EP0607149B1 - Verfahren zum herstellen einer metallhalogenid-entladungslampe mit keramischem entladungsgefäss - Google Patents

Verfahren zum herstellen einer metallhalogenid-entladungslampe mit keramischem entladungsgefäss Download PDF

Info

Publication number
EP0607149B1
EP0607149B1 EP92909171A EP92909171A EP0607149B1 EP 0607149 B1 EP0607149 B1 EP 0607149B1 EP 92909171 A EP92909171 A EP 92909171A EP 92909171 A EP92909171 A EP 92909171A EP 0607149 B1 EP0607149 B1 EP 0607149B1
Authority
EP
European Patent Office
Prior art keywords
tube
filling
bore
lead
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92909171A
Other languages
English (en)
French (fr)
Other versions
EP0607149A1 (de
Inventor
Stefan Dr. Jüngst
Stefan Kotter
Hartmuth Bastian
Roland Hüttinger
Jürgen Dr. Heider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0607149A1 publication Critical patent/EP0607149A1/de
Application granted granted Critical
Publication of EP0607149B1 publication Critical patent/EP0607149B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/361Seals between parts of vessel
    • H01J61/363End-disc seals or plug seals

Definitions

  • the invention relates to a method for producing metal halide discharge lamps with a ceramic discharge vessel.
  • Such lamps usually have a quartz glass discharge vessel.
  • efforts have recently been made to improve the color rendering of these lamps.
  • the higher operating temperature required for this can be achieved with a ceramic discharge vessel.
  • Typical power levels are 100 - 250 W.
  • the ends of the tubular discharge vessel are usually closed with cylindrical ceramic end plugs into which a metal current lead-through is inserted in the middle.
  • a particularly simple way of filling and evacuating the discharge vessel is that one of the two niobium tubes has a small opening in the vicinity of the electrode shaft attached to the tube inside the discharge vessel, so that the amalgam and the inert gas can be evacuated and filled through this opening (GP-PS 2 072 939).
  • the end of the niobium tube which protrudes from the outside is sealed gas-tight by a pinch with subsequent welding.
  • the opening in the vicinity of the electrode shaft always remains uninterrupted in order to ensure a connection between the interior of the discharge vessel and the interior of the feed-through tube, which acts as a cold spot, during operation.
  • a method for evacuating and filling the discharge vessel is to be provided.
  • the concrete form of the gas-tight seal of the bushing in the end of the discharge vessel e.g. by means of an essentially ceramic stopper or also by means of a metallic cover cap (DE-OS 30 12 322) is of secondary importance for the present invention. It can e.g. using glass solder or melting ceramics or also by direct sintering.
  • the method according to the invention is suitable for both niobium and molybdenum-like feedthroughs, it exhibits its particular value for molybdenum-like materials in several embodiments, since it avoids stressing the material with regard to ductility.
  • the present application therefore deals in particular with the problem of how brittle bushings can be processed and how the evacuation and filling of a discharge vessel can be designed in such a way that brittle molybdenum-like materials can also be used.
  • the method according to the invention is characterized in that both ends of the ceramic discharge vessel are equipped with electrode systems which are then sealed by heating, be it by melting a ceramic melt or by direct sintering.
  • an electrode system is understood to be a pre-assembled unit consisting of the electrode (shaft and tip) which is attached to the bushing, e.g. by butt welding, the bushing itself being inserted into the sealing means (usually a ceramic end plug).
  • the implementation may possibly be recessed on one or both sides of the stopper, and an external electrical lead can additionally be attached to the bushing.
  • the implementation can also take on the task of the sealing agent itself.
  • one end which is designed as a blind end, is now completely sealed.
  • the type of implementation used there is immaterial to the present invention.
  • the other end is also largely sealed, but only to the extent that it can still serve as the pump end by first leaving an additional filling hole that connects the discharge volume to the outside space arranged in a glovebox; the bore can possibly also be connected directly to a supply line for evacuation and / or filling via a coupling.
  • the advantage of this method is that the cooling of the blind end when sealing the filling bore is largely eliminated, and the overall length of the lamp can thus be shortened considerably.
  • the energy required to close the filling hole is namely only a fraction of the heat required to seal the electrode system.
  • the bore can be made in the side wall of the discharge vessel itself or in a second and third embodiment in the electrode system (sealing means or bushing).
  • the advantage of the first embodiment is that when the lamp is in operation, the thermal load in the area of the side wall is significantly lower than in the area of the electrode system, so that a simple ceramic ceramic (or glass solder) can be used for sealing.
  • the implementation at this end can be pin-shaped or tubular.
  • the bore in the sealing means is made outside the lamp axis.
  • This constellation is particularly favorable in the case of a pin-shaped feedthrough and in the case of a stopper made of cermet, with the highest possible melting ceramic used for sealing. But it can also be used in a tubular bushing.
  • the feedthrough is tubular and the filling hole is located in the vicinity of the electrode shaft in a part of the feedthrough which faces the discharge volume.
  • the bore connects the discharge volume to the interior of the tubular bushing. It is located either in the side wall of the pipe or at the end of the pipe.
  • the latter arrangement is particularly advantageous because solid filling components can pass through the vertically aligned pipe including the filling hole particularly easily due to the action of gravity and subsequent sealing is facilitated.
  • the filling bore serves to evacuate and fill the discharge volume, both the inert gas and the metal halide (s) and possibly metal in excess, which are each in solid form (metal halides as pressed bodies, metal as wire pieces or foils). , are introduced through the bore into the discharge volume. The hole is then closed indirectly or directly by heating. It should be noted that the filling hole, if it is made of ceramic material, especially in the side wall or in the mostly ceramic sealant, must be heated slowly and over a large area, e.g. using a gas burner or an expanded laser beam, otherwise cracks would form in the ceramic.
  • the third embodiment is particularly advantageous in this regard, namely a tubular bushing with a bore near the electrode shaft. If the hole is in metallic instead of ceramic material, it can be heated up considerably more quickly and also point-wise, so that cooling of the blind end is completely dispensed with and the overall length of the lamp can be chosen to be particularly short.
  • the focused beam from a laser, which is threaded into the tube, is particularly suitable for heating and sealing; an Nd-YAG laser with a wavelength of 1.06 ⁇ m is particularly suitable.
  • the heating by means of a laser can also take place through the wall of the discharge vessel, since its translucent ceramic material does not absorb the 1.06 ⁇ m radiation.
  • Sealing is carried out either by a previously filled in high-melting (preferably only at more than 1700 ° C.) or by melting the pipe material itself.
  • a particularly preferred embodiment is the closure by indirect heating by a filler rod adapted to the inside diameter of the pipe, the length of which corresponds approximately to the length of the tube, is introduced into the tube and is welded to the end of the tube which is remote from the discharge.
  • the advantage of this arrangement is the particularly reliable sealing and the easy access to the welding point, which eliminates the need to thread a laser beam and the quality of the sealing achieved can be better monitored. This is offset by the high cost of materials due to the solid filling rod. This is required in order to eliminate the dead volume of the tube which is undesirable in contrast to high-pressure sodium lamps in metal halide lamps. In the other embodiments of the method, in which the filling bore is closed itself, this dead volume is automatically eliminated.
  • the brittleness of a molybdenum-like lead-through material can be particularly unpleasantly noticeable in the manufacture of the electrode system.
  • the critical step in this regard must be the attachment of the electrode to the bushing.
  • the technique known from niobium-like bushing material for butt-welding the electrode shaft at the end of the bushing is also advantageous with molybdenum-like material if a solid pin is used as bushing.
  • tubular bushings however, the problem arises that in the case of molybdenum-like material, only tubes which are open on both sides are available as semi-finished goods. Because of the brittleness of the material, it has so far not been possible to produce one-piece tubes which are closed on one side, as is customary when using niobium.
  • a first possibility is to insert the electrode shaft, whose diameter is considerably smaller than that of the molybdenum tube, centered into one end of the tube by means of a gauge, then to heat the tube or at least its end surrounding the shaft to about 400 ° C., and then to squeeze the heated and thus become ductile molybdenum tube around the electrode shaft and possibly fix it mechanically by spot welding.
  • Sealing is carried out using a welding technique, in particular by directing a heat source, in particular a laser beam, onto the pinch.
  • the laser beam is particularly advantageously focused on a point of pinching, while the tube rotates about its own axis.
  • the filling hole is created laterally in the tube wall near the electrode shaft, for example by means of a single laser pulse with oblique incidence. It is typically a 0.6 to 0.8 mm hole. This technique is very simple and reliable. However, closing the filling hole is then relatively complex, since it sits clearly above the end of the shaft and therefore a larger amount of metal must be used to fill up the inner volume of the tube up to the filling hole.
  • a modification of this technique provides that, at the same time as the electrode shaft, a spacer for the bore, which is arranged in parallel, is inserted into the end of the molybdenum tube by means of a gauge. After the pipe has been made ductile by heating to 400 ° C, the pipe end is squeezed around the electrode shaft and at the same time around the placeholder for the hole (eg a pin or a short piece of pipe) and the shaft is fixed. Then the placeholder is removed so that the hole is created.
  • the assembly is not rotated and only a part of the pinch that is located away from the bore is melted. With this technique, one manufacturing step (separate production of the bore) can be saved.
  • the hole is also located at the end of the tube near the axis, so that subsequent closing after the filling process is made considerably easier.
  • the hole can be better targeted with the laser beam, on the other hand, the seal is more reliable because the metal solder that melts as a result of the laser heating automatically runs into the filling hole under the influence of gravity and is reliably held there by the capillary action of the hole, which is only 0.6 to 0.8 mm in size.
  • only a small amount of Metallot is necessary compared to a side hole.
  • the pipe end itself can serve as a filling hole; there is no crushing.
  • the diameter of the electrode shaft is adapted to that of the molybdenum tube by melting the end of the electrode shaft and thereby sphering it.
  • the diameter of the spherical shaft end which is determined by the length of the melted-back section of the shaft, is chosen so that it is approximately matched to the inner diameter of the tube. Only then is the spherical shaft end inserted into the tube, mechanically fixed (by spot welding) and the tube end welded to the shaft and thereby sealed.
