EP0914945B1 - Process for regulating the inking in a printing machine - Google Patents

Process for regulating the inking in a printing machine Download PDF

Info

Publication number
EP0914945B1
EP0914945B1 EP98119006A EP98119006A EP0914945B1 EP 0914945 B1 EP0914945 B1 EP 0914945B1 EP 98119006 A EP98119006 A EP 98119006A EP 98119006 A EP98119006 A EP 98119006A EP 0914945 B1 EP0914945 B1 EP 0914945B1
Authority
EP
European Patent Office
Prior art keywords
colour
value
image element
raster
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98119006A
Other languages
German (de)
French (fr)
Other versions
EP0914945A2 (en
EP0914945A3 (en
Inventor
Harald Ammeter
Hans Ott
Nikolaus Pfeiffer
Manfred Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heidelberger Druckmaschinen AG
Original Assignee
Heidelberger Druckmaschinen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heidelberger Druckmaschinen AG filed Critical Heidelberger Druckmaschinen AG
Publication of EP0914945A2 publication Critical patent/EP0914945A2/en
Publication of EP0914945A3 publication Critical patent/EP0914945A3/en
Application granted granted Critical
Publication of EP0914945B1 publication Critical patent/EP0914945B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F33/00Indicating, counting, warning, control or safety devices
    • B41F33/0036Devices for scanning or checking the printed matter for quality control
    • B41F33/0045Devices for scanning or checking the printed matter for quality control for automatically regulating the ink supply

Definitions

  • the invention relates to a method for regulating the color application in a Printing machine according to the preamble of the independent claim.
  • Such a is the process referred to as the color distance-controlled control process e.g. known from EP-B2-0 228 347 and from DE 195 15 499 C2.
  • the process involves printing a printed sheet in a number using the printing press of test areas with respect to a selected color coordinate system measured colorimetrically. The color coordinates obtained thereby become the Color distance vectors to target color coordinates based on the same color coordinate system calculated.
  • These color distance vectors are created using Sensitivity matrices converted into layer thickness change vectors, and the Regulation of the color guide of the printing press is based on the Color distance vectors converted layer thickness change vectors made.
  • the fields from with the actual print image are used as test areas printed color control strips used.
  • scanners which allow the entire image content of a printed sheet in large numbers of relatively small picture elements with reasonable effort and in a very short time measured colorimetrically or spectrophotometrically.
  • These scanners offer the basic metrological requirements for the regulation of Ink guide of a printing machine not only to use test strips printed with it, but the color information from all picture elements of the whole actual To use the printed image for this purpose.
  • a difficulty with this as a so-called Measurement in the picture is by the in the Given the four-color printing problem of the black component, to which As is well known, not only the printing ink black itself, but also that superimposed colored colors contribute.
  • the present Invention Based on this prior art, it is an object of the present Invention to improve a method of the generic type in that it also for the so-called measurement in the image with practically justifiable effort can be carried out.
  • the measurement in the image is the colorimetric Measurement of the entire printed image in a very large number (typically several thousand) of small picture elements (typically a few millimeters in diameter) and the evaluation of those obtained from the individual picture elements colorimetric values for the calculation of the control variables for the coloring of the Printing machine understood.
  • Another object of the invention is that Process also to improve the influence of everyone involved Printing inks, in particular also the printing ink black, can be safely separated can.
  • Print sheets 3 which the desired print image and possibly additional Have pressure control elements.
  • the printed sheets 3 are up to date Removed printing process and a spectrophotometric scanner 2 fed. This scans the printed sheets 3 essentially over the entire Surface from pixel to pixel.
  • the size of the individual picture elements 4 is typical about 2.5 mm x 2.5 mm corresponding to around 130,000 picture elements in one Sheet 3 common dimensions.
  • the generated by the scanner 2 Samples - typically spectral reflectance values - are stored in one Evaluation device 5 analyzed and input variables for one of the Control unit 9 assigned to printing press 1, which in turn processes the Coloring elements of the printing press 1 in accordance with these input parameters controls.
  • the input variables are, at least in the case of an offset printing press, typically around zonal layer thickness changes for the individual inks involved in printing.
  • the determination of the above Input variables or changes in layer thickness are made by comparing the Sampled values or quantities derived therefrom, in particular color measurement values (Color locations or color vectors) of a so-called OK sheet 3 with the corresponding sizes of one taken from the current printing process Printing sheet 3 in the sense that the by the input sizes or Changes in layer thickness caused changes in the settings of the Coloring organs of the printing press 1 the best possible adjustment of the color impression of the continuously generated printed sheets 3 to the OK sheet Have consequence.
  • another OK sheet 3 can also be used Reference can be used, for example corresponding default values or corresponding values obtained from prepress.
  • the arrangement outlined essentially corresponds conventional, e.g. in EP-B2 0 228 347 and DE-A 44 15 486 in detail described arrangements and methods for color control of Printing machines and therefore requires no closer for the specialist Explanation.
  • the basic structure of the scanning device 2 and the evaluation device 5 go from Fig. 2.
  • the scanning device 2 comprises a substructure in the form of a somewhat inclined one rectangular measuring table T, on which the printed sheet 3 to be measured is positioned can be.
  • a measuring carriage W is arranged on the measuring table T, on or in which is a spectrophotometric measuring unit, not shown here.
  • the Measuring carriage W extends over the entire depth of the measuring table T in Coordinate direction y and is motorized across its width in the coordinate direction x linearly movable back and forth, with appropriate drive and control devices A are provided in the measuring carriage W and on or under the measuring table T.
  • the evaluation device 5 comprises a computer C with a keyboard K and a monitor M.
  • the computer C works together with the drive and control device A on the measuring table T or in the measuring carriage W, controls the movement of the measuring carriage W and processes that of the one in the measuring carriage W located spectrophotometric measuring unit generated scanning signals.
  • the scanning signals or quantities derived therefrom typically for example the color values of the individual picture elements 4, can be displayed on the monitor M, for example in terms of pictures.
  • monitor M and fact K are used for interactively influencing the evaluation processes, but this is not the subject of the present invention and is therefore not explained in more detail.
  • the spectrophotometric measuring unit comprises a plurality of reflectance measuring heads arranged linearly along the measuring carriage W and a spectral photometer optically connected to these measuring heads via an optical fiber multiplexer.
  • the measuring unit scans the printed sheet 3 when moving the measuring carriage W back and forth across the entire printed sheet surface in a plurality - typically 320 - of parallel linear tracks spectrophotometrically, with each track having a large number of individual picture elements 4, the dimensions of which in the coordinate direction x are defined by the speed of movement of the measuring carriage W and the temporal resolution of the individual scanning processes.
  • the dimensions of the picture elements 4 in the coordinate direction y are determined by the spacing of the scanning tracks.
  • the dimensions of the individual scanned image elements 4 are approximately 2.5 mm ⁇ 2.5 mm, which results in a total number of approximately 130,000 image elements in the case of a printing sheet 3 of conventional size.
  • the reflectance spectra of the picture elements 4 are available as scanning signals for each individual picture element 4 of the printing sheet 3, which the computer C evaluates and processes further in the manner described below for determining the input variables for the printing press control device 9.
  • Scanning devices 2 which a printing sheet 3 in two dimensions allow to be measured densitometrically or spectrophotometrically, are widespread in the graphics industry and therefore need for the Expert no further explanation, especially for the concerns of the present Invention the pixel-by-element measurement of the printed sheets 3 also by means of a Handheld colorimeter or handheld spectrophotometer could be done.
  • a special one A suitable scanning device 2 corresponding to the one outlined above is e.g. in the German patent application 196 50 223.3 described in all details.
  • An essential aspect of the present invention is the inclusion of the printing ink black in the calculation of the input variables for the printing press control or in the calculation of the intermediate variables required for these input variables.
  • the printed sheets 3 are not only measured in the visible spectral range (approx. 400-700 nm), but also at at least one point in the near infrared, where only the printing ink black has a significant absorption.
  • the reflectance spectra of the individual picture elements 4 thus consist of reflectance values in the visible spectral range, typically 16 reflectance values at intervals of 20 nm each, and a reflectance value in the near infrared range.
  • Color values (color coordinates, color vectors, color locations) relating to a selected color space are calculated from the reflectance values of the visible spectral range. It is preferable to choose a color space that is equally spaced in terms of perception, typically the so-called L, a, b color space according to CIE (Commission Internationale de l'Eclairage).
  • L, a, b color space
  • CIE Commission Internationale de l'Eclairage
  • the color and infrared values L, a, b and I present for each individual picture element 4 after the scanning of a printing sheet 3 form the starting point for the calculation of the input variables for the printing press control device 9. These calculations are also carried out in the computer C.
  • the three color values L, a, b (or the corresponding values of another color system) and the value quadruple comprising the infrared value I for simplifying purposes as the (four-dimensional) color vector F of the relevant picture element 4, so: F (L, a, b, I)
  • color locus in the four-dimensional color space is understood to mean a point whose four coordinates in the color space are the four components of the color vector.
  • the color vectors of the picture elements 4 of the OK sheet 3 or another reference are often also referred to as target color vectors.
  • ⁇ (L i - L r ) 2 + (a i - a r ) 2 + (b i - b r ) 2 + (I i -I r ) 2 ⁇ 0.5 where the indices i and r in turn have the meaning given.
  • the computer C calculates the color distance vector ⁇ F for each picture element 4 of the current printed sheet 3 from the color vectors F determined on this and the OK sheet 3.
  • the indices c, g, m and s stand for the printing inks cyan, yellow, magenta and black, the correspondingly indexed components of the vector are the relative changes in layer thickness for the printing ink indicated by the index.
  • an offset printing machine 1 is designed zonally, i.e. the printing takes place in a series of parallel zones (typically 32), at which Printing machine 1 separate coloring organs are provided for each zone, the Regulation - at least for the interests of the present invention - independent of one another.
  • the mutual influence of neighboring pressure zones and their Consideration in the printing press control is not the subject of present invention and is therefore disregarded.
  • the following Comments on the actual control of the printing press 1 or on the calculation of the corresponding input variables for the press control relate each to a pressure zone and apply equally to all pressure zones.
  • the coefficients of the sensitivity matrix S are usually called Color value gradients. In the following explanations, 16 Color value gradients each represent the summary term sensitivity matrix used.
  • the sensitivity matrix S is a linear replacement model for the relationship between the changes in the layer thickness of the printing inks involved in the printing and the resulting changes in the color impression of the with the changed Layer thickness values of printed picture element 4.
  • the sensitivity matrix S only from the To form components L, a, b of a three-dimensional color vector F.
  • On the Component I can be omitted if there are several Image elements 4 in relation to the flat coverage of the printing inks involved is independent of each other, which is the case in most cases.
  • each printing zone comprises a large number, typically approximately 4000, individual picture elements.
  • the interference that occurs during printing generally does not have the same effect on the individual image elements or that not all image elements are affected by the same interference.
  • the individual matrix equations for the individual picture elements must therefore be combined to form a matrix equation system which is overdetermined according to the reduced number of picture elements and which is to be solved according to the known methods of compensation calculation using a framework or secondary condition.
  • a framework or secondary condition In the case of 4000 picture elements, there is a system of 4000 matrix equations or 16000 simple algebraic equations with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s .
  • the mean quadratic error should be minimal.
  • the mean square error is understood to mean the mean value of the squares of the color distances ⁇ E of the individual picture elements remaining after the corrected layer thicknesses have been applied.
  • ⁇ F ⁇ means a column vector with 16000 components ( ⁇ L 1 , ⁇ a 1 , ⁇ b 1 , ⁇ I 1 , ⁇ L 2 , ⁇ a 2 , ⁇ b 2 , ⁇ I 2 ........ ⁇ L 4000 , ⁇ a 4000 , ⁇ b 4000 , ⁇ I 4000 ), ⁇ S ⁇ a matrix with 4 rows and 4000 columns and ⁇ D a column vector with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s as components.
  • the indices of the components of ⁇ F ⁇ relate to the picture elements 4 1-4000, ie the components of ⁇ F ⁇ are the determined components of the color distance vectors ⁇ F of the individual picture elements 4 compared to the corresponding picture elements 4 of the OK sheet.
  • the calculation of the layer thickness change vector ⁇ D is based on Although this is possible in principle, it requires enormous computing effort and corresponding expenditure of time that goes far beyond the limits of what is practically possible exceeds. In particular, a sufficiently fast control, such as in practice, especially in modern high-performance printing presses 1 is not feasible.
  • the computing effort for determining the 4000 Sensitivity matrices (64,000 coefficients in total) for each Image elements 4 are not considered at all and move the Feasibility even further away.
  • the visual color impression (metrologically the color value, color location or color vector) of a picture element 4 is in offset raster printing by the percentage Raster values (area coverage) of the printing inks involved and, to a lesser extent Mass determined by the layer thickness of the printing inks.
  • the grid values or Area coverage (0-100%) are due to the underlying printing plates fixed and practically unchangeable. Influenced the color impression and can therefore only be regulated via the layer thicknesses of the printing inks involved become.
  • the terms "grid value” and "area coverage” are given below used synonymously.
  • the totality of all possible combinations R of percentage screen values of the printing inks involved (usually cyan, yellow, Magenta, black) is referred to below as a grid space (four-dimensional).
  • each Raster value combination R a precisely defined color impression or color vector F the picture element 4 printed with this raster value combination R; so it exists a clear assignment of raster value combination R to color location or color vector F; the grid space can be clearly mapped onto the color space, although the color space is not completely occupied because it also contains non-printable color locations contains. Conversely, there is generally no clear relationship.
  • the one Any raster value combination R belonging to color vector F can be empirically determined by Sample prints determined or using a suitable model that the Printing process sufficiently accurate under the given printing conditions describes, can be calculated.
  • a suitable model is e.g.
  • the Area coverage values of the picture elements 4 are used. Are the Area coverage values from prepress are already known, so there is no need Measurement on test prints (exception: full tones).
  • Raster value combinations R the associated color vector F and the associated Sensitivity matrix S calculated in advance and stored in a table.
  • This the entirety of all sensitivity matrices S and color vectors F calculated in this way containing table is referred to below as a raster color table RFT.
  • the associated raster value combination R is explained in more detail below calculates and on the basis of this raster value combination R the associated sensitivity matrix S taken from the pre-calculated raster color table RFT. To this In this way it is possible to quickly get the required without excessive computing effort Determine sensitivity matrices.
  • a number of, for example, 1296 equally spaced discrete screen value combinations R iR (6 discrete screen percentages A C , A G , A M , A S for the printing colors cyan, yellow, magenta, black) are defined in the screen space: i 0 1 2 3 4 5 A C 0 20 40 60 80 100% A G 0 20 40 60 80 100% A M 0 20 40 60 80 100% A S 0 20 40 60 80 100%
  • a sensitivity matrix S iR is calculated for each of these 1296 discrete raster value combinations R iR and stored in the raster color table RFT.
  • the calculated color vector F iR belonging to the discrete raster value combinations R iR is also stored in the table RFT.
  • the raster color table RFT thus contains a total of 1296 color vectors F iR and 1296 associated sensitivity matrices S iR .
  • the grid space is preferably quantized in two stages.
  • the first stage for only 256 discrete halftone value combinations (corresponding to four discrete halftone percentage values 0%, 40%, 80%, 100% for each of the printing colors cyan, yellow, magenta, black), the associated color vectors and the are based on the offset printing model associated sensitivity matrices.
  • the second stage the associated color vectors and sensitivity matrices for the missing raster percentage values 20% and 60% are calculated by linear interpolation from the color vectors and sensitivity matrices of the 16 nearest discrete raster value combinations.
  • a sensitivity matrix S iR whose associated discrete raster value combination R iR is closest to the raster value combination R calculated from the color vector F is now assigned to a color vector F determined for a picture element 4.
  • the calculated raster value combination is replaced by R each closest discrete halftone value combination R iR and receives associated with the precalculated to this discrete halftone value combination R iR sensitivity matrix S iR.
  • the grid space is quantized by dividing it into a number of subspaces. All color vectors F, the calculated associated raster value combinations R of which fall into one and the same of these subspaces, are assigned the same sensitivity matrix S iR previously calculated for this subspace.
  • the subspaces are defined by the following six value ranges of the percentage raster portions (area coverage) of the four printing inks involved: 0 .... 10, 10 .... 30, 30 .... 50, 50 .... 70, 70 .... 90, 90 .... 100%
  • the (including infrared value I four-dimensional) color space is also subjected to quantization, ie divided into a number of subspaces, for determining the raster value combination R from the color vector F.
  • quantization ie divided into a number of subspaces, for determining the raster value combination R from the color vector F.
  • a number of discrete color locations, each with discrete coordinate values, are defined in the color space.
  • the four-dimensional color space can be quantized such that each dimension L, a, b, I of the color space can only assume 11 discrete values, resulting in a total of 14641 discrete color locations F iF : i 0 1 2 3 4 5 6 7 8th 9 10 L 0 10 20 30 40 50 60 70 80 90 100 a -75 -60 -45 -30 -15 0 15 30 45 60 75 b -45 -30 -15 0 15 30 45 60 75 90 105 I 0 10 20 30 40 50 60 70 80 90 100
  • the associated raster value combinations R iF are calculated using the special calculation method explained below and, if they do not coincide with a discrete raster value combination R iR , are replaced by the closest discrete raster value combination R iR .
  • this mapping is calculated in advance and stored in an assignment table referred to below as the raster index table RIT.
  • each color vector F determined for a picture element 4 is replaced by the closest discrete color location F iF .
  • the discrete raster value combination R iR assigned to this discrete color location F iF is then taken from the raster index table RIT and the corresponding sensitivity matrix S iR is read out from the raster color table RFT and assigned to the color vector F.
  • the sensitivity matrix S can be determined with comparatively little computing effort and correspondingly quickly for any determined color vector F, although this can only be selected from one of the 1296 precalculated sensitivity matrices S iR . In practice, however, this is sufficient.
  • the color space is divided into 81 sub-areas T iT as follows: i 0 1 2 L (0..120) 0..20..40 40..60..80 80..100..120 a (-90 .. + 90) -90 ..- 60 ..- 30 -30..0 .. + 30 +30 .. + 60 .. + 90 b (-60 .. + 120) -60 ..- 30..0 0 .. + 30 .. + 60 +60 .. + 90 .. + 120 I (0..120) 0..20..40 40..60..80 80..100..120
  • iT i (L) * 3 0 + i (a) * 3 1 + i (b) * 3 2 + i (I) * 3 3
  • A means the raster vector with the raster percentage values A C , A G , A M , A S of the four printing inks involved as components, and U iT a conversion matrix with 16 coefficients, which shows the partial derivatives (gradients) of the components of the raster vector according to the components of the color vector are. If the conversion matrices U iT of the individual partial areas T iT are known, the associated raster vector A or the associated raster value combination R can thus be calculated for each color vector F.
  • the problem is therefore reduced to the calculation of the conversion matrices U iT for the individual sub-areas T iT or more precisely for the color vectors F iT from their centers.
  • the conversion matrices are calculated using a weighted linear compensation calculation using the values from the raster-color table RFT explained above, that is to say the 1296 discrete raster value combinations R iR and the associated discrete color vectors F iR .
  • RFT raster-color table
  • Weight of the support points, ie the discrete color locations F iR of the raster color table RFT, for the compensation calculation is determined according to a suitable function with the color distance between the support points and the respective color vector F iT as parameters.
  • the compensation calculation is linear, ie there are discontinuities at the transitions of the individual sub-areas T iT , which are insignificant in practice.
  • the raster color table RFT and the raster index table RIT are calculated and saved in accordance with the above explanations for the prevailing printing conditions. If already determined and saved on a storage medium, the tables RFT, RIT can of course also be called up from this storage medium. On the basis of the two tables RFT, RIT, it is possible without substantial computing effort to assign the color vectors F determined for the individual picture elements 4 to the discrete sensitivity matrix S that applies in each case. Now, a current print sheet 3 is taken from the current printing process and measured by the scanning device 2 in the manner described, with the color vector F and the color distance vector ⁇ F for each picture element 4 for each picture element 4 from the corresponding picture element 4 of a previously measured OK sheet 23 is determined.
  • the total number of picture elements 4 is, for example, around 130,000, so that with the usual 32 printing zones, the color vectors and color distance vectors of around 4,000 picture elements 4 each have to be processed per printing zone.
  • the following explanations apply equally to one pressure zone and to all pressure zones.
  • Layer thickness change vector ⁇ D is then calculated so that the mean quadratic error should be minimal across all sensitivity classes.
  • middle quadratic error is the mean of the squares according to the Application of the corrected layer thicknesses remaining mean color distances of the Understanding picture elements 4 of the individual classes.
  • the areas of the sensitivity classes are preferably defined in the grid space. For example, 16-256 classes can be provided. The more classes there are, the fewer errors arise from averaging, but the more the computing effort increases.
  • the definition of 81 classes which result from dividing the grid space into 81 subspaces according to the following scheme, has proven to be a practical compromise: n 0 1 2 A C 0% .... 30% 30% .... 70% 70% .... 100% A G 0% .... 30% 30% .... 70% 70% .... 100% A M 0% .... 30% 30% .... 70% 70% .... 100% A S 0% .... 30% 30% 30% .... 70% 70% .... 100%
  • iK n (A C ) * 3 0 + n (A G ) * 3 1 + n (A M ) * 3 2 + n (A S ) * 3 3
  • the grid space comprises 1296 discrete grid value combinations R iR .
  • Exactly 16 raster value combinations R iR thus fall in each of the 81 subspaces and, accordingly, 16 (similar) sensitivity matrices S iR fall into each sensitivity class K iK .
  • Sensitivity classes K iK determined. Using the raster index iR and the raster color table RFT, the sensitivity matrix S associated with the color vector F of the picture element 4 is further determined. After these steps, the color vector F, the color distance vector ⁇ F, the raster index iR, the sensitivity matrix S and the class index iK are thus available for each of the approximately 4000 image elements 4 of a printing zone.
  • the raster index iR defines the raster value combination R, ie the percentage raster portions (area coverage) of the printing inks involved for the image element 4, the class index iK defines the affiliation of the image element 4 to a specific sensitivity class.
  • the picture elements 4 or their color distance vectors ⁇ F become one Weighting process subjected to the influence of area coverage and of Positioning errors are taken into account.
  • ⁇ E p 2 is the square of the color distance of the picture element 4 from the unprinted position of the printed sheet 3 (paper white).
  • weight factor g 1 Another variant for the determination of the weight factor g 1 is that it receives the value 1 as the maximum value if the sum of the area coverings of the respective picture element 4 falls below a predetermined threshold value, preferably the value 250. Otherwise, the weighting factor g1 is given a smaller value, in particular a value of 0. A combination of the two variants mentioned above is also conceivable.
  • ⁇ E M means the sum of the color distances between the picture element 4 and its 8 neighboring picture elements 4.
  • ⁇ E M2 means the sum of the squares of the color distances of the picture element 4 from its 8 neighboring picture elements 4.
  • the difference between the area coverage values and the neighboring picture elements 4 can also be used, with an increasing difference the weight factor g2 likewise receiving a smaller value going towards 0.
  • the color distance vectors ⁇ F of the individual picture elements 4 and the associated sensitivity matrices S are weighted multiplicatively.
  • the weighted color distance vectors and sensitivity matrices of the individual picture elements 4 are referred to below as ⁇ F g and S g
  • the totals are generated across all picture elements in a class.
  • the resolution is again carried out by means of a weighted linear compensation calculation with the additional condition that the mean square error should be minimal, whereby the mean square error means the mean value of the squares of the mean color distances ⁇ E MK of the individual sensitivity classes remaining after application of the layer thicknesses corrected by ⁇ D becomes.
  • ⁇ F z ⁇ means a column vector with 4x81 components, which results from the stacking of the 81 vectors ⁇ F MK with their 4 components each.
  • ⁇ S z ⁇ is a matrix with 4 rows and 81 columns, which results from the 81 sensitivity matrices S MK being arranged horizontally side by side.
  • ⁇ D is a column vector with the four unknowns ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s as components.
  • the desired layer thickness change vector ⁇ D with its components ⁇ D c , ⁇ D g , ⁇ D m and ⁇ D s are obtained for each printing zone, which are fed to the control device 9 as input variables and thus cause the necessary adjustment of the coloring elements of the printing press 1 that the mean square error mentioned is minimized in each pressure zone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Regelung des Farbauftrags bei einer Druckmaschine gemäss dem Oberbegriff des unabhängigen Anspruchs.The invention relates to a method for regulating the color application in a Printing machine according to the preamble of the independent claim.

