EP0602529A2 - Hochdruckentladungslampe mit einem keramischen Entladungsgefäss - Google Patents

Hochdruckentladungslampe mit einem keramischen Entladungsgefäss Download PDF

Info

Publication number
EP0602529A2
EP0602529A2 EP93119795A EP93119795A EP0602529A2 EP 0602529 A2 EP0602529 A2 EP 0602529A2 EP 93119795 A EP93119795 A EP 93119795A EP 93119795 A EP93119795 A EP 93119795A EP 0602529 A2 EP0602529 A2 EP 0602529A2
Authority
EP
European Patent Office
Prior art keywords
discharge lamp
pressure discharge
lamp according
sealing
wires
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP93119795A
Other languages
English (en)
French (fr)
Other versions
EP0602529B1 (de
EP0602529A3 (de
Inventor
Hartmuth Bastian
Stefan Dr. Jüngst
Peter Wahrendorff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0602529A2 publication Critical patent/EP0602529A2/de
Publication of EP0602529A3 publication Critical patent/EP0602529A3/de
Application granted granted Critical
Publication of EP0602529B1 publication Critical patent/EP0602529B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/366Seals for leading-in conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/36Seals between parts of vessels; Seals for leading-in conductors; Leading-in conductors
    • H01J61/361Seals between parts of vessel
    • H01J61/363End-disc seals or plug seals