  • the electrode shaft is first attached to the inner tube wall, a slight displacement of the electrode shaft from the lamp axis being consciously accepted.
  • the opening remaining at the end of the pipe is used as a filling hole.
  • the molybdenum tube, including the filling hole, is then closed by a filling rod, which expediently has a cutout for the electrode shaft.
  • the filler rod is connected to the tube at the end remote from the discharge, as already described.
  • This embodiment combines the advantages of the techniques described hitherto in a particularly advantageous manner because both the production of a separate filling bore and the squeezing of the tube end to hold the electrode shaft are avoided in an elegant manner. It is also not necessary to bend the electrode shaft.
  • a metal halide discharge lamp with an output of 150 W is shown schematically in FIG. It consists of a cylindrical outer bulb 1 made of quartz glass which defines a lamp axis and which is squeezed 2 and base 3 on two sides.
  • the axially arranged discharge vessel 4 made of Al2O3 ceramic is bulged in the middle 5 and has cylindrical ends 6a, 6b. It is held in the outer bulb 1 by means of two power leads 7, which are connected to the base parts 3 via foils 8.
  • the power supply lines 7 made of molybdenum are welded to pin-shaped bushings 9, which are each sintered directly into a ceramic end plug 10 of the discharge vessel, that is to say without soldering glass.
  • the two bushings 9 made of niobium (or also molybdenum) each hold an electrode 11 on the discharge side, consisting of an electrode shaft 12 made of tungsten and a spherical tip 13 formed on the discharge side end.
  • the discharge vessel is filled with an inert ignition gas, e.g. Argon, from mercury and additives to metal halides.
  • the electrode shaft 12 extends into the axial bore in the end plug 10, because the pin-shaped bushing 9 is inserted in the bore on the discharge side.
  • the pin 9 protrudes at the outer end of the end plug and is directly connected to the power supply 7.
  • a filling bore 15 is provided near the pump end 6a, which is closed after filling by a glass solder or a melting ceramic 20.
  • One possibility for heating the additional filling bore 15, which is provided with a ceramic melt mass, is heating by means of a laser beam expanded in a special optic or also by means of a gas burner. The mass melts and is held in the filling hole, which acts as a capillary, and cools there, which completes the seal.
  • FIG. 2 shows the area of the pump end 6a of the discharge vessel in detail for a second exemplary embodiment.
  • the discharge vessel has a wall thickness of 1.2 mm at both ends.
  • the cylindrical stopper 10 made of Al2O3 ceramic, which is inserted into the end 6a of the discharge vessel an outer diameter of 3.3 mm and a height of 6 mm.
  • a niobium pin 9 with a length of 12 mm and a diameter of 0.6 mm is sintered directly into the axial bore 14 of the plug.
  • the electrode shaft 12 (diameter 0.55 mm) is butt welded to the niobium pin 9.
  • the outer section 16 of the niobium stick is closely surrounded by a ceramic sleeve 18.
  • the bore 14 is widened at the end 17 of the end plug remote from the discharge.
  • the sleeve 18 is inserted into this enlarged bore section 19 and is fixed in that a glass solder 20 is added at this point.
  • the sleeve prevents graying and stabilizes the niobium stick, which becomes brittle when sintered.
  • the filling bore 24 is in this case parallel to the lamp axis, but laterally offset, through the plug 10. As already explained, it is sealed with a high-melting ceramic 20 when the evacuation and filling process is complete.
  • the melting when fastening the sleeve 18 and the sealing of the filling bore 24 can advantageously take place in one step.
  • an Al2O3 filler rod can be introduced into the filling bore 24.
  • FIG. 3 A particularly preferred embodiment is shown in FIG. 3.
  • the difference from FIG. 2 is that the niobium stick 21, which has a length of 5 mm and a diameter of 0.8 mm, is recessed on both sides in the opening 14, so that one Sleeve can be dispensed with.
  • the electrode shaft 12 made of tungsten wire has a diameter of 0.75 mm and a length of 7 mm. It extends 0.5 mm deep into the opening 14.
  • a tungsten wire is also butt welded to the pin 21 as a connecting part 22 for external power supply.
  • the connecting part 22 also has a wire diameter of 0.75 mm; it has the length of 11 mm.
  • the interface 23 between the connecting part and the bushing is also arranged approximately 0.5 mm deep in the axial opening 14 of the end plug. Since contact between the tungsten pin 22 and the glass solder 20 in the filling bore 24 should be avoided due to the different expansion coefficients, which could otherwise lead to cracks in the ceramic, here too is a sleeve 18 made of niobium (or ceramic) which Tungsten pin 22 advantageously surrounds, since these two materials, in contrast to tungsten or molybdenum, have an expansion coefficient adapted to the melting ceramic 20.
  • a collar 25 (shown in dashed lines) formed on the stopper 10 and surrounding the tungsten pin 22 can also be used as the separating means.
  • FIG. 4a and 4b Another embodiment is shown in Figures 4a and 4b.
  • a thin-walled molybdenum tube 26 is sintered directly into the stopper 10.
  • a tungsten pin is squeezed as an electrode shaft 27 with a spiral part 28 and welded in a gas-tight manner.
  • the filling bore 29 is made in the side wall of the tube. It is closed after the filling process in that a metallic Solder compact 42 (eg titanium solder or a mixture of Ti and Mo or Zr / Mo) or a wire section made of solder material (eg titanium, Zr), which has a melting point of more than 1700 ° C., is filled into the tube 26.
  • a metallic Solder compact 42 eg titanium solder or a mixture of Ti and Mo or Zr / Mo
  • solder material eg titanium, Zr
  • a finely focused laser beam (Nd-YAG) 30 is directed into the tube in the tube axis and heats the metallot 42 (FIG. 4a). This melts and seals the filling bore 29 'acting as a capillary (FIG. 4b).
  • Nd-YAG finely focused laser beam
  • Such a method is particularly advantageous since the melting of the solder is achieved by targeted brief heating, so that in this embodiment, during the closing of the pump end 6a, the cooling of the blind end, in the vicinity of which the filling components are located, can be completely dispensed with and therefore the length of such discharge vessels can be chosen to be particularly short.
  • FIG. 5 An additional exemplary embodiment is shown in FIG. 5. It essentially corresponds to the arrangement according to FIG. 4, in that a thin-walled molybdenum tube 33 is also sintered directly into the stopper 10 at the pump end 6a and a tungsten pin is attached to the tube end as an electrode shaft 32.
  • the filling bore 29 in the side wall of the tube is mechanically closed by inserting a filling rod 37, which is adapted to the inside diameter of the tube 26, after the evacuation and filling of the discharge vessel into the tube 32 and thus filling the dead volume inside the tube and thereby also covering the filling bore .
  • the end facing the shaft can have a concave curvature 38 for better adaptation.
  • the filling rod 37 made of molybdenum or tungsten protrudes from the outer end of the tube 33 and is welded there gas-tight to the tube end, e.g. by means of laser welding 46 or by means of a gas burner. You can also use a filler rod that is flush with the pipe end or somewhat recessed into it.
  • the molybdenum tube 26 has, for example, an inner diameter of 1.3 mm and a wall thickness of 0.1 mm, while the electrode has a tungsten shaft 27 with a diameter of 0.5 mm.
  • the electrode shaft 27 is inserted centered into one end of the molybdenum tube 26 approximately 1 mm deep (FIG. 6a).
  • the tube 26 is then heated to 400 ° C. by supplying heat (FIG. 6b), so that the material, which is brittle per se, becomes ductile.
  • a pin with a 0.6 mm diameter arranged parallel to it is inserted into the tube end as a placeholder 30 for the filling bore (shown in broken lines in FIG. 6b).
  • the placeholder 30 is removed again, so that in addition to the electrode shaft 27, which is expediently fitted outside the tube axis, an opening remains at the end 45 of the tube 26, which serves as a filling bore 31 Figure 6e).
  • the electrode shaft 27 is attached in the pinch without the filling bore 31 being closed. The attachment can also be done before removing the placeholder.
  • the method step according to FIG. 6g is omitted in this variant. There is no immediate welding. Instead, the final sealing after filling is carried out either by a metallot or by a filler rod ( Figure 4 or 5).
  • FIGS. 7a to 7c A further possibility of fastening an electrode in a molybdenum tube is explained with reference to FIGS. 7a to 7c.
  • the electrode shaft 32 the diameter of which is again considerably smaller than the inside diameter of the molybdenum tube 33, is melted back at one end by the addition of heat until a spherical end 34 is formed, the outside diameter of which is adapted to the inside diameter of the molybdenum tube 33.
  • the length of the melted back Shank section 35 determines the diameter of the spherical end 34.
  • the spherical end 34 is inserted into the pipe end (arrow) and attached there (for example by laser or spot welding).
  • the tube end 45 can now, if desired, be sealed again, for example by laser welding 46, the tube 33 advantageously rotating about its axis in the direction of the arrow (FIG. 7b).
  • the filling hole 36 ' is made by a laser 46' perpendicular to the pipe axis, but offset to the side, is directed towards the pipe end 45 just behind the welding point and with a single laser pulse an approximately 0.7 mm wide transverse slot 36 'in the pipe wall is generated (Figure 7c).
  • FIGS. 8a and 8b A particularly simple possibility of fastening an electrode in a molybdenum tube is shown in FIGS. 8a and 8b.
  • an electrode 11 with a shaft diameter of 0.5 mm, is inserted into the tube 26 about 0.8 mm deep and laterally at the end 45 of the tube 26, e.g. by means of laser beam 46, attached (indicated by dashed lines in FIG. 8a).
  • the tube 26 has an inner diameter of approximately 1.2 mm and a wall thickness of typically 0.2 mm.
  • a filling rod 37 'made of molybdenum is inserted into the tube 26 (FIG. 8 b) and has a recess 47 for the electrode shaft 27, similar to FIG. 5.
  • the fill tube 37 ' is somewhat shorter than the tube 26, so that it can be welded very easily at the tube end remote from the discharge, for example by axial laser incidence 46 ⁇ .
  • the electrode is attached to the leadthrough in a manner that is mirror-symmetrical to the pump end.
  • a filler rod can be used in all exemplary embodiments, that is to say also in the tubes which are closed with a pinch.
  • the welding step at the crimped pipe end and also the step of final sealing at the crimped pipe end by means of a metallot is eliminated.
  • the filler rod technology has the main advantage that the welding takes place at the end of the pipe. On the one hand, this point is easily accessible, on the other hand it is considerably less exposed to temperature than the front end of the tube which faces the discharge.
  • a welded joint is more reliable than a soldered joint.
  • the pump end can be equipped with a tubular feedthrough, while the blind end has a pin-shaped feedthrough.
  • a cermet stopper which is a ceramic stopper that has a low admixture contains a metal at the blind end.
  • the manufacturing method according to the invention is also suitable for a cermet plug 39 at the pump end 6a.
  • a separate implementation can be dispensed with, since the cermet itself is conductive (FIG. 9).
  • the electrode shaft 40 aligned in the lamp axis is seated directly in the cermet stopper 39 performing the task, while a power supply 41 is attached to the outer end.
  • the manufacturing process corresponds to the steps discussed in connection with FIG. 2.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Ceramic Products (AREA)

Abstract

Ein Verfahren zum Herstellen einer Metallhalogenid-Entladungslampe mit keramischem Entladungsgefäß zeichnet sich dadurch aus, daß zunächst beide Enden (6a, 6b) mit Elektrodensystemen bestückt und abgedichtet werden, wobei jedoch in der Nähe des Pumpendes (6a) eine Füllbohrung (15) offenbleibt, die erst nachträglich nach dem Füllen verschlossen wird.