Ein solches i.a. als farbabstandsgesteuertes Regelverfahren bezeichnetes Verfahren ist z.B. aus der EP-B2-0 228 347 und aus DE 195 15 499 C2 bekannt. Bei diesen Verfahren wird ein mit der Druckmaschine gedruckter Druckbogen in einer Anzahl von Testbereichen bezüglich eines ausgewählten Farbkoordinatensystems farbmetrisch ausgemessen. Aus den dabei gewonnenen Farbkoordinaten werden die Farbabstandsvektoren zu auf dasselbe Farbkoordinatensystem bezogenen Soll-Farbkoordinaten berechnet. Diese Farbabstandsvektoren werden mit Hilfe von Sensitivitäts-Matrizen in Schichtdickeänderungsvektoren umgerechnet, und die Regelung der Farbführung der Druckmaschine wird aufgrund der aus den Farbabstandsvektoren umgerechneten Schichtdickeänderungsvektoren vorgenommen. Als Testbereiche werden die Felder von mit dem eigentlichen Druckbild mitgedruckten Farbkontrollstreifen verwendet.Such a is the process referred to as the color distance-controlled control process e.g. known from EP-B2-0 228 347 and from DE 195 15 499 C2. With these The process involves printing a printed sheet in a number using the printing press of test areas with respect to a selected color coordinate system measured colorimetrically. The color coordinates obtained thereby become the Color distance vectors to target color coordinates based on the same color coordinate system calculated. These color distance vectors are created using Sensitivity matrices converted into layer thickness change vectors, and the Regulation of the color guide of the printing press is based on the Color distance vectors converted layer thickness change vectors made. The fields from with the actual print image are used as test areas printed color control strips used.

Inzwischen sind i.a. als Scanner bezeichnete Abtasteinrichtungen bekannt geworden, welche es gestatten, den gesamten Bildinhalt eines Druckbogens in einer grossen Zahl von relativ kleinen Bildelementen mit vertretbarem Aufwand und in sehr kurzer Zeit farbmetrisch oder spektralfotometrisch auszumessen. Diese Abtasteinrichtungen bieten die prinzipiellen messtechnischen Voraussetzungen, für die Regelung der Farbführung einer Druckmaschine nicht nur mitgedruckte Teststreifen zu verwenden, sondern die Farbinformationen aus allen Bildelementen des gesamten eigentlichen Druckbilds für diesen Zweck heranzuziehen. Eine Schwierigkeit bei dieser als sog. Messung im Bild bezeichneten Vorgehensweise ist jedoch durch die im Vierfarbendruck vorliegende Problematik des Schwarzanteils gegeben, zu welchem bekanntlich nicht nur die Druckfarbe Schwarz selbst, sondern auch die übereinandergedruckten Buntfarben beitragen. Eine zuverlässige Ermittlung der für die Berechnung der Eingangsgrössen für die Farbregelung erforderlichen Farbwertgradienten für alle in einem Druckbild vorkommenden, sehr unterschiedlichen Drucksituationen ist nach den gängigen Methoden nicht möglich. Eine weitere Schwierigkeit ergibt sich aus dem erforderlichen enorm hohen Rechenaufwand und damit verbundenen für die Praxis unvertretbar langen Rechenzeiten.In the meantime, i.a. scanning devices known as scanners have become known, which allow the entire image content of a printed sheet in large numbers of relatively small picture elements with reasonable effort and in a very short time measured colorimetrically or spectrophotometrically. These scanners offer the basic metrological requirements for the regulation of Ink guide of a printing machine not only to use test strips printed with it, but the color information from all picture elements of the whole actual To use the printed image for this purpose. A difficulty with this as a so-called Measurement in the picture, however, is by the in the Given the four-color printing problem of the black component, to which As is well known, not only the printing ink black itself, but also that superimposed colored colors contribute. A reliable determination of the for the calculation of the input variables required for the color control Color value gradients for all occurring in a printed image, very Different printing situations are not possible using the usual methods. Another difficulty arises from the enormously high required Computational effort and the associated unacceptably long time Computing times.

Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, ein Verfahren der gattungsgemässen Art dahingehend zu verbessern, dass es auch für die sog. Messung im Bild mit praktisch vertretbarem Aufwand durchgeführt werden kann. Unter Messung im Bild wird dabei die farbmetrische Ausmessung des gesamten Druckbilds in einer sehr grossen Anzahl (typisch mehrere tausend) von kleinen Bildelementen (typisch wenige Millimeter Durchmesser) sowie die Auswertung der dabei aus den einzelnen Bildelementen gewonnenen farbmetrischen Werte für die Berechnung der Steuergrössen für die Farbgebung der Druckmaschine verstanden. Eine weitere Aufgabe der Erfindung besteht darin, das Verfahren auch dahingehend zu verbessern, dass die Einflüsse aller beteiligten Druckfarben, insbesondere auch der Druckfarbe Schwarz, sicher separiert werden können.Based on this prior art, it is an object of the present Invention to improve a method of the generic type in that it also for the so-called measurement in the image with practically justifiable effort can be carried out. The measurement in the image is the colorimetric Measurement of the entire printed image in a very large number (typically several thousand) of small picture elements (typically a few millimeters in diameter) and the evaluation of those obtained from the individual picture elements colorimetric values for the calculation of the control variables for the coloring of the Printing machine understood. Another object of the invention is that Process also to improve the influence of everyone involved Printing inks, in particular also the printing ink black, can be safely separated can.

Die Lösung dieser der Erfindung zugrundeliegenden Aufgabe ergibt sich aus den im kennzeichnenden Teil des unabhängigen Anspruchs 1 beschriebenen Merkmalen. Besonders vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der abhängigen Ansprüche. The solution to this problem underlying the invention results from the im characterizing part of the independent claim 1 described features. Particularly advantageous refinements and developments are the subject of dependent claims.

Im folgenden wird die Erfindung anhand der Zeichnung näher erläutert. Es zeigen:

Fig.1
ein Prinzip-Schema einer Anordnung zur Steuerung bzw. Regelung einer Druckmaschine und
Fig. 2
eine Einrichtung zur bildelementweisen Abtastung von Druckbögen und zur Auswertung der Abtastwerte für die Steuerung bzw. Regelung einer Druckmaschine.
The invention is explained in more detail below with reference to the drawing. Show it:
Fig.1
a schematic diagram of an arrangement for the control or regulation of a printing press and
Fig. 2
a device for the pixel-by-pixel scanning of printed sheets and for evaluating the samples for the control or regulation of a printing press.

