EP0914945B1 - Procédé pour régler l'encrage dans une machine d'impression - Google Patents

Procédé pour régler l'encrage dans une machine d'impression Download PDF

Info

Publication number
EP0914945B1
EP0914945B1 EP98119006A EP98119006A EP0914945B1 EP 0914945 B1 EP0914945 B1 EP 0914945B1 EP 98119006 A EP98119006 A EP 98119006A EP 98119006 A EP98119006 A EP 98119006A EP 0914945 B1 EP0914945 B1 EP 0914945B1
Authority
EP
European Patent Office
Prior art keywords
colour
value
image element
raster
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98119006A
Other languages
German (de)
English (en)
Other versions
EP0914945A2 (fr
EP0914945A3 (fr
Inventor
Harald Ammeter
Hans Ott
Nikolaus Pfeiffer
Manfred Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberger Druckmaschinen AG
Original Assignee
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heidelberger Druckmaschinen AG filed Critical Heidelberger Druckmaschinen AG
Publication of EP0914945A2 publication Critical patent/EP0914945A2/fr
Publication of EP0914945A3 publication Critical patent/EP0914945A3/fr
Application granted granted Critical
Publication of EP0914945B1 publication Critical patent/EP0914945B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control
    • B41F33/0045Devices for scanning or checking the printed matter for quality control for automatically regulating the ink supply

