrund des 01igomerisierungs-Mechanismus ungesättigte Doppel- bindungen, hierbei ist der Anteil an endständigen Vinyliden- Doppelbindungen besonders hoch. Falls diese Doppelbindungen bei der Verwendung als Motorenöl- oder Schmieröl -Komponenten stören sollten, können sie durch übliche Hydrierverfahren in gesättigte Strukturen übergeführt werden.
Die erfindungsgemäß verwendeten Oligodecene weisen das oben genannte zahlengemittelte Molekulargewicht (MN) auf. Die Bestimmung des zahlengemittelten Molekulargewichtes erfolgt üblicherweise durch Gelpermeationschromatographie (GPC) . Die Molekular- gewichtsverteilung MW/MN (Gewichtsmittelwert/Zahlenmittelwert) liegt im allgemeinen bei 1,3 bis 5, wobei eine enge Verteilung beispielsweise durch Extraktionsverfahren breiter verteilter Proben entstehen und eine breite Verteilung auch durch Abmischungen erhalten werden kann. Werden einheitliche Katalysatorsysteme eingesetzt, liegt die Verteilung im allgemeinen bei 1,5 bis 3,0. Unter Umständen kann eine breitere Verteilung vorteilhafter sein, denn für die gleiche Aufdickwirkung im Motoren- bzw. Schmieröl benötigt man meist bei enger Verteilung und gleichem Molekulargewicht mehr Oligomer. Auch für eine oft zusätzlich auftretende Dispergierwirkung im Motoren- bzw. Schmieröl kann eine breite Verteilung mit einer niedermolekulare Flanke in der Molekulargewichtsverteilung vorteilhaft sein. Weiterhin können sich auch durch Abmischungen erzeugte bimodale Verteilungen vorteilhaft auswirken. Auch engere Verteilungen können wegen besserer Scherstabilität vorteilhaft sein, inbesondere bei Getriebeölen.
Da ein Teil der beschriebenen Oligodecene (nämlich solche mit einem zahlengemittelten Molekulargewicht ab 30.000) neue Stoffe darstellen, betrifft die vorliegende Erfindung weiterhin Oligodecene, welche durch Oligomerisierung von linearem 1-Decen, wobei bis zu 40 mol-%, bezogen auf die Menge an linearem 1-Decen, weitere lineare Cs- bis Cι -1 -Olefine mit einpolymerisiert werden können, in Gegenwart eines Titan-, Zirkonium- oder Hafnium-Metal- locen-Katalysators und eines Aktivators auf Basis von aluminiumorganischen, bororganischen oder carbokationischen Verbindungen erhältlich sind und im Anschluß an die Oligomerisierung hydriert worden sein können, mit einem zahlengemittelten Molekulargewicht von 30.000 bis 200.000, insbesondere von 35.000 bis 150.000.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung dieser Oligodecene, welches dadurch gekennzeichnet ist, daß man lineares 1-Decen oder eine Mischung aus linearem 1-Decen und bis zu 40 mol-%, bezogen auf die Menge an linearem 1-Decen, weiteren linearen CQ - bis Cχ2-1-Alkenen metallocenkataly- siert - wie oben beschrieben - oligomerisiert und gewünschten- falls anschließend hydriert.
Die nachfolgenden Beispiele sollen die vorliegende Erfindung weiter erläutern, ohne jedoch als Beschränkung verstanden zu werden. Prozentangabe beziehen sich - sofern nichts anderes angege- ben ist - stets auf das Gewicht. Herstellungsbeispiele
Beispiel 1:
Synthese eines Oligodecens mit MN = 11.400