Gemäss Fig. 1 erzeugt eine Druckmaschine 1, insbesondere eine Mehrfarben-Offset-Druckmaschine, Druckbögen 3, welche das gewünschte Druckbild und ggf. zusätzlich Druckkontrollelemente aufweisen. Die Druckbögen 3 werden dem laufenden Druckprozess entnommen und einer spektralfotometrischen Abtasteinrichtung 2 zugeführt. Diese tastet die Druckbögen 3 im wesentlichen über die gesamte Oberfläche bildelementweise ab. Die Grösse der einzelnen Bildelemente 4 ist typisch etwa 2,5 mm x 2,5 mm entsprechend rund 130000 Bildelementen bei einem Druckbogen 3 üblicher Dimensionen. Die von der Abtasteinrichtung 2 erzeugten Abtastwerte - typischerweise spektrale Remissionswerte - werden in einer Auswerteeinrichtung 5 analysiert und zu Eingangsgrössen für eine der Druckmaschine 1 zugeordnete Steuereinrichtung 9 verarbeitet, welche ihrerseits die Farbgebungsorgane der Druckmaschine 1 nach Massgabe dieser Eingangsgrössen steuert. Bei den Eingangsgrössen handelt es sich, zumindest im Falle einer Offset-Druckmaschine, typischerweise um zonale Schichtdickenänderungen für die einzelnen am Druck beteiligten Druckfarben. Die Bestimmung der genannten Eingangsgrössen bzw. Schichtdickenänderungen erfolgt durch Vergleich der Abtastwerte bzw. von daraus abgeleiteten Grössen, insbesondere Farbmesswerten (Farborten bzw. Farbvektoren) eines sogenannten OK-Bogens 3 mit den entsprechenden Grössen eines dem laufenden Druckprozess entnommenen Druckbogens 3 in dem Sinne, dass die durch die Eingangsgrössen bzw. Schichtdickenänderungen bewirkten Änderungen der Einstellungen der Farbgebungsorgane der Druckmaschine 1 eine möglichst gute Angleichung des farblichen Eindrucks der laufend erzeugten Druckbögen 3 an den OK-Bogen zur Folge haben. Zum Vergleich kann anstelle eines OK-Bogens 3 auch eine andere Referenz herangezogen werden, beispielsweise etwa entsprechende Vorgabewerte oder entsprechende aus Druckvorstufen erhaltene Werte.1, a printing press 1, in particular a multi-color offset printing press, Print sheets 3, which the desired print image and possibly additional Have pressure control elements. The printed sheets 3 are up to date Removed printing process and a spectrophotometric scanner 2 fed. This scans the printed sheets 3 essentially over the entire Surface from pixel to pixel. The size of the individual picture elements 4 is typical about 2.5 mm x 2.5 mm corresponding to around 130,000 picture elements in one Sheet 3 common dimensions. The generated by the scanner 2 Samples - typically spectral reflectance values - are stored in one Evaluation device 5 analyzed and input variables for one of the Control unit 9 assigned to printing press 1, which in turn processes the Coloring elements of the printing press 1 in accordance with these input parameters controls. The input variables are, at least in the case of an offset printing press, typically around zonal layer thickness changes for the individual inks involved in printing. The determination of the above Input variables or changes in layer thickness are made by comparing the Sampled values or quantities derived therefrom, in particular color measurement values (Color locations or color vectors) of a so-called OK sheet 3 with the corresponding sizes of one taken from the current printing process Printing sheet 3 in the sense that the by the input sizes or Changes in layer thickness caused changes in the settings of the Coloring organs of the printing press 1 the best possible adjustment of the color impression of the continuously generated printed sheets 3 to the OK sheet Have consequence. For comparison, another OK sheet 3 can also be used Reference can be used, for example corresponding default values or corresponding values obtained from prepress.

In dieser Allgemeinheit entspricht die skizzierte Anordnung im wesentlichen herkömmlichen, z.B. in EP-B2 0 228 347 und DE-A 44 15 486 im Detail beschriebenen Anordnungen und Verfahren zur Farbgebungsregelung von Druckmaschinen und bedarf deshalb für den Fachmann soweit keiner näheren Erläuterung.In this generality, the arrangement outlined essentially corresponds conventional, e.g. in EP-B2 0 228 347 and DE-A 44 15 486 in detail described arrangements and methods for color control of Printing machines and therefore requires no closer for the specialist Explanation.

Der prinzipielle Aufbau der Abtasteinrichtung 2 und der Auswerteeinrichtung 5 gehen aus Fig. 2 hervor.The basic structure of the scanning device 2 and the evaluation device 5 go from Fig. 2.

Die Abtasteinrichtung 2 umfasst einen Unterbau in Form eines etwas geneigten rechteckigen Messtischs T, auf dem der auszumessende Druckbogen 3 positioniert werden kann. Auf dem Messtisch T ist ein Messwagen W angeordnet, auf bzw. in dem sich eine hier nicht dargestellte spektralfotometrische Messeinheit befindet. Der Messwagen W erstreckt sich über die gesamte Tiefe des Messtischs T in Koordinatenrichtung y und ist motorisch über dessen Breite in Koordinatenrichtung x linear hin und her beweglich, wobei entsprechende Antriebs- und Steuereinrichtungen A im Messwagen W und am bzw. unter dem Messtisch T vorgesehen sind.The scanning device 2 comprises a substructure in the form of a somewhat inclined one rectangular measuring table T, on which the printed sheet 3 to be measured is positioned can be. A measuring carriage W is arranged on the measuring table T, on or in which is a spectrophotometric measuring unit, not shown here. The Measuring carriage W extends over the entire depth of the measuring table T in Coordinate direction y and is motorized across its width in the coordinate direction x linearly movable back and forth, with appropriate drive and control devices A are provided in the measuring carriage W and on or under the measuring table T.

Die Auswerteeinrichtung 5 umfasst einen Rechner C mit einer Tastatur K und einem Monitor M. Der Rechner C arbeitet mit der Antriebs- und Steuereinrichtung A am Messtisch T bzw. im Messwagen W zusammen, steuert die Bewegung des Messwagens W und verarbeitet die von der im Messwagen W befindlichen spektralfotometrischen Messeinheit erzeugten Abtastsignale. Die Abtastsignale bzw. davon abgeleitete Grössen, typischerweise etwa die Farbwerte der einzelnen Bildelemente 4, können auf dem Monitor M z.B. bildmässig zur Darstellung gebracht werden. Ferner dienen Monitor M und Tatsatur K zur interaktiven Beeinflussung der Auswertungsprozesse, was jedoch nicht Gegenstand der vorliegenden Erfindung und deshalb nicht näher erläutert ist.
Die spektralfotometrische Messeinheit umfasst eine Vielzahl von längs des Messwagens W linear angeordneten Remissionsmessköpfen und ein mit diesen Messköpfen über einen optischen Fasermultiplexer optisch verbundenes Spektralfotometer. Die Messeinheit tastet den Druckbogen 3 beim Hin- und Herbewegen des Messwagens W über die gesamte Druckbogenoberfläche bildelementweise in einer Vielzahl - typischerweise 320 - von parallelen linearen Spuren spektralfotometrisch ab, wobei in jeder Spur eine Vielzahl von einzelnen Bildelementen 4 liegt, deren Abmessungen in Koordinatenrichtung x durch die Bewegungsgeschwindigkeit des Messwagens W und die zeitliche Auflösung der einzelnen Abtastvorgänge definiert sind. Die Abmessungen der Bildelemente 4 in Koordinatenrichtung y sind durch die Abstände der Abtastspuren festgelegt. Typischerweise betragen die Abmessungen der einzelnen abgetasteten Bildelemente 4 etwa 2,5 mm x 2,5 mm, was bei einem Druckbogen 3 üblicher Grösse eine Gesamtanzahl von rund 130000 Bildelementen ergibt. Nach einem vollständigen Abtastvorgang liegen für jedes einzelne Bildelement 4 des Druckbogens 3 als Abtastsignale die Remissionsspektren der Bildelemente 4 vor, welche der Rechner C in der noch weiter unten beschriebenen Art und Weise zur Bestimmung der Eingangsgrössen für die Druckmaschinensteuereinrichtung 9 auswertet und weiter verarbeitet.
The evaluation device 5 comprises a computer C with a keyboard K and a monitor M. The computer C works together with the drive and control device A on the measuring table T or in the measuring carriage W, controls the movement of the measuring carriage W and processes that of the one in the measuring carriage W located spectrophotometric measuring unit generated scanning signals. The scanning signals or quantities derived therefrom, typically for example the color values of the individual picture elements 4, can be displayed on the monitor M, for example in terms of pictures. Furthermore, monitor M and fact K are used for interactively influencing the evaluation processes, but this is not the subject of the present invention and is therefore not explained in more detail.
The spectrophotometric measuring unit comprises a plurality of reflectance measuring heads arranged linearly along the measuring carriage W and a spectral photometer optically connected to these measuring heads via an optical fiber multiplexer. The measuring unit scans the printed sheet 3 when moving the measuring carriage W back and forth across the entire printed sheet surface in a plurality - typically 320 - of parallel linear tracks spectrophotometrically, with each track having a large number of individual picture elements 4, the dimensions of which in the coordinate direction x are defined by the speed of movement of the measuring carriage W and the temporal resolution of the individual scanning processes. The dimensions of the picture elements 4 in the coordinate direction y are determined by the spacing of the scanning tracks. Typically, the dimensions of the individual scanned image elements 4 are approximately 2.5 mm × 2.5 mm, which results in a total number of approximately 130,000 image elements in the case of a printing sheet 3 of conventional size. After a complete scanning process, the reflectance spectra of the picture elements 4 are available as scanning signals for each individual picture element 4 of the printing sheet 3, which the computer C evaluates and processes further in the manner described below for determining the input variables for the printing press control device 9.

Abtasteinrichtungen 2, welche eine einen Druckbogen 3 in zwei Dimensionen bildelementweise densitometrisch oder spektralfotometrisch auszumessen gestatten, sind in der grafischen Industrie weit verbreitet und bedürfen deshalb für den Fachmann keiner näheren Erläuterung, zumal für die Belange der vorliegenden Erfindung die bildelementweise Ausmessung der Druckbögen 3 auch mittels eines Handfarbmessgeräts oder Handspektralfotometers erfolgen könnte. Eine besonders geeignete, der vorstehend skizzierten entsprechende Abtasteinrichtung 2 ist z.B. in der deutschen Patentanmeldung 196 50 223.3 in allen Details beschrieben.Scanning devices 2, which a printing sheet 3 in two dimensions allow to be measured densitometrically or spectrophotometrically, are widespread in the graphics industry and therefore need for the Expert no further explanation, especially for the concerns of the present Invention the pixel-by-element measurement of the printed sheets 3 also by means of a Handheld colorimeter or handheld spectrophotometer could be done. A special one A suitable scanning device 2 corresponding to the one outlined above is e.g. in the German patent application 196 50 223.3 described in all details.

Ein wesentlicher Aspekt der vorliegenden Erfindung ist die Miteinbeziehung der Druckfarbe Schwarz in die Berechnung der Eingangsgrössen für die Druckmaschinensteuerung bzw. in die Berechnung der für diese Eingangsgrössen benötigten Zwischengrössen. Aus diesem Grund werden die Druckbögen 3 nicht nur im sichtbaren Spektralbereich (ca. 400 - 700 nm) ausgemessen, sondern auch an mindestens einer Stelle im nahen Infrarot, wo nur die Druckfarbe Schwarz eine nennenswerte Absorption aufweist. Die Remissionsspektren der einzelnen Bildelemente 4 bestehen also aus Remissionswerten im sichtbaren Spektralbereich, typischerweise 16 Remissionswerte in Abständen von je 20 nm, und einem Remissionswert im nahen Infrarot-Bereich. Aus den Remissionswerten des sichtbaren Spektralbereichs werden Farbwerte (Farbkoordinaten, Farbvektoren, Farborte) bezüglich eines gewählten Farbraums berechnet. Vorzugsweise wählt man dafür einen empfindungsmässig gleichabständigen Farbraum, typischerweise etwa den sog. L,a,b-Farbraum gemäss CIE (Commission Internationale de l'Eclairage). Die Berechnung der Farbwerte L,a,b aus den spektralen Remissionswerten des sichtbaren Spektralbereichs ist durch CIE genormt und bedarf deshalb keiner Erläuterung. Der Remissionswert im nahen Infrarot wird in einen Infrarot-Wert I umgerechnet, der qualitativ dem Helligkeitswert L des Farbraums entspricht. Dies erfolgt analog der Berechnungsformel für L nach der Beziehung I = 116•3 Ii Iin -16 worin Ii die im betreffenden Bildelement 4 gemessene Infrarot-Remission und Iin die an einer unbedruckten Stelle des Druckbogens 3 gemessene Infrarot-Remission bedeuten. Der Infrarot-Wert I kann daher wie der Helligkeitswert L nur Werte von 0-100 annehmen. Die Berechnung der Farbwerte L,a,b und des Infrarot-Werts I aus den spektralen Remissionswerten erfolgt im Rechner C. Der Vollständigkeit halber sei erwähnt, dass die Ermittlung der Farbwerte L,a,b (oder entsprechender Werte eines anderen Farbraums) auch ohne spektrale Abtastung mittels geeigneter Farbmessgeräte erfolgen könnte.An essential aspect of the present invention is the inclusion of the printing ink black in the calculation of the input variables for the printing press control or in the calculation of the intermediate variables required for these input variables. For this reason, the printed sheets 3 are not only measured in the visible spectral range (approx. 400-700 nm), but also at at least one point in the near infrared, where only the printing ink black has a significant absorption. The reflectance spectra of the individual picture elements 4 thus consist of reflectance values in the visible spectral range, typically 16 reflectance values at intervals of 20 nm each, and a reflectance value in the near infrared range. Color values (color coordinates, color vectors, color locations) relating to a selected color space are calculated from the reflectance values of the visible spectral range. It is preferable to choose a color space that is equally spaced in terms of perception, typically the so-called L, a, b color space according to CIE (Commission Internationale de l'Eclairage). The calculation of the color values L, a, b from the spectral reflectance values of the visible spectral range is standardized by CIE and therefore requires no explanation. The reflectance value in the near infrared is converted into an infrared value I, which corresponds qualitatively to the brightness value L of the color space. This is done analogously to the calculation formula for L according to the relationship I = 116 • 3 ii Iin -16 where I i mean the infrared remission measured in the relevant picture element 4 and I in the infrared remission measured at an unprinted point on the printed sheet 3. The infrared value I, like the brightness value L, can therefore only assume values from 0-100. The calculation of the color values L, a, b and the infrared value I from the spectral reflectance values takes place in the computer C. For the sake of completeness, it should be mentioned that the determination of the color values L, a, b (or corresponding values of another color space) also without spectral scanning could be done using suitable color measurement devices.