Definitions

  • the invention is based on a high-pressure discharge lamp according to the preamble of claim 1.
  • a structure is known from the high-pressure sodium lamps in which the ceramic discharge vessel consists of Al2O3, to which small additions of other oxides, in particular MgO, may be added.
  • the ceramic discharge vessel consists of Al2O3, to which small additions of other oxides, in particular MgO, may be added.
  • a niobium tube is fitted as a passage in a ceramic stopper.
  • the particular suitability of niobium is based on the fact that its thermal expansion coefficient corresponds to that of Al2O3 ceramic to a good approximation; for both materials it is approximately 8.10 ⁇ 6 K ⁇ 1.
  • a high-pressure lamp is known from EP-PS 34 113, in which a relatively high power (for example 400 W) and the associated higher current load are taken into account by means of a larger power cross section of the current feedthroughs, in that each bushing consists of several niobium wires, each with a maximum diameter of 600 ⁇ m. In this way, harmful thermal stresses between the bushing and the end plug are avoided.
  • a high pressure lamp is known in which the discharge vessel is made of AlN.
  • Solid tungsten pins are used as bushings because their expansion coefficient (5.10 ⁇ 6 K ⁇ 1) corresponds to that of AlN to a good approximation.
  • the use of tungsten also has the particular advantage that this material is resistant to the highly corrosive effects of metal halides, which may be used here as a filler additive. Niobium does not have this property.
  • the object of the invention is a high-pressure discharge lamp to create according to the preamble of claim 1, in which the sealing of the discharge vessel is improved and thereby the life of the lamp is extended.
  • This object is achieved by a high-pressure lamp with the characterizing features of claim 1. Particularly advantageous refinements can be found in the subclaims.
  • the high-pressure discharge lamp according to the invention has a discharge vessel made of Al203 or another translucent ceramic, the expansion coefficient of which, similar to Al203, is approximately 8.10 ⁇ 6 K ⁇ 1.
  • spinel MgAl204
  • Y203 comes into question.
  • the ceramic can also be doped with other substances, e.g. MgO.
  • the discharge vessel is generally elongated, in particular cylindrical or bulged. But it can also be bent in a U-shape. At both ends it is closed with sealing means, which are also made of a suitable ceramic material. Discharge vessel and sealant do not necessarily have to be made of the same material. However, it should be roughly coordinated with regard to the coefficient of expansion.
  • the sealing means is often a separate end plug, for example in the form of a cylindrical disk, which in particular can have a widened edge or projection which serves as a stop when fitting into the discharge vessel.
  • a separate end plug for example in the form of a cylindrical disk, which in particular can have a widened edge or projection which serves as a stop when fitting into the discharge vessel.
  • it can also be, for example, a suitably shaped integral end region of the discharge vessel.
  • the sealing principle according to the invention tries to take advantage of the corrosion resistance that some metals have with a relatively low coefficient of expansion of approx. 4 - 5.10 ⁇ 6 K ⁇ 1 (especially tungsten, molybdenum, rhenium and their alloys), also for bonding with ceramic materials to use, which have already proven to be particularly suitable for the manufacture of discharge vessels for high-pressure lamps, in particular Al203.
  • the quality of the seal is primarily the material of the means for sealing, generally the end plug, because only this comes into direct contact with the implementation.
  • the material of the discharge vessel itself is also important.
  • the invention is based on the consideration that it is not possible per se to permanently connect two substances with different thermal expansion in a vacuum-tight manner when they are exposed to such large temperature fluctuations (approx. 800-1000 ° C.) as in the operation of a lamp.
  • large temperature fluctuations approximately 800-1000 ° C.
  • the comparison of the expansion coefficients only gives the relative expansion differences.
  • a second parameter of equally great importance, however, is the absolute value of the expansion differences. So make the dimensions of one seal partner as possible small, the relative expansion differences are no longer significant.
  • the current load of the bushing is taken into account by increasing the cross-sectional area of the bushing by arranging a plurality of wires parallel to one another.
  • up to nine or more wires can be used.
  • a particularly advantageous side effect when using multiple wires is the improved stabilization of the implementation.
  • the strand can be fused to form an electrode tip with a high heat capacity, in particular to form a spherical tip.
  • Tungsten is particularly suitable as a lead-through material for such an arrangement, since it is particularly heat-resistant.
  • a separate Electrode which first has to be connected to the feedthrough, can be omitted. The ball diameter of such an electrode tip can be adjusted over the length of the strand section melted back in an arc (generated by plasma torch or laser).
  • the bore is normally so narrow that a spherical electrode tip would not fit through it. For this reason, a loosely twisted wire bundle is first passed through the single hole in the end plug and sealed with a glass solder. A ball is only created at the electrode tip by applying an overcurrent. The filling takes place, for example, by means of a lateral bore in the wall of the discharge vessel.
  • An alternative is to start with the wire bundle insert into the bore of the end plug, which has not yet been inserted, and then shape or fasten the electrode tip.
  • both the gap between the end of the discharge vessel and the stopper and the hole in the stopper containing the wire bundle in the stopper are sealed by means of glass solder.
  • This technique can also be used if the end plug has multiple holes for individual wires or wire bundles.
  • the direct sintering technique can be used to seal individual wires in separate holes in the end plug, which has not yet been used. This technique works better the thinner the wire diameter.
  • the electrode tip can be braided into a strand and a ball tip can be formed or an electrode tip can be attached later.
  • This unit can then be inserted into the second, still open end of the discharge vessel, similarly to the last exemplary embodiment, when the filling process is complete.
  • the annular gap between the end plug and the end of the discharge vessel is then closed using a glass solder.
  • the use of glass solder is minimized so that the corrosive effect of the filling on the glass solder can be neglected.
  • Direct sintering in of the end plug in the end of the discharge vessel is also possible, while at the same time direct sintering in of the lead-through wires in the end plug.
  • there must again be a lateral one Filling hole can be created in the wall of the discharge vessel. This technique also allows multiple wires to pass through a separate hole if a special material with a reduced coefficient of expansion is used for the sealant.
  • the trick of assembling the sealant from several parts, in particular from a central part contacting the seal and a peripheral part which surrounds the central part, has proven particularly successful in terms of production technology.
  • This arrangement has advantages both when inserting the bushing and when sealing as well as when forming a strand.
  • the central part is expediently designed in particular as a multi-hole capillary, in which each wire is passed individually through a bore.
  • a separate central part simplifies handling when threading the wires.
  • the twisting of the wires in the area of the electrode tip can expediently only take place after threading, as can the formation of a ball on the electrode tip.
