EP0413664A2 - Lasermarkierung von Kunststoffgegenständen in an sich beliebiger Form mit besonderen Effekten - Google Patents

Lasermarkierung von Kunststoffgegenständen in an sich beliebiger Form mit besonderen Effekten Download PDF

Info

Publication number
EP0413664A2
EP0413664A2 EP90810601A EP90810601A EP0413664A2 EP 0413664 A2 EP0413664 A2 EP 0413664A2 EP 90810601 A EP90810601 A EP 90810601A EP 90810601 A EP90810601 A EP 90810601A EP 0413664 A2 EP0413664 A2 EP 0413664A2
Authority
EP
European Patent Office
Prior art keywords
laser
marking
molybdenum disulfide
plastic
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP90810601A
Other languages
English (en)
French (fr)
Other versions
EP0413664A3 (en
EP0413664B1 (de
Inventor
Fridolin Bäbler
Manfred Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
Original Assignee
Ciba Geigy AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG filed Critical Ciba Geigy AG
Publication of EP0413664A2 publication Critical patent/EP0413664A2/de
Publication of EP0413664A3 publication Critical patent/EP0413664A3/de
Application granted granted Critical
Publication of EP0413664B1 publication Critical patent/EP0413664B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/26Thermography ; Marking by high energetic means, e.g. laser otherwise than by burning, and characterised by the material used
    • B41M5/267Marking of plastic artifacts, e.g. with laser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/165Thermal imaging composition