Description

  • Die Erfindung betrifft ein Verfahren zum Herstellen von Metallhalogenid-Entladungslampen mit keramischem Entladungsgefäß.
  • Derartige Lampen besitzen üblicherweise ein Entladungsgefäß aus Quarzglas. In letzter Zeit wurden jedoch Anstrengungen unternommen, um bei diesen Lampen die Farbwiedergabe zu verbessern. Die dafür benötigte höhere Betriebstemperatur läßt sich mit einem keramischen Entladungsgefäß realisieren. Typische Leistungsstufen sind 100 - 250 W. Die Enden des rohrförmigen Entladungsgefäßes sind üblicherweise mit zylindrischen keramischen Endstopfen verschlossen, in die mittig eine metallische Stromdurchführung eingesetzt ist.
  • Eine ähnliche Technik wird bei Natriumhochdrucklampen verwendet. Bekannt sind sowohl rohr- als auch stiftförmige Durchführungen aus Niob (GB-PS 1 465 212 und EP-PS 34 113), die mittels Glaslot oder Schmelzkeramik in einem keramischen Endstopfen eingeschmolzen werden. Ferner ist auch eine direkte, glaslotfreie Einsintertechnik für Niobrohre beschrieben worden (EP-PS 136 505). Die Besonderheit von Natriumhochdruckentladungslampen besteht darin, daß die Füllung Natriumamalgam enthält, das häufig in einem Reservoir im Innern eines als Durchführung verwendeten Niobrohres enthalten ist.
  • Eine besonders einfache Möglichkeit des Füllens und Evakuierens des Entladungsgefäßes besteht darin, daß eines der beiden Niobrohre eine kleine Öffnung in der Nähe des am Rohr angesetzten Elektrodenschafts im Innern des Entladungsgefäßes besitzt, so daß durch diese Öffnung ein Evakuieren und Füllen des Amalgams und des Inertgases möglich ist (GP-PS 2 072 939). Nach Abschluß des Füllvorgangs wird das außen überstehende Ende des Niobrohres durch eine Quetschung mit anschließender Verschweißung gasdicht verschlossen. Dabei bleibt jedoch immer die Öffnung in der Nähe des Elektrodenschafts durchgängig, um während des Betriebs eine Verbindung zwischen dem Innenraum des Entladungsgefäßes und dem als Cold Spot wirkenden Innern des Durchführungsrohrs sicherzustellen.
  • Eine andere Verschlußtechnik für Natriumhochdrucklampen ist aus der DE-PS 25 48 732 bekannt. Sie verwendet rohrförmige Durchführungen aus Wolfram, Molybdän oder Rhenium, die in den Stopfen unter Zuhilfenahme eines keramischen zylindrischen Formteils im Innern des Rohrs mittels Schmelzkeramik gasdicht eingeschmolzen werden. Auf das Quetschen des äußeren Rohrendes nach Abschluß des Füllvorgangs muß hier verzichtet werden, weil bekanntlich diese Metalle im Gegensatz zu Niob sehr spröde sind und daher nur schwer bearbeitet werden können. Die Verschlußtechniken, die für Niobrohre bekannt sind, können daher nicht ohne weiteres übernommen werden. Statt dessen ist das keramische Formteil mit einer axialen Bohrung ausgestattet, die beim Evakuieren und Füllen mit einer Öffnung im Rohr in der Nähe des Elektrodenschafts zusammenwirkt. Nach dem Füllen wird die axiale Bohrung des Formteils mit Schmelzkeramik verschlossen, so daß ein Bearbeiten des spröden molybdänähnlichen Metalls entfällt. Diese Technik ist jedoch sehr umständlich und daher kostenträchtig und zeitaufwendig.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zum Herstellen einer Metallhalogenid-Entladungslampe mit keramischem Entladungsgefäß anzugeben. Insbesondere soll ein Verfahren zum Evakuieren und Füllen des Entladungsgefäßes bereitgestellt werden.
  • Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen.
  • Bei der Übertragung der bei Natriumhochdrucklampen bekannten Durchführungstechnik auf die erfindungsgemäßen Lampen muß beachtet werden, daß die Halogenide sowohl die Schmelzkeramik als auch die metallische Durchführung angreifen.
  • Aus diesem Grund ist bei der Verwendung von Niob oder niobähnlichen Metallen (z.B. Tantal) darauf zu achten, daß die Durchführung geeignet gegen die aggressiven Füllstoffe abgeschirmt ist. Bei der Verwendung von Molybdän oder molybdänähnlichen Metallen (z.B. Wolfram, Rhenium) ist dieses Problem nicht vorhanden, da diese Materialien erheblich korrosionsbeständiger sind, weshalb in bestimmten Ausführungsformen der Durchführung Molybdän als Material bevorzugt ist. Dies gilt hauptsächlich für rohrförmige Durchführungen, während bei stiftförmigen Durchführungen keine wesentlichen Vorteile entstehen.
  • Die konkrete Form der gasdichten Abdichtung der Durchführung im Ende des Entladungsgefäßes, z.B. mittels eines im wesentlichen keramischen Stopfens oder auch mittels einer metallischen Abdeckkappe (DE-OS 30 12 322) ist für die vorliegende Erfindung von untergeordneter Bedeutung. Sie kann z.B. mittels Glaslot bzw. Schmelzkeramik oder auch mittels direkter Einsinterung erfolgen.
  • Obgleich das erfindungsgemäße Verfahren sowohl für niob- als auch molybdänähnliche Durchführungen geeignet ist, entfaltet es bei mehreren Ausführungsformen seinen besonderen Wert für molybdänähnliche Materialien, da es eine Beanspruchung des Materials hinsichtlich Duktilität vermeidet. Die vorliegende Anmeldung befaßt sich daher insbesondere mit dem Problem, wie spröde Durchführungen bearbeitet werden können und wie das Evakuieren und Füllen eines Entladungsgefäßes so gestaltet werden kann, daß auch spröde molybdänähnliche Materialien verwendet werden können.
  • Das erfindungsgemäße Verfahren zeichnet sich demgegenüber dadurch aus, daß beide Enden des keramischen Entladungsgefäßes mit Elektrodensystemen bestückt werden, die anschließend durch Erwärmen abgedichtet werden, sei es durch Schmelzen einer Schmelzkeramik oder durch direktes Einsintern. Als Elektrodensystem wird im folgenden jeweils eine vormontierte Baueinheit verstanden, die aus der Elektrode (Schaft und Spitze) besteht, die an der Durchführung befestigt ist, z.B. durch Stumpfschweißen, wobei die Durchführung selbst in das Mittel zum Abdichten (üblicherweise ein keramischer Endstopfen) eingesetzt ist. Die Durchführung kann u.U. an einer oder beiden Seiten des Stopfens vertieft eingesetzt sein, wobei zusätzlich eine äußere elektrische Zuleitung an der Durchführung befestigt sein kann. Die Durchführung kann auch selbst die Aufgabe des Abdichtmittels übernehmen.
  • Beim Erwärmen wird nun das eine Ende, das als Blindende ausgeführt ist, vollständig abgedichtet. Die dort verwendete Art der Durchführung ist für die vorliegende Erfindung unwesentlich. Das andere Ende wird ebenfalls weitgehend abgedichtet, jedoch nur soweit, daß es noch als Pumpende dienen kann, indem hier zunächst eine zusätzliche Füllbohrung frei gelassen wird, die das Entladungsvolumen mit dem in einer Glovebox angeordneten Außenraum verbindet; die Bohrung kann evtl. auch direkt über eine Kupplung mit Zuleitungen zum Evakuieren und/oder Füllen verbunden sein. Der Vorteil dieses Verfahrens ist, daß die Kühlung des Blindendes beim Abdichten der Füllbohrung weitgehend entfallen und somit die Baulänge der Lampe erheblich verkürzt werden kann. Der Energieaufwand für das Verschließen der Füllbohrung beträgt nämlich nur noch einen Bruchteil der für die Abdichtung des Elektrodensystems benötigten Wärmezufuhr.
  • Dabei kann die Bohrung in einer ersten Ausführungsform in der Seitenwand des Entladungsgefäßes selbst oder in einer zweiten und dritten Ausführungsform im Elektrodensystem (Abdichtmittel bzw. Durchführung) angebracht sein.
  • Der Vorteil der ersten Ausführungsform ist, daß im Betrieb der Lampe die thermische Belastung im Bereich der Seitenwand deutlich geringer als im Bereich des Elektrodensystems ist, so daß zum Abdichten eine einfache Schmelzkeramik (oder auch Glaslot) verwendet werden kann. Die Durchführung an diesem Ende kann dabei stift- oder rohrförmig sein.
  • Bei der zweiten Ausführungsform ist die Bohrung im Abdichtmittel außerhalb der Lampenachse angebracht. Diese Konstellation ist besonders günstig bei einer stiftförmigen Durchführung sowie bei einem Stopfen aus Cermet, wobei zum Abdichten eine möglichst hochschmelzende Schmelzkeramik zu verwenden ist. Sie kann aber auch bei einer rohrförmigen Durchführung angewendet werden.
  • Eine besonders elegante Lösung wird durch die dritte Ausführungsform erzielt. Dabei ist die Durchführung rohrförmig und die Füllbohrung befindet sich in der Nähe des Elektrodenschafts in einem Teil der Durchführung, der dem Entladungsvolumen zugewandt ist. Die Bohrung verbindet das Entladungsvolumen mit dem Innern der rohrförmigen Durchführung. Sie befindet sich entweder in der Seitenwand des Rohrs oder am Rohrende.