  • a decisive advantage is that the seal between the bushing and the central part can be made before it is installed in the end of the discharge vessel. In particular in the case of direct sintering, that is to say without glass solder, there is no need to take account of the discharge vessel and, above all, of the filling that may already be contained in the temperature load required for this during the sintering
  • a central part and in particular a multi-hole capillary also offer a particularly elegant solution for the problem of filling the discharge vessel because the the bore receiving the central part in the peripheral part can initially be used as a filling opening.
  • the first end of the discharge vessel is initially completely closed, while a filling opening is left at the second end, which is only closed after the evacuation and filling.
  • the multi-hole capillary can also have a hole which is superfluous compared to the number of wires and which can serve as a filling opening.
  • a metal halide discharge lamp with an output of 100 W is shown schematically in FIG. It consists of a cylindrical outer bulb 1 made of quartz glass which defines a lamp axis and which is squeezed 2 and base 3 on two sides.
  • the axially arranged discharge vessel 4 made of Al203 ceramic is bulged in the middle 5 and has cylindrical ends 6. However, it can also consist of a cylindrical tube, for example. It is held in the outer bulb 1 by means of two power leads 7, which are connected to the base parts 3 via foils 8.
  • the power supply lines 7 made of molybdenum are welded to bushings 9, which are sintered directly into a ceramic end plug 10 of the discharge vessel, that is to say without soldering glass.
  • the end plugs are also made of Al203.
  • the discharge vessel is filled with mercury and metal halide additives.
  • the first bushing 9a is arranged at the first end 6a, which serves as the pump end when the lamp is being filled. It consists of two molybdenum wires, each with a diameter of 220 ⁇ m, which are guided through two bores of the end plug 10a at a distance from one another. They hold an electrode 11 in the interior of the discharge vessel, consisting of an electrode shaft 12 made of tungsten and a spherical tip 13 formed at the discharge end.
  • the second bushing 9b is arranged at the second end 6b, which is designed as a blind end. It consists of a solid niobium pin, which is inserted 14 into the bore of the end plug 10b.
  • a filling bore 15 is provided near the pump end 6a, which is closed after filling by a glass solder or a ceramic ceramic 16. In this version, attention must be paid to the firing position in order to keep the corrosion small even when using a niobium bushing.
  • both ends 6a, 6b are equipped with the same multi-wire feedthrough, the burning position being irrelevant.
  • FIG. 2 shows a further exemplary embodiment in which a continuous, loosely twisted bushing 9a 'is passed through a bore in the ceramic end plug 10a. It consists of four individual wires, which are fused to a ball 13 at the tip. The bushing 9a 'is melted into the bore by means of glass solder 16'. The end plug 10a is in turn melted into the end 6a of the discharge vessel by means of glass solder 16 ′′. A separate filling hole in the side wall as in FIG. 1 can be omitted, since the end plug 10a is only inserted into the discharge vessel 6a after the discharge end has been evacuated and filled.
  • FIG. 3a Another embodiment is shown in FIG. 3a. It is just a section, namely the area of one end 6.
  • the ceramic end plug 20 consists of two concentric parts, an outer peripheral part 21, which is shaped like a ring, and an inner central part 22 in the form of a cylindrical four-hole capillary with an outer diameter of 1.2 mm. Both parts consist of pure Al203.
  • Four tungsten wires 23, each with a diameter of 100 ⁇ m, are passed through the four bores in the capillary, each with an inner hole diameter of 200 ⁇ m. They are twisted into a strand 24 in the interior of the discharge vessel, which is fused at the tip to a ball 25 of approximately 700 ⁇ m in diameter. This bushing is suitable for currents of approx. 1.2 A.
  • FIG. 3b shows a top view of the capillary 22 with the wires 23.
  • the ends of the wires 23 are surrounded by a niobium coil 27 on the outside 26 of the end plug.
  • a conical end part 28 made of niobium is fitted into the coil 27 so that it clamps the wires 23 on the inside of the coil 27.
  • the central part 22 is generously sealed by means of glass solder 29 in the peripheral part 21, the wires 23 in the bores of the central part 22 also being sealed by the glass solder 29.
  • the niobium coil 27 is also attached to the outside 26 of the end plug by the glass solder 29.
  • the sealing of one end of the discharge vessel with a bushing according to FIG. 3a is explained in more detail in FIG. 3c.
  • the wires 23 are threaded into the bores of the capillary 22 and on the discharge side Twisted end to a strand 24.
  • the electrode tip 25 is then formed by melting the strand back.
  • the niobium coil 27 is inserted over the wire ends 23 at the end of the capillary remote from the discharge.
  • the wire ends 23 are clamped in the helix 27 with the conical end part 28, which is fitted into the helix 27 from above (arrow).
  • the helix 27 is spread somewhat.
  • the end part 28 can have grooves 30 in the conical surface.
  • the preassembled electrode system 31 including the capillary 22 is inserted (FIG. 3d) into the central bore of the peripheral part 21 already connected to the end of the discharge vessel (arrow), the niobium coil 27, which advantageously projects somewhat laterally on the capillary 22, as a stop for the electrode system 31 can serve if it is positioned in the central plug bore before it melts.
  • a glass solder ring 32 is then placed on the outer surface 26 of the end plug 20 and the end 6 locally heated to such an extent that the glass solder 32 melts and runs into the cavities, thereby sealing the bores of the end plug and fixing the coil 27, as shown in FIG. 3a.
  • the coil 27 must be made of niobium or another metal with a coefficient of expansion similar to that of niobium, e.g. Tantalum, since otherwise it cannot be connected to the glass solder ring 32 without cracks.
  • FIG. 4 shows in cross section further exemplary embodiments of a multi-hole capillary 17, for example for a 150 W lamp.
  • a multi-hole capillary 17 for example for a 150 W lamp.
  • Current 1.8 A
  • eight wires 18 are sintered directly into eight holes in FIG. 4a.
  • the capillary 17 has an extra large bore 19 in the middle, which can be used to fill the discharge vessel. Accordingly, there is no need for a separate filling hole in the wall of the discharge vessel.
  • the hole 19 is closed after filling with glass solder or ceramic.
  • bundles 33 of three wires 34 each are guided in a bore 35 in the capillary 17.
  • the wires 34 are spaced apart.
  • the total of three bores 35 are sealed in a vacuum-tight manner by means of glass solder 36, so that each individual wire 34 is surrounded by glass solder 36.
  • bundles 37 of four wires 38 each are guided in a bore 39 of the capillary 17 and sintered there directly.
  • the end plug or at least the capillary can contain up to 40% additives (eg tungsten) in addition to the basic ceramic matrix (Al203). Because of the lower relative expansion difference, it can then be accepted that a plurality of wires 38 are arranged directly next to one another in a bore 39.
  • the bore 39 is then advantageously adapted to the cross section of the wire bundle. In the case of a bundle of four wires, a cloverleaf-like cross section of the bore 39 is therefore used.
  • the invention is not restricted to the exemplary embodiments shown.
  • it can be advantageous to let the capillary protrude somewhat at the end of the end plug on the discharge side, since this improves the ignition and operating behavior of the lamp. Any condensate from filling components then only wets the protruding collar of the capillary, but not the bushing.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