Definitions

  • the invention relates to a method for regulating the color application in a Printing machine according to the preamble of the independent claim.
  • Such a is the process referred to as the color distance-controlled control process e.g. known from EP-B2-0 228 347 and from DE 195 15 499 C2.
  • the process involves printing a printed sheet in a number using the printing press of test areas with respect to a selected color coordinate system measured colorimetrically. The color coordinates obtained thereby become the Color distance vectors to target color coordinates based on the same color coordinate system calculated.
  • These color distance vectors are created using Sensitivity matrices converted into layer thickness change vectors, and the Regulation of the color guide of the printing press is based on the Color distance vectors converted layer thickness change vectors made.
  • the fields from with the actual print image are used as test areas printed color control strips used.
  • scanners which allow the entire image content of a printed sheet in large numbers of relatively small picture elements with reasonable effort and in a very short time measured colorimetrically or spectrophotometrically.
  • These scanners offer the basic metrological requirements for the regulation of Ink guide of a printing machine not only to use test strips printed with it, but the color information from all picture elements of the whole actual To use the printed image for this purpose.
  • a difficulty with this as a so-called Measurement in the picture is by the in the Given the four-color printing problem of the black component, to which As is well known, not only the printing ink black itself, but also that superimposed colored colors contribute.
  • the present Invention Based on this prior art, it is an object of the present Invention to improve a method of the generic type in that it also for the so-called measurement in the image with practically justifiable effort can be carried out.
  • the measurement in the image is the colorimetric Measurement of the entire printed image in a very large number (typically several thousand) of small picture elements (typically a few millimeters in diameter) and the evaluation of those obtained from the individual picture elements colorimetric values for the calculation of the control variables for the coloring of the Printing machine understood.
  • Another object of the invention is that Process also to improve the influence of everyone involved Printing inks, in particular also the printing ink black, can be safely separated can.
  • Print sheets 3 which the desired print image and possibly additional Have pressure control elements.
  • the printed sheets 3 are up to date Removed printing process and a spectrophotometric scanner 2 fed. This scans the printed sheets 3 essentially over the entire Surface from pixel to pixel.
  • the size of the individual picture elements 4 is typical about 2.5 mm x 2.5 mm corresponding to around 130,000 picture elements in one Sheet 3 common dimensions.
  • the generated by the scanner 2 Samples - typically spectral reflectance values - are stored in one Evaluation device 5 analyzed and input variables for one of the Control unit 9 assigned to printing press 1, which in turn processes the Coloring elements of the printing press 1 in accordance with these input parameters controls.
  • the input variables are, at least in the case of an offset printing press, typically around zonal layer thickness changes for the individual inks involved in printing.
  • the determination of the above Input variables or changes in layer thickness are made by comparing the Sampled values or quantities derived therefrom, in particular color measurement values (Color locations or color vectors) of a so-called OK sheet 3 with the corresponding sizes of one taken from the current printing process Printing sheet 3 in the sense that the by the input sizes or Changes in layer thickness caused changes in the settings of the Coloring organs of the printing press 1 the best possible adjustment of the color impression of the continuously generated printed sheets 3 to the OK sheet Have consequence.
  • another OK sheet 3 can also be used Reference can be used, for example corresponding default values or corresponding values obtained from prepress.
  • the arrangement outlined essentially corresponds conventional, e.g. in EP-B2 0 228 347 and DE-A 44 15 486 in detail described arrangements and methods for color control of Printing machines and therefore requires no closer for the specialist Explanation.
  • the basic structure of the scanning device 2 and the evaluation device 5 go from Fig. 2.
  • the scanning device 2 comprises a substructure in the form of a somewhat inclined one rectangular measuring table T, on which the printed sheet 3 to be measured is positioned can be.
  • a measuring carriage W is arranged on the measuring table T, on or in which is a spectrophotometric measuring unit, not shown here.
  • the Measuring carriage W extends over the entire depth of the measuring table T in Coordinate direction y and is motorized across its width in the coordinate direction x linearly movable back and forth, with appropriate drive and control devices A are provided in the measuring carriage W and on or under the measuring table T.
  • the evaluation device 5 comprises a computer C with a keyboard K and a monitor M.
  • the computer C works together with the drive and control device A on the measuring table T or in the measuring carriage W, controls the movement of the measuring carriage W and processes that of the one in the measuring carriage W located spectrophotometric measuring unit generated scanning signals.
  • the scanning signals or quantities derived therefrom typically for example the color values of the individual picture elements 4, can be displayed on the monitor M, for example in terms of pictures.
  • monitor M and fact K are used for interactively influencing the evaluation processes, but this is not the subject of the present invention and is therefore not explained in more detail.
  • the spectrophotometric measuring unit comprises a plurality of reflectance measuring heads arranged linearly along the measuring carriage W and a spectral photometer optically connected to these measuring heads via an optical fiber multiplexer.
  • the measuring unit scans the printed sheet 3 when moving the measuring carriage W back and forth across the entire printed sheet surface in a plurality - typically 320 - of parallel linear tracks spectrophotometrically, with each track having a large number of individual picture elements 4, the dimensions of which in the coordinate direction x are defined by the speed of movement of the measuring carriage W and the temporal resolution of the individual scanning processes.
  • the dimensions of the picture elements 4 in the coordinate direction y are determined by the spacing of the scanning tracks.
  • the dimensions of the individual scanned image elements 4 are approximately 2.5 mm ⁇ 2.5 mm, which results in a total number of approximately 130,000 image elements in the case of a printing sheet 3 of conventional size.