In einem 1 1 -Rührautoklav mit Doppelmantel aus V4A- Stahl wurden 400 ml lineares 1-Decen (Polymerqualität, 99,8 %) vorgelegt und auf 50°C geheizt. In einem Schlenkgefäß wurden 44 mg [Ethyliden- bis (tetrahydroindenyl) ] zirkoniumdichlorid in 43,8 ml Methyl - alumoxan (10 %ig in n-Hexan) gelöst, über eine Schleuse mit Stickstoff portionsweise in den Reaktor gedrückt und mit 30 ml Ethylbenzol nachgespült. Die Portionierung erfolgte so, daß der Kryostat, der die Reaktionswärme abführte, nicht überlastet wurde und die Reaktionstemperatur bei 50°C halten konnte. Es ergab sich eine Temperaturdifferenz zwischen Mantel und Reaktorinhalt von max. 40°C, die im Laufe von 2 bis 3 Stunden abklang. Nach 4 Stunden wurde auf Raumtemperatur abgekühlt, der Autoklav entleert und mit aliquoten Mengen Cyclohexan verdünnt. Es wurde mit 100 ml 0,1 %iger Schwefelsäure und zweimal mit je 100 ml VE-Wasser gewaschen, über Na2S04 getrocknet und bis 225°C (2 mbar) aus- destilliert. Das Sumpfprodukt hatte eine Viskosität von 1100 mm2/s (100°C) und ein MN nach GPC von 11.400. Die Ausbeute betrug 85 %, Der Vinylidendoppelbindungsgehalt 94 %.
Beispiel 2:
Synthese eines Oligodecens mit MN = 45.000
Analog zu Beispiel 1 wurde lineares 1-Decen (99,8 %) in Gegenwart von Bis [3 , 3 (2 -Methyl -benzindenyl) ] dimethylsilandiyl - zirkonium- dichlorid in Methylalumoxan zu einem Oligodecen mit einem MN nach GPC von 45.000 oligomerisiert .
Beispiel 3 :
Synthese eines Oligodecenes mit MN = 3500
Analog zu Beispiel 1 und 2 wurde mittels Bis (n-octadecylcyclopentadienyl) zirkoniumdichlorid/Methylalumoxan ein Oligodecen mit einem MN nach GPC von 3500 hergestellt.
Beispiel 4:
Synthese eines Oligodecens mit MN = 6450
Analog zu Beispiel 1 und 2 wurde mittels Bis (n-octadecylcyclopen- tadienyl) zirkoniumdichlorid/Methylalumoxan ein Oligodecen mit einem M^ nach GPC von 6450 hergestellt. Beispiel 5 :
Synthese eines Oligodecens mit MN = 850
Analog zu Beispiel 1 und 2 wurde mittels Bis (n-octadecylcyclopen- tadienyl) zirkoniumdichlorid/Methylalnmoxan ein Oligodecen mit einem MN nach GPC von 850 hergestellt.
Anwendungsbeispiele
Beispiel A:
Prüfung des Viskositäts -Temperatur-Verhaltens eines mineralischen Mehrbereichs -Motorenöls mit einem Oligodecen MN = 45.000 als Viskosi ätsindex-Verbesserer
Ein lösungsmittelraffiniertes Mehrbereichs -Motorenöl (15W/40) auf üblicher Mineralölbasis, welches folgende übliche Zusätze enthielt:
aschefreie Dispergatoren 5,0 % übliches überbasisches Sulfonat 2,8 % Zinkdithiophosphat 2,0 % übliches Antioxidant 0,4 % üblicher Friction Modifier 0,1 % üblicher Schauminhibitor 0,002
wurde mit dem Oligodecen aus Beispiel 2 (MN = 45.000) als Viskositätsindex-Verbesserer in den unten angegebenen Mengen vermischt. Die Ergebnisse der Viskositätsbesti mungen sind in Tabelle 1 zusammengestellt:
Tabelle 1
Bei allen vier Messungen wurden die durch die Normen, welche von der Mineralölindustrie aufgestellt worden sind, geforderten Werte erreicht oder im Sinne einer Übererfüllung sogar überschritten. Beispiel B
Prüfung des Viskositäts-Temperatur-Verhaltens und des Scherverhaltens eines Mehrbereichs -Getriebeöls mit einem Oligodecen MN = 3500 und MN = 6450 als Verdicker
