EP0694088B1 - Verfahren zur herstellung einer muttermatrize für die galvanische erzeugung von nahtlosen rotations-siebdruckschablonen, insbesondere aus nickel - Google Patents

Verfahren zur herstellung einer muttermatrize für die galvanische erzeugung von nahtlosen rotations-siebdruckschablonen, insbesondere aus nickel Download PDF

Info

Publication number
EP0694088B1
EP0694088B1 EP95908917A EP95908917A EP0694088B1 EP 0694088 B1 EP0694088 B1 EP 0694088B1 EP 95908917 A EP95908917 A EP 95908917A EP 95908917 A EP95908917 A EP 95908917A EP 0694088 B1 EP0694088 B1 EP 0694088B1
Authority
EP
European Patent Office
Prior art keywords
indentations
grid
sensitive layer
process according
base mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95908917A
Other languages
English (en)
French (fr)
Other versions
EP0694088A1 (de
Inventor
Hans-Georg Schepers
Karl-Wilhelm Saueressig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schepers Druckformtechnik GmbH
Original Assignee
Schepers Druckformtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schepers Druckformtechnik GmbH filed Critical Schepers Druckformtechnik GmbH
Publication of EP0694088A1 publication Critical patent/EP0694088A1/de
Application granted granted Critical
Publication of EP0694088B1 publication Critical patent/EP0694088B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/14Forme preparation for stencil-printing or silk-screen printing
    • B41C1/142Forme preparation for stencil-printing or silk-screen printing using a galvanic or electroless metal deposition processing step
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/10Moulds; Masks; Masterforms