Definitions

  • the present invention relates to a method for laser marking plastic objects in any shape per se with special effects, and the material so marked.
  • the laser marking of plastic objects with a contrast marking at the irradiated areas of the plastic is known.
  • a laser-sensitive additive is often added to the material to be inscribed, the additive discoloring, fading, decomposing or causing discoloration due to the absorption of the laser energy, so that a contrast marking is generated at the irradiated areas (see, for example, EP patent applications No. 0036680 and No. 0190997 and U.S. Patent No. 4307047).
  • the additive e.g. a mixture of different dyes has been proposed, only one component of the mixture being discolored or bleached during irradiation, so that a color contrast is produced at the irradiated areas (see, for example, JP patent applications No. 58-210937 or No. 60-155493) .
  • Soot and graphite have also been proposed as an additive in the laser marking of plastics.
  • U.S. Patent No. 4391764 e.g. mixed with the plastic as filler carbon black or graphite in such a concentration that the absorption of the energy radiation triggers a local decomposition (a melting-gassing process) in the plastic and therefore causes a mostly black and white contrast marking.
  • a laser marking process has now been found which leads to effect markings which, depending on the angle of illumination and observation, appear clearly visible or completely invisible and also have perfect general properties, such as abrasion and scratch resistance, and good resistance to chemicals, light and weather.
  • the new process allows so-called subcutaneous labeling of the material without the surface of the object being visibly damaged.
  • the present subject matter of the invention accordingly relates to a method for laser marking plastic objects in any desired form, according to which the object to be labeled contains a radiation-sensitive additive which causes a change in light reflection and is exposed to a laser with pulsed light in such a way that the laser beam corresponds to the shape the marking to be applied is shaped by means of a mask or is guided over the surface of the object to be marked, so that a visual effect marking is produced at the irradiated areas of the object without the surface of the labeled object being visibly damaged by the eye, characterized in that Molybdenum disulphide additive is used and the laser parameters wavelength, pulse energy density and pulse width are selected in such a way that an effect marking is generated, the contrast of which changes visually depending on the angle of illumination and observation rt.
  • the effect is peculiar in that the marking becomes visible at certain lighting and observation angles, but invisible at other angles.
  • the marking is black at larger observation angles, for example at angles of 60 ° -90 °.
  • the dark marking disappears, that is to say no contrast can be seen.
  • the method according to the invention allows a marking with an additional effect, in that the marking appears dark in the top view, but appears light and almost transparent in the view.
  • Plastic can e.g. are modified natural substances, for example cellulose derivatives, such as cellulose esters or cellulose ethers, and in particular fully synthetic organic polyplastics, that is to say plastics which are produced by polymerization, polycondensation or polyaddition.
  • cellulose derivatives such as cellulose esters or cellulose ethers
  • fully synthetic organic polyplastics that is to say plastics which are produced by polymerization, polycondensation or polyaddition.
  • polyolefins such as polyethylene, polypropylene, polybutylene or polyisobutylene, furthermore polystyrene, polyvinyl chloride, polyvinylidene chloride, the fluorine-containing polymers, such as polytetrafluoroethylene, furthermore polyvinyl acetals, polyacrylonitrile, polyacrylic acid and polymethacrylic acid esters or polybutadiene, and copolymerisate thereof , especially ABS or EVA; Polyesters, especially high molecular esters of aromatic polycarboxylic acids with polyfunctional alcohols; Polyamides, polyimides, polycarbonates, polyurethanes, polyethers, such as polyphenylene oxide, also polyacetals, the condensation products of formaldehyde with phenols, the so-called phenoplasts, and the condensation products of formaldehyde with urea, thiourea or melamine, the so-
  • Diols or polyphenols and also the unsaturated polyesters used as coating resins, such as maleate resins.
  • coating resins such as maleate resins.
  • Plastics in dissolved form as film formers or binders for paints or printing inks are also possible, e.g. Linseed oil varnish, nitrocellulose, alkyd resins, phenolic resins, melamine resins, acrylic resins and urea-formaldehyde resins, it being possible for the films obtained therefrom to be labeled in accordance with the invention.
  • Plastics which are particularly suitable for the process according to the invention are polyvinyl chloride, polyvinyl esters, such as polyvinyl acetals, furthermore polyacrylic acid and polymethacrylic acid esters, polyesters, polyamides, polyimides, polycarbonates, polyurethanes, polyethers, in particular polyphenylene oxides, furthermore polyacetals, phenoplasts, aminoplasts, epoxy resins and very particularly polyolefins, such as Polyethylene and polypropylene.
  • polyvinyl chloride polyvinyl esters, such as polyvinyl acetals, furthermore polyacrylic acid and polymethacrylic acid esters
  • polyesters polyamides, polyimides, polycarbonates, polyurethanes, polyethers, in particular polyphenylene oxides, furthermore polyacetals, phenoplasts, aminoplasts, epoxy resins and very particularly polyolefins, such as Polyethylene and polypropylene.