  • Letztere Anordnung ist besonders vorteilhaft, weil feste Füllungsbestandteile das senkrecht ausgerichtete Rohr einschließlich der Füllbohrung durch die Schwerkraftwirkung besonders leicht passieren können und das nachträgliche Verschließen erleichtert wird.
  • In allen Ausführungsformen dient die Füllbohrung dazu, das Entladungsvolumen zu evakuieren und zu füllen, wobei sowohl das Inertgas als auch das oder die Metallhalogenide und evtl. Metall im Überschuß, die jeweils in fester Form vorliegen (Metallhalogenide als Preßkörper, Metall als Drahtstück oder Folie), durch die Bohrung in das Entladungsvolumen eingebracht werden. Anschließend wird die Bohrung mittelbar oder unmittelbar durch Erwärmen verschlosen, Dabei ist zu beachten, daß die Füllbohrung, wenn sie in keramischem Material angebracht ist, insbesondere in der Seitenwand oder im meist keramischen Abdichtmittel, langsam und großflächig aufgeheizt werden muß, z.B. mittels eines Gasbrenners oder eines aufgeweiteten Laserstrahls, da sich sonst Sprünge in der Keramik bilden würden.
  • Besonders vorteilhaft in dieser Hinsicht ist die dritte Ausführungsform, nämlich eine rohrförmige Durchführung mit einer Bohrung in der Nähe des Elektrodenschafts. Wenn sich die Bohrung in metallischem statt keramischem Material befindet, kann sie erheblich schneller und außerdem punktförmig aufgeheizt werden, so daß auf eine Kühlung des Blindendes vollständig verzichtet und die Baulänge der Lampe besonders kurz gewählt werden kann.
  • Besonders geeignet für das Aufheizen und Verschließen ist der fokussierte Strahl eines Lasers, der in das Rohr eingefädelt wird; insbesondere eignet sich ein Nd-YAG-Laser mit einer Wellenlänge von 1,06 µm. Das Aufheizen mittels Laser kann auch durch die Wandung des Entladungsgefäßes erfolgen, da dessen transluzentes Keramikmaterial die 1,06 µm-Strahlung nicht absorbiert.
  • Auf diese Weise kann die Herstellung erheblich vereinfacht werden, da weniger Zeit und Energie zum Abdichten der Bohrung benötigt wird. Die Abdichtung erfolgt dabei entweder durch ein vorher eingefülltes hochschmelzendes (vorteilhaft erst bei mehr als 1700°C schmelzendes) Metallot oder auch durch Aufschmelzen des Rohrmaterials selbst. Eine besonders bevorzugte Ausführungsform ist das Verschließen durch mittelbares Erwärmen, indem ein dem Innendurchmesser des Rohrs angepaßter Füllstab, dessen Länge etwa der Länge des Rohrs entspricht, in das Rohr eingeführt wird und mit dem entladungsfernen Ende des Rohrs verschweißt wird. Der Vorteil dieser Anordnung ist die besonders zuverlässige Abdichtung und die leichte Zugänglichkeit zur Schweißstelle, wodurch die Notwendigkeit des Einfädelns eines Laserstrahls entfällt und die Qualität der erzielten Abdichtung besser überwacht werden kann. Dem steht der hohe Materialaufwand durch den massiven Füllstab gegenüber. Dieser wird benötigt, um das im Gegensatz zu Natriumhochdrucklampen bei Metallhalogenidlampen unerwünschte Totvolumen des Rohrs zu beseitigen. In den anderen Ausführungsformen des Verfahrens, bei denen die Füllbohrung selbst verschlossen wird, ist dieses Totvolumen automatisch beseitigt.
  • Bei der Herstellung des Elektrodensystems kann sich die Sprödigkeit eines molybdänähnlichen Durchführungsmaterials besonders unangenehm bemerkbar machen. Als kritischer Schritt muß dabei vor allem die Befestigung der Elektrode an der Durchführung angesehen werden. Die vom niobähnlichen Durchführungsmaterial her bekannte Technik, den Elektrodenschaft am Ende der Durchführung stumpf anzuschweißen, ist auch bei molybdänähnlichem Material vorteilhaft, wenn als Durchführung ein massiver Stift verwendet wird. Bei der Verwendung von rohrförmigen Durchführungen tritt jedoch das Problem auf, daß bei molybdänähnlichem Material nur beidseitig offene Rohre als Halbware verfügbar sind. Wegen der Sprödigkeit des Materials ist es bisher nicht möglich, einseitig verschlossene einteilige Rohre herzustellen, wie dies bei der Verwendung von Niob üblich ist.
  • Statt dessen werden hier mehrere alternative Verfahren vorgeschlagen. Eine erste Möglichkeit besteht darin, den Elektrodenschaft, dessen Durchmesser erheblich kleiner als der des Molybdänrohrs ist, mittels einer Lehre zentriert in ein Ende des Rohrs einzuführen, dann das Rohr oder zumindest dessen den Schaft umgebendes Ende auf etwa 400°C zu erhitzen, und anschliessend das erhitzte und dadurch duktil gewordene Molybdänrohr um den Elektrodenschaft herum zu quetschen und evtl. durch eine Punktschweißung mechanisch zu fixieren. Die Abdichtung erfolgt durch eine Schweißtechnik, insbesondere indem eine Wärmequelle, insbesondere ein Laserstrahl, auf die Quetschung gerichtet wird. Besonders vorteilhaft ist der Laserstrahl fokussiert auf einen Punkt der Quetschung gerichtet, während das Rohr um seine eigene Achse rotiert. Anschließend wird seitlich in der Rohrwand in der Nähe des Elektrodenschafts, z.B. durch einen einzigen Laserimpuls unter schrägem Einfall, die Füllbohrung geschaffen. Typisch handelt es sich dabei um ein 0,6 bis 0,8 mm großes Loch. Diese Technik ist sehr einfach und zuverlässig. Allerdings ist das Verschließen der Füllbohrung dann relativ aufwendig, da diese deutlich oberhalb des Schaftendes sitzt und deshalb eine größere Menge Metallot verwendet werden muß, um das Innenvolumen des Rohrs bis hin zur Füllbohrung aufzufüllen.
  • Eine Modifikation dieser Technik sieht vor, daß gleichzeitig mit dem Elektrodenschaft mittels einer Lehre ein parallel dazu angeordneter Platzhalter für die Bohrung in das Ende des Molybdänrohrs eingeführt wird. Nachdem das Rohr durch Erhitzen auf 400°C duktil gemacht worden ist, wird das Rohrende um den Elektrodenschaft und gleichzeitig um den Platzhalter für die Bohrung (z.B. ein Stift oder kurzes Rohrstück) herumgequetscht und der Schaft fixiert. Dann wird der Platzhalter entfernt, so daß die Bohrung entsteht. Beim Abdichten der Quetschung wird bei dieser Modifikation auf ein Drehen der Baueinheit verzichtet und nur ein Teil der Quetschung aufgeschmolzen, der von der Bohrung entfernt liegt. Bei dieser Technik kann ein Herstellschritt (separates Herstellen der Bohrung) eingespart werden. Die Bohrung befindet sich außerdem am Ende des Rohrs in der Nähe der Achse, so daß das spätere Verschließen nach dem Füllvorgang erheblich erleichtert wird. Zum einen kann die Bohrung besser mit dem Laserstrahl anvisiert werden, zum zweiten ist die Abdichtung zuverlässiger, weil das Metallot, das durch die Laser-Erwärmung schmilzt, unter dem Einfluß der Schwerkraft automatisch in die Füllbohrung hineinläuft und dort durch die Kapillarwirkung des nur 0,6 bis 0,8 mm großen Lochs zuverlässig gehalten wird. Außerdem ist nur eine geringe Menge Metallot, verglichen mit einem seitlichen Loch, nötig.
  • Bei einer dritten Variante kann das Rohrende selbst als Füllbohrung dienen; auf ein Quetschen wird verzichtet. In einer ersten Ausführungsform dieser Variante erfolgt die Anpassung des Durchmessers des Elektrodenschafts an den des Molybdänrohrs dadurch, daß das Elektrodenschaftende zurückgeschmolzen wird und dadurch verkugelt. Der Durchmesser des kugeligen Schaftendes, der durch die Länge der zurückgeschmolzenen Strecke des Schafts bestimmt ist, wird so gewählt, daß er dem Innendurchmesser des Rohrs in etwa angepaßt ist. Erst dann wird das verkugelte Schaftende in das Rohr eingeführt, mechanisch fixiert (durch Punktschweißen) und das Rohrende mit dem Schaft verschweißt und dadurch abgedichtet. Dies kann wiederum durch Laserschweißen erfolgen, indem ein fokussierter Laserstrahl auf das Rohrende gerichtet wird und die Baueinheit aus Schaft und Rohr um ihre Achse rotiert. Anschließend kann wieder eine seitliche Füllbohrung geschaffen werden, in dem z.B. mechanisch ein Loch erzeugt oder ein Laser von außen auf die Rohrwand in der Nähe des Rohrendes gerichtet wird. Diese Lösung schien ursprünglich daran zu scheitern, daß beim naheliegenden senkrechten Auftreffen des Lasers auf der Rohrwand -rechtwinklig zur Rohrachse und diese schneidend- der Ausschuß infolge gleichzeitiger Durchbohrung der hinteren Wand sehr hoch war. Das Verschließen einer derartigen Doppelbohrung wäre nicht wirtschaftlich. Statt dessen wird der Laser schräg auf die Rohrwand gerichtet, wodurch eine zweite Bohrung vermieden wird.