  • the reflectance spectra of the picture elements 4 are available as scanning signals for each individual picture element 4 of the printing sheet 3, which the computer C evaluates and processes further in the manner described below for determining the input variables for the printing press control device 9.
  • Scanning devices 2 which a printing sheet 3 in two dimensions allow to be measured densitometrically or spectrophotometrically, are widespread in the graphics industry and therefore need for the Expert no further explanation, especially for the concerns of the present Invention the pixel-by-element measurement of the printed sheets 3 also by means of a Handheld colorimeter or handheld spectrophotometer could be done.
  • a special one A suitable scanning device 2 corresponding to the one outlined above is e.g. in the German patent application 196 50 223.3 described in all details.
  • An essential aspect of the present invention is the inclusion of the printing ink black in the calculation of the input variables for the printing press control or in the calculation of the intermediate variables required for these input variables.
  • the printed sheets 3 are not only measured in the visible spectral range (approx. 400-700 nm), but also at at least one point in the near infrared, where only the printing ink black has a significant absorption.
  • the reflectance spectra of the individual picture elements 4 thus consist of reflectance values in the visible spectral range, typically 16 reflectance values at intervals of 20 nm each, and a reflectance value in the near infrared range.
  • Color values (color coordinates, color vectors, color locations) relating to a selected color space are calculated from the reflectance values of the visible spectral range. It is preferable to choose a color space that is equally spaced in terms of perception, typically the so-called L, a, b color space according to CIE (Commission Internationale de l'Eclairage).
  • L, a, b color space
  • CIE Commission Internationale de l'Eclairage
  • the color and infrared values L, a, b and I present for each individual picture element 4 after the scanning of a printing sheet 3 form the starting point for the calculation of the input variables for the printing press control device 9. These calculations are also carried out in the computer C.
  • the three color values L, a, b (or the corresponding values of another color system) and the value quadruple comprising the infrared value I for simplifying purposes as the (four-dimensional) color vector F of the relevant picture element 4, so: F (L, a, b, I)
  • color locus in the four-dimensional color space is understood to mean a point whose four coordinates in the color space are the four components of the color vector.
  • the color vectors of the picture elements 4 of the OK sheet 3 or another reference are often also referred to as target color vectors.
  • ⁇ (L i - L r ) 2 + (a i - a r ) 2 + (b i - b r ) 2 + (I i -I r ) 2 ⁇ 0.5 where the indices i and r in turn have the meaning given.
  • the computer C calculates the color distance vector ⁇ F for each picture element 4 of the current printed sheet 3 from the color vectors F determined on this and the OK sheet 3.
  • the indices c, g, m and s stand for the printing inks cyan, yellow, magenta and black, the correspondingly indexed components of the vector are the relative changes in layer thickness for the printing ink indicated by the index.
  • an offset printing machine 1 is designed zonally, i.e. the printing takes place in a series of parallel zones (typically 32), at which Printing machine 1 separate coloring organs are provided for each zone, the Regulation - at least for the interests of the present invention - independent of one another.
  • the mutual influence of neighboring pressure zones and their Consideration in the printing press control is not the subject of present invention and is therefore disregarded.
  • the following Comments on the actual control of the printing press 1 or on the calculation of the corresponding input variables for the press control relate each to a pressure zone and apply equally to all pressure zones.
  • the coefficients of the sensitivity matrix S are usually called Color value gradients. In the following explanations, 16 Color value gradients each represent the summary term sensitivity matrix used.
  • the sensitivity matrix S is a linear replacement model for the relationship between the changes in the layer thickness of the printing inks involved in the printing and the resulting changes in the color impression of the with the changed Layer thickness values of printed picture element 4.
  • the sensitivity matrix S only from the To form components L, a, b of a three-dimensional color vector F.
  • On the Component I can be omitted if there are several Image elements 4 in relation to the flat coverage of the printing inks involved is independent of each other, which is the case in most cases.
  • each printing zone comprises a large number, typically approximately 4000, individual picture elements.
  • the interference that occurs during printing generally does not have the same effect on the individual image elements or that not all image elements are affected by the same interference.
  • the individual matrix equations for the individual picture elements must therefore be combined to form a matrix equation system which is overdetermined according to the reduced number of picture elements and which is to be solved according to the known methods of compensation calculation using a framework or secondary condition.
  • a framework or secondary condition In the case of 4000 picture elements, there is a system of 4000 matrix equations or 16000 simple algebraic equations with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s .
  • the mean quadratic error should be minimal.
  • the mean square error is understood to mean the mean value of the squares of the color distances ⁇ E of the individual picture elements remaining after the corrected layer thicknesses have been applied.
  • ⁇ F ⁇ means a column vector with 16000 components ( ⁇ L 1 , ⁇ a 1 , ⁇ b 1 , ⁇ I 1 , ⁇ L 2 , ⁇ a 2 , ⁇ b 2 , ⁇ I 2 ........ ⁇ L 4000 , ⁇ a 4000 , ⁇ b 4000 , ⁇ I 4000 ), ⁇ S ⁇ a matrix with 4 rows and 4000 columns and ⁇ D a column vector with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s as components.
  • the indices of the components of ⁇ F ⁇ relate to the picture elements 4 1-4000, ie the components of ⁇ F ⁇ are the determined components of the color distance vectors ⁇ F of the individual picture elements 4 compared to the corresponding picture elements 4 of the OK sheet.
  • the calculation of the layer thickness change vector ⁇ D is based on Although this is possible in principle, it requires enormous computing effort and corresponding expenditure of time that goes far beyond the limits of what is practically possible exceeds. In particular, a sufficiently fast control, such as in practice, especially in modern high-performance printing presses 1 is not feasible.
  • the computing effort for determining the 4000 Sensitivity matrices (64,000 coefficients in total) for each Image elements 4 are not considered at all and move the Feasibility even further away.