Definitions

  • the invention relates to a method for producing a Mother matrix for the galvanic generation of seamless Rotary screen printing stencils, especially made of Nickel, being a metallic mother matrix base body with a cylindrical outer surface on its outer circumference with depressions distributed in a regular grid is provided that a round or polygonal Have an outline and a regular network between them grid webs remain, and the depressions then with an electrically non-conductive Filling compound filled flush to the height of the grid bars are then repeated by galvanic application of metal and axially pulling off the resulting Sleeve screen printing stencils can be generated.
  • mother matrices are used for the above Previously used for so-called moletting manufactured.
  • the desired one is made using a molette Deepening grid in the outer surface of the mother matrix base body indented.
  • the Molette is a relatively small roller on the circumference of the mother matrix base body along a helix below strong pressure force is unrolled.
  • the molette carries arranged on its peripheral surface in the desired grid Projections that are a negative image of the desired Show recesses for the mother matrix.
  • the depressions that can be produced by the mettling can only truncated pyramid or truncated cone with relative be flat inclined flanks. This leads to the disadvantage that the lying in the wells electrically non-conductive filling compound at the edges of the depressions becomes very thin and breaks out easily there. Later galvanic application of metal to the mother matrix The screen printing stencil is then formed when peeling off the finished galvanized template to damage through the surface of the mother matrix Stencil protruding metal noses, which are in could form the breakouts of the filling compound.
  • the mother matrix is made of relatively soft copper, over which, for example, nickel is preferred
  • Screen printing stencil material is relatively hard to form themselves despite the chrome plating, which is only very thin can be slight striations in the longitudinal direction of the mother matrix, their usability on relatively few production runs for the production of screen printing stencils limit.
  • the invention has the advantage that all the mettling tools and not the devices required for this are more needed. This will save a lot in terms of technical, personnel and time Effort reached. Because the outline of the depressions and the grid in which these depressions are arranged are now electronically stored, the Outline shape of the wells and their distribution within of the grid made very precisely and with little Effort changed and adapted to the respective needs without, as was previously required, would be to produce new filleting tools.
  • the depressions get a contour that improves Hold the electrically non-conductive filling compound offers.
  • the wells are not now more truncated cones or with flanks Are truncated pyramids, but viewed in cross section rather get the shape of oval bowls.
  • This keeps the filling mass within the wells also in whose edge areas have a comparatively large thickness, so that breakouts of the filling compound are avoided.
  • the later electroplating of the screen printing stencil form what better quality stencils results and damage to the mother matrix when axially pulling off the template avoids. This gives the mother matrix has a longer service life, which in the Practice can be two to three times as long as this previously used mother matrices was accessible.
  • an ultraviolet laser beam is used as the beam or a thermal laser beam or an electron beam is used.
  • the mentioned rays can be comparatively easily generate and focus so that, in cooperation with a correspondingly selected coating with a suitable Sensitivity, deepening and grid with a high Resolution and accuracy as well as large MESH numbers let generate.
  • nickel Since no mechanical Press the depressions into the mother matrix base body more takes place, this no longer has to be relative soft copper, but can also consist of one harder metal exist, this preferably nickel is.
  • the metal nickel offers the advantage of a high Hardness, high strength and a high structural density. It also has good electrical conductivity and is easy to galvanize. As a result, a Chromium plating of the surface of the mother matrix is eliminated, what is the recycling of mother matrices that can no longer be used facilitated.
  • Another by using Nickel more accessible as a material for the mother matrix The advantage is that the nickel surface of the Mother die automatically through the formation of a nickel oxide layer protects, but remains electrically conductive. At the same time, this nickel oxide layer ensures that the screen printing stencil galvanized onto the mother die slightly pull off the mother matrix leaves, because the nickel oxide layer on the mother matrix as Release agent works.
  • a mother matrix base body can as a mother matrix base body also a hollow cylindrical one Nickel sleeve are used. This is straightforward possible because of the elimination of mechanical Pressure forces between the Molette and the base matrix body the latter does not have a particularly high mechanical stability must have more. The use also allows a hollow cylindrical nickel sleeve easier handling and a lighter and cheaper one Transport or shipping between the manufacturer of the mother matrix and generally not the same Manufacturer of screen printing stencils.
  • the electrically non-conductive filling compound a curable synthetic resin or a curable ceramic Mass used.
  • These materials offer the advantage that on the one hand it was initially still a viscous mass can be introduced into the recesses and that they are on the other side after hardening very firm in the wells adhere and have high strength and surface quality.
  • these materials are after curing also by mechanical methods, e.g. Rotate or loops, editable without them coming out of the Loosen depressions or break out at the edge of the depressions.
  • the wells are preferably made with a regular generated hexagonal outline; the deepening continues preferably honeycomb in a hexagonal grid distributed.
  • This has the advantage that the screen printing stencils produced on this mother die high strength and stability with low weight and have a good web-to-passage ratio. Because of the electronic storability of the outline form the wells and their distribution in the grid is of course, every freedom in the design of this Given parameters.
  • FIG. 1 to 5 of the drawing show a section from the peripheral area of a mother matrix base body during various process steps; the figure 6 the drawing shows a section of the peripheral area a finished mother matrix.