Ein Mehrbereichs -Schaltgetriebeöl der in Tabelle 2 angegebenen Zusammensetzung wurde mit jeweils zwei verschiedenen Oligodecenen (MN = 3500 aus Beispiel 3 und MN = 6450 aus Beispiel 4 / Bl und B2) und zum Vergleich mit einem üblichen Polymethacrylat (B3) als Verdicker (Viskositätsindex-Verbesserer) vermischt und auf sein Viskosität- und Scherverhalten untersucht. Die Ergebnisse sind in Tabelle 2 zusammengefaßt:
Tabelle 2
*das Paket der üblichen Zusätze war für die drei Versuche Bl bis B3 gleich und enthielt im wesentlichen Verschleißschutz -Komponenten auf Stickstoff -Phosphor-Basis, Antioxidatien und Korrosionsschutz-Komponenten.
Die zur Vergleichbarkeit erforderliche Normierung der drei Getriebeöle Bl bis B3 erfolgte durch die Einstellung auf die gleiche Viskosität bei 100°c, daher sind auch die Einsatzmengen der Verdicker unterschiedlich. Aus den Werten für die Viskosität bei -40°C kann man ablesen, daß B2 dem Vergleichsöl B3 deutlich überlegen ist. Aus den Werten für den Scherverlust ist ersichtlich, daß Bl dem Vergleichsöl B3 deutlich überlegen ist, wobei B2 und B3 in etwa gleich wirken. Je nach Anforderungsprofil an das Getriebeöl kann man also durch die Feineinstellung des Molekularge- wichtes mehr das Tieftemperatur-Viskositätsverhalten oder mehr das Scherverhalten in der gewünschten Weise beeinflussen.
Beispiel C
Prüfung des Viskositäts -Temperatur-Verhaltens eines vollsynthetischen Mehrbereichs -Motorenöls mit einem Oligodecen MN = 850 als synthetischer Schmierkomponente
Ein vollsynthetisches Mehrbereichs -Motorenöl (5W/40) der folgenden Zusammensetzung:
synthetische Schmierkomponente 56,15 % Diisononyladipat 25,0 %
Viskositätsindex-Verbesserer 1,2 % auf Basis Styrol/Butadien übliche Zusätze (aschefreie 17,75 % Dispergatoren, Detergentien auf Sulfonat-Basis, Zinkdithio- phosphat, Antioxidant, Friction Modifier, Schauminhibitor) wurde mit dem Oligodecen aus Beispiel 5 (MN = 850/ CD und zum Vergleich mit der gleichen Menge an Poly-α-olefin (Viskosität: 8mm2/s/ C2) als synthetischer Schmierkomponente auf sein Viskositätsverhalten untersucht. Die Ergebnisse sind in Tabelle 3 zusammengefaßt:
Tabelle 3
Die Werte zeigen die deutliche Überlegenheit von CI gegenüber dem Vergleichsöl C2. Beispiel D :
Prüfung des Viskositäts -Temperatur -Verhaltens eines teilsynthetischen Mehrbereichs -Getriebeöls mit einem Oligodecen MN = 850 als synthetischer Schmierkomponente
Ein teilsythetisches Mehrbereichs -Automatikgetriebeöl der folgenden Zusammensetzung:
übliches Mineralöl 32,5 % synthetische Schmierkomponente 56,85 % übliche Zusätze analog zu Bei5,6 % spiel B (*)
Polyisobuten (MN = 2300) als 3,85 % Verdicker übliches Polymethacrylat als 1,0 % Verdicker üblicher Pour-Point-Verbesserer 0,2 %
wurde mit dem Oligodecen aus Beispiel 5 (M = 850/ Dl) und zum Vergleich mit der gleichen Menge an Poly-α-olefin (Viskosität: 8 mm2/s / D2) als sythetischer Schmierkomponente auf sein Viskositätsverhalten untersucht. Die Ergebnisse sind in Tabelle 4 zusammengestellt:
Tabelle 4
Der Vergleich der Werte bei -40°C zeigt die deutliche Überlegenheit von Dl gegenüber dem Vergleichsöl D2.