Die nach der Abtastung eines Druckbogens 3 für jedes einzelne Bildelement 4 vorliegenden Farb- und Infrarot-Werte L,a,b bzw. I bilden den Ausgangspunkt für die Berechnung der Eingangsgrössen für die Druckmaschinensteuereinrichtung 9. Diese Berechnungen erfolgen ebenfalls im Rechner C. Für die folgende Beschreibung sei das für jedes Bildelement 4 ermittelte, die drei Farbwerte L,a,b (oder die entsprechenden Werte eines anderen Farbsystems) und den Infrarot-Wert I umfassende Werte-Quadrupel vereinfachend als (vierdimensionaler) Farbvektor F des betreffenden Bildelements 4 bezeichnet, also: F = (L, a, b, I) The color and infrared values L, a, b and I present for each individual picture element 4 after the scanning of a printing sheet 3 form the starting point for the calculation of the input variables for the printing press control device 9. These calculations are also carried out in the computer C. For the The following description is for each picture element 4, the three color values L, a, b (or the corresponding values of another color system) and the value quadruple comprising the infrared value I for simplifying purposes as the (four-dimensional) color vector F of the relevant picture element 4, so: F = (L, a, b, I)

Unter dem Begriff "Farbort" im vierdimensionalen Farbraum wird entsprechend ein Punkt verstanden, dessen vier Koordinaten im Farbraum die vier Komponenten des Farbvektors sind. Der Farbunterschied eines Bildelements 4 zu einem Bezugsbildelement 4 bzw. zum entsprechenden Bildelement 4 einer Referenz, typisch eines OK-Bogens 3, sei als Farbabstandsvektor ΔF bezeichnet, der sich nach der Beziehung ΔF = (ΔL, Δa, Δb, ΔI) = Fi - Fr = (Li - Lr, ai - ar, bi - br, Ii - Ir) ergibt, worin die mit dem Index i versehenen Werte diejenigen des betrachteten Bildelements 4 und die mit dem Index r versehenen Werte die Komponenten des Farbvektors des Bezugsbildelements 4 bzw. des entsprechenden Bildelements 4 des OK-Bogens 3 sind. Die Farbvektoren der Bildelemente 4 des OK-Bogens 3 oder einer anderen Referenz werden vielfach auch als Soll-Farbvektoren bezeichnet. Als Farbabstand ΔE zweier Bildelemente 4 bzw. eines Bildelements 4 und des entsprechenden Bildelements 4 des OK-Bogens 3 sei der Absolutbetrag des betreffenden Farbabstandsvektors ΔF verstanden, also ΔE = |ΔF| = {(Li - Lr)2 + (ai - ar)2 + (bi - br)2 + (Ii -Ir)2}0.5 worin die Indices i und r wiederum die genannte Bedeutung haben. Der Rechner C berechnet für jedes Bildelement 4 des aktuellen Druckbogens 3 aus den an diesem und dem OK-Bogen 3 ermittelten Farbvektoren F den Farbabstandsvektor ΔF.The term "color locus" in the four-dimensional color space is understood to mean a point whose four coordinates in the color space are the four components of the color vector. The color difference between a picture element 4 and a reference picture element 4 or with the corresponding picture element 4 of a reference, typically an OK sheet 3, is referred to as the color distance vector ΔF, which depends on the relationship ΔF = (ΔL, Δa, Δb, ΔI) = F i - F r = (L i - L r , a i - a r , b i - b r , I i - I r ) results in which the values provided with the index i are those of the picture element 4 under consideration and the values provided with the index r are the components of the color vector of the reference picture element 4 or of the corresponding picture element 4 of the OK sheet 3. The color vectors of the picture elements 4 of the OK sheet 3 or another reference are often also referred to as target color vectors. The color distance ΔE between two picture elements 4 or a picture element 4 and the corresponding picture element 4 of the OK sheet 3 is understood to mean the absolute amount of the relevant color distance vector ΔF, that is ΔE = | ΔF | = {(L i - L r ) 2 + (a i - a r ) 2 + (b i - b r ) 2 + (I i -I r ) 2 } 0.5 where the indices i and r in turn have the meaning given. The computer C calculates the color distance vector ΔF for each picture element 4 of the current printed sheet 3 from the color vectors F determined on this and the OK sheet 3.

Die zu ermittelnden Eingangsgrössen für die Druckmaschinensteuereinrichtung 9, also die zonalen relativen Schichtdickenänderungen für die einzelnen am Druck beteiligten Druckfarben, seien für das folgende ebenfalls vektoriell dargestellt und zusammenfassend als Schichtdickenänderungsvektor ΔD bezeichnet: ΔD = (ΔDc, ΔDg, ΔDm, ΔDs) The input variables to be determined for the printing press control device 9, that is to say the zonal relative changes in layer thickness for the individual printing inks involved in the printing, are also shown vectorially for the following and are referred to collectively as the layer thickness change vector ΔD: ΔD = (ΔD c , ΔD G , ΔD m , ΔD s )

Die Indices c, g, m und s stehen dabei für die Druckfarben Cyan, Gelb, Magenta und Schwarz, die entsprechend indizierten Komponenten des Vektors sind die relativen Schichtdickänderungen für die durch den Index angegebene Druckfarbe. Die aktuellen Schichtdicken selbst sind als Schichtdickenvektor D darstellbar: D = (Dc, Dg, Dm, Ds) worin die Indices dieselbe Bedeutung aufweisen.The indices c, g, m and s stand for the printing inks cyan, yellow, magenta and black, the correspondingly indexed components of the vector are the relative changes in layer thickness for the printing ink indicated by the index. The current layer thicknesses themselves can be represented as layer thickness vector D: D = (D c , D G , D m , D s ) where the indices have the same meaning.

Eine Offset-Druckmaschine 1 ist bekanntlich zonal ausgelegt, d.h. der Druck erfolgt in einer Reihe von parallel nebeneinander liegenden Zonen (typisch 32), wobei an der Druckmaschine 1 für jede Zone eigene Farbgebungsorgane vorgesehen sind, deren Regelung - wenigstens für die Belange der vorliegenden Erfindung - unabhängig von einander erfolgt. Die gegenseitige Beeinflussung benachbarter Druckzonen und deren Berücksichtigung bei der Druckmaschinenregelung ist nicht Gegenstand der vorliegenden Erfindung und wird daher ausser Acht gelassen. Die nachstehenden Ausführungen zur eigentlichen Regelung der Druckmaschine 1 bzw. zur Berechnung der entsprechenden Eingangsgrössen für die Druckmaschinenregelung beziehen sich jeweils auf eine Druckzone und gelten für alle Druckzonen gleich.As is known, an offset printing machine 1 is designed zonally, i.e. the printing takes place in a series of parallel zones (typically 32), at which Printing machine 1 separate coloring organs are provided for each zone, the Regulation - at least for the interests of the present invention - independent of one another. The mutual influence of neighboring pressure zones and their Consideration in the printing press control is not the subject of present invention and is therefore disregarded. The following Comments on the actual control of the printing press 1 or on the calculation of the corresponding input variables for the press control relate each to a pressure zone and apply equally to all pressure zones.

Gemäss der Lehre z.B. der eingangs erwähnten EP-B2 0 228 347 und mit der erfindungsgemässen zusätzlichen Berücksichtigung der Druckfarbe Schwarz lassen sich die für die Kompensation einer Farbabweichung zur Referenz (OK-Bogen 3) erforderlichen relativen Schichtdickenänderungen ΔD der einzelnen beteiligten Druckfarben aus den an einem aktuellen Druckbogen 3 ermittelten Farbabstandsvektoren ΔF zur Referenz (OK-Bogen 3) nach der Gleichung ΔF = S*ΔD berechnen, worin S eine sog. Sensitivitäts-Matrix ist, welche als Koeffizienten die partiellen Ableitungen (Gradienten) der vier Komponenten L,a,b, I des Farbvektors F nach den vier Komponenten Dc, Dg, Dm, Ds des Schichtdickenvektors D enthält:

Figure 00090001
According to the teaching of, for example, EP-B2 0 228 347 mentioned at the outset and with the additional consideration of the printing ink black according to the invention, the relative changes in layer thickness ΔD of the individual printing inks required for the compensation of a color deviation from the reference (OK sheet 3) can be derived from the one current print sheet 3 determined color distance vectors ΔF for reference (OK sheet 3) according to the equation ΔF = S * ΔD calculate, where S is a so-called sensitivity matrix, which as coefficients is the partial derivatives (gradients) of the four components L, a, b, I of the color vector F according to the four components D c , D g , D m , D s des Layer thickness vector D contains:
Figure 00090001

Die Koeffizienten der Sensitivitäts-Matrix S werden üblicherweise als Farbwertgradienten bezeichnet. In den nachstehenden Ausführungen wird für diese 16 Farbwertgradienten stellvertretend jeweils der summarische Begriff Sensitivitäts-Matrix verwendet. Die Sensitivitätsmatrix S ist ein lineares Ersatzmodell für den Zusammenhang zwischen den Änderungen der Schichtdicken der am Druck beteiligten Druckfarben und den daraus resultierenden Änderungen des Farbeindrucks des mit den geänderten Schichtdickenwerten gedruckten Bildelements 4. Die Sensitivitätsmatrix S ist nicht für alle Farborte im Farbraum gleich, sondern gilt streng genommen jeweils nur in der unmittelbaren Umgebung eines Farborts, d.h. für jeden gemessenen Farbvektor F der einzelnen Bildelemente 4 ist in die Gleichung ΔF = S*ΔD streng genommen eine eigene Sensitivitätsmatrix S einzusetzen. The coefficients of the sensitivity matrix S are usually called Color value gradients. In the following explanations, 16 Color value gradients each represent the summary term sensitivity matrix used. The sensitivity matrix S is a linear replacement model for the relationship between the changes in the layer thickness of the printing inks involved in the printing and the resulting changes in the color impression of the with the changed Layer thickness values of printed picture element 4. The sensitivity matrix S is not the same for all color locations in the color space, but strictly speaking only applies in the immediate vicinity of a color location, i.e. for each measured color vector F the individual picture elements 4 is strictly speaking one in the equation ΔF = S * ΔD use your own sensitivity matrix S.

Es sei darauf hingewiesen, daß es möglich ist, die Sensitivitätsmatrix S nur aus den Komponenten L, a, b eines dreidimensionalen Farbvektors F zu bilden. Auf die Komponente I kann verzichtet werden, wenn der Bildaufbau bei mehreren Bildelementen 4 in Bezug auf die Flachendeckung der beteiligten Druckfarben voneinander unabhängig ist, was in den meisten Fällen gegeben ist.It should be noted that it is possible to select the sensitivity matrix S only from the To form components L, a, b of a three-dimensional color vector F. On the Component I can be omitted if there are several Image elements 4 in relation to the flat coverage of the printing inks involved is independent of each other, which is the case in most cases.

Unter der Voraussetzung, dass die Sensitivitäts-Matrizen S bekannt sind, lässt sich die Matrizen-Gleichung ΔF = S*ΔD gemäss den bekannten Regeln des Matrizen-Kalküls nach ΔD auflösen (ΔD = S-1*ΔF). Auf die Bestimmung der Sensitivitäts-Matrizen wird weiter unten noch eingegangen.Provided that the sensitivity matrices S are known, the matrix equation ΔF = S * ΔD can be solved according to the known rules of the matrix calculation according to ΔD (ΔD = S -1 * ΔF). The determination of the sensitivity matrices is discussed further below.

Nach den vorstehenden Ausführungen umfasst jede Druckzone eine grosse Zahl, typischerweise etwa 4000, einzelne Bildelemente. Erfahrungsgemäss wirken sich die beim Druck auftretenden Störeinflüsse in der Regel nicht in gleicher Weise auf die einzelnen Bildelemente aus bzw. sind nicht alle Bildelemente durch dieselben Störeinflüsse betroffen. Die anhand eines Bildelements berechnete Schichtdickenänderung kann daher beispielsweise zwar für das eine Bildelement durchaus zu einer völligen Kompensation der Farbabweichung führen, für die anderen Bildelemente (derselben Zone) aber entweder ungenügend sein oder eine Richtungsänderung oder eine Vergrösserung der Farbabweichung hervorrufen. Da sich für jedes Bildelement in extremis ein anderer Schichtdickenänderungsvektor ΔD ergeben könnte, kann die Matrizen-Gleichung ΔF = S*ΔD nicht für jedes Bildelement unabhängig aufgelöst werden. Die einzelnen Matrizen-Gleichungen für die einzelnen Bildelemente müssen daher zu einem entsprechend der um 1 verminderten Anzahl der Bildelemente überbestimmtem Matrizen-Gleichungssystem zusammengefasst werden, das nach den bekannten Methoden der Ausgleichsrechnung unter Beiziehung einer Rahmen- oder Nebenbedingung zu lösen ist. Im Falle von 4000 Bildelementen ergibt sich also ein System von 4000 Matrizen-Gleichungen bzw. 16000 einfachen algebraischen Gleichungen mit den vier Unbekannten ΔDc, ΔDg, ΔDm und ΔDs. Als Nebenbedingung für die Lösung dieses Gleichungssystems wird praktischerweise gefordert, dass der mittlere quadratische Fehler minimal sein soll. Unter mittlerem quadratischen Fehler wird dabei der Mittelwert der Quadrate der nach der Anwendung der korrigierten Schichtdicken verbleibenden Farbabstände ΔE der einzelnen Bildelemente verstanden.According to the above explanations, each printing zone comprises a large number, typically approximately 4000, individual picture elements. Experience has shown that the interference that occurs during printing generally does not have the same effect on the individual image elements or that not all image elements are affected by the same interference. The change in layer thickness calculated on the basis of one picture element can therefore, for example, lead to a complete compensation of the color deviation for one picture element, but for the other picture elements (in the same zone) either be insufficient or cause a change in direction or an increase in the color deviation. Since a different layer thickness change vector ΔD could result for each picture element in extremis, the matrix equation ΔF = S * ΔD cannot be solved independently for each picture element. The individual matrix equations for the individual picture elements must therefore be combined to form a matrix equation system which is overdetermined according to the reduced number of picture elements and which is to be solved according to the known methods of compensation calculation using a framework or secondary condition. In the case of 4000 picture elements, there is a system of 4000 matrix equations or 16000 simple algebraic equations with the four unknowns ΔD c , ΔD g , ΔD m and ΔD s . As a secondary condition for the solution of this system of equations, it is practically required that the mean quadratic error should be minimal. The mean square error is understood to mean the mean value of the squares of the color distances ΔE of the individual picture elements remaining after the corrected layer thicknesses have been applied.

Die genannten 4000 Matrix-Gleichungen lassen sich übersichtlich wie folgt zusammenfassen: {ΔF} = {S}*ΔD The 4000 matrix equations mentioned can be summarized as follows: {ΔF} = {S} * ΔD

Darin bedeutet {ΔF} einen Spaltenvektor mit 16000 Komponenten (ΔL1, Δa1, Δb1, ΔI1, ΔL2, Δa2, Δb2, ΔI2 ........ΔL4000, Δa4000, Δb4000, ΔI4000), {S} eine Matrix mit 4 Zeilen und 4000 Spalten und ΔD einen Spaltenvektor mit den vier Unbekannten ΔDc, ΔDg, ΔDm und ΔDs als Komponenten. Die Indizes der Komponenten von {ΔF} beziehen sich auf die Bildelemente 4 1-4000, d.h. die Komponenten von {ΔF} sind die ermittelten Komponenten der Farbabstandsvektoren ΔF der einzelnen Bildelemente 4 gegenüber den jeweils entsprechenden Bildelementen 4 des OK-Bogens. Die rechteckige Matrix {S} ergibt sich durch eine Nebeneinanderreihung der 4000 Sensitivitäts-Matrizen S der einzelnen Bildelemente 4, also {S} = (S1 S2 .... S4000).Here {ΔF} means a column vector with 16000 components (ΔL 1 , Δa 1 , Δb 1 , ΔI 1 , ΔL 2 , Δa 2 , Δb 2 , ΔI 2 ........ ΔL 4000 , Δa 4000 , Δb 4000 , ΔI 4000 ), {S} a matrix with 4 rows and 4000 columns and ΔD a column vector with the four unknowns ΔD c , ΔD g , ΔD m and ΔD s as components. The indices of the components of {ΔF} relate to the picture elements 4 1-4000, ie the components of {ΔF} are the determined components of the color distance vectors ΔF of the individual picture elements 4 compared to the corresponding picture elements 4 of the OK sheet. The rectangular matrix {S} results from a juxtaposition of the 4000 sensitivity matrices S of the individual picture elements 4, ie {S} = (S 1 S 2 .... S 4000 ).

Nach den Regeln der Ausgleichsrechnung und mit der genannten Nebenbedingung lässt sich die Lösung dieses Gleichungssystems allgemein wie folgt darstellen: ΔD = {Q}*{ΔF} According to the rules of the equalization calculation and with the mentioned constraint, the solution of this system of equations can generally be represented as follows: ΔD = {Q} * {ΔF}

Darin ist {Q} eine rechteckige Matrix mit 4000 Spalten und 4 Zeilen, die sich folgendermassen errechnet: {Q} = {S}T*{S}-1*{S}T worin {S}T und {S}-1 die transponierte bzw. die inverse Matrix zu {S} ist.In it {Q} is a rectangular matrix with 4000 columns and 4 rows, which is calculated as follows: {Q} = {S} T * {S} -1 * {S} T where {S} T and {S} -1 is the transposed or inverse matrix to {S}.