  • Man kann auch den Laser rechtwinklig zur Rohrachse, jedoch dazu seitlich versetzt, einfallen lassen und so einen Querschlitz schneiden.
  • In einer zweiten Ausführungsform dieser Variante wird der Elektrodenschaft zunächst an der Rohrinnenwand angeheftet, wobei eine leichte Verschiebung des Elektrodenschafts aus der Lampenachse bewußt in Kauf genommen wird. Die am Rohrende verbleibende Öffnung wird als Füllbohrung verwendet. Anschließend wird das Molybdänrohr einschließlich der Füllbohrung durch einen Füllstab verschlossen, der zweckmäßig eine Aussparung für den Elektrodenschaft besitzt. Der Füllstab wird am entladungsfernen Ende mit dem Rohr, wie bereits beschrieben, verbunden.
  • Diese Ausführungsform verknüpft die Vorteile der bisher beschriebenen Techniken in besonders vorteilhafter Weise miteinander, weil sowohl die Herstellung einer separaten Füllbohrung als auch das Quetschen des Rohrendes zum Halten des Elektrodenschafts auf elegante Art und Weise vermieden wird. Auch ein Verkugeln des Elektrodenschafts ist nicht notwendig.
  • Die beschriebenen Verfahren eignen sich auch für Niobrohre. Beim Quetschvorgang kann dabei jedoch auf ein vorheriges Erwärmen verzichtet werden.
  • Die Erfindung wird im folgenden anhand mehrerer Ausführungsbeispiele erläutert. Es zeigt
  • Figur 1
    eine Metallhalogenidentladungslampe, teilweise geschnitten
    Figur 2
    ein zweites Ausführungsbeispiel des Bereichs des Pumpendes der Lampe, teilweise im Schnitt
    Figur 3
    ein drittes Ausführungsbeispiel des Bereichs des Pumpendes der Lampe, teilweise im Schnitt
    Figur 4 und 5
    Ausführungsbeispiele für das Verschließen einer rohrförmigen Durchführung
    Figur 6 bis 8
    Ausführungsbeispiele für das Befestigen eines Elektrodenschafts an einer rohrförmigen Durchführung
    Figur 9
    ein Ausführungsbeispiel des Bereichs des Pumpendes einer Lampe mit Cermet-Stopfen.
  • In Figur 1 ist schematisch eine Metallhalogenidentladungslampe mit einer Leistung von 150 W dargestellt. Sie besteht aus einem eine Lampenachse definierenden zylindrischen Außenkolben 1 aus Quarzglas, der zweiseitig gequetscht 2 und gesockelt 3 ist. Das axial angeordnete Entladungsgefäß 4 aus Al₂O₃-Keramik ist in der Mitte 5 ausgebaucht und besitzt zylindrische Enden 6a, 6b. Es ist mittels zweier Stromzuführungen 7, die mit den Sockelteilen 3 über Folien 8 verbunden sind,im Außenkolben 1 gehaltert. Die Stromzuführungen 7 aus Molybdän sind mit stiftförmigen Durchführungen 9 verschweißt, die jeweils in einem keramischen Endstopfen 10 des Entladungsgefäßes direkt, also glaslotfrei, eingesintert sind.
  • Die beiden Durchführungen 9 aus Niob (oder auch Molybdän) haltern entladungsseitig jeweils eine Elektrode 11, bestehend aus einem Elektrodenschaft 12 aus Wolfram und einer am entladungsseitigen Ende ausgebildeten kugelförmigen Spitze 13. Die Füllung des Entladungsgefäßes besteht neben einem inerten Zündgas, z.B. Argon, aus Quecksilber und Zusätzen an Metallhalogeniden.
  • In dieser Ausführungsform reicht der Elektrodenschaft 12 bis in die axiale Bohrung im Endstopfen 10 hinein, weil die stiftförmige Durchführung 9 in der Bohrung entladungsseitig vertieft eingesetzt ist. Andererseits steht der Stift 9 am äußeren Ende des Endstopfens über und ist direkt mit der Stromzuführung 7 verbunden.
  • Im Gegensatz zum Blindende 6b ist in der Nähe des Pumpendes 6a eine Füllbohrung 15 angebracht, die nach dem Füllen durch ein Glaslot oder eine Schmelzkeramik 20 verschlossen wird. Eine Möglichkeit zum Erwärmen der zusätzlichen Füllbohrung 15, die mit einer Schmelzkeramikmasse versehen ist, ist die Erhitzung mittels eines in einer speziellen Optik aufgeweiteten Laserstrahls oder auch mittels eines Gasbrenners. Dabei schmilzt die Masse und wird in der als Kapillare wirkenden Füllbohrung festgehalten und erkaltet dort, wodurch die Abdichtung vervollständigt ist.
  • In Figur 2 ist der Bereich des Pumpendes 6a des Entladungsgefäßes im Detail für ein zweites Ausführungsbeispiel gezeigt. Das Entladungsgefäß hat an seinen beiden Enden eine Wandungsdicke von 1,2 mm. Der zylindrische Stopfen 10 aus Al₂O₃-Keramik, der in das Ende 6a des Entladungsgefäßes eingesetzt ist, hat einen Außendurchmesser von 3,3 mm bei einer Höhe von 6 mm. In die axiale Bohrung 14 des Stopfens ist als Durchführung ein Niobstift 9 mit einer Länge von 12 mm und einem Durchmesser von 0,6 mm direkt eingesintert. Der Elektrodenschaft 12 (Durchmesser 0,55 mm) ist an den Niobstift 9 stumpf angeschweißt.
  • Der äußere Abschnitt 16 des Niobstifts ist von einer keramischen Hülse 18 eng umgeben. Zur besseren Halterung ist die Bohrung 14 am entladungsfernen Ende 17 des Endstopfes aufgeweitet. In diesen vergrößerten Bohrungsabschnitt 19 ist die Hülse 18 eingesetzt und wird dadurch fixiert, daß an dieser Stelle ein Glaslot 20 hinzugefügt ist. Die Hülse beugt der Vergrauung vor und stabilisiert den Niobstift, der durch das Sintern versprödet.
  • Die Füllbohrung 24 ist in diesem Fall parallel zur Lampenachse, aber seitlich dazu versetzt, durch den Stopfen 10 hindurchgeführt. Sie wird, wie schon erläutert, mit einer hochschmelzenden Keramik 20 abgedichtet, wenn der Evakuierungs- und Füllvorgang abgeschlossen ist. Das Einschmelzen beim Befestigen der Hülse 18 und das Abdichten der Füllbohrung 24 kann vorteilhaft in einem Schritt erfolgen. Zur Reduzierung der Schmelzkeramikmenge in der Füllbohrung 24 kann ein Al₂O₃ Füllstab in die Füllbohrung 24 eingebracht werden.
  • Eine besonders bevorzugte Ausführungsform zeigt Figur 3. Der Unterschied zu Figur 2 besteht darin, daß der Niobstift 21, der eine Länge von 5 mm bei einem Durchmesser von 0,8 mm besitzt, in der Öffnung 14 beidseitig versenkt angeordnet ist, so daß auf eine Hülse an sich verzichtet werden kann. Der Elektrodenschaft 12 aus Wolframdraht besitzt einen Durchmesser von 0,75 mm und eine Länge von 7 mm. Er reicht 0,5 mm tief in die Öffnung 14 hinein. An der entladungsfernen Seite 17 des Endstopfens 10 ist ebenfalls ein Wolframdraht als Verbindungsteil 22 zur äußeren Stromzuführung am Stift 21 stumpf angeschweißt. Das Verbindungsteil 22 besitzt ebenfalls einen Drahtdurchmesser von 0,75 mm; es hat die Länge von 11 mm. Auch die Nahtstelle 23 zwischen Verbindungsteil und Durchführung ist etwa 0,5 mm tief in der axialen Öffnung 14 des Endstopfens angeordnet. Da ein Kontakt zwischen dem Wolframstift 22 und dem Glaslot 20 in der Füllbohrung 24 aufgrund der unterschiedlichen Ausdehnungskoeffizienten vermieden werden sollte, was sonst zu Sprüngen in der Keramik führen könnte, ist auch hier eine Hülse 18 aus Niob (oder auch aus Keramik), die den Wolframstift 22 vorteilhaft umgibt, da diese beiden Materialien im Gegensatz zu Wolfram oder Molybdän einen an die Schmelzkeramik 20 angepaßten Ausdehnungskoeffizienten besitzen. Statt der Hülse oder zusätzlich dazu kann als Trennmittel auch ein am Stopfen 10 angeformter, um den Wolframstift 22 umlaufender Kragen 25 (gestrichelt eingezeichnet) verwendet werden.
  • Ein weiteres Ausführungsbeispiel ist in Figur 4a und 4b gezeigt. Am Pumpende 6a ist in den Stopfen 10 ein dünnwandiges Molybdänrohr 26 direkt eingesintert. An seinem entladungsseitigen Ende ist ein Wolframstift als Elektrodenschaft 27 mit Wendelteil 28 eingequetscht und gasdicht verschweißt. In der Nähe des Elektrodenschafts 27 ist in der Seitenwand des Rohrs die Füllbohrung 29 angebracht. Sie wird nach dem Füllvorgang dadurch verschlossen, daß ein metallischer Lotpreßling 42 (z.B. Titanlot oder eine Mischung aus Ti und Mo oder Zr/Mo) oder ein Drahtabschnitt aus Lotmaterial (z.B. Titan, Zr) das einen Schmelzpunkt von mehr als 1700°C besitzt, in das Rohr 26 eingefüllt wird. Ein feinfokussierter Laserstrahl (Nd-YAG) 30 wird in der Rohrachse in das Rohr gelenkt und erhitzt das Metallot 42 (Figur 4a). Dieses schmilzt und dichtet die als Kapillare wirkende Füllbohrung 29′ ab (Figur 4b). Ein derartiges Verfahren ist besonders vorteilhaft, da das Schmelzen des Lots durch eine gezielte kurzzeitige Erwärmung erreicht wird, so daß bei diesem Ausführungsbeispiel während des Verschliessens des Pumpendes 6a auf das Kühlen des Blindendes, in dessen Nähe sich die Füllungsbestandteile befinden, vollständig verzichtet werden kann und daher die Baulänge derartiger Entladungsgefäße besonders kurz gewählt werden kann.