  • the visual color impression (metrologically the color value, color location or color vector) of a picture element 4 is in offset raster printing by the percentage Raster values (area coverage) of the printing inks involved and, to a lesser extent Mass determined by the layer thickness of the printing inks.
  • the grid values or Area coverage (0-100%) are due to the underlying printing plates fixed and practically unchangeable. Influenced the color impression and can therefore only be regulated via the layer thicknesses of the printing inks involved become.
  • the terms "grid value” and "area coverage” are given below used synonymously.
  • the totality of all possible combinations R of percentage screen values of the printing inks involved (usually cyan, yellow, Magenta, black) is referred to below as a grid space (four-dimensional).
  • each Raster value combination R a precisely defined color impression or color vector F the picture element 4 printed with this raster value combination R; so it exists a clear assignment of raster value combination R to color location or color vector F; the grid space can be clearly mapped onto the color space, although the color space is not completely occupied because it also contains non-printable color locations contains. Conversely, there is generally no clear relationship.
  • the one Any raster value combination R belonging to color vector F can be empirically determined by Sample prints determined or using a suitable model that the Printing process sufficiently accurate under the given printing conditions describes, can be calculated.
  • a suitable model is e.g.
  • the Area coverage values of the picture elements 4 are used. Are the Area coverage values from prepress are already known, so there is no need Measurement on test prints (exception: full tones).
  • Raster value combinations R the associated color vector F and the associated Sensitivity matrix S calculated in advance and stored in a table.
  • This the entirety of all sensitivity matrices S and color vectors F calculated in this way containing table is referred to below as a raster color table RFT.
  • the associated raster value combination R is explained in more detail below calculates and on the basis of this raster value combination R the associated sensitivity matrix S taken from the pre-calculated raster color table RFT. To this In this way it is possible to quickly get the required without excessive computing effort Determine sensitivity matrices.
  • a number of, for example, 1296 equally spaced discrete screen value combinations R iR (6 discrete screen percentages A C , A G , A M , A S for the printing colors cyan, yellow, magenta, black) are defined in the screen space: i 0 1 2 3 4 5 A C 0 20 40 60 80 100% A G 0 20 40 60 80 100% A M 0 20 40 60 80 100% A S 0 20 40 60 80 100%
  • a sensitivity matrix S iR is calculated for each of these 1296 discrete raster value combinations R iR and stored in the raster color table RFT.
  • the calculated color vector F iR belonging to the discrete raster value combinations R iR is also stored in the table RFT.
  • the raster color table RFT thus contains a total of 1296 color vectors F iR and 1296 associated sensitivity matrices S iR .
  • the grid space is preferably quantized in two stages.
  • the first stage for only 256 discrete halftone value combinations (corresponding to four discrete halftone percentage values 0%, 40%, 80%, 100% for each of the printing colors cyan, yellow, magenta, black), the associated color vectors and the are based on the offset printing model associated sensitivity matrices.
  • the second stage the associated color vectors and sensitivity matrices for the missing raster percentage values 20% and 60% are calculated by linear interpolation from the color vectors and sensitivity matrices of the 16 nearest discrete raster value combinations.
  • a sensitivity matrix S iR whose associated discrete raster value combination R iR is closest to the raster value combination R calculated from the color vector F is now assigned to a color vector F determined for a picture element 4.
  • the calculated raster value combination is replaced by R each closest discrete halftone value combination R iR and receives associated with the precalculated to this discrete halftone value combination R iR sensitivity matrix S iR.
  • the grid space is quantized by dividing it into a number of subspaces. All color vectors F, the calculated associated raster value combinations R of which fall into one and the same of these subspaces, are assigned the same sensitivity matrix S iR previously calculated for this subspace.
  • the subspaces are defined by the following six value ranges of the percentage raster portions (area coverage) of the four printing inks involved: 0 .... 10, 10 .... 30, 30 .... 50, 50 .... 70, 70 .... 90, 90 .... 100%
  • the (including infrared value I four-dimensional) color space is also subjected to quantization, ie divided into a number of subspaces, for determining the raster value combination R from the color vector F.
  • quantization ie divided into a number of subspaces, for determining the raster value combination R from the color vector F.
  • a number of discrete color locations, each with discrete coordinate values, are defined in the color space.
  • the four-dimensional color space can be quantized such that each dimension L, a, b, I of the color space can only assume 11 discrete values, resulting in a total of 14641 discrete color locations F iF : i 0 1 2 3 4 5 6 7 8th 9 10 L 0 10 20 30 40 50 60 70 80 90 100 a -75 -60 -45 -30 -15 0 15 30 45 60 75 b -45 -30 -15 0 15 30 45 60 75 90 105 I 0 10 20 30 40 50 60 70 80 90 100
  • the associated raster value combinations R iF are calculated using the special calculation method explained below and, if they do not coincide with a discrete raster value combination R iR , are replaced by the closest discrete raster value combination R iR .
  • this mapping is calculated in advance and stored in an assignment table referred to below as the raster index table RIT.
  • each color vector F determined for a picture element 4 is replaced by the closest discrete color location F iF .
  • the discrete raster value combination R iR assigned to this discrete color location F iF is then taken from the raster index table RIT and the corresponding sensitivity matrix S iR is read out from the raster color table RFT and assigned to the color vector F.
  • the sensitivity matrix S can be determined with comparatively little computing effort and correspondingly quickly for any determined color vector F, although this can only be selected from one of the 1296 precalculated sensitivity matrices S iR . In practice, however, this is sufficient.
  • the color space is divided into 81 sub-areas T iT as follows: i 0 1 2 L (0..120) 0..20..40 40..60..80 80..100..120 a (-90 .. + 90) -90 ..- 60 ..- 30 -30..0 .. + 30 +30 .. + 60 .. + 90 b (-60 .. + 120) -60 ..- 30..0 0 .. + 30 .. + 60 +60 .. + 90 .. + 120 I (0..120) 0..20..40 40..60..80 80..100..120
  • iT i (L) * 3 0 + i (a) * 3 1 + i (b) * 3 2 + i (I) * 3 3