Wie man erkennt, ist die Berechnung des Schichtdickenänderungsvektors ΔD auf diese Weise zwar prinzipiell möglich, erfordert aber einen enormen Rechenaufwand und entsprechenden Zeitaufwand, der die Grenzen des praktisch Machbaren weit übersteigt. Insbesondere ist auf diese Weise eine ausreichend schnelle Regelung, wie sie in der Praxis insbesondere bei modernen Hochleistungsdruckmaschinen 1 erforderlich ist, nicht realisierbar. Der Rechenaufwand für die Bestimmung der 4000 Sensitivitätsmatrizen (insgesamt 64000 Koeffizienten) für die einzelnen Bildelemente 4 ist dabei überhaupt noch nicht berücksichtigt und rückt die Machbarkeit in noch weitere Ferne.As can be seen, the calculation of the layer thickness change vector ΔD is based on Although this is possible in principle, it requires enormous computing effort and corresponding expenditure of time that goes far beyond the limits of what is practically possible exceeds. In particular, a sufficiently fast control, such as in practice, especially in modern high-performance printing presses 1 is not feasible. The computing effort for determining the 4000 Sensitivity matrices (64,000 coefficients in total) for each Image elements 4 are not considered at all and move the Feasibility even further away.

Hier setzt nun die Erfindung an. Der wesentlichste Grundgedanke der Erfindung besteht darin, dass die einzelnen Bildelemente 4 nach bestimmten Kriterien zu Gruppen oder Klassen zusammengefasst werden, innerhalb derer die Farbabstandsvektoren und die Sensitivitäts-Matrizen summiert und gemittelt werden und nur mit den Mittelwerten weitergerechnet wird. Auf diese Weise lässt sich das Gleichungssystem für die Berechnung des Schichtdickenänderungsvektors erheblich vereinfachen (typisch 81 anstatt 4000 Matrizen-Gleichungen pro Druckzone) und mit vertretbarem Rechenaufwand für die Praxis ausreichend schnell (< 1 Minute für den gesamten Druckbogen 3) lösen. Näheres dazu ist weiter unten ausgeführt.This is where the invention begins. The most important basic idea of the invention is that the individual picture elements 4 according to certain criteria Groups or classes are summarized within which the Color difference vectors and the sensitivity matrices are summed and averaged and only continue with the mean values. In this way it can be done Equation system for the calculation of the layer thickness change vector considerably simplify (typically 81 instead of 4000 matrix equations per pressure zone) and with reasonable computing effort for practice sufficiently fast (<1 minute for the loosen the entire sheet 3). More details are given below.

Der visuelle Farbeindruck (messtechnisch der Farbwert, Farbort oder Farbvektor) eines Bildelements 4 ist beim Offset-Raster-Druck durch die prozentualen Rasterwerte (Flächendeckungen) der beteiligten Druckfarben und, in geringerem Masse, durch die Schichtdicken der Druckfarben bestimmt. Die Rasterwerte bzw. Flächendeckungen (0-100%) sind durch die zugrundeliegenden Druckplatten festgelegt und praktisch unveränderlich. Einfluss auf den Farbeindruck genommen und damit geregelt kann nur über die Schichtdicken der beteiligten Druckfarben werden. Die Ausdrücke "Rasterwert" und "Flächendeckung" werden nachstehend synonym verwendet. Die Gesamtheit aller möglichen Kombinationen R von prozentualen Rasterwerten der beteiligten Druckfarben (üblicherweise Cyan, Gelb, Magenta, Schwarz) sei im folgenden als Rasterraum (vierdimensional) bezeichnet.The visual color impression (metrologically the color value, color location or color vector) of a picture element 4 is in offset raster printing by the percentage Raster values (area coverage) of the printing inks involved and, to a lesser extent Mass determined by the layer thickness of the printing inks. The grid values or Area coverage (0-100%) are due to the underlying printing plates fixed and practically unchangeable. Influenced the color impression and can therefore only be regulated via the layer thicknesses of the printing inks involved become. The terms "grid value" and "area coverage" are given below used synonymously. The totality of all possible combinations R of percentage screen values of the printing inks involved (usually cyan, yellow, Magenta, black) is referred to below as a grid space (four-dimensional).

Unter gegebenen Druckbedingungen (Kennlinien der Druckmaschine 1, nominelle Schichtdicken, zu bedruckender Stoff, verwendete Druckfarben etc.) entspricht jede Rasterwertkombination R einem genau definierten Farbeindruck oder Farbvektor F des mit dieser Rasterwertkombination R gedruckten Bildelements 4; es besteht also eine eindeutige Zuordnung von Rasterwertkombination R zu Farbort bzw. Farbvektor F; der Rasterraum lässt sich eindeutig auf den Farbraum abbilden, wobei allerdings der Farbraum nicht vollständig belegt wird, da dieser auch nicht druckbare Farborte enthält. Umgekehrt besteht im allgemeinen keine eindeutige Beziehung. Der zu einer beliebigen Rasterwertkombination R gehörige Farbvektor F kann empirisch durch Probedrucke ermittelt oder mittels eines geeigneten Modells, welches das Druckverfahren unter den gegebenen Druckbedingungen ausreichend genau beschreibt, errechnet werden. Ein geeignetes Modell ist z.B. durch die bekannten Neugebauer-Gleichungen für den Offset-Druck gegeben. Das Modell setzt die Kenntnis der Remissionsspektren von Einzelfarben-Volltönen, einigen Übereinanderdrucken von Volltönen und einigen Rasterfeldern aller am Druck beteiligten Druckfarben bei den nominellen Schichtdicken der Druckfarben voraus. Diese Remissionsspektren lassen sich sehr einfach anhand eines Probedrucks messen. Wenn die Kennlinien der Druckmaschine 1 bekannt sind, genügen einfache Messungen an Volltönen.Under given printing conditions (characteristics of printing press 1, nominal Layer thicknesses, material to be printed, printing inks used etc.) corresponds to each Raster value combination R a precisely defined color impression or color vector F the picture element 4 printed with this raster value combination R; so it exists a clear assignment of raster value combination R to color location or color vector F; the grid space can be clearly mapped onto the color space, although the color space is not completely occupied because it also contains non-printable color locations contains. Conversely, there is generally no clear relationship. The one Any raster value combination R belonging to color vector F can be empirically determined by Sample prints determined or using a suitable model that the Printing process sufficiently accurate under the given printing conditions describes, can be calculated. A suitable model is e.g. through the well-known Neugebauer equations for offset printing. The model sets the Knowledge of the reflectance spectra of single-color full tones, some Overprinting full tones and some grid fields all on the print involved inks with the nominal layer thicknesses of the inks ahead. These reflectance spectra can be measured very easily using a test print. If the characteristics of the printing press 1 are known, simple ones are sufficient Measurements on solid tones.

Mit Hilfe des genannten Modells ist es in an sich bekannter Weise möglich, für jede beliebige Rasterwertkombination R die (16) Koeffizienten der zu dieser Rasterwertkombination gehörigen Sensitivitäts-Matrix S zu bestimmen. Dazu ist lediglich nötig, im Modell die nominellen Schichtdicken der beteiligten Druckfarben vorzugsweise einzeln jeweils um z.B. 1% zu ändern und mit diesen geänderten Schichtdicken die zugehörigen Farbvektoren und entsprechenden Farbabstandsvektoren gegenüber dem sich aus den nominellen Schichtdicken ergebenden Farbvektor zu berechnen. Diese Farbabstandsvektoren ΔF und die zugrundeliegenden Schichtdickenänderungsvektoren ΔD werden in die Gleichung ΔF = S*ΔD eingesetzt und diese nach den Koeffizienten der Sensitivitäts-Matrix S aufgelöst. With the help of the model mentioned, it is possible for everyone in a manner known per se any raster value combination R the (16) coefficients of this To determine the raster value combination belonging to the sensitivity matrix S. Is to only necessary in the model the nominal layer thicknesses of the printing inks involved preferably individually by e.g. 1% change and with these changed Layer thicknesses the corresponding color vectors and corresponding Color difference vectors compared to that resulting from the nominal layer thicknesses to calculate the resulting color vector. These color distance vectors ΔF and the underlying layer thickness change vectors ΔD are included in the equation ΔF = S * ΔD and this according to the coefficients of the sensitivity matrix S dissolved.

Bei der Bestimmung der Koeffizienten der Sensitivitäts-Matrix S können auch die Flächendeckungswerte der Bildelemente 4 verwendet werden. Sind die Flächendeckungswerte aus der Druckvorstufe bereits bekannt, so erübrigt sich eine Messung an Probedrucken (Ausnahme: Volltöne).When determining the coefficients of the sensitivity matrix S, the Area coverage values of the picture elements 4 are used. Are the Area coverage values from prepress are already known, so there is no need Measurement on test prints (exception: full tones).

Gemäss der Erfindung werden nun zu einer beschränkten Anzahl von möglichen Rasterwertkombinationen R der zugehörige Farbvektor F und die zugehörige Sensitivitäts-Matrix S im Voraus berechnet und in einer Tabelle abgespeichert. Diese die Gesamtheit aller so berechneten Sensitivitäts-Matrizen S und Farbvektoren F enthaltende Tabelle sei im folgenden als Raster-Farb-Tabelle RFT bezeichnet.According to the invention, there are now a limited number of possible Raster value combinations R the associated color vector F and the associated Sensitivity matrix S calculated in advance and stored in a table. This the entirety of all sensitivity matrices S and color vectors F calculated in this way containing table is referred to below as a raster color table RFT.

Für die Berechnung der Schichtdickenänderungsvektoren ΔD aus der Gleichung ΔF = S*ΔD ist, wie vorstehend ausgeführt, die Kenntnis der zum jeweiligen Farbort bzw. Farbvektor F gehörigen Sensitivitäts-Matrix S erforderlich. Um zu dieser zu gelangen, wird gemäss der Erfindung aus dem Farbvektor F des jeweiligen Bildelements nach einem besonders vorteilhaften Berechnungsverfahren, welches weiter unten noch näher erläutert ist, die zugehörige Rasterwertkombination R errechnet und anhand dieser Rasterwertkombination R die zugehörige Sensitivitäts-Matrix S aus der vorausberechneten Raster-Farb-Tabelle RFT entnommen. Auf diese Weise ist es möglich, ohne übermässigen Rechenaufwand schnell die benötigten Sensitivitäts-Matrizen zu bestimmen.For the calculation of the layer thickness change vectors ΔD from the equation As stated above, ΔF = S * ΔD is the knowledge of the respective color location or color vector F associated sensitivity matrix S required. To get to this arrive, according to the invention from the color vector F of the respective Picture element according to a particularly advantageous calculation method, which The associated raster value combination R is explained in more detail below calculates and on the basis of this raster value combination R the associated sensitivity matrix S taken from the pre-calculated raster color table RFT. To this In this way it is possible to quickly get the required without excessive computing effort Determine sensitivity matrices.

Gemäss einem weiteren Gedanken der Erfindung werden dazu im Rasterraum eine Anzahl von z.B. 1296 gleichabständigen diskreten Rasterwertkombinationen RiR (je 6 diskrete Rasterprozentwerte AC, AG, AM, AS für die Druckfarben Cyan, Gelb, Magenta, Schwarz) definiert: i 0 1 2 3 4 5 AC 0 20 40 60 80 100% AG 0 20 40 60 80 100% AM 0 20 40 60 80 100% AS 0 20 40 60 80 100% According to a further idea of the invention, a number of, for example, 1296 equally spaced discrete screen value combinations R iR (6 discrete screen percentages A C , A G , A M , A S for the printing colors cyan, yellow, magenta, black) are defined in the screen space: i 0 1 2 3 4 5 A C 0 20 40 60 80 100% A G 0 20 40 60 80 100% A M 0 20 40 60 80 100% A S 0 20 40 60 80 100%

Diese 1296 diskreten Rasterwertkombinationen RiR werden gemäss der nachstehenden Formel mit einem eindeutigen Raster-Index iR numeriert: iR = i(AC)*50 + i(AG)*51 + i(AM)*52 + i(AS)*53 These 1296 discrete raster value combinations R iR are numbered according to the following formula with a unique raster index iR: iR = i (A C ) * 5 0 + i (A G ) * 5 1 + i (A M ) * 5 2 + i (A S ) * 5 3

Unter i(AC) .... ist dabei der Wert des Index i für den jeweiligen diskreten Rasterwert der jeweiligen Druckfarbe zu verstehen. Für jede dieser 1296 diskreten Rasterwertkombinationen RiR wird eine Sensitivitäts-Matrix SiR berechnet und in der Raster-Farb-Tabelle RFT abgelegt. Der zu den diskreten Rasterwertkombinationen RiR gehörende berechnete Farbvektor FiR wird ebenfalls in der Tabelle RFT abgelegt. Insgesamt enthält die Raster-Farb-Tabelle RFT damit 1296 Farbvektoren FiR und 1296 zugehörige Sensitivitäts-Matrizen SiR.I (A C ) .... is the value of the index i for the respective discrete screen value of the respective printing ink. A sensitivity matrix S iR is calculated for each of these 1296 discrete raster value combinations R iR and stored in the raster color table RFT. The calculated color vector F iR belonging to the discrete raster value combinations R iR is also stored in the table RFT. The raster color table RFT thus contains a total of 1296 color vectors F iR and 1296 associated sensitivity matrices S iR .

Die Quantisierung des Rasterraums erfolgt vorzugsweise in zwei Stufen. In der ersten Stufe werden für nur 256 diskrete Rasterwertkombinationen (entsprechend vier diskreten Rasterprozentwerten 0%, 40%, 80%, 100% für jede der Druckfarben Cyan, Gelb, Magenta, Schwarz) anhand des Offset-Druck-Modells die zugehörigen Farbvektoren und die zugehörigen Sensitivitäts-Matrizen berechnet. In der zweiten Stufe werden dann für die fehlenden Rasterprozentwerte 20% und 60% die zugehörigen Farbvektoren und Sensitivitäts-Matrizen durch lineare Interpolation aus den Farbvektoren und Sensitivitäts-Matrizen der jeweils 16 nächstliegenden diskreten Rasterwertkombinationen berechnet. Damit ergeben sich dann insgesamt wieder 1296 diskrete Rasterwertkombinationen RiR mit 1296 zugehörigen diskreten Farbvektoren FiR und 1296 zugehörigen Sensitivitäts-Matrizen SiR. Selbstverständlich könnte der Rasterraum auch auf eine andere Anzahl von diskreten Rasterkobinationen, beispielsweise etwa 625 oder 2401, reduziert werden, die Anzahl 1296 stellt aber für die Praxis einen optimalen Kompromiss zwischen Genauigkeit und Rechenaufwand dar.The grid space is preferably quantized in two stages. In the first stage, for only 256 discrete halftone value combinations (corresponding to four discrete halftone percentage values 0%, 40%, 80%, 100% for each of the printing colors cyan, yellow, magenta, black), the associated color vectors and the are based on the offset printing model associated sensitivity matrices. In the second stage, the associated color vectors and sensitivity matrices for the missing raster percentage values 20% and 60% are calculated by linear interpolation from the color vectors and sensitivity matrices of the 16 nearest discrete raster value combinations. This again results in a total of 1296 discrete raster value combinations R iR with 1296 associated discrete color vectors F iR and 1296 associated sensitivity matrices S iR . Of course, the grid space could also be reduced to a different number of discrete grid combinations, for example about 625 or 2401, but the number 1296 represents an optimal compromise between accuracy and computing effort in practice.

Einem für ein Bildelement 4 ermittelten Farbvektor F wird nun diejenige Sensitivitäts-Matrix SiR zugeordnet, deren zugehörige diskrete Rasterwertkombination RiR der aus dem Farbvektor F berechneten Rasterwertkombination R am nächsten liegt. Anders ausgedrückt, wird die berechnete Rasterwertkombination R durch die jeweils nächstliegende diskrete Rasterwertkombination RiR ersetzt und erhält die zu dieser diskreten Rasterwertkombination RiR vorausberechnete Sensitivitäts-Matrix SiR zugeordnet.A sensitivity matrix S iR whose associated discrete raster value combination R iR is closest to the raster value combination R calculated from the color vector F is now assigned to a color vector F determined for a picture element 4. In other words, the calculated raster value combination is replaced by R each closest discrete halftone value combination R iR and receives associated with the precalculated to this discrete halftone value combination R iR sensitivity matrix S iR.