  • Ein zusätzliches Ausführungsbeispiel ist in Figur 5 gezeigt. Es entspricht im wesentlichen der Anordnung gemäß Figur 4, indem auch hier am Pumpende 6a ein dünnwandiges Molybdänrohr 33 in den Stopfen 10 direkt eingesintert ist und ein Wolframstift als Elektrodenschaft 32 am Rohrende befestigt ist. Die Füllbohrung 29 in der Seitenwand des Rohrs wird mechanisch verschlossen, indem ein dem Innendurchmesser des Rohrs 26 angepaßter Füllstab 37 nach dem Evakuieren und Füllen des Entladungsgefäßes in das Rohr 32 eingeführt wird und somit das Totvolumen im Innern des Rohrs ausfüllt und dabei auch die Füllbohrung abdeckt. Im Fall eines kugelförmig verdickten Endes 34 des Elektrodenschafts kann zur besseren Anpassung das dem Schaft zugewandte Ende eine konkave Wölbung 38 besitzen.
  • Der Füllstab 37 aus Molybdän oder Wolfram steht am äußeren Ende des Rohrs 33 über und wird dort mit dem Rohrende gasdicht verschweißt, z.B. mittels Laserschweißen 46 oder mittels eines Gasbrenners. Auch ein bündig mit dem Rohrende abschließender oder darin etwas versenkter Füllstab kann verwendet werden.
  • In Figur 6a bis 6g ist eine erste Möglichkeit dargestellt, eine Elektrode in einem Molybdänrohr zu befestigen. Das Molybdänrohr 26 besitzt beispielsweise einen Innendurchmesser von 1,3 mm und eine Wandstärke von 0,1 mm, während die Elektrode einen Wolframschaft 27 mit einem Durchmesser von 0,5 mm aufweist. Zunächst wird der Elektrodenschaft 27 zentriert in ein Ende des Molybdänrohrs 26 etwa 1 mm tief eingeführt (Figur 6a). Anschließend wird das Rohr 26 durch Wärmezufuhr auf 400°C erhitzt (Figur 6b), so daß das an sich spröde Material duktil wird. Dies geschieht besonders vorteilhaft dadurch, daß zwei Quetschbacken 44 an das Rohrende 45 herangeführt werden (Pfeil), an die Spannung 43 angelegt wird, so daß das Rohrende 45 durch den bei der Kontaktierung (gestrichelt dargestellt) der Quetschbacken 44 an dem Rohrende 45 bewirkten Stromdurchgang erhitzt wird. Erst dann wird das erhitzte Rohrende mittels der Quetschbacken 44 um den Elektrodenschaft 27 herum gequetscht (Figur 6c), wodurch ein länglicher Querschnitt im Bereich des Rohrendes 45 entsteht (Figur 6d). Der Schaft 27 wird nun durch Punktschweißen im Rohr fixiert (angeheftet). Anschließend wird ein Laserstrahl 46 auf das gequetschte Rohrende gerichtet. Unter ständigem Drehen des Rohrs (Pfeil) wird eine Schweißverbindung erzielt, die eine gasdichte Abdichtung schafft (Figur 6f). Abschließend wird ein Laser 46′ schräg auf das Rohr 26 in der Nähe der Quetschung gerichtet, wobei Rohrachse und Laserstrahl in einer Ebene liegen, und durch einen einzigen Puls die Füllbohrung 24 geschaffen (Figur 6g).
  • In einer etwas anderen Ausführungsform wird gleichzeitig mit dem Elektrodenschaft (0,5 mm Durchmesser) in einer Lehre ein parallel dazu angeordneter Stift mit 0,6 mm Durchmesser als Platzhalter 30 für die Füllbohrung in das Rohrende eingeführt (in Figur 6b gestrichelt eingezeichnet). Nach dem Erhitzen und Quetschen des Rohrs (Figur 6b, 6c) wird der Platzhalter 30 wieder entfernt, so daß neben dem -hier zweckmäßig außerhalb der Rohrachse angebrachten- Elektrodenschaft 27 eine Öffnung am Ende 45 des Rohrs 26 verbleibt, die als Füllbohrung 31 dient (Figur 6e). In der Quetschung wird der Elektrodenschaft 27 angeheftet, ohne daß die Füllbohrung 31 verschlossen wird. Das Anheften kann auch bereits vor dem Entfernen des Platzhalters erfolgen. Der Verfahrensschritt gemäß Figur 6g entfällt in dieser Variante. Auf ein sofortiges Verschweißen wird verzichtet. Statt dessen erfolgt die endgültige Abdichtung nach dem Füllen entweder durch ein Metallot oder durch einen Füllstab (Figur 4 oder 5).
  • Eine weitere Möglichkeit, eine Elektrode in einem Molybdänrohr zu befestigen, wird anhand von Figur 7a bis 7c erläutert. Zunächst wird (Figur 7a) der Elektrodenschaft 32, dessen Durchmesser wieder erheblich kleiner als der Innendurchmesser des Molybdänrohrs 33 ist, an einem Ende durch Wärmezufuhr so weit zurückgeschmolzen, daß ein verkugeltes Ende 34 entsteht, dessen Außendurchmesser dem Innendurchmesser des Molybdänrohrs 33 angepaßt ist. Die Länge des zurückgeschmolzenen Schaftabschnitts 35 bestimmt den Durchmesser des verkugelten Endes 34. Dann wird das verkugelte Ende 34 in das Rohrende eingeführt (Pfeil) und dort angeheftet (z.B. durch Laser- oder Punktschweißen). Das Rohrende 45 kann nun wieder, falls gewünscht, abgedichtet werden, z.B. durch Laserschweißen 46, wobei vorteilhafterweise das Rohr 33 um seine Achse gemäß Pfeilrichtung rotiert (Figur 7b). Abschließend wird die Füllbohrung 36′ hergestellt, indem ein Laser 46′ rechtwinklig zur Rohrachse, jedoch seitlich dazu versetzt, auf das Rohrende 45 kurz hinter der Schweißstelle gerichtet wird und mit einem einzigen Laserpuls ein etwa 0,7 mm breiter Querschlitz 36′ in der Rohrwand erzeugt wird (Figur 7c).
  • Eine besonders einfache Möglichkeit, eine Elektrode in einem Molybdänrohr zu befestigen, zeigt Figur 8a und 8b. Zunächst wird eine Elektrode 11, mit einem Schaftdurchmesser von 0,5 mm, in das Rohr 26 etwa 0,8 mm tief eingeführt und seitlich am Ende 45 des Rohrs 26, z.B. mittels Laserstrahl 46, angeheftet (in Figur 8a gestrichelt angedeutet). Das Rohr 26 hat einen Innendurchmesser von etwa 1,2 mm und eine Wandstärke von typisch 0,2 mm. Nach dem Befestigen des Rohrs 26 im Stopfen 10 und dem Einsintern des gesamten Elektrodensystems im Pumpende 6a des Entladungsgefäßes zusammen mit dem Verschließen des Blindendes erfolgt das Füllen durch die am Rohrende 45 verbleibende Füllöffnung 31′ (Figur 8a).
  • Nach dem Füllen wird, ähnlich wie in Figur 5, ein Füllstab 37′ aus Molybdän in das Rohr 26 eingesetzt (Figur 8b), der eine Aussparung 47 für den Elektrodenschaft 27 besitzt. Das Füllrohr 37′ ist etwas kürzer als das Rohr 26, so daß er sehr einfach am entladungsfernen Rohrende, z.B. durch axialen Lasereinfall 46˝, verschweißt werden kann.
  • Bei dieser Ausführungsform ist es vorteilhaft, wenn am Blindende die Elektrode spiegelsymmetrisch zum Pumpende versetzt an der Durchführung befestigt ist.
  • Die Erfindung ist nicht auf die gezeigten Ausführungsformen beschränkt. Insbesondere sind Merkmale einzelner Ausführungsbeispiele miteinander kombinierbar. So kann ein Füllstab bei allen Ausführungsbeispielen verwendet werden, also auch bei den mit mit einer Quetschung verschlossenen Rohren. In diesem Fall entfällt der Schweißungsschritt am gequetschten Rohrende und außerdem der Schritt des endgültigen Abdichtens am gequetschten Rohrende mittels Metallot. Dies ist möglich, weil beim Füllen keine Notwendigkeit besteht, daß nur die Füllbohrung als Öffnung vorhanden ist; eine Undichtigkeit am gequetschten Rohrende zu diesem Zeitpunkt ist dafür eher sogar noch vorteilhaft. Die Füllstabtechnik hat den wesentlichen Vorteil, daß die Schweißung am Rohrende hinten erfolgt. Diese Stelle ist zum einen leicht zugänglich, zum anderen ist sie erheblich weniger temperaturbelastet als das vordere Rohrende, das der Entladung zugewandt ist. Zudem ist eine Schweißverbindung zuverlässiger als eine Lötverbindung.
  • Außerdem kann beispielsweise das Pumpende mit einer rohrförmigen Durchführung ausgestattet sein, während das Blindende eine stiftförmige Durchführung besitzt. Möglich ist auch die Verwendung eines Cermet-Stopfens, das ist ein keramischer Stopfen, der eine geringe Beimengung eines Metalls enthält, am Blindende.
  • Im übrigen ist das erfindungsgemäße Herstellverfahren auch für einen Cermet-Stopfen 39 am Pumpende 6a geeignet. Dabei kann bekanntlich (z.B. EP-PA 272 930) auf eine separate Durchführung verzichtet werden, da das Cermet selbst leitend ist (Figur 9). Der in der Lampenachse ausgerichtete Elektrodenschaft 40 sitzt direkt im die Aufgabe der Durchführung wahrnehmenden Cermet-Stopfen 39, während am äußeren Ende eine Stromzuführung 41 befestigt ist.
  • Die Füllbohrung 24 ist, ähnlich wie in Figur 2, parallel zur Lampenachse im Cermet-Stopfen 39 angeordnet. Sie ist mit Glaslot 20 verschlossen. Das Herstellverfahren entspricht den im Zusammenhang mit Figur 2 diskutierten Schritten.