Eine keramische Hochdrucklampe besitzt eine in einem Endstopfen eingepaßte Durchführung, die aus mindestens zwei Drähten (23) oder Stiften mit einem Durchmesser von höchstens 250 µm zusammengesetzt ist. Die Durchführung besteht aus einem Material, das dem Ausdehnungskoeffizienten des Endstopfens nicht angepaßt ist. <IMAGE>

Description

  • Die Erfindung geht aus von einer Hochdruckentladungslampe gemäß dem Oberbegriff des Anspruchs 1.
  • Es handelt sich hierbei im wesentlichen um Metallhalogenid-Entladungslampen, deren Farbwiedergabe durch die Verwendung eines keramischen Entladungsgefäßes verbessert ist. Typische Leistungsstufen sind 50 - 250 W. Die Erfindung ist jedoch auch bei anderen Lampentypen verwendbar, z.B. bei Natrium-Hochdrucklampen.
  • Von den Natriumhochdrucklampen her ist ein Aufbau bekannt, bei dem das keramische Entladungsgefäß aus Al₂O₃ besteht, dem eventuell geringe Zusätze an anderen Oxiden, insbesondere MgO, beigefügt sind. An den Enden des Gefäßes ist jeweils ein Niob-Rohr als Durchführung in einem Stopfen aus Keramik eingepaßt. Die besondere Eignung von Niob beruht darauf, daß dessen thermischer Ausdehnungskoeffizient in guter Näherung dem von Al₂O₃-Keramik entspricht; für beide Materialien beträgt er etwa 8.10⁻⁶ K⁻¹.
  • Aus der EP-PS 34 113 ist eine Hochdrucklampe bekannt, bei der eine relativ hohe Leistung (z.B. 400 W) und die damit verbundene höhere Strombelastung mittels eines größeren Leistungsquerschnitts der Stromdurchführungen berücksichtigt wird, indem jede Durchführung aus mehreren Niobdrähten besteht, deren Durchmesser jeweils maximal 600 µm beträgt. Auf diese Weise werden schädliche Wärmespannungen zwischen Durchführung und Endstopfen vermieden.
  • Aus der DE-OS 38 40 577 ist eine Hochdrucklampe bekannt, bei der das Entladungsgefäß aus AlN hergestellt ist. Als Durchführungen werden massive Wolframstifte verwendet, da deren Ausdehnungskoeffizient (5.10⁻⁶ K⁻¹) in guter Näherung dem von AlN entspricht. Die Verwendung von Wolfram hat hier zudem den besonderen Vorteil, daß dieses Material beständig ist gegen die stark korrodierende Wirkung von Metallhalogeniden, die hier eventuell als Füllungszusatz verwendet werden. Diese Eigenschaft weist Niob nicht auf.
  • Um die Korrosionsbeständigkeit im Bereich der Abdichtungen zu verbessern, ist bei Metallhalogenidlampen mit Entladungsgefäßen aus Al₂0₃ versucht worden, die üblichen Niobdurchführungen durch besondere Kniffe zu schützen, beispielsweise durch vertieftes Einsetzen oder durch Schutzschichten (z.B. EP-A 472 100), was jedoch sehr aufwendig ist. Auch die Verwendung von elektrisch-leitenden Cermets als Endstopfen hilft nicht weiter (EP-A 142 202). Diese sind zwar korrosionsfester, aber deren Eignung ist deswegen unbefriedigend, weil im Laufe der Lebensdauer durch die Erwärmung des als Ohmschen Widerstandes wirkenden Cermets Mikrorisse entstehen, die sich weiter ausbreiten und schließlich das Entladungsgefäß undicht werden lassen.
  • Es ist Aufgabe der Erfindung, eine Hochdruckentladungslampe gemäß dem Oberbegriff des Anspruchs 1 zu schaffen, bei der die Abdichtung des Entladungsgefäßes verbessert ist und dadurch die Lebensdauer der Lampe verlängert ist.
    Diese Aufgabe wird durch eine Hochdrucklampe mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen.
  • Die erfindungsgemäße Hochdruckentladungslampe besitzt ein Entladungsgefäß aus Al₂0₃ oder einer anderen transluzenten Keramik, deren Ausdehnungskoeffizient ähnlich wie bei Al₂0₃ etwa 8.10⁻⁶ K⁻¹ beträgt. Beispielsweise kommt dafür auch Spinell (MgAl₂0₄) oder Y₂0₃ in Frage. Die Keramik kann auch eine Dotierung mit anderen Stoffen aufweisen, z.B. MgO.
  • Das Entladungsgefäß ist im allgemeinen länglich, insbesondere zylindrisch oder ausgebaucht. Es kann aber auch U-förmig gebogen sein. An seinen beiden Enden ist es mit Mitteln zum Andichten verschlossen, die ebenfalls aus einem passenden keramischen Material hergestellt sind. Entladungsgefäß und Abdichtmittel müssen nicht notwendigerweise aus dem gleichen Material hergestellt sein. Es sollte jedoch hinsichtlich des Ausdehnungskoeffizienten in etwa abgestimmt sein.
  • Das Abdichtmittel ist häufig ein separater Endstopfen, z.B. in Gestalt einer zylindrischen Scheibe, die insbesondere einen verbreiterten Rand oder Vorsprung besitzen kann, der als Anschlag beim Einpassen in das Entladungsgefäß dient. Es kann sich dabei aber auch beispielsweise um einen geeignet geformten integralen Endbereich das Entladungsgefäßes handeln.
  • Das erfindungsgemäße Abdichtungsprinzip versucht, den Vorteil der Korrosionsbeständigkeit, den einige Metalle mit einem relativ geringen Ausdehnungskoeffizienten von ca. 4 - 5.10⁻⁶ K⁻¹ besitzen (vor allem Wolfram, Molybdän, Rhenium und deren Legierungen), auch für den Verbund mit keramischen Werkstoffen zu benutzen, die sich bereits für die Herstellung von Entladungsgefäßen für Hochdrucklampen als besonders geeignet erwiesen haben, insbesondere Al₂0₃. Dabei ist für die Qualität der Dichtung in erster Linie das Material des Mittels zum Abdichten, im allgemeinen also des Endstopfens, entscheidend, da nur dieses unmittelbar mit der Durchführung in Berührung kommt. Mittelbar kommt es auch auf das Material des Entladungsgefäßes selbst an.
  • In analoger Weise gilt diese Überlegung auch für den Fall, daß das Mittel zum Abdichten aus mehreren Teilen besteht, von denen nur einer mit der Durchführung unmittelbar in Kontakt steht.
  • Die Erfindung beruht auf der Überlegung, daß es zwar an sich nicht möglich ist, zwei Stoffe mit unterschiedlicher thermischer Ausdehnung vakuumdicht dauerhaft miteinander zu verbinden, wenn sie so großen Temperaturschwankungen (ca. 800 - 1000°C) wie im Betrieb einer Lampe ausgesetzt sind. Dabei darf jedoch nicht übersehen werden, daß der Vergleich der Ausdehnungskoeffizienten nur die relativen Ausdehnungsunterschiede angibt. Ein zweiter Parameter von ebenso großer Bedeutung ist jedoch der absolute Wert der Ausdehnungsunterschiede. Macht man daher die Abmessungen des einen Dichtungspartners möglichst klein, fallen die relativen Ausdehnungsunterschiede nicht mehr ins Gewicht.
  • Die Funktionsfähigkeit dieses allgemeinen Prinzips zeigt sich bei Entladungsgefäßen aus Quarzglas, bei denen als Durchführung lamellenförmig ausgebildete, extrem dünne Molybdänfolien verwendet werden. Überraschenderweise hat sich gezeigt, daß bei Keramiken dieses Prinzip dahingehend konkretisiert werden kann, daß man einen handelsüblichen Draht oder Stift mit einem Durchmesser von höchstens 250 µm als Grundlage für die Durchführung verwendet. Bevorzugt kann der Durchmesser auch erheblich kleiner sein; gut geeignet sind Durchmesser zwischen 50 und 130 µm.
  • Je nach gewünschter Leistungsstufe der Lampe wird der Strombelastung der Durchführung dadurch Rechnung getragen, daß die Querschnittsfläche der Durchführung vergrößert wird, indem mehrere Drähte parallel zueinander angeordnet sind. Bei hohen Leistungsstufen können dazu bis zu neun oder auch mehr Drähte verwendet werden. Ein besonders vorteilhafter Nebeneffekt bei der Verwendung mehrerer Drähte ist die verbesserte Stabilisierung der Durchführung. Insbesondere ist es möglich, den in das Entladungsgefäß ragenden Teil des Drahtbündels zu einer Litze zu verdrillen.