In einer anderen Betrachtungsweise wird der Rasterraum durch Aufteilung in eine Anzahl von Unterräumen quantisiert. Alle Farbvektoren F, deren berechnete zugehörigen Rasterwertkombinationen R in ein und denselben dieser Unterräume fallen, erhalten dieselbe für diesen Unterraum vorausberechnete Sensitivitäts-Matrix SiR zugeordnet. Die Unterräume sind durch die folgenden sechs Wertebereiche der prozentualen Rasteranteile (Flächendeckungen) der vier beteiligten Druckfarben definiert:
   0....10, 10....30, 30....50, 50....70, 70....90, 90....100%
In another view, the grid space is quantized by dividing it into a number of subspaces. All color vectors F, the calculated associated raster value combinations R of which fall into one and the same of these subspaces, are assigned the same sensitivity matrix S iR previously calculated for this subspace. The subspaces are defined by the following six value ranges of the percentage raster portions (area coverage) of the four printing inks involved:
0 .... 10, 10 .... 30, 30 .... 50, 50 .... 70, 70 .... 90, 90 .... 100%

Gemäss einem weiteren Aspekt der Erfindung wird für die Ermittlung der Rasterwertkombination R aus dem Farbvektor F auch der (inkl. Infrarot-Wert I vierdimensionale) Farbraum einer Quantisierung unterworfen, d.h. in eine Anzahl von Unterräumen aufgeteilt. Dazu werden im Farbraum eine Anzahl von diskreten Farborten mit jeweils diskreten Koordinatenwerten festgelegt. Die Quantisierung des vierdimensionalen Farbraums kann beispielsweise so erfolgen, dass jede Dimension L,a,b,I des Farbraums nur 11 diskrete Werte annehmen kann, wobei sich insgesamt 14641 diskrete Farborte FiF ergeben: i 0 1 2 3 4 5 6 7 8 9 10 L 0 10 20 30 40 50 60 70 80 90 100 a -75 -60 -45 -30 -15 0 15 30 45 60 75 b -45 -30 -15 0 15 30 45 60 75 90 105 I 0 10 20 30 40 50 60 70 80 90 100 According to a further aspect of the invention, the (including infrared value I four-dimensional) color space is also subjected to quantization, ie divided into a number of subspaces, for determining the raster value combination R from the color vector F. For this purpose, a number of discrete color locations, each with discrete coordinate values, are defined in the color space. For example, the four-dimensional color space can be quantized such that each dimension L, a, b, I of the color space can only assume 11 discrete values, resulting in a total of 14641 discrete color locations F iF : i 0 1 2 3 4 5 6 7 8th 9 10 L 0 10 20 30 40 50 60 70 80 90 100 a -75 -60 -45 -30 -15 0 15 30 45 60 75 b -45 -30 -15 0 15 30 45 60 75 90 105 I 0 10 20 30 40 50 60 70 80 90 100

Diese 14641 diskreten Farborte FiF werden gemäss der nachstehenden Formel mit einem eindeutigen Farbort-Index iF numeriert: iF = i(L)*110 + i(a)*111 +i(b)*112 + i(I)*113 These 14641 discrete color loci F iF are numbered according to the following formula with a unique color locus index iF: iF = i (L) * 11 0 + i (a) * 11 1 + i (b) * 11 2 + i (I) * 11 3

Für diese diskreten Farborte FiF des Farbraums werden nach der weiter unten noch erläuterten speziellen Berechnungsmethode die zugehörigen Rasterwertkombinationen RiF berechnet und, sofern sie nicht mit einer diskreten Rasterwertkombination RiR zusammenfallen, durch die jeweils nächstliegende diskrete Rasterwertkombination RiR ersetzt. Somit ergibt sich eine eindeutige, vorausberechnete Abbildung der 14641 diskreten Farborte FiF des (vierdimensionalen) Farbraums auf die 1296 diskreten Rasterwertkombinationen RiR des Rasterraums. Diese Abbildung wird, wie schon gesagt, vorausberechnet und in einer im folgenden als Raster-Index-Tabelle RIT bezeichneten Zuordnungstabelle abgespeichert.For these discrete color locations F iF of the color space, the associated raster value combinations R iF are calculated using the special calculation method explained below and, if they do not coincide with a discrete raster value combination R iR , are replaced by the closest discrete raster value combination R iR . This results in a clear, pre-calculated mapping of the 14641 discrete color locations F iF of the (four-dimensional) color space onto the 1296 discrete raster value combinations R iR of the raster space. As already mentioned, this mapping is calculated in advance and stored in an assignment table referred to below as the raster index table RIT.

Für die Zwecke der Ermittlung der Rasterwertkombinationen R aus den für die Bildelemente 4 ermittelten Farbvektoren F wird jeder für ein Bildelement 4 ermittelte Farbvektor F durch den nächstliegenden diskreten Farbort FiF ersetzt. Aus der Raster-Index-Tabelle RIT wird dann die diesem diskreten Farbort FiF zugeordnete diskrete Rasterwertkombination RiR entnommen und anhand dieser aus der Raster-Farb-Tabelle RFT die entsprechende Sensitivitäts-Matrix SiR ausgelesen und dem Farbvektor F zugeordnet. Auf diese Weise kann mit vergleichsweise geringem Rechenaufwand und entsprechend schnell für jeden beliebigen ermittelten Farbvektor F die Sensitivitäts-Matrix S bestimmt werden, wobei diese allerdings nur aus einer der 1296 vorberechneten Sensitivitäts-Matrizen SiR ausgewählt werden kann. Für die Praxis ist dies aber ausreichend.For the purposes of determining the raster value combinations R from the color vectors F determined for the picture elements 4, each color vector F determined for a picture element 4 is replaced by the closest discrete color location F iF . The discrete raster value combination R iR assigned to this discrete color location F iF is then taken from the raster index table RIT and the corresponding sensitivity matrix S iR is read out from the raster color table RFT and assigned to the color vector F. In this way, the sensitivity matrix S can be determined with comparatively little computing effort and correspondingly quickly for any determined color vector F, although this can only be selected from one of the 1296 precalculated sensitivity matrices S iR . In practice, however, this is sufficient.

Für das Vorstehende wurde vorausgesetzt, dass aus den Farbvektoren F die zugehörigen Rasterwertkombinationen R berechnet werden können. Wie dies gemäss der Erfindung besonders vorteilhaft durchgeführt werden kann, ist Gegenstand der nachstehenden Ausführungen.
Zunächst wird dazu der Farbraum in 81 Teilbereiche TiT wie folgt unterteilt: i 0 1 2 L (0..120) 0..20..40 40..60..80 80..100..120 a (-90..+90) -90..-60..-30 -30..0..+30 +30..+60..+90 b (-60..+120) -60..-30..0 0..+30..+60 +60..+90..+120 I (0..120) 0..20..40 40..60..80 80..100..120
For the above, it was assumed that the associated raster value combinations R can be calculated from the color vectors F. How this can be carried out particularly advantageously according to the invention is the subject of the explanations below.
First, the color space is divided into 81 sub-areas T iT as follows: i 0 1 2 L (0..120) 0..20..40 40..60..80 80..100..120 a (-90 .. + 90) -90 ..- 60 ..- 30 -30..0 .. + 30 +30 .. + 60 .. + 90 b (-60 .. + 120) -60 ..- 30..0 0 .. + 30 .. + 60 +60 .. + 90 .. + 120 I (0..120) 0..20..40 40..60..80 80..100..120

Die insgesamt 81 Teilbereiche TiT werden durch einen nach folgender Formel definierten Teilbereichs-Index iT eindeutig durchnumeriert: iT = i(L)*30 + i(a)*31 + i(b)*32 + i(I)*33 The total of 81 sub-areas T iT are clearly numbered by a sub-area index iT defined according to the following formula: iT = i (L) * 3 0 + i (a) * 3 1 + i (b) * 3 2 + i (I) * 3 3

Innerhalb jedes Teilbereichs TiT wird nun der Zusammenhang zwischen dem Farbvektor F und der zugehörigen, als Rastervektor A geschriebenen Rasterwertkombination R durch die folgende Matrizen-Gleichung linear angenähert: A = UiT*F Within each sub-area T iT , the relationship between the color vector F and the associated raster value combination R, written as raster vector A, is approximated linearly by the following matrix equation: A = U iT * F

Darin bedeutet A den Rastervektor mit den Rasterprozentwerten AC, AG, AM, AS der vier beteiligten Druckfarben als Komponenten und UiT eine Umrechnungsmatrix mit 16 Koeffizienten, welche die partiellen Ableitungen (Gradienten) der Komponenten des Rastervektors nach den Komponenten des Farbvektors sind. Wenn die Umrechnungsmatrizen UiT der einzelnen Teilbereiche TiT bekannt sind, kann somit für jeden Farbvektor F der zugehörige Rastervektor A bzw. die zugehörige Rasterwertkombination R berechnet werden. A means the raster vector with the raster percentage values A C , A G , A M , A S of the four printing inks involved as components, and U iT a conversion matrix with 16 coefficients, which shows the partial derivatives (gradients) of the components of the raster vector according to the components of the color vector are. If the conversion matrices U iT of the individual partial areas T iT are known, the associated raster vector A or the associated raster value combination R can thus be calculated for each color vector F.

Das Problem reduziert sich also auf die Berechnung der Umrechnungsmatrizen UiT für die einzelnen Teilbereiche TiT bzw. genauer für die Farbvektoren FiT von deren Mittelpunkten. Die Berechnung der Umrechnungsmatrizen erfolgt durch eine gewichtete lineare Ausgleichsrechnung mit den Werten der weiter vorne erläuterten Raster-Farb-Tabelle RFT, also den 1296 diskreten Rasterwertkombinatione RiR und den zugehörigen diskreten Farbvektoren FiR. Für die Ausgleichsrechnung ist pro Teilbereich TiT im wesentlichen nur die Inversion einer 4x4-Matrix erforderlich. DasThe problem is therefore reduced to the calculation of the conversion matrices U iT for the individual sub-areas T iT or more precisely for the color vectors F iT from their centers. The conversion matrices are calculated using a weighted linear compensation calculation using the values from the raster-color table RFT explained above, that is to say the 1296 discrete raster value combinations R iR and the associated discrete color vectors F iR . For the compensation calculation, essentially only the inversion of a 4x4 matrix is required for each sub-area T iT . The

Gewicht der Stützstellen, d.h. die diskreten Farborte FiR der Raster-Farb-Tabelle RFT, für die Ausgleichsrechnung wird nach einer geeigneten Funktion mit dem Farbabstand zwischen den Stützstellen und dem jeweiligen Farbvektor FiT als Parameter bestimmt. Die Ausgleichsrechnung ist linear, d.h. an den Übergängen der einzelnen Teilbereiche TiT entstehen Unstetigkeiten, die aber für die Praxis unbedeutend sind.Weight of the support points, ie the discrete color locations F iR of the raster color table RFT, for the compensation calculation is determined according to a suitable function with the color distance between the support points and the respective color vector F iT as parameters. The compensation calculation is linear, ie there are discontinuities at the transitions of the individual sub-areas T iT , which are insignificant in practice.

Im folgenden wird das eigentliche Regelverfahren für die Farbgebung der Druckmaschine 1 näher beschrieben.In the following the actual control procedure for the coloring of the Printing machine 1 described in more detail.

Zu Beginn eines Auflagendrucks werden gemäss den vorstehenden Erläuterungen für die herrschenden Druckbedingungen die Raster-Farb-Tabelle RFT und die Raster-Index-Tabelle RIT berechnet und abgespeichert. Falls schon einmal bestimmt und auf einem Speichermedium abgespeichert, können die Tabellen RFT, RIT natürlich auch von diesem Speichermedium abgerufen werden. Anhand der beiden Tabellen RFT, RIT ist es ohne substantiellen Rechenaufwand möglich, den für die einzelnen Bildelemente 4 ermittelten Farbvektoren F die jeweils zutreffende diskrete Sensitivitäts-Matrix S zuzuordnen.
Nun wird ein aktueller Druckbogen 3 dem laufenden Druckprozess entnommen und mittels der Abtasteinrichtung 2 in der beschriebenen Art und Weise bildelementweise ausgemessen, wobei im Rechner 5 für jedes Bildelement 4 der Farbvektor F und der Farbabstandsvektor ΔF zum entsprechenden Bildelement 4 eines vorgängig analog ausgemessenen OK-Bogens 23 bestimmt wird. Die Gesamtanzahl der Bildelemente 4 beträgt beispielsweise rund 130000, so dass bei den üblichen 32 Druckzonen die Farbvektoren und Farbabstandsvektoren von jeweils rund 4000 Bildelementen 4 pro Druckzone verarbeitet werden müssen. Die nachstehenden Ausführungen gelten jeweils für eine Druckzone und für alle Druckzonen gleichermassen.
At the start of a production run, the raster color table RFT and the raster index table RIT are calculated and saved in accordance with the above explanations for the prevailing printing conditions. If already determined and saved on a storage medium, the tables RFT, RIT can of course also be called up from this storage medium. On the basis of the two tables RFT, RIT, it is possible without substantial computing effort to assign the color vectors F determined for the individual picture elements 4 to the discrete sensitivity matrix S that applies in each case.
Now, a current print sheet 3 is taken from the current printing process and measured by the scanning device 2 in the manner described, with the color vector F and the color distance vector ΔF for each picture element 4 for each picture element 4 from the corresponding picture element 4 of a previously measured OK sheet 23 is determined. The total number of picture elements 4 is, for example, around 130,000, so that with the usual 32 printing zones, the color vectors and color distance vectors of around 4,000 picture elements 4 each have to be processed per printing zone. The following explanations apply equally to one pressure zone and to all pressure zones.

Ein ganz wesentlicher Aspekt der vorliegenden Erfindung besteht, wie schon weiter vorne erwähnt, in der Massnahme, dass die Bildelemente 4 nach bestimmten Kriterien klassifiziert werden und die Messdaten der zu jeweils einer Klasse gehörenden Bildelemente 4 gemittelt werden, wobei dann nur die Mittelwerte weiter verarbeitet werden. Unter Messdaten werden hier die ermittelten Farbvektoren F und Farbabstandsvektoren ΔF verstanden. Zur Klassifizierung der Bildelemente 4 werden Sensitivitätsklassen gebildet. Für jede Sensitivitätsklasse sind die Sensitivitäten (Sensitivitäts-Matrizen S) und auch die Farbvektoren F ähnlich, und daher ist eine Mittelwertbildung zulässig. Der für die Regelung der Druckmaschine 1 erforderlicheA very important aspect of the present invention, as has been said before mentioned above, in the measure that the picture elements 4 according to certain criteria are classified and the measurement data belonging to each class Image elements 4 are averaged, in which case only the mean values are processed further become. The determined color vectors F and Color distance vectors ΔF understood. To classify the picture elements 4 Sensitivity classes formed. The sensitivities are for each sensitivity class (Sensitivity matrices S) and also the color vectors F similar, and therefore is one Averaging allowed. The one required for the control of the printing press 1

Schichtdickenänderungsvektor ΔD wird dann so berechnet, dass der mittlere quadratische Fehler über alle Sensitivitätsklassen minimal sein soll. Unter mittlerem quadratischen Fehler wird dabei der Mittelwert der Quadrate der nach der Anwendung der korrigierten Schichtdicken verbleibenden mittleren Farbabstände der Bildelemente 4 der einzelnen Klassen verstanden.Layer thickness change vector ΔD is then calculated so that the mean quadratic error should be minimal across all sensitivity classes. Under middle quadratic error is the mean of the squares according to the Application of the corrected layer thicknesses remaining mean color distances of the Understanding picture elements 4 of the individual classes.