Claims (22)

  1. Verfahren zum Herstellen einer Metallhalogenid-Entladungslampe, die ein keramisches Entladungsgefäß (4) mit zwei Enden (6a, 6b) besitzt, das ein Entladungsvolumen umschließt, wobei die Enden mit Mitteln zum Abdichten verschlossen sind, und wobei zumindest an einem ersten Ende (6a) dieses Mittel eine elektrisch-leitende Durchführung enthält, die eine Elektrode (11) im Entladungsvolumen mit einer äußeren elektrischen Zuleitung verbindet, gekennzeichnet durch folgende Schritte:
    a) Herstellen von Elektrodensystemen, bestehend aus einer Elektrode und einem Mittel zum Abdichten einschließlich einer Durchführung, sowie evtl. einer äußeren Zuleitung
    b) Bestücken der beiden Enden (6a, 6b) mit Elektrodensystemen
    c) Abdichten der beiden Enden durch Erwärmen, wobei das zweite Ende (6b) als Blindende vollständig abgedichtet wird, während in der Nähe des ersten Endes (6a), das als Pumpende dient, eine Füllbohrung (15; 24; 29; 31; 31′; 36) offenbleibt, die das Entladungsvolumen mit dem Außenraum verbindet
    d) Evakuieren und Füllen des Entladungsvolumens durch die Füllbohrung (15; 24; 29; 31; 31′; 36), wobei beim Füllvorgang unter anderem ein fester, metallhalogenidhaltiger Körper in das Entladungsvolumen eingebracht wird
    e) Verschließen der Füllbohrung (15; 24; 29; 31; 31′; 36) und gasdichtes Abdichten des Entladungsvolumens.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Füllbohrung (15) in der Seitenwand des Entladungsgefäßes (4) in der Nähe des Pumpendes (6a) angeordnet ist.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß sich die Füllbohrung (24; 29; 31; 31′; 36) im Mittel zum Abdichten befindet.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Abdichtmittel ein elektrisch-leitender Stopfen (39) ist, der gleichzeitig die Aufgabe einer Durchführung wahrnimmt.
  5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Durchführung ein separates Teil ist, das aus niob- oder molybdänähnlichem Metall besteht, und das als Rohr (26; 33) oder Stift (9; 21) ausgebildet ist, während das Abdichtmittel ein die Durchführung umschließender keramischer Stopfen (10) ist.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß sich die Füllbohrung im keramischen Stopfen (10) befindet.
  7. Verfahren nach Anspruch 2 oder 4, dadurch gekennzeichnet, daß beim Verfahrensschritt e) der Bereich der Bohrung großflächig und langsam erwärmt wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Erwärmung mittels eines aufgeweiteten Laserstrahls erfolgt.
  9. Verfahren nach Anspruch 2, 4 oder 6, dadurch gekennzeichnet, daß die Füllbohrung (15; 24) durch eine hochschmelzende Keramik- oder Glaslotmasse (20) in zunächst festem Zustand abgedeckt wird, die beim Erwärmen schmilzt und die als Kapillare wirkende Füllbohrung abdichtet.
  10. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Durchführung rohrförmig ist (26; 33), wobei die Füllbohrung (31; 31′; 36) in einem dem Entladungsvolumen zugewandten Teil der Durchführung angeordnet ist.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Verfahrensschritt e) folgendermaßen abläuft:
    - Einfüllen eines hochschmelzenden metallischen Lots (42) in die rohrförmige Durchführung (26; 33)
    - kurzzeitige lokale Erhitzung des Lots (42), so daß das Lot schmilzt und die Füllbohrung (31; 36) abdichtet.
  12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Verfahrensschritt e) folgendermaßen abläuft:
       - kurzzeitige lokale Erhitzung der rohrförmigen Durchführung (26; 33) im Bereich der Füllbohrung, so daß das Rohrmaterial selbst schmilzt und die Füllbohrung abdichtet.
  13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß die kurzzeitige lokale Erhitzung mit Hilfe eines fokussierten Laserstrahls (46) erfolgt, der vom äußeren, noch offenen Ende entlang der Rohrachse in das Rohr (26; 33) einfällt.
  14. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß sich die Füllbohrung (24; 29; 31; 31′) entweder in der Nähe des Rohrendes (45) in der Seitenwand des Rohrs befindet oder durch einen noch offenen Teil (31; 31′) des Rohrendes (45) gebildet wird.
  15. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der Verfahrensschritt e) folgendermaßen abläuft:
    - Einführen eines dem Innendurchmesser der rohrförmigen Durchführung (26) angepaßten Füllstabes (37; 37′) in das Rohr (26), wobei der Füllstab (37; 37′) die Füllbohrung (29; 31′) abdeckt
    - gasdichtes Abdichten durch Verbinden des äußeren Rohrendes mit dem Füllstab (37, 37′).
  16. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß beim Verfahrensschritt a) die Elektrode (11) durch folgende Schritte an der rohrförmigen Durchführung (26; 33) befestigt wird:
    i)   Bereitstellen und Positionieren eines Rohres (26; 33) und eines stabförmigen Elektrodenschafts (27; 32) aus hochschmelzendem Metall, wobei der Durchmesser des Schafts (27; 32) erheblich kleiner als der Innendurchmesser des Rohrs (26; 33) ist
    ii)   Einführen des Elektrodenschaftes (27; 32) in ein offenes Ende (45) des Rohrs (26; 33)
    iii)   Anheften des Elektrodenschafts (33) am Rohrende (45), insbesondere durch Punktschweißen oder Laserschweißen
    iv)   Herstellen der Füllbohrung (24; 29; 31; 31′; 36) falls noch erforderlich.
  17. Verfahren nach Anspruch 16, gekennzeichnet durch folgende Modifizierung:
    zu i)   die Positionierung erfolgt so, daß der Elektrodenschaft (27) seitlich zur Rohrachse verschoben angeordnet ist
    zu iii)   der Elektrodenschaft (27) wird direkt an der Innenwand des Rohrs (26) angeheftet
    zu iv)   die Füllbohrung (31; 31′) wird von einem nach Einfügen des Schafts verbleibenden Teil des offenen Endes (45) des Rohrs (26) gebildet.
  18. Verfahren nach Anspruch 17, gekennzeichnet durch folgende Modifizierung:
    zu ii)   - ein vorher parallel zum Elektrodenschaft angeordneter Platzhalter (30) für die Füllbohrung (31) wird gleichzeitig mit dem Schaft (27) in das Rohrende (45) eingeführt
    - Quetschen des Rohrendes (45) um den Schaft (27) und den Platzhalter (30) herum
    zu iv)   - der Platzhalter (30) wird vor oder nach dem Schritt iii) aus dem Rohrende (45) entfernt und beläßt eine Füllöffnung (31).
  19. Verfahren nach Anspruch 16, gekennzeichnet durch folgende Modifizierung:
    zu i)   die Positionierung erfolgt so, daß der Elektrodenschaft (27; 32) zentriert zur Rohrachse angeordnet ist
    zu iii)   - vor dem Anheften erfolgt ein Verfahrensschritt x):
    Verformen eines der beiden Anheftpartner Rohrende - Elektrodenschaft zum Zwecke der losen Kontaktierung zwischen diesen beiden Anheftpartnern
    - nach dem Anheften wird evtl. das Rohr (45) durch Wärmezufuhr, insbesondere mittels einer Schweißverbindung, gasdicht verschlossen
    zu iv)   die Füllbohrung (24; 29; 36′) wird in der Seitenwand des Rohrs in der Nähe des Rohrendes (45) geschaffen.
  20. Verfahren nach Anspruch 19, gekennzeichnet durch folgende Modifizierung:
    zu x)   das Verformen erfolgt durch Verkugeln eines Endes (35) des Elektrodenschafts (32) durch Zurückschmelzen, so daß der Durchmesser des verkugelten Endes (34) dem Innendurchmesser des Rohres (33) angepaßt ist, wobei der Verfahrensschritt x) noch vor dem Verfahrensschritt ii) erfolgt.
  21. Verfahren nach Anspruch 19, gekennzeichnet durch folgende Modifizierung:
    zu x)   das Verformen erfolgt durch Quetschen des Rohrendes (45) um den Elektrodenschaft (27) herum mittels Quetschmittel (44).
  22. Verfahren nach den Ansprüchen 18, 19 oder 21, dadurch gekennzeichnet, daß die rohrförmige Durchführung (26; 33) aus molybdänähnlichem Metall besteht, wobei vor allen Verformungsschritten (Quetschen) des Rohrs (26; 33) dieses zunächst auf 400°C erhitzt wird.
EP92909171A 1991-10-11 1992-05-06 Verfahren zum herstellen einer metallhalogenid-entladungslampe mit keramischem entladungsgefäss Expired - Lifetime EP0607149B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE9112690U DE9112690U1 (de) 1991-10-11 1991-10-11 Hochdruckentladungslampe
DE9112690U 1991-10-11
PCT/DE1992/000372 WO1993007638A1 (de) 1991-10-11 1992-05-06 Verfahren zum herstellen einer metallhalogenid-entladungslampe mit keramischen entladungsgefäss