  • Bei kleinwattigen Lampen kann daraus zusätzlich ein entscheidender Vorteil abgeleitet werden. Die Litze kann nämlich zu einer Elektrodenspitze mit hoher Wärmekapazität verschmolzen werden, insbesondere zu einer kugelförmigen Kuppe. Für eine solche Anordnung ist vor allem Wolfram als Durchführungsmaterial geeignet, da es besonders wärmebeständig ist. Eine separate Elektrode, die erst aufwendig mit der Durchführung verbunden werden muß, kann hierbei entfallen. Der Kugeldurchmesser einer solchen Elektrodenspitze kann über die Länge des in einem Lichtbogen (durch Plasmabrenner oder Laser erzeugt) zurückgeschmolzenen Litzenabschnitts eingestellt werden.
  • Im einfachsten Fall genügt es, dieses Drahtbündel, evtl. auch locker verdrillt, durch eine einzige eng angepaßte Bohrung im Abdichtmittel zu führen und diese Bohrung mittels Glaslot vakuumdicht zu verschließen. Es können auch einzelne Drähte oder verschiedene Drahtbündel in zwei oder mehr eng angepaßten Bohrungeführt werden. Entscheidend für die Dichtwirkung ist nur, daß jeder einzelne Draht von Glaslot umgeben ist. Dies wird bei mehreren, auch locker verdrillten Drähten in einer Bohrung durch die Kapillarwirkung der zwischen den Drähten vorhandenen Zwischenräume sichergestellt. Der Vorteil der Verwendung von Drahtbündeln ist das leichtere und schnellere Einfädeln in die Bohrungen.
  • Bei der Herstellung der Abdichtung ist zu beachten, daß die Bohrung normalerweise so eng ist, daß eine verkugelte Elektrodenspitze nicht hindurchpassen würde. Aus diesem Grund wird vorteilhaft ein locker verdrilltes Drahtbündel zunächst durch die einzige Bohrung des Endstopfens geführt und mittels Glaslot abgedichtet. Erst nachträglich wird durch Anlegen eines Überstroms eine Kugel an der Elektrodenspitze erzeugt. Das Füllen erfolgt beispielsweise mittels einer seitlichen Bohrung in der Wand des Entladungsgefäßes.
    Eine Alternative besteht darin, das Drahtbündel zunächst in die Bohrung des noch nicht eingesetzten Endstopfens einzuführen und dann die Elektrodenspitze zu formen oder zu befestigen. Erst danach wird -nach dem Füllen des Entladungsgefäßes durch das obere Ende- diese Baueinheit in das noch offene Ende eingesetzt und sowohl der Spalt zwischen dem Ende des Entladungsgefäßes und dem Stopfen als auch die das Drahtbündel enthaltende Bohrung im Stopfen mittels Glaslot verschlossen. Diese Technik läßt sich auch verwenden, wenn der Endstopfen mehrere Bohrungen für einzelne Drähte oder Drahtbündel besitzt.
    Alternativ kann für das Abdichten einzelner Drähte in separaten Bohrungen des noch nicht eingesetzten Endstopfens die Technik der Direkteinsinterung verwendet werden. Diese Technik funktioniert um so besser, je dünner der Drahtdurchmesser ist. Hier kann die Elektrodenspitze nachträglich zu einer Litze verflochten und eine Kugelspitze gebildet werden oder eine Elektrodenspitze nachträglich befestigt werden. Diese Baueinheit kann dann anschließend -ähnlich wie im letzten Ausführungsbeispiel- in das zweite, noch offene Ende des Entladungsgefäßes eingesetzt werden, wenn der Füllvorgang abgeschlossen ist. Der Ringspalt zwischen dem Endstopfen und dem Ende des Entladungsgefäßes wird abschließend mittels Glaslot verschlossen. Bei dieser Technik ist der Gebrauch von Glaslot minimiert, so daß die korrosive Wirkung der Füllung auf das Glaslot nahezu vernachlässigt werden kann. In jedem Fall empfiehlt es sich, ein möglichst halogenresistentes Glaslot zu verwenden.
    Möglich ist auch die Direkteinsinterung des Endstopfens im Ende des Entladungsgefäßes bei gleichzeitiger Direkteinsinterung der Durchführungsdrähte im Endstopfen. Dabei muß jedoch wieder eine seitliche Füllbohrung in der Wand des Entladungsgefäßes geschaffen werden.
    Mit dieser Technik können auch mehrere Drähte durch eine separate Bohrung geführt werden, wenn ein spezielles Material mit verringertem Ausdehnungskoeffizienten für das Abdichtmittel verwendet wird.
  • Herstellungstechnisch besonders bewährt hat sich der Kniff, das Abdichtmittel aus mehreren Teilen zusammenzusetzen, insbesondere aus einem die Abdichtung kontaktierenden Zentralteil und einem Peripherieteil, das das Zentralteil umgibt. Diese Anordnung hat sowohl Vorteile beim Einführen der Durchführung als auch beim Abdichten als auch beim Bilden einer Litze. Zweckmäßig ist das Zentralteil insbesondere als Mehrlochkapillare ausgebildet, bei der jeder Draht einzeln durch eine Bohrung hindurchgeführt ist. Ein separates Zentralteil vereinfacht das Handling beim Einfädeln der Drähte. Das Verdrillen der Drähte im Bereich der Elektrodenspitze kann zweckmäßig erst nach dem Einfädeln erfolgen, ebenso die Bildung einer Kugel an der Elektrodenspitze. Ein entscheidender Vorteil ist, daß die Abdichtung zwischen der Durchführung und dem Zentralteil bereits vor dem Einbau in das Ende des Entladungsgefäßes erfolgen kann. Insbesondere bei einer Direkteinsinterung, also ohne Glaslot, braucht man bei der hierfür notwendigen Temperaturbelastung während des Sintervorganges keine Rücksicht auf das Entladungsgefäß und vor allem auf die eventuell bereits darin enthaltene Füllung zu nehmen.
  • Eine besonders elegante Lösung bietet ein Zentralteil und insbesondere eine Mehrlochkapillare auch für das Problem des Füllens des Entladungsgefäßes, weil die das Zentralteil aufnehmende Bohrung im Peripherieteil zunächst als Füllöffnung verwendet werden kann. Dabei wird das erste Ende des Entladungsgefäßes zunächst vollständig verschlossen, während beim zweiten Ende eine Füllöffnung belassen wird, die erst nach dem Evakuieren und Füllen verschlossen wird. Alternativ kann auch die Mehrlochkapillare eine verglichen mit der Zahl der Drähte überzählige Bohrung aufweisen, die als Füllöffnung dienen kann.
    Einzelheiten über die Technik der Direkteinsinterung und das Füllverfahren mittels einer nachträglich zu verschließenden Öffnung sind in der EP-PA 92 114227.9 und der PCT/DE92/00372 (Artikel 54 (3) EPÜ) dargelegt, auf die ausdrücklich Bezug genommen wird.
  • Besondere Vorteile ergeben sich bei Metallhalogenid-Entladungslampen mit keramischem Entladungsgefäß und Abdichtmittel, deren Lebensdauer bisher durch die agressiven Füllstoffe stark eingeschränkt war. Hier haben sich erfindungsgemäße Durchführungen aus Wolfram oder Molybdän besonders bewährt, da sie korrosionsfest fest.
  • Die Erfindung wird im folgenden anhand mehrerer Ausführungsbeispiele näher erläutert. Es zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel einer Metallhalogenid-Entladungslampe, teilweise geschnitten
    Figur 2
    ein weiteres Ausführungsbeispiel des Endbereiches des Entladungsgefäßes
    Figur 3
    ein weiteres Ausführungsbeispiel des Endbereichs der Lampe in Seitenansicht (geschnitten) (Figur 3a) und im Querschnitt (Ausschnitt) (Figur 3b), sowie deren Herstellung (Figur 3c und 3d)
    Figur 4
    weitere Ausführungsbeispiele von Kapillaren mit Durchführungen im Querschnitt.