Claims

Patentansprüche
1. Verwendung von Oligodecenen, welche durch Oligomerisierung von linearem 1-Decen, wobei bis zu 40 mol-%, bezogen auf die Menge an linearem 1-Decen, weitere lineare Cs- bis Cι2-1-Alkene mit einpolymerisiert werden können, in Gegenwart eines Titan-, Zirkonium- oder Hafnium-Metallocen-Katalysators und eines Aktivators auf Basis von aluminiumorganischen, bororganischen oder carbokationischen Verbindungen erhältlich sind und im Anschluß an die Oligomerisierung hydriert worden sein können, mit einem zahlengemittelten Molekulargewicht von 500 bis 200.000 als Komponenten in Schmierstoffen.
2. Verwendung von Oligodecenen nach Anspruch 1 mit einem zahlengemittelten Molekulargewicht von 10.000 bis 200.000 als Viskositätsindex-Verbesserer in Mehrbereichs -Motorenölen.
3. Verwendung von Oligodecenen nach Anspruch 1 mit einem zahlen- gemittelten Molekulargewicht von 800 bis 50.000 als Verdicker in Mehrbereichs -Getriebeölen.
4. Verwendung von Oligodecenen nach Anspruch 1 mit einem zahlengemittelten Molekulargewicht von 500 bis 5000 als syntheti- sehe Schmierkomponente in Schmierstoffen.
5. Schmierstoffe mit einem Gehalt von 0,1 bis 95 Gew. -%, bezogen auf den Schmierstoff, an Oligodecenen gemäß Anspruch 1.
6. Oligodecene, welche durch Oligomerisierung von linearem 1-Decen, wobei bis zu 40 mol-%, bezogen auf die Menge an linearem 1-Decen, weitere lineare Cs- bis Cι2-l-01efine mit einpolymerisiert werden können, in Gegenwart eines Titan-, Zirkonium- oder Hafnium-Metallocen-Katalysators und eines Aktivators auf Basis von aluminiumorganischen, bororganischen oder carbokationischen Verbindungen erhältlich sind und im Anschluß an die Oligomerisierung hydriert worden sein können, mit einem zahlengemittelten Molekulargewicht von 30.000 bis 200.000.
7. Verfahren zur Herstellung von Oligodecenen gemäß Anspruch 6, dadurch gekennzeichnet, daß man lineares 1-Decen oder eine Mischung aus linearem 1-Decen und bis zu 40 mol-%, bezogen auf die Menge an linearem 1-Decen, weiteren linearen CQ - bis Cι2-1-Alkenen metallocenkatalysiert oligomerisiert und gewünschtenfalls anschließend hydriert.
EP99927838A 1998-06-19 1999-06-02 Metallocenkatalysiert hergestellte oligodecene, ihre herstellung und ihre verwendung als komponenten in schmierstoffen Withdrawn EP1088049A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19827323A DE19827323A1 (de) 1998-06-19 1998-06-19 Verwendung von metallocenkatalysiert hergestellten Oligodecenen als Komponenten in Schmierstoffen
DE19827323 1998-06-19
PCT/EP1999/003809 WO1999067347A2 (de) 1998-06-19 1999-06-02 Metallocenkatalysiert hergestellte oligodecene, ihre herstellung und ihre verwendung als komponenten in schmierstoffen

Publications (1)

Publication Number Publication Date
EP1088049A2 true EP1088049A2 (de) 2001-04-04

Family

ID=7871379

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99927838A Withdrawn EP1088049A2 (de) 1998-06-19 1999-06-02 Metallocenkatalysiert hergestellte oligodecene, ihre herstellung und ihre verwendung als komponenten in schmierstoffen

Country Status (6)