  • A means the raster vector with the raster percentage values A C , A G , A M , A S of the four printing inks involved as components, and U iT a conversion matrix with 16 coefficients, which shows the partial derivatives (gradients) of the components of the raster vector according to the components of the color vector are. If the conversion matrices U iT of the individual partial areas T iT are known, the associated raster vector A or the associated raster value combination R can thus be calculated for each color vector F.
  • the problem is therefore reduced to the calculation of the conversion matrices U iT for the individual sub-areas T iT or more precisely for the color vectors F iT from their centers.
  • the conversion matrices are calculated using a weighted linear compensation calculation using the values from the raster-color table RFT explained above, that is to say the 1296 discrete raster value combinations R iR and the associated discrete color vectors F iR .
  • RFT raster-color table
  • Weight of the support points, ie the discrete color locations F iR of the raster color table RFT, for the compensation calculation is determined according to a suitable function with the color distance between the support points and the respective color vector F iT as parameters.
  • the compensation calculation is linear, ie there are discontinuities at the transitions of the individual sub-areas T iT , which are insignificant in practice.
  • the raster color table RFT and the raster index table RIT are calculated and saved in accordance with the above explanations for the prevailing printing conditions. If already determined and saved on a storage medium, the tables RFT, RIT can of course also be called up from this storage medium. On the basis of the two tables RFT, RIT, it is possible without substantial computing effort to assign the color vectors F determined for the individual picture elements 4 to the discrete sensitivity matrix S that applies in each case. Now, a current print sheet 3 is taken from the current printing process and measured by the scanning device 2 in the manner described, with the color vector F and the color distance vector ⁇ F for each picture element 4 for each picture element 4 from the corresponding picture element 4 of a previously measured OK sheet 23 is determined.
  • the total number of picture elements 4 is, for example, around 130,000, so that with the usual 32 printing zones, the color vectors and color distance vectors of around 4,000 picture elements 4 each have to be processed per printing zone.
  • the following explanations apply equally to one pressure zone and to all pressure zones.
  • Layer thickness change vector ⁇ D is then calculated so that the mean quadratic error should be minimal across all sensitivity classes.
  • middle quadratic error is the mean of the squares according to the Application of the corrected layer thicknesses remaining mean color distances of the Understanding picture elements 4 of the individual classes.
  • the areas of the sensitivity classes are preferably defined in the grid space. For example, 16-256 classes can be provided. The more classes there are, the fewer errors arise from averaging, but the more the computing effort increases.
  • the definition of 81 classes which result from dividing the grid space into 81 subspaces according to the following scheme, has proven to be a practical compromise: n 0 1 2 A C 0% .... 30% 30% .... 70% 70% .... 100% A G 0% .... 30% 30% .... 70% 70% .... 100% A M 0% .... 30% 30% .... 70% 70% .... 100% A S 0% .... 30% 30% 30% .... 70% 70% .... 100%
  • iK n (A C ) * 3 0 + n (A G ) * 3 1 + n (A M ) * 3 2 + n (A S ) * 3 3
  • the grid space comprises 1296 discrete grid value combinations R iR .
  • Exactly 16 raster value combinations R iR thus fall in each of the 81 subspaces and, accordingly, 16 (similar) sensitivity matrices S iR fall into each sensitivity class K iK .
  • Sensitivity classes K iK determined. Using the raster index iR and the raster color table RFT, the sensitivity matrix S associated with the color vector F of the picture element 4 is further determined. After these steps, the color vector F, the color distance vector ⁇ F, the raster index iR, the sensitivity matrix S and the class index iK are thus available for each of the approximately 4000 image elements 4 of a printing zone.
  • the raster index iR defines the raster value combination R, ie the percentage raster portions (area coverage) of the printing inks involved for the image element 4, the class index iK defines the affiliation of the image element 4 to a specific sensitivity class.
  • the picture elements 4 or their color distance vectors ⁇ F become one Weighting process subjected to the influence of area coverage and of Positioning errors are taken into account.
  • ⁇ E p 2 is the square of the color distance of the picture element 4 from the unprinted position of the printed sheet 3 (paper white).
  • weight factor g 1 Another variant for the determination of the weight factor g 1 is that it receives the value 1 as the maximum value if the sum of the area coverings of the respective picture element 4 falls below a predetermined threshold value, preferably the value 250. Otherwise, the weighting factor g1 is given a smaller value, in particular a value of 0. A combination of the two variants mentioned above is also conceivable.
  • ⁇ E M means the sum of the color distances between the picture element 4 and its 8 neighboring picture elements 4.
  • ⁇ E M2 means the sum of the squares of the color distances of the picture element 4 from its 8 neighboring picture elements 4.
  • the difference between the area coverage values and the neighboring picture elements 4 can also be used, with an increasing difference the weight factor g2 likewise receiving a smaller value going towards 0.
  • the color distance vectors ⁇ F of the individual picture elements 4 and the associated sensitivity matrices S are weighted multiplicatively.
  • the weighted color distance vectors and sensitivity matrices of the individual picture elements 4 are referred to below as ⁇ F g and S g
  • the totals are generated across all picture elements in a class.
  • the resolution is again carried out by means of a weighted linear compensation calculation with the additional condition that the mean square error should be minimal, whereby the mean square error means the mean value of the squares of the mean color distances ⁇ E MK of the individual sensitivity classes remaining after application of the layer thicknesses corrected by ⁇ D becomes.
  • ⁇ F z ⁇ means a column vector with 4x81 components, which results from the stacking of the 81 vectors ⁇ F MK with their 4 components each.
  • ⁇ S z ⁇ is a matrix with 4 rows and 81 columns, which results from the 81 sensitivity matrices S MK being arranged horizontally side by side.
  • ⁇ D is a column vector with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s as components.
  • the desired layer thickness change vector ⁇ D with its components ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s are obtained for each printing zone, which are fed to the control device 9 as input variables and thus cause the necessary adjustment of the coloring elements of the printing press 1 that the mean square error mentioned is minimized in each pressure zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Facsimile Image Signal Circuits (AREA)