  • In Figur 1 ist schematisch eine Metallhalogenid-Entladungslampe mit einer Leistung von 100 W dargestellt. Sie besteht aus einem eine Lampenachse definierenden zylindrischen Außenkolben 1 aus Quarzglas, der zweiseitig gequetscht 2 und gesockelt 3 ist. Das axial angeordnete Entladungsgefäß 4 aus Al₂0₃-Keramik ist in der Mitte 5 ausgebaucht und besitzt zylindrische Enden 6. Es kann jedoch z.B. auch aus einem zylindrischen Rohr bestehen. Es ist mittels zweier Stromzuführungen 7, die mit den Sockelteilen 3 über Folien 8 verbunden sind, im Außenkolben 1 gehaltert. Die Stromzuführungen 7 aus Molybdän sind mit Durchführungen 9 verschweißt, die jeweils in einem keramischen Endstopfen 10 des Entladungsgefäßes direkt, also glaslotfrei, eingesintert sind. Die Endstopfen sind ebenfalls aus Al₂0₃ gefertigt. Die Füllung des Entladungsgefäßes besteht neben einem inerten Zündgas, z.B. Argon, aus Quecksilber und Zusätzen an Metallhalogeniden. Die erste Durchführung 9a ist am ersten Ende 6a angeordnet, das als Pumpende beim Füllen der Lampe dient. Sie besteht aus zwei Molybdändrähten von jeweils 220 µm Durchmesser, die voneinander beabstandet durch zwei Bohrungen des Endstopfens 10a hindurchgeführt sind. Sie halten im Inneren des Entladungsgefäßes eine Elektrode 11, bestehend aus einem Elektrodenschaft 12 aus Wolfram und einer am entladungsseitigen Ende ausgebildeten kugelförmigen Spitze 13.
  • Die zweite Durchführung 9b ist am zweiten Ende 6b angeordnet, das als Blindende angelegt ist. Sie besteht aus einem massiven Niobstift, der in die Bohrung des Endstopfens 10b vertieft 14 eingesetzt ist. Zum Zweck des Evakuierens und Füllens ist in der Nähe des Pumpendes 6a eine Füllbohrung 15 angebracht, die nach dem Füllen durch ein Glaslot oder eine Schmelzkeramik 16 verschlossen wird. Bei dieser Ausführung ist auf die Brennstellung zu achten, um die Korrosion auch bei Verwendung einer Niobdurchführung klein zu halten.
  • In einer zweiten Ausführungsform sind beide Enden 6a, 6b mit derselben mehrdrahtigen Durchführung bestückt, wobei die Brennstellung keine Rolle spielt.
  • Figur 2 zeigt ein weiteres Ausführungsbeispiel, bei dem eine durchgehende, locker verdrillte Durchführung 9a' durch eine Bohrung im keramischen Endstopfen 10a hindurchgeführt ist. Sie besteht aus vier Einzeldrähten, die an der Spitze zu einer Kugel 13 verschmolzen sind. Die Durchführung 9a' ist mittels Glaslot 16' in die Bohrung eingeschmolzen. Der Endstopfen 10a ist seinerseits in das Ende 6a des Entladungsgefäßes mittels Glaslot 16'' eingeschmolzen. Eine separate Füllbohrung in der Seitenwand wie in Figur 1 kann entfallen, da der Endstopfen 10a erst nach dem Evakuieren und Füllen des Entladungsgefäßes durch das Pumpende 6a in dieses eingesetzt wird.
  • Eine weitere Ausführungsform zeigt Figur 3a. Es ist nur ein Ausschnitt, nämlich der Bereich eines Endes 6, dargestellt.
  • Der keramische Endstopfen 20 besteht aus zwei konzentrischen Teilen, einem äußeren Peripherieteil 21, das ringartig geformt ist, und einem inneren Zentralteil 22 in Gestalt einer zylindrischen Vierloch-Kapillare mit einem Außendurchmesser von 1,2 mm. Beide Teile bestehen aus reinem Al₂0₃. Durch die vier Bohrungen der Kapillare mit einem inneren Lochdurchmesser von jeweils 200 µm sind vier Wolframdrähte 23 mit einem Durchmesser von jeweils 100 µm hindurchgeführt. Sie sind im Innenraum des Entladungsgefäßes zu einer Litze 24 verdrillt, die an der Spitze zu einer Kugel 25 von etwa 700 µm Durchmesser verschmolzen ist. Diese Durchführung ist für Ströme von ca. 1,2 A geeignet. Eine Draufsicht der Kapillare 22 mit den Drähten 23 zeigt Figur 3b.
  • An der Außenseite 26 des Endstopfens sind die Enden der Drähte 23 von einer Niobwendel 27 umgeben. Ein konisches Abschlußteil 28 aus Niob ist in die Wendel 27 so eingepaßt, daß es die Drähte 23 an der Innenseite der Wendel 27 festklemmt. Das Zentralteil 22 ist großzügig mittels Glaslot 29 im Peripherieteil 21 abgedichtet, wobei gleichzeitig auch die Drähte 23 in den Bohrungen des Zentralteils 22 durch das Glaslot 29 abgedichtet werden. Schließlich ist auch die Niobwendel 27 an der Außenseite 26 des Endstopfens durch das Glaslot 29 befestigt.
  • Das Abdichten eines Endes des Entladungsgefäßes mit einer Durchführung gemäß Figur 3a ist in der Figur 3c näher erläutert. Zunächst werden die Drähte 23 in die Bohrungen der Kapillare 22 eingefädelt und am entladungsseitigen Ende zu einer Litze 24 verdrillt. Anschließend wird die Elektrodenspitze 25 durch Zurückschmelzen der Litze gebildet. Dann wird die Niobwendel 27 über die Drahtenden 23 am entladungsfernen Ende der Kapillare gesteckt. Die Drahtenden 23 werden in der Wendel 27 mit dem konischen Abschlußteil 28 festgeklemmt, das von oben in die Wendel 27 eingepaßt wird (Pfeil). Die Wendel 27 wird dabei etwas gespreizt. Zur besseren Führung der Drähte kann das Abschlußteil 28 Riefen 30 in der konischen Fläche besitzen.
  • Das vormontierte Elektrodensystem 31 einschließlich der Kapillare 22 wird (Figur 3d) in die zentrale Bohrung des bereits mit dem Ende des Entladungsgefäßes verbundenen Peripherieteils 21 eingeführt (Pfeil), wobei die Niobwendel 27, die vorteilhaft seitlich etwas an der Kapillare 22 übersteht, als Anschlag für das Elektrodensystem 31 dienen kann, wenn dieses vor dem Einschmelzen in der zentralen Stopfenbohrung positioniert wird. Anschließend wird ein Glaslotring 32 auf die Außenfläche 26 des Endstopfens 20 aufgelegt und das Ende 6 soweit lokal erwärmt, daß das Glaslot 32 schmilzt und in die Hohlräume läuft und dadurch die Bohrungen des Endstopfens abdichtet sowie die Wendel 27 fixiert, wie in Figur 3a dargestellt. Die Wendel 27 muß aus Niob oder einem anderen Metall mit ähnlichem Ausdehnungskoeffizienten wie Niob sein, z.B. Tantal, da sie sonst nicht mit dem Glaslotring 32 rißfrei verbunden werden kann.
  • Figur 4 zeigt im Querschnitt weitere Ausführungsbeispiele einer Mehrlochkapillare 17, z.B. für eine 150 W-Lampe. Entsprechend dem hierbei auftretenden höheren Strom (1,8 A) sind in Figur 4a acht Drähte 18 in acht Bohrungen direkt eingesintert. Weiterhin weist die Kapillare 17 in der Mitte eine extra große Bohrung 19 auf, die zum Füllen des Entladungsgefäßes verwendet werden kann. Dementsprechend kann auf eine separate Füllbohrung in der Wand des Entladungsgefässes verzichtet werden. Die Bohrung 19 wird nach dem Füllen mit Glaslot oder Schmelzkeramik verschlossen.
  • In Figur 4b sind jeweils Bündel 33 von je drei Drähten 34 in einer Bohrung 35 der Kapillare 17 geführt. Die Drähte 34 sind voneinander beabstandet. Die insgesamt drei Bohrungen 35 sind mittels Glaslot 36 vakuumdicht abgedichtet, so daß jeder einzelne Draht 34 von Glaslot 36 umgeben ist.
  • In Figur 4c sind jeweils Bündel 37 von je vier Drähten 38 in einer Bohrung 39 der Kapillare 17 geführt und dort direkt eingesintert. Dies ist jedoch nur unter der speziellen Voraussetzung möglich, daß der thermische Ausdehnungskoeffizient des Endstopfens, insbesondere des Zentralteils 17, besser auf die metallische Durchführung abgestimmt wird. Hierfür kann der Endstopfen oder zumindest die Kapillare neben der keramischen Grundmatrix (Al₂0₃) auch bis zu 40 % Zusatzstoffe (z.B. Wolfram) enthalten. Wegen des geringeren relativen Ausdehnungsunterschieds kann dann in Kauf genommen werden, daß mehrere Drähte 38 direkt nebeneinander in einer Bohrung 39 angeordnet sind. Vorteilhaft ist dann die Bohrung 39 dem Querschnitt des Drahtbündels angepaßt. Bei einem Bündel aus vier Drähten wird daher ein kleeblattartiger Querschnitt der Bohrung 39 benutzt.
  • Die Erfindung ist nicht auf die gezeigten Ausführungsbeispiele beschränkt. Insbesondere kann es von Vorteil sein, die Kapillare am entladungsseitigen Ende des Endstopfens etwas überstehen zu lassen, da dies das Zünd- und Betriebsverhalten der Lampe verbessert. Ein etwaiges Kondensat von Füllungsbestandteilen benetzt dann nur den überstehenden Kragen der Kapillare, nicht jedoch die Durchführung.