  • the mother matrix base body 1 made of metal and has a cylindrical outer surface 10 on.
  • the base body 1 can be a cylinder or hollow cylindrical sleeve.
  • a sensitive is on the lateral surface 10 of the base body 1
  • Coating 2 in the form of a comparatively thin Layer applied, which is exaggerated in the drawing is shown in bold.
  • this coating 2 can it is a photo, thermo or electro sensitive material act as is known per se. Also order process for achieving such coatings a uniform layer thickness are known and need not to be explained in more detail here.
  • Figure 2 of the drawing shows the mother matrix base body 1 during a process step in which of a laser 30 which controls a laser beam 3 emits an exposure of the sensitive coating 2, here with the negative image of the desired wells he follows.
  • the mother matrix base body 1 and the laser 30 in two directions relative to one another, preferably the axial direction and the circumferential direction moved, so that gradually the entire peripheral surface of the mother matrix base body 1 is covered.
  • the Beam 3 in accordance with electronically stored data on and off to the positive or negative image to expose a desired grid onto the coating 2, depending on whether this is photopositive or photonegative responds.
  • the coating 2 by the Exposure in areas 20 changed so that they are for a subsequent chemical and / or physical Removal process becomes insoluble. Between the exposed areas 20 remain unexposed areas 21 which Correspond to areas in which later specializations in the base body 1 are to be generated.
  • Figure 3 of the drawing shows the mother matrix base body 1 after going through the removal process in which the unexposed areas 21 of the coating 2 are removed have been. Now the coating remains 2 only the exposed ones on the lateral surface 10 Areas 20 that have a grid-like pattern from protruding webs form outside, each regular Include hexagons.
  • a suitable Removal process of the remaining part 20 of the coating 2 also removed, after which the mother matrix base body the surface shape shown in Figure 5 having. This is characterized by a grid of recesses 11 hexagonal in outline, between which are webs 12 distributed webs. The outer The surface of the webs 12 corresponds to the lateral surface 10 of the base body 1.
  • Figure 6 of the drawing finally shows the finished mother matrix 1 ', in which the recesses 11 are now complete with a filling compound 4 up to the level of the upper edge the webs 12 and thus up to the original lateral surface 10 of the mother matrix base body 1 filled are.
  • the mother matrix is on the lateral surface 10 1 'in the desired distribution areas different electrical properties formed, namely electrically in the area of the surface of the filling compound 4 non-conductive areas and in the area of the surface the webs 12 electrically conductive areas.
  • This screen printing sleeve thus formed can then in the axial direction of the mother die 1 ', i.e. parallel to Shell surface 10, deducted from the mother die 1 ' become.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Adornments (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Muttermatrize für die galvanische Erzeugung von nahtlosen Rotations-Siebdruckschablonen, insbesondere aus Nickel, wobei ein metallischer Muttermatrizen-Grundkörper mit zylindrischer Mantelfläche auf seinem Außenumfang mit in einem regelmäßigen Raster verteilten Vertiefungen versehen wird, die einen runden oder mehreckigen Umriß aufweisen und zwischen denen ein regelmäßiges Netz bildende Rasterstege verbleiben, und wobei die Vertiefungen anschließend mit einer elektrisch nichtleitenden Füllmasse bündig bis zur Höhe der Rasterstege verfüllt werden, wonach dann wiederholt durch galvanisches Auftragen von Metall und axiales Abziehen der so entstandenen Hülse Siebdruckschablonen erzeugbar sind.
In der Praxis werden Muttermatrizen für den genannten Verwendungszweck bisher durch das sogenannte Molettieren hergestellt. Dabei wird mittels einer Molette das gewünschte Vertiefungsraster in die Mantelfläche des Muttermatrizen-Grundkörpers eingedrückt. Die Molette ist eine relativ kleine Walze, die auf dem Umfang des Muttermatrizen-Grundkörpers entlang einer Schraubenlinie unter starker Andruckkraft abgerollt wird. Die Molette trägt auf ihrer Umfangsfläche in dem gewünschten Raster angeordnete Vorsprünge, die ein Negativbild der gewünschten Vertiefungen für die Muttermatrize darstellen.
Nachteilig erfordert dieses bekannte Verfahren einen hohen maschinellen, personellen und zeitlichen Aufwand. Insbesondere ist es sehr schwierig und nur mit großer Erfahrung möglich, die Molette so auf dem Außenumfang des Muttermatrizen-Grundkörpers abzurollen, daß die über den Außenumfang des Muttermatrizen-Grundkörpers verlaufende Schraubenlinie in Längs- und Umfangsrichtung des Muttermatrizen-Grundkörpers gesehen keinen Versatz im Rasterbild aufweist. Außerdem ist die Herstellung von Moletten sehr aufwendig, da hierfür umfangreiche mechanische Bearbeitungsschritte erforderlich sind. Jede Rasteränderung macht auch die Fertigung einer geänderten Molette nötig. Ein weiterer Nachteil ist darin zu sehen, daß das Material des Muttermatrizen-Grundkörpers relativ weich sein muß, damit durch die Molette überhaupt die gewünschten Vertiefungen eingedrückt oder eingewalzt werden können. Aus diesem Grund kann bisher praktisch nur Kupfer für den Muttermatrizen-Grundkörper verwendet werden, der oberflächlich mit einer dünnen Verchromung versehen ist. Zur Stabilitätserhöhung, die wegen des Abrollens der Molette mit hoher Andruckkraft benötigt wird, muß der Muttermatrizen-Grundkörper zudem einen stabilen Stahlkern aufweisen, was die Muttermatrize insgesamt sehr schwer und damit schwierig handhabbar und transportierbar macht.
Die durch das Molettieren erzeugbaren Vertiefungen können nur pyramidenstumpf- oder kegelstumpfförmig mit relativ flach geneigten Flanken sein. Dies führt zu dem Nachteil, daß die in den Vertiefungen liegende elektrisch nichtleitende Füllmasse an den Rändern der Vertiefungen sehr dünn wird und dort leicht ausbricht. Beim späteren galvanischen Auftragen von Metall auf die Muttermatrize zur Bildung der Siebdruckschablone kommt es dann beim Abziehen der fertig galvanisierten Schablone zu einem Beschädigen der Oberfläche der Muttermatrize durch von der Schablone nach innen vorragende Metallnasen, die sich in den Ausbruchstellen der Füllmasse bilden konnten. Da zudem die Muttermatrize aus relativ weichem Kupfer besteht, gegenüber welchem beispielsweise Nickel als bevorzugtes Siebdruckschablonenmaterial relativ hart ist, bilden sich trotz der Verchromung, die aber nur sehr dünn sein kann, leicht Riefen in Längsrichtung der Muttermatrize, die deren Verwendbarkeit auf relativ wenige Produktionsdurchgänge für die Erzeugung von Siebdruckschablonen begrenzen.