Country Link
EP (1) EP1088049A2 (de)
JP (1) JP2002518582A (de)
KR (1) KR20010053003A (de)
AU (1) AU4504699A (de)
DE (1) DE19827323A1 (de)
WO (1) WO1999067347A2 (de)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041345A1 (de) * 2000-08-23 2002-03-07 Basf Ag Verfahren zur Synthese von terminalen Olefinen mit enger Molgewichtsverteilung
MY139205A (en) * 2001-08-31 2009-08-28 Pennzoil Quaker State Co Synthesis of poly-alpha olefin and use thereof
US6713582B2 (en) 2001-12-14 2004-03-30 Uniroyal Chemical Company, Inc. Process for the oligomerization of α-olefins having low unsaturation, the resulting polymers, and lubricants containing same
US6680417B2 (en) * 2002-01-03 2004-01-20 Bp Corporation North America Inc. Oligomerization using a solid, unsupported metallocene catalyst system
US7214755B2 (en) 2002-02-21 2007-05-08 Idemitsu Kosan Co., Ltd. Crystalline polymer of higher α-olefin and process for producing the same
US6706828B2 (en) 2002-06-04 2004-03-16 Crompton Corporation Process for the oligomerization of α-olefins having low unsaturation
JP2005200452A (ja) * 2004-01-13 2005-07-28 Mitsui Chemicals Inc α−オレフィン(共)重合体の製造方法
JP2005200453A (ja) * 2004-01-13 2005-07-28 Mitsui Chemicals Inc α−オレフィン(共)重合体の製造方法
CN100390256C (zh) * 2004-11-26 2008-05-28 三井化学株式会社 合成润滑油和润滑油组合物
JP4933089B2 (ja) 2005-05-12 2012-05-16 出光興産株式会社 潤滑油組成物の製造方法
AU2006270436B2 (en) 2005-07-19 2011-12-15 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same
WO2007011462A1 (en) 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Lubricants from mixed alpha-olefin feeds
JP5006788B2 (ja) * 2005-08-31 2012-08-22 出光興産株式会社 冷凍機油組成物
EP1950277B1 (de) * 2005-11-15 2015-08-05 Idemitsu Kosan Co., Ltd. Getriebeölzusammensetzung
JP5390738B2 (ja) * 2005-11-15 2014-01-15 出光興産株式会社 内燃機関用潤滑油組成物
EP1995299B1 (de) * 2006-03-10 2018-01-31 Idemitsu Kosan Co., Ltd. Verfahren zum schmieren einer kältemaschine
US8834705B2 (en) 2006-06-06 2014-09-16 Exxonmobil Research And Engineering Company Gear oil compositions
US8921290B2 (en) 2006-06-06 2014-12-30 Exxonmobil Research And Engineering Company Gear oil compositions
US8501675B2 (en) 2006-06-06 2013-08-06 Exxonmobil Research And Engineering Company High viscosity novel base stock lubricant viscosity blends
US8299007B2 (en) 2006-06-06 2012-10-30 Exxonmobil Research And Engineering Company Base stock lubricant blends
US8535514B2 (en) 2006-06-06 2013-09-17 Exxonmobil Research And Engineering Company High viscosity metallocene catalyst PAO novel base stock lubricant blends
CN101501083B (zh) * 2006-07-19 2012-12-05 埃克森美孚化学专利公司 制备高粘度流体的方法
JP5285218B2 (ja) * 2006-12-28 2013-09-11 出光興産株式会社 金属加工用潤滑油組成物
US8227392B2 (en) 2008-01-25 2012-07-24 Exxonmobil Research And Engineering Company Base stocks and lubricant blends containing poly-alpha olefins
ATE524500T1 (de) 2008-01-31 2011-09-15 Exxonmobil Chem Patents Inc Verbesserte verwendung linearer alpha-olefine bei der herstellung von metallocen-katalysierten poly-alpha-olefinen
US8865959B2 (en) 2008-03-18 2014-10-21 Exxonmobil Chemical Patents Inc. Process for synthetic lubricant production
EP2285851B1 (de) 2008-05-07 2014-03-19 Basf Se Alpha-olefin/isobuten-diblockcopolymere
JP2011121990A (ja) * 2008-11-17 2011-06-23 Idemitsu Kosan Co Ltd 潤滑油組成物
JP5555478B2 (ja) * 2008-11-17 2014-07-23 出光興産株式会社 変速機用潤滑油組成物
US8389625B2 (en) 2008-12-23 2013-03-05 Exxonmobil Research And Engineering Company Production of synthetic hydrocarbon fluids, plasticizers and synthetic lubricant base stocks from renewable feedstocks
JP5357605B2 (ja) * 2009-04-02 2013-12-04 出光興産株式会社 α−オレフィン重合体の製造方法及び潤滑油
CA2782873C (en) 2009-12-24 2016-06-28 Exxonmobil Chemical Patents Inc. Process for producing novel synthetic basestocks
US8557902B2 (en) 2010-08-25 2013-10-15 Exxonmobil Chemical Patents Inc. Functionalizable synthetic hydrocarbon fluids and integrated method for production thereof
US9815915B2 (en) 2010-09-03 2017-11-14 Exxonmobil Chemical Patents Inc. Production of liquid polyolefins
WO2012070240A1 (ja) * 2010-11-26 2012-05-31 出光興産株式会社 α-オレフィン重合体及びその製造方法
US20140323665A1 (en) 2011-03-30 2014-10-30 Exxonmobil Chemical Patents Inc. Polyalphaolefins by Oligomerization and Isomerization
KR101449474B1 (ko) * 2012-11-23 2014-10-13 아주대학교산학협력단 알파-올레핀 트리머리제이션용 촉매, 이를 이용한 알파-올레핀 트리머리제이션 방법 및 이를 이용한 윤활유의 제조 방법
US10968290B2 (en) 2017-03-28 2021-04-06 Exxonmobil Chemical Patents Inc. Metallocene-catalyzed polyalpha-olefins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4282392A (en) * 1976-10-28 1981-08-04 Gulf Research & Development Company Alpha-olefin oligomer synthetic lubricant
EP0613873A3 (de) * 1993-02-23 1995-02-01 Shell Int Research Verfahren zur Oligomenisierung.
WO1996023751A1 (de) * 1995-02-01 1996-08-08 Basf Aktiengesellschaft Verfahren zur herstellung von olefin-oligomeren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9967347A3 *