Claims (14)

  1. Procédé pour réguler l'encrage dans une machine d'impression, selon lequel une feuille d'impression (3) imprimée avec la machine d'impression (1) est mesurée par colorimétrie dans un nombre d'éléments d'images (4), en ce qui concerne un rapport avec un système sélectionné de coordonnées de couleurs, des vecteurs d'écart de couleur (ΔF) sont calculés à partir des vecteurs de couleur ainsi obtenus (F) pour chaque élément d'image, par rapport à des vecteurs de couleur de consigne rapportés au même système de coordonnées de couleurs, prédéterminés ou déterminés à partir d'une feuille d'impression de référence, ces vecteurs d'écart de couleur (ΔF) sont convertis à l'aide de matrices de sensibilité (S) en des grandeurs d'entrée, notamment des vecteurs (ΔD) de modification de l'épaisseur de couche, pour un dispositif de commande (9) pour les organes d'application d'encre de la machine d'impression (1), et la régulation du pilotage des couleurs de la machine d'impression (1) est exécutée sur la base des grandeurs d'entrée, notamment des vecteurs (ΔD) de modification d'épaisseur de couche, converties à partir des vecteurs d'écart de couleur (ΔF), caractérisé en ce que pour chaquc élément d'image mesuré (4) de la feuille d'impression (3) on détermine une matrice de sensibilité propre (S), qu'on classe les éléments d'image (4) selon des classes de sensibilité (KiK), qu'on fait la moyenne des vecteurs d'écart de couleur (ΔF) et des matrices de sensibilité (S) des éléments d'image (4) appartenant respectivement à une plage de sensibilité, pour chaque classe de sensibilité (KiK) et qu'on calcule les grandeurs d'entrée indiquées, notamment des vecteurs (ΔD) de modification d'épaisseur de couches, à partir des vecteurs moyens d'écart de couleur (ΔFMK) et des matrices moyennes de sensibilité (SMK) de toutes les classes de sensibilité (KiK)
  2. Procédé selon la revendication 1, caractérisé en ce que les matrices de sensibilité (S) sont déterminées à partir de valeurs déjà connues de recouvrement de surface.
  3. Procédé selon la revendication 1, caractérisé en ce que pour chaque élément d'image (4) on obtient au moins une valeur de mesure (I) dans le domaine du proche infrarouge, que le vecteur de couleur (F) déterminé pour chaque élément d'image (4) est quadridimensionnel, trois composantes du vecteur de couleur (F) étant les valeurs de coordonnées d'un espace de couleurs approximativement équidistant et la quatrième composante étant formée par la au moins une valeur de mesure (I) dans la gamme du proche infrarouge, que le vecteur d'écart de couleur (ΔF) déterminé pour chaque élément d'image (4) est de façon correspondante quadridimensionnel et que la matrice de sensibilité (S) déterminée pour chaque élément d'image (4) est formée par les gradients des quatre composantes du vecteur de couleur quadridimensionnel (F) en fonction des couleurs d'impression qui interviennent dans l'impression.
  4. Procédé selon la revendication 1, caractérisé en ce que pour chaque élément d'image (4), on obtient au moins une valeur de mesure (I) dans le domaine du proche infrarouge, que le vecteur de couleur (F) déterminé pour chaque élément d'image (4) est quadridimensionnel, trois composantes du vecteur de couleur (F) étant les valeurs de coordonnées d'un espace de couleurs approximativement équidistant et la quatrième composante étant formée par la au moins une valeur de mesure (I) dans la gamme du proche infrarouge, que le vecteur d'écart de couleur (ΔF) déterminé pour chaque élément d'image (4) est de façon correspondante tridimensionnel et que la matrice de sensibilité (S) déterminée pour chaque élément d'image (4) est formée par les gradients des trois composantes du vecteur de couleur tridimensionnel (F) en fonction des couleurs d'impression intervenant dans l'impression.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'on fait la moyenne des vecteurs d'écart de couleur (ΔF) et des matrices de sensibilité (S) des éléments d'images (4) appartenant respectivement à une classe de sensibilité (KjK) pour chaque classe de sensibilité, à chaque élément d'image (4) étant associés des facteurs de pondération (g1; g2), qui sont déterminés à partir du recouvrement de surface de l'élément d'image (4) et/ou des distances entre couleurs de l'élément d'image (4) avec les éléments d'images (4) qui en sont voisins.
  6. Procédé selon la revendication 5, caractérisé en ce que les recouvrements de surface de chaque élément d'image sont déterminés en rapport avec les couleurs d'impression utilisées, l'un des facteurs de pondération (g) d'un élément d'image (4) reçoit la valeur 1 lorsque la valeur moyenne ou un premier des recouvrements de surface de l'élément d'image (4) est égal à une première valeur de seuil prédéterminée, notamment la valeur 10 %, ou dépasse cette valeur et que sinon, ledit un des facteurs de pondération (g1) prend une valeur plus faible, notamment la valeur 0.
  7. Procédé selon la revendication 5, caractérisé en ce que les recouvrements de surface de chaque élément d'image (4) sont déterminés en rapport avec les encres d'impression utilisés de telle sorte que l'un des facteurs de pondération (g1) d'un élément d'image (4) reçoive une valeur maximale, notamment la valeur 1, lorsque la somme des recouvrements de surface de l'élément de surface respectif (4) tombe au-dessous d'une valeur de seuil prédéterminée, notamment la valeur 250, et que sinon, ledit un des facteurs de pondération (g1) reçoive une valeur inférieure, notamment la valeur 0.
  8. Procédé selon la revendication 6 ou 7, caractérisé en ce qu'à la place des recouvrements de surface pour chaque élément d'image (4) l'écart de couleur est déterminé pour une position non imprimée de la feuille d'impression (3), que ledit des facteurs de pondération (g1) d'un élément d'image (4) reçoit la valeur 1, lorsque le carré de l'écart de couleur de l'élément d'image est égal à une deuxième valeur de seuil prédéterminée, notamment la valeur 5, ou dépasse cette valeur, et que sinon ledit un des facteurs de pondération (g1) reçoit une valeur inférieure, notamment la valeur 0.
  9. Procédé selon la revendication 5, caractérisé en ce que pour chaque élément d'image (4) les écarts de couleur sont déterminés pour les éléments d'image (4) qui sont directement voisins de cet élément d'image, qu'un autre des facteurs de pondération (g2) d'un élément d'image (4) reçoit la valeur 1 lorsque la somme des écarts de couleur est égale à une troisième valeur de seuil prédéterminée, notamment la valeur 8 ou tombe au-dessous de cette dernière et que, sinon, ledit autre des facteurs de pondération (g2) reçoit une valeur inférieure tendant vers 0 lorsque la somme des écarts de couleur diminue ou que la différence du recouvrement de surface par rapport aux éléments d'image voisins (4) augmente.
  10. Procédé selon la revendication 9 et l'une des revendications 6 et 8, caractérisé en ce que pour chaque élément d'image (4) on détermine un facteur de pondération (g) qui est obtenu par combinaison multiplicative de l'autre facteur de pondération (g2) calculé sur la base des écarts de couleur des éléments d'image (4) par rapport à des éléments d'image (4) qui en sont voisins, avec le facteur de pondération (g) calculé sur la base des recouvrements de surface ou de l'écart de couleur de l'élément d'image (4) pour une zone non imprimée de la feuille d'impression (3).
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que pour un premier nombre prédéterminé de combinaisons discrètes (RiT) de valeurs de trame des couleurs d'impression intervenant dans l'impression on calcule une matrice de sensibilité (SiT) associée et qu'on la mémorise dans une table de couleurs de trame (RFT), que pour chaque élément d'image (4) on calcule, à partir du vecteur de couleur (F) déterminé pour cet élément d'imagé, la combinaison associée (R) de valeur de trame et qu'on associe à l'élément d'image (4) la matrice de sensibilité (SCR) tirée du tableau de couleurs de trame (RFT), dont les combinaisons discrètes associées (RiR) des valeurs de trame est la plus proche de la combinaison (R) des valeurs de trame, calculée pour l'élément d'image (4).
  12. Procédé selon la revendication 11, caractérisé en ce qu'un deuxième nombre d'emplacements discrets de couleurs (FiF) est déterminé dans l'espace des couleurs étendu à quatre dimensions avec la composante infrarouge (I), que pour chacun de ces emplacements discrets de couleur, on calcule la combinaison associée de valeurs de trame des couleurs d'impression intervenant dans l'impression, que pour chaque emplacement discret de couleur, on remplace la combinaison calculée associée de valeurs de trame par la combinaison discrète de valeurs de trame (RiR), qui est la plus proche de cette combinaison et qu'on mémorise les associations des emplacements discrets de couleurs (FiF) pour la combinaison discrète (RiR) des valeurs de trame, dans une table d'index de trame (RIT).
  13. Procédé selon la revendication 12, caractérisé en ce que pour la détermination de la matrice de sensibilité d'un élément d'image (4), on remplace le vecteur de couleur quadridimensionnel (F) déterminé pour cet élément par l'emplacement de couleur discret (FiF) le plus proche, on prélève du tableau d'index de trame (RIT) la combinaison (RiR) de valeurs de trame associée à cet emplacement de couleur discret, on prélève, à partir du tableau de couleur de trame (RFT), la matrice de sensibilité (SiR) appartenant à cette combinaison de valeurs de trame (RiR) et on associe cette matrice de sensibilité (SiR) à l'élément d'image (4).
  14. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on calcule les matrices de sensibilité (SiR) à l'aide d'un modèle mathématique de la machine d'impression (1) prise comme base, à partir de valeurs de mesure dans des zones à teinte complète imprimées par la machine d'impression (1), et en tenant compte conjointement des courbes caractéristiques de la machine d'impression.
EP98119006A 1997-11-06 1998-10-08 Procédé pour régler l'encrage dans une machine d'impression Expired - Lifetime EP0914945B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19749066 1997-11-06
DE19749066A DE19749066A1 (de) 1997-11-06 1997-11-06 Verfahren zur Regelung des Farbauftrages bei einer Druckmaschine