Außer dem zuvor beschriebenen mechanischen Molettieren sind aus EP 0 030 774 A1 weitere Verfahren der eingangs genannten Art bekannt. Als erstes bekanntes Verfahren zur Herstellung einer Muttermatrize ist dort beschrieben, daß die Vertiefungen, die mit nicht leitendem Material gefüllt werden sollen, durch Ätzung hergestellt werden. Wie diese Ätzung vorgenommen werden soll, ist in der Schrift nicht beschrieben, jedoch ist es für den Fachmann selbstverständlich, daß hierzu eine Ätzmaske verwendet werden muß. Zur Herstellung, Art und Behandlung der Ätzmaske gibt die Schrift aber ebenfalls keinerlei Hinweise. Als zweites Herstellungsverfahren zur Herstellung einer Muttermatrize ist der Schrift zu entnehmen, mit einem gesteuerten Energiestrahl durch thermische Einwirkung direkt näpfchenartige Bereiche des Muttermatrizen-Grundkörpers in einen nichtleitenden Zustand zu versetzen. Beispielsweise wird bei einem aus elektrisch leitendem Aluminium bestehenden Muttermatrizen-Grundkörper durch den Energiestrahl Aluminium oberflächlich in Aluminiumoxyd umgewandelt, das nicht elektrisch leitend ist.
Als nachteilig wird bei dem aus EP 0 030 774 Al bekannten Stand der Technik angesehen, daß die erreichbare Genauigkeit der Konturen der nichtleitenden Bereiche auf der Oberfläche der Muttermatrize begrenzt ist und daß dadurch die Qualität der auf dieser Muttermatrize erzeugten Siebdruckschablonen nicht optimal ist.
Es stellt sich daher die Aufgabe, ein Verfahren der eingangs genannten Art anzugeben, welches die Herstellung einer Muttermatrize für die galvanische Erzeugung von nahtlosen Rotations-Siebdruckschablonen, insbesondere aus Nickel, mit einem geringen maschinellen, personellen und zeitlichen Aufwand erlaubt und mittels welchem Muttermatrizen mit hoher Qualität und langer Standzeit herstellbar sind.
Die Lösung dieser Aufgabe gelingt erfindungsgemäß durch ein Verfahren der eingangs genannten Art, welches gekennzeichnet ist durch folgende Verfahrensschritte:
  • a) die Mantelfläche des Muttermatrizen-Grundkörpers wird mit einer photo- oder thermo- oder elektrosensitiven Beschichtung überzogen,
  • b) die Beschichtung wird mittels eines nach Maßgabe elektronisch gespeicherter Daten gesteuerten Strahls mit dem Positiv- oder Negativbild des gewünschten Vertiefungsrasters belichtet, wobei in den Daten die Umrißform der Vertiefungen und deren Verteilung im Raster frei gestattbar gespeichert sind, und danach unmittelbar oder nach Durchlaufen eines Entwicklungsprozesses in den Bereichen, in denen die Vertiefungen vorgesehen sind, mittels eines chemischen und/oder physikalischen Entfernungsprozesses abgetragen,
  • c) in den von der Beschichtung befreiten Bereichen der Mantelfläche des Muttermatrizen-Grundkörpers werden durch Ätzen oder elektrolytischen Netallabtrag die Vertiefungen gebildet,
  • d) die verbliebenen Teile der Beschichtung werden vollständig entfernt und
  • e) die Vertiefungen werden mit der elektrisch nichtleitenden Füllmasse verfüllt.
  • Eine alternative Ausgestaltung des erfindungsgemäßen Verfahrens schlägt gemäß Anspruch 2 vor, daß der Verfahrensschritt b) wie folgt ausgeführt wird:
  • b) die Beschichtung wird mittels eines nach Maßgabe elektronisch gespeicherter Daten gesteuerten Strahls in den Bereichen, in denen die Vertiefungen vorgesehen sind, unmittelbar abgetragen, wobei in den Daten die Umrißform der Vertiefungen und deren Verteilung im Raster frei gestattbar gespeichert sind.
  • Die Erfindung bietet den Vorteil, daß alle Molettierwerkzeuge und die hierfür benötigten Vorrichtungen nicht mehr erforderlich sind. Dadurch wird eine große Einsparung hinsichtlich des technischen, personellen und zeitlichen Aufwandes erreicht. Da die Umrißform der Vertiefungen und das Raster, in dem diese Vertiefungen angeordnet sind, nun elektronisch gespeichert sind, können die Umrißform der Vertiefungen und deren Verteilung innerhalb des Rasters sehr genau hergestellt und mit geringem Aufwand verändert und an die jeweiligen Bedürfnisse angepaßt werden, ohne daß, wie dies zuvor erforderlich war, neue Molettierwerkzeuge herzustellen wären.
    Durch das Ätzen oder den elektrolytischen Metallabtrag erhalten die Vertiefungen eine Kontur, die einen verbesserten Halt der elektrisch nichtleitenden Füllmasse bietet. Dies beruht darauf, daß die Vertiefungen nun nicht mehr mit flachen Flanken ausgebildete Kegelstümpfe oder Pyramidenstümpfe sind, sondern im Querschnitt betrachtet eher die Form von ovalen Näpfen erhalten. Hierdurch behält die Füllmasse innerhalb der Vertiefungen auch in deren Randbereichen eine vergleichsweise große Dicke, so daß Ausbrüche der Füllmasse vermieden werden. Hierdurch können sich auch keine vorspringenden Metallnasen bei der späteren Aufgalvanisierung der Siebdruckschablone bilden, was eine bessere Qualität der Siebdruckschablonen ergibt und Beschädigungen der Muttermatrize beim axialen Abziehen der Schablone vermeidet. Hierdurch erhält die Muttermatrize eine höhere Standzeit, die in der Praxis zwei- bis dreimal so lang sein kann, wie dies bei bisher verwendeten Muttermatrizen erreichbar war.
    Bevorzugt ist weiter vorgesehen, daß als Strahl ein Ultraviolett-Laserstrahl oder ein thermisch wirkender Laserstrahl oder ein Elektronenstrahl verwendet wird. Die genannten Strahlen lassen sich vergleichsweise einfach erzeugen und fokussieren, so daß, im Zusammenwirken mit einer entsprechend ausgewählten Beschichtung mit passender Sensitivität, Vertiefungen und Raster mit einer hohen Auflösung und Genauigkeit sowie großen MESH-Zahlen erzeugen lassen.
    Da bei dem erfindungsgemäßen Verfahren kein mechanisches Eindrücken der Vertiefungen in den Muttermatrizen-Grundkörper mehr erfolgt, muß dieser nicht mehr aus dem relativ weichen Kupfer bestehen, sondern kann auch aus einem härteren Metall bestehen, wobei dieses bevorzugt Nickel ist. Das Metall Nickel bietet den Vorteil einer hohen Härte, einer hohen Festigkeit und einer hohen Gefügedichte. Weiterhin weist es eine gute elektrische Leitfähigkeit auf und ist gut galvanisierbar. Hierdurch kann eine Verchromung der Oberfläche der Muttermatrize entfallen, was das Recyceln von nicht mehr einsetzbaren Muttermatrizen erleichtert. Ein weiterer durch die Verwendung von Nickel als Material für die Muttermatrize erreichbarer Vorteil besteht darin, daß sich die Nickeloberfläche der Muttermatrize selbsttätig durch die Bildung einer Nickeloxydschicht schützt, die aber elektrisch leitend bleibt. Zugleich sorgt diese Nickeloxydschicht aber dafür, daß sich die auf die Muttermatrize aufgalvanisierte Siebdruckschablone leicht von der Muttermatrize abziehen läßt, da die Nickeloxydschicht auf der Muttermatrize als Trennmittel wirkt.