Claims (13)

  1. Hochdruckentladungslampe mit einem Entladungsgefäß (4) aus durchscheinender Keramik, das eine lichterzeugende Füllung umschließt, wobei das Entladungsgefäß (4) zwei Enden (6a, 6b) besitzt, die mit keramischen Mitteln (10) zum Abdichten verschlossen sind, und wobei durch dieses Mittel eine elektrisch-leitende Durchführung (9) vakuumdicht hindurchgeführt ist, die eine Elektrode (11) im Innern des Entladungsgefäßes mit einer äußeren elektrischen Zuleitung verbindet, gekennzeichnet durch folgende Merkmale:
    - zumindest die Mittel (10) zum Abdichten bestehen im wesentlichen aus Al₂0₃, Y₂0₃, MgAl₂0₄ oder deren Mischungen,
    - zumindest an einem der beiden Enden (6) des Entladungsgefäßes besteht die Durchführung (9) aus einem Metall, dessen thermischer Ausdehnungskoeffizient erheblich kleiner als der des keramischen Mittels zum Abdichten ist,
    - diese Durchführung (9) besteht aus mindestens zwei, vorzugsweise mehreren, dünnen Drähten (23) oder Stiften mit einem Durchmesser von jeweils höchstens 250 µm.
  2. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Durchführung (9) aus Wolfram oder Molybdän oder Rhenium oder deren Mischungen besteht.
  3. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die einzelnen Drähte (23) oder Stifte separat durch das Mittel (10) zum Abdichten hindurchgeführt sind.
  4. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die einzelnen Drähte (23) oder Stifte zumindest innerhalb des Entladungsgefäßes zu einer Litze (24) verdrillt sind.
  5. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die Durchführung (9) im Mittel (10) zum Abdichten durch ein Glaslot (29) eingeschmolzen oder direkt eingesintert ist.
  6. Hochdruckentladungslampe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Mittel (20) zum Abdichten aus mehreren Teilen besteht und ein rohrartiges separates Teil (22) aufweist, das die Durchführung (9) umgibt.
  7. Hochdruckentladungslampe nach Anspruch 6, dadurch gekennzeichnet, daß das separate Teil eine Kapillare (22) mit mehreren Bohrungen ist.
  8. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die am Mittel (20) zum Abdichten überstehenden äußeren Enden der Drähte (23) oder Stifte von einem ringähnlichen federnden Element (27) umgeben sind, wobei ein elektrisch-leitendes Abschlußteil (28) mit einer konischen Teilfläche in das federnde Element so eingepaßt ist, daß die äußeren Enden der Drähte oder Stifte zwischen dem federnden Element (27) und dem Abschlußteil (28) mechanisch eingeklemmt sind und dabei eine elektrisch-leitende Verbindung zwischen Durchführung und Abschlußteil sicherstellen.
  9. Hochdruckentladungslampe nach Anspruch 8, dadurch gekennzeichnet, daß zumindest das federnde Element (27) aus Niob gefertigt ist.
  10. Hochdruckentladungslampe nach Anspruch 8, dadurch gekennzeichnet, daß das federnde Element eine Wendel (27) ist.
  11. Hochdruckentladungslampe nach Anspruch 4, dadurch gekennzeichnet, daß das entladungsseitige Ende der Litze (24) zu einer Elektrodenspitze (25) mit hoher Wärmekapazität verschmolzen ist.
  12. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß die lichterzeugende Füllung Metallhalogenide enthält
  13. Hochdruckentladungslampe nach Anspruch 1, dadurch gekennzeichnet, daß das Mittel zum Abdichten oder zumindest eines seiner Teile bis zu 40 % Zusatzstoffe enthält.
EP93119795A 1992-12-14 1993-12-08 Hochdruckentladungslampe mit einem keramischen Entladungsgefäss Expired - Lifetime EP0602529B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4242123A DE4242123A1 (de) 1992-12-14 1992-12-14 Hochdruckentladungslampe mit einem keramischen Entladungsgefäß
DE4242123 1992-12-14

Publications (3)

Publication Number Publication Date
EP0602529A2 true EP0602529A2 (de) 1994-06-22
EP0602529A3 EP0602529A3 (de) 1995-01-04
EP0602529B1 EP0602529B1 (de) 1997-03-12

Family

ID=6475218

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93119795A Expired - Lifetime EP0602529B1 (de) 1992-12-14 1993-12-08 Hochdruckentladungslampe mit einem keramischen Entladungsgefäss

Country Status (4)

Country Link
US (1) US5455480A (de)
EP (1) EP0602529B1 (de)
JP (1) JPH06223785A (de)
DE (2) DE4242123A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575838B2 (en) 2006-12-20 2013-11-05 Koninklijke Philips N.V. Ceramic burner for ceramic metal halide lamp