Die Bereiche der Sensitivitätsklassen werden vorzugsweise im Rasterraum definiert. Beispielsweise können 16 - 256 Klassen vorgesehen sein. Je mehr Klassen vorliegen, desto weniger entstehen Fehler durch die Mittelwertbildung, umso mehr steigt aber der Rechenaufwand. Als praktikabler Kompromiss erweist sich die Definition von 81 Klassen, die sich aus einer Unterteilung des Rasterraums in 81 Unterräume nach dem folgenden Schema ergeben: n 0 1 2 AC 0%....30% 30%....70% 70%....100% AG 0%....30% 30%....70% 70%....100% AM 0%....30% 30%....70% 70%....100% AS 0%....30% 30%....70% 70%....100% The areas of the sensitivity classes are preferably defined in the grid space. For example, 16-256 classes can be provided. The more classes there are, the fewer errors arise from averaging, but the more the computing effort increases. The definition of 81 classes, which result from dividing the grid space into 81 subspaces according to the following scheme, has proven to be a practical compromise: n 0 1 2 A C 0% .... 30% 30% .... 70% 70% .... 100% A G 0% .... 30% 30% .... 70% 70% .... 100% A M 0% .... 30% 30% .... 70% 70% .... 100% A S 0% .... 30% 30% .... 70% 70% .... 100%

Diese 81 Unterräume bzw. Sensitivitätsklassen KiK werden durch einen Klassen-Index iK wie folgt eindeutig durchnumeriert: iK = n(AC)*30 + n(AG)*31 + n(AM)*32 + n(AS)*33 These 81 subspaces or sensitivity classes K iK are clearly numbered by a class index iK as follows: iK = n (A C ) * 3 0 + n (A G ) * 3 1 + n (A M ) * 3 2 + n (A S ) * 3 3

Der Rasterraum umfasst, wie weiter vorne erläutert, 1296 diskrete Rasterwertkombinationen RiR. Somit fallen in jeden der 81 Unterräume genau 16 Rasterwertkombinationen RiR und dementsprechend in jede Sensitivitätsklasse KiK 16 (ähnliche) Sensitivitäts-Matrizen SiR.As explained further above, the grid space comprises 1296 discrete grid value combinations R iR . Exactly 16 raster value combinations R iR thus fall in each of the 81 subspaces and, accordingly, 16 (similar) sensitivity matrices S iR fall into each sensitivity class K iK .

Für jedes Bildelement 4 wird nun aus dem für dieses ermittelten Farbvektor F nach der weiter vorne beschriebenen Vorgehensweise mittels der Raster-Index-Tabelle RIT der zugehörige Raster-Index iR und daraus die Zugehörigkeit zu einer der 81For each picture element 4, the color vector F determined for this now the procedure described above using the raster index table RIT the associated raster index iR and from this the affiliation to one of the 81st

Sensitivitätsklassen KiK ermittelt. Anhand des Raster-Index iR und anhand der Raster-Farb-Tabelle RFT wird weiter die zum Farbvektor F des Bildelements 4 zugehörige Sensitivitäts-Matrix S bestimmt. Nach diesen Schritten liegen somit zu jedem der rund 4000 Bildelemente 4 einer Druckzone der Farbvektor F, der Farbabstandsvektor ΔF, der Raster-Index iR, die Sensitivitäts-Matrix S und der Klassen-Index iK vor. Der Raster-Index iR definiert die Rasterwertkombination R, d.h. die prozentualen Rasteranteile (Flächendeckungen) der beteiligten Druckfarben für das Bildelement 4, der Klassen-Index iK definiert die Zugehörigkeit des Bildelements 4 zu einer bestimmten Sensitivitäts-Klasse. Sensitivity classes K iK determined. Using the raster index iR and the raster color table RFT, the sensitivity matrix S associated with the color vector F of the picture element 4 is further determined. After these steps, the color vector F, the color distance vector ΔF, the raster index iR, the sensitivity matrix S and the class index iK are thus available for each of the approximately 4000 image elements 4 of a printing zone. The raster index iR defines the raster value combination R, ie the percentage raster portions (area coverage) of the printing inks involved for the image element 4, the class index iK defines the affiliation of the image element 4 to a specific sensitivity class.

Als nächstes werden die Bildelemente 4 bzw. ihre Farbabstandsvektoren ΔF einem Gewichtungsprozess unterzogen, welcher den Einfluss der Flächendeckung und von Positionierungsfehlern berücksichtigt.Next, the picture elements 4 or their color distance vectors ΔF become one Weighting process subjected to the influence of area coverage and of Positioning errors are taken into account.

Für die nachfolgende Mittelwertbildung ist es vorteilhaft, wenn Bildelemente 4 mit relativ kleinen Flächendeckungswerten weniger oder nicht berücksichtigt werden, insbesondere sollten Bildelemente 4 mit Flächendeckungswerten unter 10% unberücksichtigt bleiben. Demzufolge lässt sich ein erster, flächendeckungsabhängiger Gewichtsfaktor g1 wie folgt definieren:
   g1 = 1 für Flächendeckungen >= 10% und g1 = 0 für Flächendeckungen < 10%
For the subsequent averaging, it is advantageous if picture elements 4 with relatively small area coverage values are taken into account less or not, in particular picture elements 4 with area coverage values below 10% should be disregarded. As a result, a first weighting factor g1 that is dependent on area coverage can be defined as follows:
g1 = 1 for area coverage> = 10% and g1 = 0 for area coverage <10%

Da die Farbwerte L,a,b,I näherungsweise proportional zu den Flächendeckungen sind, wird der erste Gewichtsfaktor vorzugsweise anhand des Farbabstands ΔE des Bildelements zu einer unbedruckten Stelle des Druckbogens 3 (Papierweiss) wie folgt definiert:
   g1 = 1 für ΔEp 2 >= 52 und g1 = 0 für ΔEp 2 < 52
Since the color values L, a, b, I are approximately proportional to the area coverage, the first weighting factor is preferably defined as follows on the basis of the color distance ΔE of the picture element to an unprinted location on the printing sheet 3 (paper white):
g1 = 1 for ΔE p 2 > = 5 2 and g1 = 0 for ΔE p 2 <5 2

Darin ist ΔEp 2 das Quadrat des Farbabstands des Bildelements 4 zur unbedruckten Stelle des Druckbogens 3 (Papierweiss).In it, ΔE p 2 is the square of the color distance of the picture element 4 from the unprinted position of the printed sheet 3 (paper white).

Eine andere Variante für die Bestimmung des Gewichtsfaktors g1 besteht darin, daß dieser als Maximalwert den Wert 1 erhält, wenn die Summe der Flächendeckungen des jeweiligen Bildelementes 4 einen vorgegebenen Schwellwert, vorzugsweise den Wert 250 unterschreitet. Andernfalls erhält der Gewichtungsfaktor g1 einen kleineren, insbesondere den Wert 0. Ebenfalls denkbar ist eine Kombination der beiden oben genannten Varianten.Another variant for the determination of the weight factor g 1 is that it receives the value 1 as the maximum value if the sum of the area coverings of the respective picture element 4 falls below a predetermined threshold value, preferably the value 250. Otherwise, the weighting factor g1 is given a smaller value, in particular a value of 0. A combination of the two variants mentioned above is also conceivable.

Dem Einfluss von Positionierungsfehlern wird durch einen zweiten Gewichtsfaktor g2 Rechnung getragen. Es wird dabei davon ausgegangen, dass Bildelemente 4 in einer homogenen Umgebung relativ unempfindlich auf Positionierungsfehler sind. Unter homogener Umgebung wird verstanden, dass die Farbabstände des Bildelements 4 zu seinen 8 benachbarten Bildelementen 4 relativ gering sind. In diesem Fall wird der zweite Gewichtsfaktor auf g2 = 1 gesetzt. Mit zunehmenden Farbabständen wird der zweite Gewichtsfaktor reduziert. Der zweite Gewichtsfaktor g2 kann beispielsweise wie folgt bestimmt werden:
   g2 = 1 für ΔEM <= 8 und g2 = (8/ΔEM) für ΔEM > 8
The influence of positioning errors is taken into account by a second weighting factor g2. It is assumed that picture elements 4 are relatively insensitive to positioning errors in a homogeneous environment. A homogeneous environment is understood to mean that the color differences between the picture element 4 and its 8 neighboring picture elements 4 are relatively small. In this case the second weighting factor is set to g2 = 1. The second weight factor is reduced with increasing color distances. The second weight factor g2 can be determined as follows, for example:
g2 = 1 for ΔE M <= 8 and g2 = (8 / ΔE M ) for ΔE M > 8

Darin bedeutet ΔEM die Summe der Farbabstände des Bildelements 4 zu seinen 8 benachbarten Bildelementen 4. Eine bevorzugte, weil rechnerisch weniger aufwendige, Definition des zweiten Gewichtsfaktors g2 ist durch die folgende Beziehung gegeben:
   g2 = 1 für ΔEM2 <= 8 und g2 = (8/ΔEM2)0.5 für ΔEM2 > 8
In this, ΔE M means the sum of the color distances between the picture element 4 and its 8 neighboring picture elements 4. A preferred definition of the second weight factor g2, which is less computationally complex, is given by the following relationship:
g2 = 1 for ΔE M2 <= 8 and g2 = (8 / ΔE M2 ) 0.5 for ΔE M2 > 8

Darin bedeutet ΔEM2 die Summe der Quadrate der Farbabstände des Bildelements 4 zu seinen 8 benachbarten Bildelementen 4.In this, ΔE M2 means the sum of the squares of the color distances of the picture element 4 from its 8 neighboring picture elements 4.

Bei der Bestimmung des Gewichtsfaktors g2 kann auch die Differenz der Flächendeckungswerte zu den benachbarten Bildelementen 4 herangezogen werden, wobei bei zunehmender Differenz der Gewichtsfaktor g2 ebenfalls einen gegen 0 gehenden kleineren Wert erhält.
Die beiden Gewichtsfaktoren g1 und g2 werden zu einem für jedes Bildelement 4 individuellen kombinierten Gewichtsfaktor g gemäss g = g1*g2 kombiniert. Mit diesen individuellen kombinierten Gewichtsfaktoren g werden nun die Farbabstandsvektoren ΔF der einzelnen Bildelemente 4 und die zugehörigen Sensitivitäts-Matrizen S multiplikativ gewichtet. Die gewichteten Farbabstandsvektoren und Sensitivitäts-Matrizen der einzelnen Bildelemente 4 sind in der Folge als ΔFg bzw. Sg bezeichnet
When determining the weight factor g2, the difference between the area coverage values and the neighboring picture elements 4 can also be used, with an increasing difference the weight factor g2 likewise receiving a smaller value going towards 0.
The two weight factors g1 and g2 are combined to form an individual combined weight factor g for each picture element 4 according to g = g1 * g2. With these individual combined weight factors g, the color distance vectors ΔF of the individual picture elements 4 and the associated sensitivity matrices S are weighted multiplicatively. The weighted color distance vectors and sensitivity matrices of the individual picture elements 4 are referred to below as ΔF g and S g

Anschliessend erfolgt für alle Bildelemente 4 jeweils einer Sensitivitätsklasse die Mittelwertbildung und Normierung gemäss folgenden Formeln: ΔFMK = (Σk(ΔFg))/Σk(g) ; SMK = (Σk(Sg))))/ Σk(g) Subsequently, the averaging and normalization are carried out for all picture elements 4 of one sensitivity class according to the following formulas: .DELTA.F MK = (Σ k (.DELTA.F G )) / Σ k (g); S MK = (Σ k (S G )))) / Σ k (G)

Die Summenbildung erfolgt dabei jeweils über alle Bildelemente einer Klasse. The totals are generated across all picture elements in a class.

Nach dieser Mittelwertbildung stehen pro Druckzone 81 mittlere Farbabstandsvektoren ΔFMK und 81 mittlere Sensitivitäts-Matrizen SMK zur Verfügung. Diese werden wie vorstehend beschrieben in die grundsätzliche Beziehung ΔF = S*ΔD eingesetzt und führen zu einem System von 81 Matrizen-Gleichungen, das nach dem unbekannten Schichtdickenänderungsvektor ΔD aufgelöst werden muss. Die Auflösung erfolgt wiederum mittels einer gewichteten linearen Ausgleichsrechnung mit der Nebenbedingung, dass der mittlere quadratische Fehler minimal sein soll, wobei unter dem mittleren quadratischen Fehler der Mittelwert der Quadrate der nach der Anwendung der durch ΔD korrigierten Schichtdicken verbleibenden mittleren Farbabstände ΔEMK der einzelnen Sensitivitätsklassen verstanden wird.After this averaging, 81 average color distance vectors ΔF MK and 81 average sensitivity matrices S MK are available per printing zone. As described above, these are inserted into the basic relationship ΔF = S * ΔD and lead to a system of 81 matrix equations, which must be solved for the unknown layer thickness change vector ΔD. The resolution is again carried out by means of a weighted linear compensation calculation with the additional condition that the mean square error should be minimal, whereby the mean square error means the mean value of the squares of the mean color distances ΔE MK of the individual sensitivity classes remaining after application of the layer thicknesses corrected by ΔD becomes.

Das Gleichungssystem stellt sich wie folgt dar: {ΔFz} = {Sz}*ΔD The system of equations is as follows: {.DELTA.F z } = {P z } * .DELTA.D

Darin bedeutet {ΔFz} einen Spaltenvektor mit 4x81 Komponenten, der sich durch Untereinanderstellung der 81 Vektoren ΔFMK mit ihren je 4 Komponenten ergibt. {Sz} ist eine Matrix mit 4 Zeilen und 81 Spalten, die sich durch horizontale Nebeneinanderreihung der 81 Sensitivitäts-Matrizen SMK ergibt. ΔD ist ein Spaltenvektor mit den vier Unbekannten ΔDc, ΔDg, ΔDm und ΔDs als Komponenten.Here {ΔF z } means a column vector with 4x81 components, which results from the stacking of the 81 vectors ΔF MK with their 4 components each. {S z } is a matrix with 4 rows and 81 columns, which results from the 81 sensitivity matrices S MK being arranged horizontally side by side. ΔD is a column vector with the four unknowns ΔD c , ΔD g , ΔD m and ΔD s as components.

Nach den Regeln der Ausgleichsrechnung und mit der genannten Nebenbedingung lässt sich die Lösung dieses Gleichungssystems allgemein wie folgt darstellen: ΔD = {Qz}*{ΔFz} According to the rules of the equalization calculation and with the mentioned constraint, the solution of this system of equations can generally be represented as follows: ΔD = {Q z } * {.DELTA.F z }

Darin ist {Qz} eine rechteckige Matrix mit 81 Spalten und 4 Zeilen, die sich folgendermassen errechnet: {Qz} = {Sz}T*{Sz}-1*{Sz}T wobei {Sz}T und {Sz}-1 die transponierte bzw. die inverse Matrix zu {Sz} ist. In it, {Q z } is a rectangular matrix with 81 columns and 4 rows, which is calculated as follows: {Q z } = {P z } T * {S z } -1 * {S z } T where {S z } T and {S z } -1 is the transposed or inverse matrix to {S z }.

Als Ergebnis all dieser Berechnungen erhält man für jede Druckzone den gesuchten Schichtdickenänderungsvektor ΔD mit seinen Komponenten ΔDc, ΔDg, ΔDm und ΔDs, welche als Eingangsgrössen der Steuereinrichtung 9 zugeführt werden und die erforderliche Verstellung der Farbgebungsorgane der Druckmaschine 1 in dem Sinne hervorrufen, dass der genannte mittlere quadratische Fehler in jeder Druckzone minimal wird.As a result of all these calculations, the desired layer thickness change vector ΔD with its components ΔD c , ΔD g , ΔD m and ΔD s are obtained for each printing zone, which are fed to the control device 9 as input variables and thus cause the necessary adjustment of the coloring elements of the printing press 1 that the mean square error mentioned is minimized in each pressure zone.