    Um Material und insbesondere Gewicht einzusparen, kann als Muttermatrizen-Grundkörper auch eine hohlzylindrische Nickelhülse eingesetzt werden. Dies ist ohne weiteres möglich, weil wegen des Wegfalls der mechanischen Andruckkräfte zwischen Molette und Muttermatrizen-Grundkörper letzterer keine besonders hohe mechanische Stabilität mehr aufweisen muß. Zudem erlaubt die Verwendung einer hohlzylindrischen Nickelhülse eine leichtere Handhabung und einen erleichterten und kostengünstigeren Transport oder Versand zwischen dem Hersteller der Muttermatrize und dem im allgemeinen damit nicht identischen Hersteller von Siebdruckschablonen.
    Als elektrisch nichtleitende Füllmasse wird bevorzugt ein aushärtbares Kunstharz oder eine aushärtbare keramische Masse eingesetzt. Diese Materialien bieten den Vorteil, daß sie einerseits zunächst als noch viskose Masse in die Vertiefungen einbringbar sind und daß sie andererseit nach dem Aushärten sehr fest in den Vertiefungen haften und eine hohe Festigkeit und Oberflächengüte aufweisen. Insbesondere sind diese Materialien nach dem Aushärten auch durch mechanische Verfahren, z.B. Drehen oder Schleifen, bearbeitbar, ohne daß sie sich aus den Vertiefungen lösen oder am Rand der Vertiefungen ausbrechen.
    Die Vertiefungen werden vorzugsweise mit einem regelmäßigen sechseckigen Umriß erzeugt; weiterhin werden die Vertiefungen bevorzugt wabenförmig in einem Hexagonalraster verteilt angeordnet. Dies bietet den Vorteil, daß die auf dieser Muttermatrize erzeugten Siebdruckschablonen eine hohe Festigkeit und Stabilität bei geringem Gewicht sowie ein gutes Steg-Durchlaß-Verhältnis aufweisen. Aufgrund der elektronischen Speicherbarkeit der Umrißform der Vertiefungen und deren Verteilung im Raster ist aber selbstverständlich jede Freiheit bei der Gestaltung dieser Parameter gegeben.
    Im folgenden wird anhand einer Zeichnung ein Ablaufbeispiel des erfindungsgemäßen Verfahrens beschrieben. Die Figuren 1 bis 5 der Zeichnung zeigen einen Ausschnitt aus dem Umfangsbereich eines Muttermatrizen-Grundkörpers während verschiedener Verfahrensschritte; die Figur 6 der Zeichnung zeigt einen Ausschnitt aus dem Umfangsbereich einer fertigen Muttermatrize.
    Gemäß Figur 1 der Zeichnung besteht der Muttermatrizen-Grundkörper 1 aus Metall und weist eine zylindrische Mantelfläche 10 auf. Der Grundkörper 1 kann als Zylinder oder hohlzylindrische Hülse ausgeführt sein.
    Auf die Mantelfläche 10 des Grundkörpers 1 ist eine sensitive Beschichtung 2 in Form einer vergleichsweise dünnen Schicht aufgetragen, die in der Zeichnung übertrieben dick dargestellt ist. Bei dieser Beschichtung 2 kann es sich um ein photo-, thermo- oder elektrosensitives Material handeln, wie dies an sich bekannt ist. Auch Auftragverfahren für derartige Beschichtungen zur Erzielung einer gleichmäßigen Schichtdicke sind bekannt und brauchen hier nicht näher erläutert zu werden.
    Figur 2 der Zeichnung zeigt den Muttermatrizen-Grundkörper 1 während eines Verfahrensschrittes, in welchem mittels eines Lasers 30, der einen Laserstrahl 3 gesteuert aussendet, eine Belichtung der sensitiven Beschichtung 2, hier mit dem Negativ-Bild der gewünschten Vertiefungen erfolgt. Dabei werden der Muttermatrizen-Grundkörper 1 und der Laser 30 relativ zueinander in zwei Richtungen, vorzugsweise die Axialrichtung und die Umfangsrichtung bewegt, so daß nach und nach die gesamte Umfangsfläche des Muttermatrizen-Grundkörpers 1 überstrichen wird. Während dieser relativen Bewegung zueinander wird der Strahl 3 nach Maßgabe elektronisch gespeicherter Daten ein- und ausgeschaltet, um das Positiv- oder Negativbild eines gewünschten Rasters auf die Beschichtung 2 aufzubelichten, je nachdem, ob diese photopositiv oder photonegativ reagiert. Im vorliegenden Fall, der in der Zeichnung dargestellt ist, wird die Beschichtung 2 durch die Belichtung in den Bereichen 20 so verändert, daß sie für einen nachfolgenden chemischen und/oder physikalischen Abtragprozeß unlöslich wird. Zwischen den belichteten Bereichen 20 verbleiben unbelichtete Bereiche 21, die den Bereichen entsprechen, in denen später Vertiefungen in dem Grundkörper 1 erzeugt werden sollen.
    Figur 3 der Zeichnung zeigt den Muttermatrizen-Grundkörper 1 nach Durchlaufen des Abtragprozesses, in welchem die unbelichteten Bereiche 21 der Beschichtung 2 abgetragen worden sind. Nunmehr verbleiben von der Beschichtung 2 auf der Mantelfläche 10 lediglich noch die belichteten Bereiche 20, die ein netzförmiges Raster von nach außen vorragenden Stegen bilden, die jeweils regelmäßige Sechsecke einschließen.
    In der Figur 4 der Zeichnung ist der Muttermatrizen-Grundkörper nach Durchlaufen eines Ätzbades oder eines elektrolytischen Abtragvorganges gezeigt. Durch dieses Ätzen oder elektrolytische Abtragen wird Metall des Muttermatrizen-Grundkörpers 1 dort abgetragen, wo die ätzende Säure oder die Elektrolytflüssigkeit Zugang zur Mantelfläche 10 hat. Unterhalb der Bereiche 20 der Beschichtung 2 hat die Säure oder die Elektrolytflüssigkeit keinen Zugang zur Mantelfläche 10 des Grundkörpers 1, so daß hier ein Metallabtrag nicht erfolgen kann.
    In einem weiteren Verfahrensschritt wird durch ein geeignetes Abtragverfahren der verbleibende Teil 20 der Beschichtung 2 ebenfalls abgetragen, wonach der Muttermatrizen-Grundkörper die in Figur 5 gezeigte Oberflächenform aufweist. Diese ist charakterisiert durch ein Raster von im Umriß sechseckigen Vertiefungen 11, zwischen denen netzförmig verteilt Stege 12 liegen. Die äußere Oberfläche der Stege 12 entspricht dabei der Mantelfläche 10 des Grundkörpers 1.
    Figur 6 der Zeichnung schließlich zeigt die fertige Muttermatrize 1', bei welcher nun die Vertiefungen 11 vollständig mit einer Füllmasse 4 bis in Höhe der Oberkante der Stege 12 und damit bis zur ursprünglichen Mantelfläche 10 des Muttermatrizen-Grundkörpers 1 ausgefüllt sind. Hierdurch werden auf der Mantelfläche 10 der Muttermatrize 1' in der gewünschten Verteilung Bereiche mit unterschiedlichen elektrischen Eigenschaften gebildet, nämlich im Bereich der Oberfläche der Füllmasse 4 elektrisch nichtleitende Bereiche und im Bereich der Oberfläche der Stege 12 elektrisch leitfähige Bereiche.
    Die fertige Muttermatrize 1' kann dann in bekannter Weise mehrmals zur galvanischen Erzeugung von nahtlosen Rotations-Siebdruckschablonen verwendet werden, wobei sich dann im Bereich der elektrisch leitfähigen Stege 12 an der Mantelfläche 10 der Muttermatrize 1' Metall galvanisch ablagert, bis eine gewünschte Schichtdicke erreicht ist. Diese so gebildete Siebdruckhülse kann dann in Axialrichtung der Muttermatrize 1', d.h. parallel zur Mantelfläche 10, von der Muttermatrize 1' abgezogen werden.