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0751549B1 (de) * 1995-01-13 2003-08-06 Ngk Insulators, Ltd. Hochdruckentladungslampe und ihr herstellungsverfahren
JP3507179B2 (ja) * 1995-01-13 2004-03-15 日本碍子株式会社 高圧放電灯
US6447937B1 (en) * 1997-02-26 2002-09-10 Kyocera Corporation Ceramic materials resistant to halogen plasma and components using the same
JP3419275B2 (ja) * 1997-09-30 2003-06-23 ウシオ電機株式会社 放電ランプのシール方法
US6414436B1 (en) 1999-02-01 2002-07-02 Gem Lighting Llc Sapphire high intensity discharge projector lamp
WO2001016994A1 (en) * 1999-08-31 2001-03-08 Koninklijke Philips Electronics N.V. Metal halide lamp
EP1193734A4 (de) * 2000-03-08 2006-06-28 Gs Yuasa Corp Elektrische entladungslampe
US6731066B2 (en) * 2001-02-23 2004-05-04 Osram Sylvania Inc. Ceramic arc tube assembly
DE10214777A1 (de) * 2002-04-03 2003-10-16 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Metallhalogenidlampe mit keramischem Entladungsgefäß
US7604240B2 (en) * 2002-09-16 2009-10-20 Hewlett-Packard Development Company, L.P. Capillary seal for a burn chamber
DE10244428A1 (de) * 2002-09-24 2004-06-17 Siemens Ag Elektrische Maschine mit einer Kühleinrichtung
US6774547B1 (en) 2003-06-26 2004-08-10 Osram Sylvania Inc. Discharge lamp having a fluted electrical feed-through
US6856079B1 (en) 2003-09-30 2005-02-15 Matsushita Electric Industrial Co., Ltd. Ceramic discharge lamp arc tube seal
US20080203920A1 (en) * 2005-05-19 2008-08-28 Koninklijke Philips Electronics, N.V. Lamp Having Molybdenum Alloy Lamp Components
ITTO20050585A1 (it) * 2005-08-23 2007-02-24 Space Cannon Vh Srl Lampada a scarica, in particolare alimentata da corrente continua
US7511429B2 (en) 2006-02-15 2009-03-31 Panasonic Corporation High intensity discharge lamp having an improved electrode arrangement
DE102006024238A1 (de) * 2006-05-23 2007-11-29 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Hochdruckentladungslampe
DE102007045079A1 (de) * 2007-09-21 2009-04-02 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
DE102009012324A1 (de) 2009-03-09 2010-09-16 Siemens Aktiengesellschaft Elektrische Maschine mit Wärmeumlaufkühlung
WO2014012575A1 (de) 2012-07-16 2014-01-23 Osram Gmbh Hochdruckentladungslampe mit glaslotgedichteter durchführung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2318062A1 (de) * 1972-05-12 1973-11-22 Egyesuelt Izzolampa Elektrische entladungslampe
DE2445108A1 (de) * 1973-10-23 1975-05-07 Gen Electric Lampe mit einem keramischen kolben und metallfolien-zuleitungen
AT360617B (de) * 1974-11-14 1981-01-26 Philips Nv Elektrische entladungslampe
US4376905A (en) * 1980-02-11 1983-03-15 Egyesult Izzolampa Es Villamossagi Rt. Electric lamp provided with a ceramic discharge tube
JPS5935352A (ja) * 1982-08-20 1984-02-27 Mitsubishi Electric Corp セラミツク管を用いた放電灯の端部部品

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2241505A (en) * 1936-08-21 1941-05-13 Moses J Cuttler Manufacture of metal to porcelain seals
DE3232207A1 (de) * 1982-08-30 1984-03-08 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 8000 München Hochdruckentladungslampe kleiner leistung
NL8303858A (nl) * 1983-11-10 1985-06-03 Philips Nv Hogedruk-gasontladingslamp.
DE8702658U1 (de) * 1987-02-20 1987-04-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH, 81543 München Hochdruckentladungslampe
JPS63308861A (ja) * 1987-06-11 1988-12-16 Toshiba Corp セラミック放電灯
JPH02132750A (ja) * 1988-11-11 1990-05-22 Kyocera Corp 高圧放電灯
DE3840577A1 (de) * 1988-12-01 1990-06-07 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungsgefaess fuer eine hochdruckentladungslampe und verfahren zu dessen herstellung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2318062A1 (de) * 1972-05-12 1973-11-22 Egyesuelt Izzolampa Elektrische entladungslampe
DE2445108A1 (de) * 1973-10-23 1975-05-07 Gen Electric Lampe mit einem keramischen kolben und metallfolien-zuleitungen
AT360617B (de) * 1974-11-14 1981-01-26 Philips Nv Elektrische entladungslampe
US4376905A (en) * 1980-02-11 1983-03-15 Egyesult Izzolampa Es Villamossagi Rt. Electric lamp provided with a ceramic discharge tube
JPS5935352A (ja) * 1982-08-20 1984-02-27 Mitsubishi Electric Corp セラミツク管を用いた放電灯の端部部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN, unexamined applications, E Field, Band 8, Nr. 123, 8. Juni 1984 THE PATENT OFFICE JAPANESE GOVERNMENT, Seite 70 E 249; & JP-A-59 35 352 (MITSU- BISHI) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575838B2 (en) 2006-12-20 2013-11-05 Koninklijke Philips N.V. Ceramic burner for ceramic metal halide lamp

Also Published As

Publication number Publication date
JPH06223785A (ja) 1994-08-12
DE59305754D1 (de) 1997-04-17
EP0602529B1 (de) 1997-03-12
DE4242123A1 (de) 1994-06-16
US5455480A (en) 1995-10-03
EP0602529A3 (de) 1995-01-04

Similar Documents

Publication Publication Date Title
EP0602529B1 (de) Hochdruckentladungslampe mit einem keramischen Entladungsgefäss
EP0570772B1 (de) Hochdruckentladungslampe
EP0602530B1 (de) Verfahren zur Herstellung einer vakuumdichten Abdichtung für ein keramisches Entladungsgefäss und Entladungslampe
DE69629336T2 (de) Hochdruckentladungslampe und ihr herstellungsverfahren
EP0536609A1 (de) Hochdruckentladungslampe
EP0652586B1 (de) Metallhalogenidentladungslampe mit keramischem Entladungsgefäss und Herstellverfahren für eine derartige Lampe
EP0887841B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE9422090U1 (de) Keramisches Entladungsgefäß
EP0887840B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE2641867A1 (de) Elektrische entladungslampe
EP2020018B1 (de) Hochdruckentladungslampe
DE60130204T2 (de) Hochdruckentladungslampe
EP0472100A2 (de) Hochdruckentladungslampe
DE3429105A1 (de) Metalldampfentladungslampe
DE102006052715B4 (de) Verfahren zur Herstellung einer quecksilberfreien Bogenentladungsröhre mit jeweils einem Einkristall an den Elektrodenspitzen
DE19908688A1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
EP1730766B1 (de) Elektrodensystem für eine hochdruckentladungslampe
DE69103912T2 (de) Einseitige Metalldampfentladungslampe.
DE10026802A1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäß
DE3200699C2 (de) Entladungsgefäß für Hochdruck-Natriumdampflampen
DE69011145T2 (de) Einseitig gequetschte Metalldampfentladungslampe.
DE3750865T2 (de) Entladungsröhrenaufbau für Hochdruckentladungslampe.
EP1351278B1 (de) Metallhalogenidlampe mit keramischem Entladungsgefäss
DE3242840C2 (de)
DE29612757U1 (de) Einseitig verschlossene elektrische Glühlampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19950119

R17P Request for examination filed (corrected)

Effective date: 19950119

17Q First examination report despatched

Effective date: 19950918

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59305754

Country of ref document: DE

Date of ref document: 19970417

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970515

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021205

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021220

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031208

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050217

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701