Claims (14)

  1. Method for controlling the application of ink in a printing machine, in which a printed sheet (3) printed by the printing machine (1) is measured colorimetrically in a number of image elements (4) with respect to a selected colour coordinate system, the colour vectors (F) obtained in the process for each image element are used to calculate colour difference vectors (ΔF) in relation to desired colour vectors based on the same colour coordinate system and predefined or determined from a reference printed sheet, these colour difference vectors (ΔF) are converted with the aid of sensitivity matrices (S) into input variables, in particular layer thickness change vectors (ΔD), for a control device (9) for the inking elements of the printing machine (1), and the control of the inking of the printing machine (1) is performed on the basis of the input variables, in particular layer thickness change vectors (ΔD), converted from the colour difference vectors (ΔF), characterized in that, for each image element (4) measured on the printed sheet (3), its own sensitivity matrix (S) is determined, in that the image elements (4) are classified in accordance with sensitivity classes (KiK), in that the colour difference vectors (ΔF) and the sensitivity matrices (S) of the image elements (4) respectively belonging to a sensitivity class are averaged for each sensitivity class (KiK), and in that the aforementioned input variables, in particular layer thickness change vectors (ΔD), are calculated from the averaged colour difference vectors (ΔFMK) and the averaged sensitivity matrices (SMK) of all the sensitivity classes (KiK).
  2. Method according to Claim 1, characterized in that the sensitivity matrices (S) are determined from previously known area coverage values.
  3. Method according to Claim 1, characterized in that, for each image element (4), at least one measured value (I) is obtained in the near infrared region, in that the colour vector (F) determined for each image element (4) is four-dimensional, three components of the colour vector (F) being the coordinate values of an approximately equal-interval colour space and the fourth component being formed from the at least one measured value (I) in the near infrared region, in that the colour difference vector (ΔF) determined for each image element (4) is correspondingly four-dimensional, and in that the sensitivity matrix (S) determined for each image element (4) is formed by the gradients of the four components of the four-dimensional colour vector (F) in accordance with the printing inks involved in the print.
  4. Method according to Claim 1, characterized in that, for each image element (4), at least one measured value (I) is obtained in the near infrared region, in that the colour vector (F) determined for each image element (4) is four-dimensional, three components of the colour vector (F) being the coordinate values of an approximately equal-interval colour space and the fourth component being formed from the at least one measured value (I) in the near infrared region, in that the colour difference vector (ΔF) determined for each image element (4) is three-dimensional, and in that the sensitivity matrix (S) determined for each image element (4) is formed by the gradients of the three components of the three-dimensional colour vector (F) in accordance with the printing inks involved in the print.
  5. Method according to one of the preceding claims, characterized in that the colour difference vectors (ΔF) and the sensitivity matrices (S) of the image elements (4) respectively belonging to a sensitivity class (KiK) are averaged in a weighted fashion for each sensitivity class, each image element (4) being assigned weighting factors (g1; g2), which are determined from the area coverage of the image element (4) and/or the colour differences of the image element (4) in relation to its adjacent image elements (4).
  6. Method according to Claim 5, characterized in that the area coverages of each image element with respect to the printing inks involved are determined, in that one of the weighting factors (g1) of an image element (4) is given the value 1 if the average or one of the area coverages of the image element (4) is equal to a predefined first threshold value, in particular the value 10%, or exceeds this value, and in that the one of the weighting factors (g1) is otherwise given a smaller value, in particular the value 0.
  7. Method according to Claim 5, characterized in that the area coverages of each image element (4) with respect to the printing inks involved are determined, in that one of the weighting factors (g1) of an image element (4) is given a maximum value, in particular the value 1, if the sum of the area coverages of the respective image element (4) falls below a predefined threshold value, in particular the value 250, and in that the one of the weighting factors (g1) is otherwise given a smaller value, in particular the value 0.
  8. Method according to Claim 6 or 7, characterized in that, instead of the area coverages for each image element (4), the colour difference from an unprinted point on the printed sheet (3) is determined, in that the one of the weighting factors (g1) of an image element (4) is given the value 1 if the square of the colour difference of the image element is equal to a predefined second threshold value, in particular the value 52, or exceeds this value, and in that the one of the weighting factors (g1) is otherwise given a smaller value, in particular the value 0.
  9. Method according to Claim 5, characterized in that, for each image element (4), the colour differences from its immediately adjacent image elements (4) are determined, in that a further one of the weighting factors (g2) of an image element (4) is given the value 1 if the sum of the colour differences is equal to a predefined third threshold value, in particular the value 8, or falls below this value, and in that the further of the weighting factors (g2) is otherwise given a smaller value, which approaches 0 as the sum of the colour differences increases or as the difference of the area coverage in relation to the adjacent image elements (4) increases.
  10. Method according to Claim 9 and one of Claims 6 and 8, characterized in that, for each image element (4), a weighting factor (g) is determined, which results from a multiplicative combination of the further weighting factor (g2) calculated on the basis of the colour differences of the image element (4) from its adjacent image elements (4) and the one weighting factor (g1) calculated on the basis of the area coverages or the colour difference of the image element (4) in relation to an unprinted point on the printed sheet (3).
  11. Method according to one of the preceding claims, characterized in that, for a predefined first number of discrete raster value combinations (RiR) of the printing inks involved in the print, an associated sensitivity matrix (SiR) is calculated and stored in a raster colour table (RCT), in that for each image element (4) the associated raster value combination (R) is calculated from the colour vector (F) determined for this element, and in that the image element (4) is assigned that sensitivity matrix (SiR) from the raster colour table (RCT) whose associated discrete raster value combination (RiR) lies closest to the raster value combination (R) calculated for the image element (4).
  12. Method according to Claim 11, characterized in that, in the colour space expanded to four dimensions by the infrared component (I), a second number of discrete colour loci (FiF) is defined, in that for each of these discrete colour loci the associated raster value combination of the printing inks involved in the print is calculated, in that for each discrete colour locus the associated calculated raster value combination is replaced by the discrete raster value combination (RiR) located closest to it, and in that the associations between the discrete colour loci (FiF) and the discrete raster value combination (RiR) are stored in a raster index table (RIT).
  13. Method according to Claim 12, characterized in that, for the determination of the sensitivity matrix of an image element (4), the four-dimensional colour vector (F) determined for each element is replaced by the closest discrete colour locus (FiF), in that the raster value combination (RiR) associated with this discrete colour locus is taken from the raster index table (RIT), in that the sensitivity matrix (SiR) belonging to this raster value combination (RiR) is taken from the raster colour table (RCT), and in that this sensitivity matrix (SiR) is assigned to the image element (4).
  14. Method according to one of the preceding claims, characterized in that the sensitivity matrices (SiR) are calculated, with the aid of a mathematical model of the printing machine (1) used as a basis, from measured values on full-tone areas printed by the printing machine (1) and also taking into account the characteristic curves of the printing machine.
EP98119006A 1997-11-06 1998-10-08 Process for regulating the inking in a printing machine Expired - Lifetime EP0914945B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19749066 1997-11-06
DE19749066A DE19749066A1 (en) 1997-11-06 1997-11-06 Process for regulating the color application in a printing press

Publications (3)

Publication Number Publication Date
EP0914945A2 EP0914945A2 (en) 1999-05-12
EP0914945A3 EP0914945A3 (en) 1999-11-03
EP0914945B1 true EP0914945B1 (en) 2002-07-31

Family

ID=7847816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98119006A Expired - Lifetime EP0914945B1 (en) 1997-11-06 1998-10-08 Process for regulating the inking in a printing machine

Country Status (4)

Country Link
US (1) US5957049A (en)
EP (1) EP0914945B1 (en)
JP (1) JPH11216848A (en)
DE (2) DE19749066A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19749063A1 (en) * 1997-11-06 1999-05-12 Heidelberger Druckmasch Ag Process for achieving color measurements for ink printers
US5967050A (en) * 1998-10-02 1999-10-19 Quad/Tech, Inc. Markless color control in a printing press
DE10103555B4 (en) * 2001-01-26 2019-12-19 Volkswagen Ag Procedure for assessing a layer of paint
MXPA03007902A (en) * 2001-03-02 2004-10-15 Ackley Martinez Company Dba Mg Printing adjustment system and method.
BR0211123A (en) * 2001-07-30 2004-10-26 Ackley Martinez Company Dba Mg Color management processing system and method
JP2004536731A (en) 2001-07-30 2004-12-09 ジ アックレイ マルティネス カンパニー デイビーエイ エムジーアイ ステューディオ Systems and methods for compensating for system mixing
WO2003029007A2 (en) * 2001-10-04 2003-04-10 E.I. Du Pont De Nemours And Company Ink jet printing
US6938550B2 (en) * 2002-10-31 2005-09-06 R. R. Donnelley & Sons, Co. System and method for print screen tonal control and compensation
US7437000B1 (en) * 2003-03-14 2008-10-14 Eric Rosenthal Full spectrum color detecting pixel camera
EP1525981B1 (en) * 2003-10-23 2006-11-29 Gretag-Macbeth AG Color quality evaluation and inking regulating in color reproduction
DE102004061469A1 (en) * 2004-12-18 2006-07-13 Man Roland Druckmaschinen Ag Method for controlling the color in an offset printing machine
US7605959B2 (en) 2005-01-05 2009-10-20 The Ackley Martinez Company System and method of color image transformation
DE102005007780A1 (en) * 2005-02-19 2006-08-31 Man Roland Druckmaschinen Ag Apparatus and method for measuring zonal coloring
JP2007030348A (en) * 2005-07-27 2007-02-08 Komori Corp Method/device for adjusting ink supply to printing machine
US7252360B2 (en) * 2005-10-25 2007-08-07 Ecole polytechnique fédérale de Lausanne (EPFL) Ink thickness variations for the control of color printers
US7652792B2 (en) 2006-03-15 2010-01-26 Quad/Tech, Inc. Virtual ink desk and method of using same
DE102006025898A1 (en) 2006-06-02 2007-12-06 Heidelberger Druckmaschinen Ag Method for calculating correction values in a color control or color control for a printing machine
DE102006048539A1 (en) * 2006-10-13 2008-04-17 Heidelberger Druckmaschinen Ag Color measuring head positioning device
CN101186145B (en) * 2006-11-20 2012-07-18 海德堡印刷机械股份公司 Operating method of a device for the optical measurement of a printed sheet
DE102007029211A1 (en) 2007-06-25 2009-01-08 Heidelberger Druckmaschinen Ag Improved print control strip for color measurement on substrates
DE102009002822A1 (en) * 2008-05-28 2009-12-03 Manroland Ag Operation of a cold foil unit with adhesive application
DE102010009226B4 (en) 2009-03-13 2024-02-15 Heidelberger Druckmaschinen Ag Method for controlling the ink application in a printing press
AT509239B1 (en) 2009-12-17 2013-03-15 Trumpf Maschinen Austria Gmbh DRIVE DEVICE FOR A BEND PRESS

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3468650D1 (en) * 1983-11-04 1988-02-18 Gretag Ag Method and device for rating the printing quality and/or controlling the ink supply in an offset printing machine, and offset printing machine with such a device
EP0228347B2 (en) * 1985-12-10 1996-11-13 Heidelberger Druckmaschinen Aktiengesellschaft Process for controlling the application of colours in a printing machine, printing device equipped therewith and measuring device for such a printing device
US4884221A (en) * 1986-04-14 1989-11-28 Minolta Camera Kabushiki Kaisha Color measuring apparatus
DE3812099C2 (en) * 1988-04-12 1995-01-26 Heidelberger Druckmasch Ag Process for color control of an offset printing press
EP0540833B1 (en) * 1991-08-12 1997-04-23 KOENIG &amp; BAUER-ALBERT AKTIENGESELLSCHAFT Quality control of an image, for example a printed pattern
DE4142481A1 (en) * 1991-08-12 1993-02-18 Koenig & Bauer Ag QUALITY CONTROL OF AN IMAGE, FOR example A PRINTED PATTERN
DE4308857A1 (en) * 1993-03-19 1994-09-29 Polygraph Contacta Gmbh Method for controlling the application of ink in a printer
DE4335229C2 (en) * 1993-10-15 1998-07-16 Heidelberger Druckmasch Ag Method for producing color samples produced on an offset printing press
DE4431270C2 (en) * 1993-10-21 1997-01-16 Roland Man Druckmasch Process for controlling the ink flow of an autotypically working printing machine
ATE151349T1 (en) * 1993-10-21 1997-04-15 Roland Man Druckmasch METHOD FOR CONTROLLING THE INK DELIVERY OF A AUTOTYPICAL PRINTING PRESS
DE4343905C2 (en) * 1993-12-22 1996-02-15 Roland Man Druckmasch Process for controlling the ink flow in a printing press
DE4415486C2 (en) * 1994-05-03 1998-06-04 Heidelberger Druckmasch Ag Process for determining the permissible tolerances for the control or regulation of the coloring on a printing press
DE19515499C2 (en) * 1995-04-27 1997-03-06 Heidelberger Druckmasch Ag Process for simultaneous multi-color control during printing
US5903712A (en) * 1995-10-05 1999-05-11 Goss Graphic Systems, Inc. Ink separation device for printing press ink feed control
DE19650223A1 (en) * 1996-12-04 1998-06-10 Heidelberger Druckmasch Ag Scanning device for pixel-by-pixel photoelectric measurement of a measurement object

Also Published As

Publication number Publication date
DE59804980D1 (en) 2002-09-05
EP0914945A2 (en) 1999-05-12
EP0914945A3 (en) 1999-11-03
US5957049A (en) 1999-09-28
JPH11216848A (en) 1999-08-10
DE19749066A1 (en) 1999-05-12

Similar Documents

Publication Publication Date Title
EP0914945B1 (en) Process for regulating the inking in a printing machine
EP0143744B1 (en) Method and device for rating the printing quality and/or controlling the ink supply in an offset printing machine, and offset printing machine with such a device
EP0324718B1 (en) Method and device for ink monitoring in a printing machine
EP0228347B2 (en) Process for controlling the application of colours in a printing machine, printing device equipped therewith and measuring device for such a printing device
EP0255924B1 (en) Method and device for acting upon the inking of an inked surface in printing
DE4431270C2 (en) Process for controlling the ink flow of an autotypically working printing machine
EP0836941B1 (en) Measuring field group and method for detecting quality data in multicolour printing editions
EP0676285B1 (en) Colour management in a sheet-fed rotary offset printing machine
EP1525981A1 (en) Color quality evaluation and inking regulating in color reproduction
EP0659559A2 (en) Method of controlling the ink supply in a printing machine
EP0505323B1 (en) Method of adjusting the screendot sizes of a rotary offset printing machine
EP0916491B1 (en) Method for the determination of colorimetric gradients
EP0920994B1 (en) Method of determination of colour values
DE19830487B4 (en) Method for determining area coverage in a printed image
EP0668164B1 (en) Quality data acquisition in a sheet-fed rotary offset printing machine
DE19638967C2 (en) Measuring field group and method for recording optical printing parameters in multi-color edition printing
CH693533A5 (en) Measuring field block and method for detecting Qualitotsdaten in multicolor print run.
EP0649743B1 (en) Method for controlling the ink supply in a halftone printing machine
DE19738923A1 (en) Measuring field block for detection of print quality
DE19639014A1 (en) Measurement field group for detecting quality data in multicolour overlay printing
EP1033247B1 (en) Method for controlling colour in a printing machine
WO2023104966A1 (en) Method for spectral colour density measurement in colour printing
EP3972233A1 (en) Method for the automated characterisation of a continuous printing system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19981008

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: BE CH DE FR GB IT LI NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 20020121

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20020731

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59804980

Country of ref document: DE

Date of ref document: 20020905

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: *HEIDELBERGER DRUCKMASCHINEN A.G.

Effective date: 20021031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101028

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101025

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111008

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111008

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121211

Year of fee payment: 15

Ref country code: CH

Payment date: 20121025

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59804980

Country of ref document: DE

Effective date: 20140501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501