    Claims (8)

    1. Verfahren zur Herstellung einer Muttermatrize (1') für die galvanische Erzeugung von nahtlosen Rotations-Siebdruckschablonen, insbesondere aus Nickel, wobei ein metallischer Muttermatrizen-Grundkörper (1) mit zylindrischer Mantelfläche (10) auf seinem Außenumfang mit in einem regelmäßigen Raster verteilten Vertiefungen (11) versehen wird, die einen runden oder mehreckigen Umriß aufweisen und zwischen denen ein regelmäßiges Netz bildende Rasterstege (12) verbleiben, und wobei die Vertiefungen (11) anschließend mit einer elektrisch nichtleitenden Füllmasse (4) bündig bis zur Höhe der Rasterstege (12) verfüllt werden, wonach dann wiederholt durch galvanisches Auftragen von Metall und axiales Abziehen der so entstandenen Hülse Siebdruckschablonen erzeugbar sind,
      gekennzeichnet durch
      folgende Verfahrensschritte:
      a) die Mantelfläche (10) des Muttermatrizen-Grundkörpers (1) wird mit einer photo- oder thermooder elektrosensitiven Beschichtung (2) überzogen,
      b) die Beschichtung (2) wird mittels eines nach Maßgabe elektronisch gespeicherter Daten gesteuerten Strahls (3) mit dem Positiv- oder Negativbild des gewünschten Vertiefungsrasters belichtet, wobei in den Daten die Umrißform der Vertiefungen (11) und deren Verteilung im Raster frei gestaltbar gespeichert sind, und die Beschichtung (2) wird unmittelbar oder nach Durchlaufen eines Entwicklungsprozesses in den Bereichen (21), in denen die Vertiefungen (11) vorgesehen sind, mittels eines chemischen und/oder physikalischen Entfernungsprozesses abgetragen,
      c) in den von der Beschichtung (2) befreiten Bereichen der Mantelfläche (10) des Muttermatrizen-Grundkörpers (1) werden durch Ätzen oder elektrolytischen Metallabtrag die Vertiefungen (11) gebildet,
      d) die verbliebenen Teile (20) der Beschichtung (2) werden vollständig entfernt und
      e) die Vertiefungen (11) werden mit der elektrisch nichtleitenden Füllmasse (4) verfüllt.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Verfahrensschritt b) wie folgt ausgeführt wird:
      b) die Beschichtung (2) wird mittels eines nach Maßgabe elektronisch gespeicherter Daten gesteuerten Strahls (3) in den Bereichen (21), in denen die Vertiefungen (11) vorgesehen sind, unmittelbar abgetragen, wobei in den Daten die Umrißform der Vertiefungen (11) und deren Verteilung im Raster frei gestaltbar gespeichert sind.
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß als Strahl (3) ein Ultraviolett-Laserstrahl oder ein thermisch wirkender Laserstrahl oder ein Elektronenstrahl verwendet wird.
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Muttermatrizen-Grundkörper (1) ein Nickelzylinder eingesetzt wird.
    5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Muttermatrizen-Grundkörper (1) eine hohlzylindrische Nickelhülse eingesetzt wird.
    6. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß als elektrisch nichtleitende Füllmasse (4) ein aushärtbares Kunstharz oder eine aushärtbare keramische Masse eingesetzt wird.
    7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Vertiefungen (11) mit einem regelmäßigen sechseckigen Umriß erzeugt werden.
    8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Vertiefungen (11) wabenförmig in einem Hexagonalraster verteilt angeordnet werden.
    EP95908917A 1994-02-12 1995-02-09 Verfahren zur herstellung einer muttermatrize für die galvanische erzeugung von nahtlosen rotations-siebdruckschablonen, insbesondere aus nickel Expired - Lifetime EP0694088B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4404560A DE4404560C1 (de) 1994-02-12 1994-02-12 Verfahren zur Herstellung einer Muttermatrize für die galvanische Erzeugung von nahtlosen Rotations-Siebdruckschablonen, insbesondere aus Nickel
    DE4404560 1994-02-12
    PCT/EP1995/000458 WO1995021951A1 (de) 1994-02-12 1995-02-09 Verfahren zur herstellung einer muttermatrize für die galvanische erzeugung von nahtlosen rotations-siebdruckschablonen, insbesondere aus nickel