Publications (3)

Publication Number Publication Date
EP0914945A2 EP0914945A2 (fr) 1999-05-12
EP0914945A3 EP0914945A3 (fr) 1999-11-03
EP0914945B1 true EP0914945B1 (fr) 2002-07-31

Family

ID=7847816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98119006A Expired - Lifetime EP0914945B1 (fr) 1997-11-06 1998-10-08 Procédé pour régler l'encrage dans une machine d'impression

Country Status (4)

Country Link
US (1) US5957049A (fr)
EP (1) EP0914945B1 (fr)
JP (1) JPH11216848A (fr)
DE (2) DE19749066A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19749063A1 (de) * 1997-11-06 1999-05-12 Heidelberger Druckmasch Ag Verfahren zur Gewinnung von Farbmeßwerten
US5967050A (en) * 1998-10-02 1999-10-19 Quad/Tech, Inc. Markless color control in a printing press
DE10103555B4 (de) * 2001-01-26 2019-12-19 Volkswagen Ag Verfahren zur Beurteilung einer Farbschicht
MXPA03007902A (es) * 2001-03-02 2004-10-15 Ackley Martinez Company Dba Mg Sistema y metodo para ajuste de impresion.
BR0211123A (pt) * 2001-07-30 2004-10-26 Ackley Martinez Company Dba Mg Sistema e método de processamento de gerenciamento de cor
JP2004536731A (ja) 2001-07-30 2004-12-09 ジ アックレイ マルティネス カンパニー デイビーエイ エムジーアイ ステューディオ システム混合を補償するシステムと方法
WO2003029007A2 (fr) * 2001-10-04 2003-04-10 E.I. Du Pont De Nemours And Company Impression par jet d'encre
US6938550B2 (en) * 2002-10-31 2005-09-06 R. R. Donnelley & Sons, Co. System and method for print screen tonal control and compensation
US7437000B1 (en) * 2003-03-14 2008-10-14 Eric Rosenthal Full spectrum color detecting pixel camera
EP1525981B1 (fr) * 2003-10-23 2006-11-29 Gretag-Macbeth AG Evaluation de la qualité des couleurs et réglage de l'encrage dans la reproduction de couleurs
DE102004061469A1 (de) * 2004-12-18 2006-07-13 Man Roland Druckmaschinen Ag Verfahren zur Regelung der Farbgebung in einer Offsettdruckmaschine
US7605959B2 (en) 2005-01-05 2009-10-20 The Ackley Martinez Company System and method of color image transformation
DE102005007780A1 (de) * 2005-02-19 2006-08-31 Man Roland Druckmaschinen Ag Vorrichtung und Verfahren zur Messung der zonalen Farbgebung
JP2007030348A (ja) * 2005-07-27 2007-02-08 Komori Corp 印刷機のインキ供給量調整方法および装置
US7252360B2 (en) * 2005-10-25 2007-08-07 Ecole polytechnique fédérale de Lausanne (EPFL) Ink thickness variations for the control of color printers
US7652792B2 (en) 2006-03-15 2010-01-26 Quad/Tech, Inc. Virtual ink desk and method of using same
DE102006025898A1 (de) 2006-06-02 2007-12-06 Heidelberger Druckmaschinen Ag Verfahren zur Berechnung von Korrekturwerten in einer Farbsteuerung oder Farbregelung für eine Druckmaschine
DE102006048539A1 (de) * 2006-10-13 2008-04-17 Heidelberger Druckmaschinen Ag Farbmesskopfpositionierungsvorrichtung
CN101186145B (zh) * 2006-11-20 2012-07-18 海德堡印刷机械股份公司 用于光学地测量印张的装置的运行方法
DE102007029211A1 (de) 2007-06-25 2009-01-08 Heidelberger Druckmaschinen Ag Verbesserter Druckkontrollstreifen zur Farbmessung auf Bedruckstoffen
DE102009002822A1 (de) * 2008-05-28 2009-12-03 Manroland Ag Betrieb eines Kaltfolienaggregates mit Kleberauftrag
DE102010009226B4 (de) 2009-03-13 2024-02-15 Heidelberger Druckmaschinen Ag Verfahren zur Steuerung des Farbauftrags in einer Druckmaschine
AT509239B1 (de) 2009-12-17 2013-03-15 Trumpf Maschinen Austria Gmbh Antriebsvorrichtung für eine biegepresse