Publications (2)

Publication Number Publication Date
EP0607149A1 EP0607149A1 (de) 1994-07-27
EP0607149B1 true EP0607149B1 (de) 1995-10-11

Family

ID=6872172

Family Applications (2)

Application Number Title Priority Date Filing Date
EP92909171A Expired - Lifetime EP0607149B1 (de) 1991-10-11 1992-05-06 Verfahren zum herstellen einer metallhalogenid-entladungslampe mit keramischem entladungsgefäss
EP92116463A Withdrawn EP0536609A1 (de) 1991-10-11 1992-09-25 Hochdruckentladungslampe

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP92116463A Withdrawn EP0536609A1 (de) 1991-10-11 1992-09-25 Hochdruckentladungslampe

Country Status (9)

Country Link
US (2) US5484315A (de)
EP (2) EP0607149B1 (de)
JP (2) JP3150341B2 (de)
KR (1) KR100255426B1 (de)
CN (1) CN1073801A (de)
CA (1) CA2117260A1 (de)
DE (2) DE9112690U1 (de)
HU (2) HU214232B (de)
WO (1) WO1993007638A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018262A1 (de) * 2007-04-13 2008-10-16 Technische Universität Dresden Verfahren zum Verschließen von keramischen Kapillaren an Behältern

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9112690U1 (de) * 1991-10-11 1991-12-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe
DE9206727U1 (de) * 1992-05-18 1992-07-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe
DE4242122A1 (de) * 1992-12-14 1994-06-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer vakuumdichten Abdichtung zwischen einem keramischen und einem metallischen Partner, insbesondere zur Anwendung bei der Herstellung eines Entladungsgefäßes für eine Lampe, sowie damit hergestellte Entladungsgefäße und Lampen
DE69324790T2 (de) * 1993-02-05 1999-10-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Keramisches Entladungsgefäss für Hochdruckentladungslampe und Herstellungsverfahren derselben und damit verbundene Dichtungsmaterialien
DE4334074A1 (de) * 1993-10-06 1995-04-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidentladungslampe
JP3507179B2 (ja) * 1995-01-13 2004-03-15 日本碍子株式会社 高圧放電灯
US5592048A (en) * 1995-08-18 1997-01-07 Osram Sylvania Inc. Arc tube electrodeless high pressure sodium lamp
US5866982A (en) * 1996-01-29 1999-02-02 General Electric Company Arctube for high pressure discharge lamp
US6020685A (en) * 1997-06-27 2000-02-01 Osram Sylvania Inc. Lamp with radially graded cermet feedthrough assembly
DE19727429A1 (de) 1997-06-27 1999-01-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
DE19727428A1 (de) 1997-06-27 1999-01-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
US5861714A (en) * 1997-06-27 1999-01-19 Osram Sylvania Inc. Ceramic envelope device, lamp with such a device, and method of manufacture of such devices
EP0928659B1 (de) * 1997-12-19 2002-04-17 Esab AB Schweissvorrichtung
US6586881B1 (en) 1998-05-27 2003-07-01 Ngk Insulators, Ltd. Light emitting container for high-pressure discharge lamp and manufacturing method thereof
AU745886B2 (en) * 1999-12-20 2002-04-11 Toshiba Lighting & Technology Corporation A high-pressure metal halide A.C. discharge lamp and a lighting apparatus using the lamp
US6705914B2 (en) * 2000-04-18 2004-03-16 Matsushita Electric Industrial Co., Ltd. Method of forming spherical electrode surface for high intensity discharge lamp
EP1332514B1 (de) * 2000-11-06 2009-12-23 Koninklijke Philips Electronics N.V. Hochdruckentladungslampe
US6528945B2 (en) 2001-02-02 2003-03-04 Matsushita Research And Development Laboratories Inc Seal for ceramic metal halide discharge lamp
US6566814B2 (en) * 2001-04-24 2003-05-20 Osram Sylvania Inc. Induction sealed high pressure lamp bulb
US6805603B2 (en) * 2001-08-09 2004-10-19 Matsushita Electric Industrial Co., Ltd. Electrode, manufacturing method thereof, and metal vapor discharge lamp
US6873108B2 (en) 2001-09-14 2005-03-29 Osram Sylvania Inc. Monolithic seal for a sapphire metal halide lamp
US6861808B2 (en) * 2002-03-27 2005-03-01 Matsushita Electric Industrial Co., Ltd. Metal vapor discharge lamp
KR20030079388A (ko) * 2002-04-04 2003-10-10 유니램 주식회사 교류회로 방전등에서의 방전전극 구조
US6856091B2 (en) * 2002-06-24 2005-02-15 Matsushita Electric Industrial Co., Ltd. Seal for ceramic metal halide discharge lamp chamber
US6984938B2 (en) * 2002-08-30 2006-01-10 Matsushita Electric Industrial Co., Ltd Metal vapor discharge lamp and lighting apparatus capable of stable maintenance of characteristics
CN100576421C (zh) * 2002-08-30 2009-12-30 松下电器产业株式会社 能够保持稳定特性的金属蒸汽放电灯和照明设备
JP2004103461A (ja) * 2002-09-11 2004-04-02 Koito Mfg Co Ltd 放電バルブ用アークチューブ
DE10256389A1 (de) * 2002-12-02 2004-06-09 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Metallhalogenidlampe mit keramischem Entladungsgefäß
US7215081B2 (en) * 2002-12-18 2007-05-08 General Electric Company HID lamp having material free dosing tube seal
US7839089B2 (en) * 2002-12-18 2010-11-23 General Electric Company Hermetical lamp sealing techniques and lamp having uniquely sealed components
EP1590824A2 (de) * 2003-01-27 2005-11-02 Koninklijke Philips Electronics N.V. Verfahren zum füllen einer lampe mit gas und gasgefüllte lampe
DE102004027997A1 (de) * 2004-06-09 2005-12-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Verfahren und Vorrichtung zum Herstellen einer Lampe
US20060001346A1 (en) * 2004-06-30 2006-01-05 Vartuli James S System and method for design of projector lamp
KR20070033457A (ko) * 2004-07-06 2007-03-26 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 전기 방전 램프 및 그 제조 방법
DE102005038551B3 (de) * 2005-08-12 2007-04-05 W.C. Heraeus Gmbh Draht und Gestell für einseitig gesockelte Lampen auf Basis von Niob oder Tantal sowie Herstellungsverfahren und Verwendung
DE102005046483A1 (de) * 2005-09-28 2007-03-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Entladungslampe
JP4846392B2 (ja) * 2006-02-28 2011-12-28 株式会社東芝 水中補修溶接方法
WO2008078228A1 (en) 2006-12-20 2008-07-03 Koninklijke Philips Electronics N.V. Ceramic burner for ceramic metal halide lamp
DE102007046899B3 (de) * 2007-09-28 2009-02-12 W.C. Heraeus Gmbh Stromdurchführung durch Keramikbrenner in Halogen-Metalldampflampen

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE272930C (de) *
NL45530C (de) * 1936-04-27
US3300037A (en) * 1961-07-07 1967-01-24 Gen Electric Rupturable containers
US3363133A (en) * 1966-02-28 1968-01-09 Sylvania Electric Prod Electric discharge device having polycrystalline alumina end caps
BE795680A (fr) * 1972-02-21 1973-08-20 Philips Nv Lampe a decharge a haute pression, munie d'un conducteur de traversee metallique
GB1419099A (en) * 1972-08-11 1975-12-24 Thorn Electrical Ind Ltd Manufacturing electric devices having sealed envelopes
NL174682C (nl) * 1974-11-14 1985-01-16 Philips Nv Elektrische ontladingslamp.
GB1465212A (en) * 1975-05-12 1977-02-23 Gen Electric Electric discharge lamps
US4065691A (en) * 1976-12-06 1977-12-27 General Electric Company Ceramic lamp having electrodes supported by crimped tubular inlead
US4208605A (en) * 1977-11-14 1980-06-17 General Electric Company Alumina, calcia, baria sealing composition optionally modified with B2 3
GB2047227B (en) * 1979-04-02 1983-05-25 Gen Electric Alumina calcia and baria sealing composition
HU178836B (en) * 1980-02-11 1982-07-28 Egyesuelt Izzzolampa Es Villam Electric discharge lamp of ceramic bulb
US4342938A (en) * 1980-03-31 1982-08-03 General Electric Company Universal burning ceramic lamp
US4545799A (en) * 1983-09-06 1985-10-08 Gte Laboratories Incorporated Method of making direct seal between niobium and ceramics
JPS6079639A (ja) * 1983-09-19 1985-05-07 Mitsubishi Electric Corp 高圧金属蒸気放電灯の製造方法
JPS6072137A (ja) * 1983-09-28 1985-04-24 Toshiba Corp 発光管の製造方法
JPS60115145A (ja) * 1983-11-25 1985-06-21 Mitsubishi Electric Corp 高圧放電灯
US4560357A (en) * 1984-06-18 1985-12-24 Gte Products Corporation Method for sealing arc discharge lamps
JPS62100929A (ja) * 1985-10-28 1987-05-11 Toshiba Corp セラミツク放電灯の製造方法
JPS62234841A (ja) * 1986-04-04 1987-10-15 Iwasaki Electric Co Ltd 高演色形高圧ナトリウムランプの製造方法
JPH0682545B2 (ja) * 1986-12-24 1994-10-19 日本碍子株式会社 高圧金属蒸気放電灯用発光管
HU200031B (en) * 1988-03-28 1990-03-28 Tungsram Reszvenytarsasag High-pressure discharge lamp
US5207607A (en) * 1990-04-11 1993-05-04 Mitsubishi Denki Kabushiki Kaisha Plasma display panel and a process for producing the same
DE9012200U1 (de) * 1990-08-24 1991-12-19 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe
DE4037721C2 (de) * 1990-11-27 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Verfahren zur Herstellung einer Natriumhochdrucklampe sowie dafür geeignete Vorrichtung
US5098326A (en) * 1990-12-13 1992-03-24 General Electric Company Method for applying a protective coating to a high-intensity metal halide discharge lamp
US5404078A (en) * 1991-08-20 1995-04-04 Patent-Treuhand-Gesellschaft Fur Elektrische Gluhlampen Mbh High-pressure discharge lamp and method of manufacture
DE9112690U1 (de) * 1991-10-11 1991-12-05 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018262A1 (de) * 2007-04-13 2008-10-16 Technische Universität Dresden Verfahren zum Verschließen von keramischen Kapillaren an Behältern
DE102007018262B4 (de) * 2007-04-13 2010-04-08 Technische Universität Dresden Verfahren zum Verschließen von keramischen Kapillaren an Behältern mittels Laser

Also Published As

Publication number Publication date
JPH0744253U (ja) 1995-11-07
JP3150341B2 (ja) 2001-03-26
KR100255426B1 (ko) 2000-05-01
HU64U (en) 1993-01-28
HU9401009D0 (en) 1994-07-28
EP0607149A1 (de) 1994-07-27
CA2117260A1 (en) 1993-04-15
DE9112690U1 (de) 1991-12-05
CN1073801A (zh) 1993-06-30
EP0536609A1 (de) 1993-04-14
US5484315A (en) 1996-01-16
HUT66139A (en) 1994-09-28
HU214232B (hu) 1998-03-02
HU9200239V0 (en) 1992-11-28
JPH06511592A (ja) 1994-12-22
WO1993007638A1 (de) 1993-04-15
US5352952A (en) 1994-10-04
DE59204013D1 (de) 1995-11-16

Similar Documents

Publication Publication Date Title
EP0607149B1 (de) Verfahren zum herstellen einer metallhalogenid-entladungslampe mit keramischem entladungsgefäss
EP0602530B1 (de) Verfahren zur Herstellung einer vakuumdichten Abdichtung für ein keramisches Entladungsgefäss und Entladungslampe
EP0887839B1 (de) Hochdruckentladungslampe mit keramischem Entladungsgefäss
EP0528427B1 (de) Hochdruckentladungslampe
EP0570772B1 (de) Hochdruckentladungslampe
EP0887841B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE9422090U1 (de) Keramisches Entladungsgefäß
EP0887840B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE69403176T2 (de) Elektrische Lampe
DE69839292T2 (de) Kurzbogen Entladungslampe und Herstellungsverfahren derselben
DE4327535A1 (de) Hochdruckentladungslampe mit keramischem Entladungsgefäß
DE9012200U1 (de) Hochdruckentladungslampe
WO2005015600A2 (de) Elektrodensystem mit neuartiger stift-folien-verbindung, zugehörige lampe mit dieser verbindung und verfahren zur herstellung der verbindung
DE2209805C2 (de) Metalldampfhochdruckentladungslampe
EP1351278B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE10159580B4 (de) Bogenentladungsröhre und Verfahren zu deren Herstellung
EP1434252A2 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss, Elektrodensystem für eine solche Lampe und Herstellungsverfahren eines solchen Systems
EP1372184A2 (de) Elektrodensystem für eine Metallhalogenidlampe und zugehörige Lampe
DE102005022376B4 (de) Lampe und Verfahren zur Herstellung derselben
DE102006011732A1 (de) Metallhalogenidlampe mit keramischen Entladungsgefäß
DE102022116475A1 (de) Anodenelektrode für eine gasentladungslampe, verfahren zu deren herstellung sowie gasentladungslampe
DE3111278C2 (de)
EP1665318A2 (de) Zweiseitig verschlossene elektrische lampe und verfahren zu deren herstellung
DE19529465A1 (de) Hochdruckentladungslampe
WO2007065822A2 (de) Hochdruckentladungslampe mit keramischem entladungsgefäss

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19950118

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59204013

Country of ref document: DE

Date of ref document: 19951116

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951216

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020509

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20020528

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030506

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080721

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201