    Publications (2)

    Publication Number Publication Date
    EP0694088A1 EP0694088A1 (de) 1996-01-31
    EP0694088B1 true EP0694088B1 (de) 1999-05-19

    Family

    ID=6510148

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95908917A Expired - Lifetime EP0694088B1 (de) 1994-02-12 1995-02-09 Verfahren zur herstellung einer muttermatrize für die galvanische erzeugung von nahtlosen rotations-siebdruckschablonen, insbesondere aus nickel

    Country Status (9)

    Country Link
    US (1) US5972194A (de)
    EP (1) EP0694088B1 (de)
    CN (1) CN1095881C (de)
    AT (1) ATE180291T1 (de)
    AU (1) AU1706195A (de)
    DE (2) DE4404560C1 (de)
    ES (1) ES2133736T3 (de)
    GR (1) GR3031024T3 (de)
    WO (1) WO1995021951A1 (de)

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN1851060B (zh) * 2006-04-10 2011-05-04 南京航空航天大学 中空零件电铸成形中沟槽的填充方法
    CN101271275B (zh) * 2008-04-28 2011-08-10 彩虹集团电子股份有限公司 一种喇叭网的蚀刻法生产工艺
    CN101373334B (zh) * 2008-10-13 2011-02-16 彩虹集团电子股份有限公司 一种栅网半蚀刻连接点人工抖料方法
    KR100903962B1 (ko) * 2008-11-21 2009-06-25 주식회사 센트랄 볼 시트의 제조방법
    DE102009017686A1 (de) 2009-04-16 2010-10-28 Steinemann Technology Ag Siebdruckmaschine mit Greifertransport
    DE102011015456A1 (de) 2011-03-30 2012-10-04 Thomas Walther Siebdruckverfahren und dazu gehörige Vorrichtung
    KR102320282B1 (ko) * 2017-09-04 2021-10-29 후지필름 가부시키가이샤 전주용 원반 및 그 전주용 원반을 이용한 전주 몰드의 제조 방법

    Family Cites Families (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US2166366A (en) * 1935-11-30 1939-07-18 Edward O Norris Inc Means and method of producing metallic screens
    BE788470A (fr) * 1971-11-12 1973-01-02 Buckbee Mears Co Procede ameliore d'accroissement de la rigidite des ecrans d'impressio
    AT311294B (de) * 1972-05-23 1973-11-12 Zimmer Johannes Schablonenhülse
    US3960675A (en) * 1975-04-17 1976-06-01 Motter Printing Press Co. Method for deplating and replating rotogravure cylinders
    DE2544603A1 (de) * 1975-10-04 1977-04-14 Kabel Metallwerke Ghh Verfahren zur herstellung eines zylindrischen matrizenkoerpers
    IN155834B (de) * 1976-10-05 1985-03-16 Iten K Ag
    JPS54156880A (en) * 1978-05-04 1979-12-11 Kenseido Kagaku Kogyo Kk Production of sleeve for rotary screen printing
    DE2965624D1 (en) * 1978-09-26 1983-07-14 Wallace Watson Sword The production of rotary screen printing cylinders
    NL7909089A (nl) * 1979-12-17 1981-07-16 Stork Screens Bv Werkwijze voor de vervaardiging van een matrijs.
    DE3011192A1 (de) * 1980-03-22 1981-10-01 Hoechst Ag, 6000 Frankfurt Verfahren zur herstellung von siebdruckschablonen auf galvanischem wege
    JPH0793255B2 (ja) * 1987-07-23 1995-10-09 松下電器産業株式会社 微細パタ−ン形成方法
    JPH01254944A (ja) * 1988-04-04 1989-10-11 Fuji Photo Film Co Ltd ハロゲン化銀写真感光材料
    NL8802928A (nl) * 1988-11-28 1990-06-18 Stork Screens Bv Werkwijze en inrichting voor het vormen van een weerstandspatroon op een cylindrisch voorwerp alsmede een onder toepassing van een dergelijk weerstandspatroon verkregen geetste metalen cylinder.
    BE1002787A7 (fr) * 1989-01-31 1991-06-11 Centre Rech Metallurgique Dispositif de fabrication, par electrodeposition, d'une feuille metallique perforee de faible epaisseur, ainsi que procedes de realisation et d'utilisation d'un tel dispositif.
    JP2727445B2 (ja) * 1991-05-25 1998-03-11 株式会社 シンク・ラボラトリー ロータリースクリーンの製造方法
    US5328537A (en) * 1991-12-11 1994-07-12 Think Laboratory Co., Ltd. Method for manufacturing screen printing plate
    US5334815A (en) * 1992-01-15 1994-08-02 Wear Guard Corp. Apparatus and method for producing a printing screen
    US5573815A (en) * 1994-03-07 1996-11-12 E. I. Du Pont De Nemours And Company Process for making improved metal stencil screens for screen printing