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3468650D1 (en) * 1983-11-04 1988-02-18 Gretag Ag Method and device for rating the printing quality and/or controlling the ink supply in an offset printing machine, and offset printing machine with such a device
EP0228347B2 (fr) * 1985-12-10 1996-11-13 Heidelberger Druckmaschinen Aktiengesellschaft Procédé de commande de l'alimentation en encre pour une machine à imprimer, dispositif d'impression équipé de manière correspondante et dispositif de mesure pour un tel appareil d'impression
US4884221A (en) * 1986-04-14 1989-11-28 Minolta Camera Kabushiki Kaisha Color measuring apparatus
DE3812099C2 (de) * 1988-04-12 1995-01-26 Heidelberger Druckmasch Ag Verfahren zur Farbsteuerung einer Offsetdruckmaschine
EP0540833B1 (fr) * 1991-08-12 1997-04-23 KOENIG & BAUER-ALBERT AKTIENGESELLSCHAFT ContrÔle de qualité d'une image, par exemple un modèle imprimé
DE4142481A1 (de) * 1991-08-12 1993-02-18 Koenig & Bauer Ag Qualitaetskontrolle einer bildvorlage z. b. eines gedruckten musters
DE4308857A1 (de) * 1993-03-19 1994-09-29 Polygraph Contacta Gmbh Verfahren zur Steuerung des Farbauftrages in einer Druckmaschine
DE4335229C2 (de) * 1993-10-15 1998-07-16 Heidelberger Druckmasch Ag Verfahren zum Erzeugen von auf einer Offsetdruckmaschine hergestellten Farbmustern
DE4431270C2 (de) * 1993-10-21 1997-01-16 Roland Man Druckmasch Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine
ATE151349T1 (de) * 1993-10-21 1997-04-15 Roland Man Druckmasch Verfahren zur steuerung der farbführung einer autotypisch arbeitenden druckmaschine
DE4343905C2 (de) * 1993-12-22 1996-02-15 Roland Man Druckmasch Verfahren zur Steuerung der Farbführung bei einer Druckmaschine
DE4415486C2 (de) * 1994-05-03 1998-06-04 Heidelberger Druckmasch Ag Verfahren zur Bestimmung der zulässigen Toleranzen für die Steuerung oder Regelung der Farbgebung an einer Druckmaschine
DE19515499C2 (de) * 1995-04-27 1997-03-06 Heidelberger Druckmasch Ag Verfahren zur simultanen Mehrfarbregelung beim Drucken
US5903712A (en) * 1995-10-05 1999-05-11 Goss Graphic Systems, Inc. Ink separation device for printing press ink feed control
DE19650223A1 (de) * 1996-12-04 1998-06-10 Heidelberger Druckmasch Ag Abtastvorrichtung zur bildelementweisen fotoelektrischen Ausmessung eines Messobjekts

Also Published As

Publication number Publication date
DE59804980D1 (de) 2002-09-05
EP0914945A2 (fr) 1999-05-12
EP0914945A3 (fr) 1999-11-03
US5957049A (en) 1999-09-28
JPH11216848A (ja) 1999-08-10
DE19749066A1 (de) 1999-05-12

Similar Documents

Publication Publication Date Title
EP0914945B1 (fr) Procédé pour régler l'encrage dans une machine d'impression
EP0143744B1 (fr) Procédé et dispositif d'analyse de qualité d'impression et/ou de réglage d'encre dans une rotative offset et rotative offset équipée d'un tel dispositif
EP0324718B1 (fr) Procédé et dispositif pour régler l'encre dans une machine à imprimer
EP0228347B2 (fr) Procédé de commande de l'alimentation en encre pour une machine à imprimer, dispositif d'impression équipé de manière correspondante et dispositif de mesure pour un tel appareil d'impression
EP0255924B1 (fr) Procédé et dispositif pour influencer l'encrage d'une surface encrée dans une machine à imprimer
DE4431270C2 (de) Verfahren zur Steuerung der Farbführung einer autotypisch arbeitenden Druckmaschine
EP0836941B1 (fr) Groupe de champs de mesure et procédé pour la saisie des données de qualité dans les éditions (tirages) d'impression polychrome
EP0676285B1 (fr) Gestion des couleurs dans une machine rotative offset pour feuilles
EP1525981A1 (fr) Evaluation de la qualité des couleurs et réglage de l'encrage dans la reproduction de couleurs
EP0659559A2 (fr) Méthode pour contrôler l'apport d'encre dans une machine d'impression
EP0505323B1 (fr) Procédé pour le réglage des grandeurs des points de trame pour une presse rotative à imprimer offset
EP0916491B1 (fr) Procédé pour déterminer des gradients colorimétriques
EP0920994B1 (fr) Procédé pour la détermination de valeurs de couleur
DE19830487B4 (de) Verfahren zur Ermittlung von Flächendeckungen in einem Druckbild
EP0668164B1 (fr) Acquisition des données de qualité dans une machine rotative offset pour feuilles
DE19638967C2 (de) Messfeldgruppe und Verfahren zur Erfassung von optisch drucktechnischen Größen im Mehrfarben-Auflagendruck
CH693533A5 (de) Messfeldblock und Verfahren zur Erfassung von Qualitotsdaten im Mehrfarben-Auflagendruck.
EP0649743B1 (fr) Procédé pour contrÔler l'apport de couleur dans une presse fonctionnant suivant le procédé de similigravure
DE19738923A1 (de) Messfeldblock und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben-Auflagendruck
DE19639014A1 (de) Messfeldgruppe und Verfahren zur Erfassung von Qualitätsdaten im Mehrfarben-Auflagendruck
EP1033247B1 (fr) Procédé de controle de l'encrage dans une machine à imprimer
WO2023104966A1 (fr) Procédé de mesure de densité de couleur spectrale dans une impression en couleur
EP3972233A1 (fr) Procédé de caractérisation automatisée d'un système d'impression en continu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981008

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: BE CH DE FR GB IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020121

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020731

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59804980

Country of ref document: DE

Date of ref document: 20020905

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: *HEIDELBERGER DRUCKMASCHINEN A.G.

Effective date: 20021031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101028

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101025

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111008

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111008

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121211

Year of fee payment: 15

Ref country code: CH

Payment date: 20121025

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59804980

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501