Also Published As

Publication number Publication date
JP2002518582A (ja) 2002-06-25
WO1999067347A3 (de) 2000-02-17
AU4504699A (en) 2000-01-10
DE19827323A1 (de) 1999-12-23
KR20010053003A (ko) 2001-06-25
WO1999067347A2 (de) 1999-12-29

Similar Documents

Publication Publication Date Title
EP1088049A2 (de) Metallocenkatalysiert hergestellte oligodecene, ihre herstellung und ihre verwendung als komponenten in schmierstoffen
DE3882838T2 (de) Polymer-Viskositätsmodifizierungsmittel.
DE2126952C2 (de) Schmierölmischung
DE3880401T2 (de) Schmieroelgemisch.
US5420372A (en) Alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same and method of making the oligomers
US3522180A (en) Lubricating oil compositions containing amorphous ethylene-propylene copolymers
DE3029830C2 (de)
DE60319559T2 (de) Synthetische schmiermittelzusammensetzung und verfahren zu deren herstellung
DE1769834C2 (de) Schmieröl
US5315053A (en) Normally liquid alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same
WO1996023751A1 (de) Verfahren zur herstellung von olefin-oligomeren
AT264691B (de) Schmieröl oder Schmierölzusatz
FI62334B (fi) Smoerjmedelstillsats
DE1939037A1 (de) AEthylen/Alpha-Olefinpolymerisate,Verfahren zu ihrer Herstellung und ihre Verwendung in Schmieroelen
DE1931421B2 (de) Zaehfluessige massen und verfahren zu deren herstellung
DE1952574C2 (de) Ölzusatz, dessen Verwendung in einem Mineralöl sowie Ölmischung
EP1071733B1 (de) Thermische umsetzungsprodukte aus maleinsäureanhydrid und oligoalkenen, derivate der thermischen umsetzungsprodukte mit aminen oder alkoholen und ihre verwendung
DE69113641T2 (de) Neue dispersionsfähigkeit-viskositätsindex-verbessernde zusammensetzungen.
DE4025494A1 (de) Syntheseoele, die ganz oder teilweise aus oligomeren bzw. cooligomeren von (meth)acrylsaeureestern und 1-alkenen bestehen
DE3000726C2 (de) Schmierölmischung und Konzentrat
EP2285851B1 (de) Alpha-olefin/isobuten-diblockcopolymere
DE69102631T2 (de) Neue mannichbasederivate von aminosubstituierten polymeren mit einer heterozyklischen stickstoffverbindung für ölhaltige zusammensetzungen.
DE68902910T2 (de) Verfahren zum reduzieren von truebung in schmieroelzusammensetzungen.
US4081390A (en) Viscosity index improver composition
DE2411555A1 (de) Verfahren zur herstellung von viskositaets-index verbesserern fuer schmieroele

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001122

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20010927

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 07C 9/22 B

Ipc: 7C 08F 10/14 B

Ipc: 7C 07C 2/34 B

Ipc: 7C 10L 1/16 B

Ipc: 7C 10M 143/08 A

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20050428