    Also Published As

    Publication number Publication date
    CN1123039A (zh) 1996-05-22
    ATE180291T1 (de) 1999-06-15
    CN1095881C (zh) 2002-12-11
    DE4404560C1 (de) 1995-08-24
    US5972194A (en) 1999-10-26
    ES2133736T3 (es) 1999-09-16
    AU1706195A (en) 1995-08-29
    WO1995021951A1 (de) 1995-08-17
    GR3031024T3 (en) 1999-12-31
    DE59505958D1 (de) 1999-06-24
    EP0694088A1 (de) 1996-01-31

    Similar Documents

    Publication Publication Date Title
    EP2357704B1 (de) Verfahren zur Herstellung einer SOFC Brennstoffzelle
    WO2001083198A1 (de) Prägewerkzeug, verfahren zur strukturierung einer oberfläche eines werkstücks und verwendung einer anodisch oxidierten oberflächenschicht
    DE1771883A1 (de) Verfahren zur Herstellung eines zylindrischen Rasterfilms auf galvanischem Wege
    EP0209651B1 (de) Verfahren zum Herstellen von Spinndüsenplatten
    EP0694088B1 (de) Verfahren zur herstellung einer muttermatrize für die galvanische erzeugung von nahtlosen rotations-siebdruckschablonen, insbesondere aus nickel
    DE2918076C2 (de)
    CH694159A5 (de) Verfahren zum Gravieren von Gravurzylindern.
    DE4243750C2 (de) Verfahren zur Herstellung einer Druckform für den Tiefdruck, Siebdruck, Flexodruck oder Offsetdruck
    DE2918063B2 (de) Verfahren zur Herstellung einer Siebtrommel für den Rotationssiebdruck K.K. Kenseido, Tokio
    DE2214728C3 (de) Verfahren zur direkten photomechanischen Herstellung von Siebdruckformen
    EP1410924A1 (de) Verfahren zur Herstellung einer Druckform für den Tiefdruck, Druckform für den Tiefdruck und ihre Verwendung
    EP0036595B1 (de) Verfahren zur Herstellung von Siebdruckschablonen auf galvanischem Wege
    DE3517729C2 (de)
    CH620863A5 (en) Metal foil with sheet-bearing surface
    DE3517730C2 (de)
    DE2729391C2 (de) Lithographische Flachdruckplatte und Verfahren zu deren Herstellung
    DE102008043957A1 (de) Rasterwalze und Verfahren zu deren Herstellung
    WO1997019816A1 (de) Verfahren zur herstellung einer metallischen druckform für den tiefdruck
    EP1219417A2 (de) Maskenerstellung zur Herstellung einer Druckform
    WO1989012256A1 (en) Process for making gravure formes of variable depth or variable depth and area
    EP1040916A1 (de) Verfahren und Vorrichtung eines Druckwerkzeugs
    DE102006026266B4 (de) Druckform mit flexibler Oberfläche
    EP0728578A1 (de) Verfahren zur Herstellung einer Siebdruckschablone
    DE19544272C2 (de) Verfahren zur Herstellung einer metallischen flächenvariablen Tiefdruckform
    DE2051728C3 (de) Verfahren zum Herstellen eines Schablonensiebes

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE DE ES FR GB GR IT NL PT

    17P Request for examination filed

    Effective date: 19960125

    17Q First examination report despatched

    Effective date: 19970123

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE DE ES FR GB GR IT NL PT

    REF Corresponds to:

    Ref document number: 180291

    Country of ref document: AT

    Date of ref document: 19990615

    Kind code of ref document: T

    REF Corresponds to:

    Ref document number: 59505958

    Country of ref document: DE

    Date of ref document: 19990624

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990615

    ITF It: translation for a ep patent filed

    Owner name: KARAGHIOSOFF GIORGIO

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2133736

    Country of ref document: ES

    Kind code of ref document: T3

    REG Reference to a national code

    Ref country code: PT

    Ref legal event code: SC4A

    Free format text: AVAILABILITY OF NATIONAL TRANSLATION

    Effective date: 19990727

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: PT

    Payment date: 20020204

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20020205

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20020214

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GR

    Payment date: 20020221

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030209

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030228

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030831

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030904

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20140208

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20140217

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20140211

    Year of fee payment: 20

    Ref country code: ES

    Payment date: 20140129

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20140206

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20140409

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59505958

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V4

    Effective date: 20150209

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20150208

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20150208

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20150826

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20150210