  • molybdenum disulfide in flake or platelet form with a particle diameter of less than 100 ⁇ m, but very particularly with a particle diameter of 0.1 to 25 ⁇ m and a thickness of up to 4 ⁇ m.
  • molybdenum disulfide in the preferred particle composition can be obtained in a known manner, for example by grinding in air jet, sand or ball mills.
  • a grinding device which contains metal, glass or porcelain balls, plastic granules or sand grains as grinding media.
  • These grinding media are set in motion, for example, by rotating the vessel or by vibrators or stirrers.
  • the optimal effect markings can be determined by varying the amount of molybdenum disulfide within the range specified below.
  • preference is given to using from 1.0 to 15.0% by weight, in particular from 1.0 to 10% by weight, of molybdenum disulfide, based on the dry paint or printing ink layer.
  • preference is given to using from 0.01 to 5.0% by weight, in particular from 0.05 to 1% by weight, of molybdenum disulfide, based on the plastic material.
  • flaky or platelet-shaped molybdenum disulfide with 60-95% by weight of the particles which have a median value of 1-12 ⁇ m. They expediently have a diameter of 0.1 to 25 ⁇ m.
  • the colorant or mixture thereof may only be present in the plastic in such a concentration that the effect marking produced according to the invention is not impaired or covered.
  • the concentration is expediently 0.01 to 0.5% by weight or 0.5 to 5% by weight.
  • Inorganic or organic pigments and polymer-soluble dyes are suitable as additional colorants, especially those which absorb in the visible range.
  • inorganic pigments are white pigments, such as titanium dioxide (anatase, rutile), zinc oxide, antimony trioxide, zinc sulfide, lithopone, basic lead carbonate, basic lead sulfate or basic lead silicate, and also colored pigments, such as iron oxides, nickel-antimony-titanate, chromium-antimony-titanate, Manganese blue, manganese violet, cobalt blue, Cobalt chromium blue, cobalt nickel gray, or ultramarine blue, Berlin blue, lead chromate, lead sulfochromates, molybdate orange, molybdate red, cadmium sulfides, cadmium, antimony, zirconium silicates such as Zirkonvanadiumblau and Zirkonpraseodymgelb, as well as carbon black or graphite in a low
  • organic pigments examples include azo, azomethine, methine, anthraquinone, indanthrone, pyranthrone, flavanthrone, benzanthrone, phthalocyanine, perinone, perylene, dioxazine, thioindigo, isoindoline, isoindolinone and quinacridone -, Pyrrolopyrrole or quinophthalone pigments, furthermore metal complexes of, for example Azo, azomethine or methine dyes, or metal salts of azo compounds and also platelet-shaped organic pigments.
  • Suitable polymer-soluble dyes are, for example, disperse dyes, such as those of the anthraquinone series, for example hydroxyl, amino, alkylamino, cyclohexylamino, arylamino, hydroxylamino or phenylmercaptoanthraquinones, and also metal complexes of azo dyes, in particular 1: 2 chromium or - Cobalt complexes of monoazo dyes and also fluorescent dyes, such as those from the coumarin, naphthalimide, pyrazoline, acridine, xanthene, thioxanthene, oxazine, thiazine or benzothiazole series.
  • disperse dyes such as those of the anthraquinone series, for example hydroxyl, amino, alkylamino, cyclohexylamino, arylamino, hydroxylamino or phenylmercaptoanthraquino
  • the inorganic and organic pigments or polymer-soluble dyes can be used individually or as mixtures, optionally together with pigment additives.
  • Suitable pigment additives are, for example, fatty acids with at least 12 carbon atoms, such as stearic acid or behenic acid, their amides, salts or esters, such as magnesium stearate, zinc stearate, aluminum stearate or magnesium behenate, and also quaternary ammonium compounds, such as tri (C1-C4) alkylbenzylammonium salts, waxes, such as polyolefin waxes, for example polyethylene wax, also resin acids, such as abietic acid, rosin soap, hydrogenated or dimerized rosin, C12-C18 paraffin disulfonic acid or alkyl phenols, alcohols, such as ®TCD alcohol M, or vicinal aliphatic 1,2-diols.
  • fatty acids with at least 12 carbon atoms such as stearic acid or behenic acid, their amides, salts or esters, such as magnesium stearate, zinc stearate, aluminum stearate
  • the plastic objects are produced by methods known per se, for example in such a way that the required color components (molybdenum disulfide and, if appropriate, an additional colorant) are optionally in the form of masterbatches, the plastic material and the customary additives using extruders, rolling mills, mixing or grinders.
  • the mixture obtained is then brought into the desired final shape by methods known per se, such as calendering, pressing, extrusion, brushing, centrifuging, casting, extruding, blowing or by injection molding.
  • plasticizers can be incorporated into the polymers before or after incorporation of the coloring components that are possible according to the invention.
  • plastic material such as fillers such as kaolin, mica, feldspar, wollastonite, aluminum silicate, quartz or glass powder, barium sulfate, calcium sulfate, chalk, talc, calcite and dolomite, as well as light stabilizers, antioxidants, Flame retardants, heat stabilizers, glass fibers or processing aids, which are common in the processing of plastics and are known to the person skilled in the art.
  • fillers such as kaolin, mica, feldspar, wollastonite, aluminum silicate, quartz or glass powder, barium sulfate, calcium sulfate, chalk, talc, calcite and dolomite, as well as light stabilizers, antioxidants, Flame retardants, heat stabilizers, glass fibers or processing aids, which are common in the processing of plastics and are known to the person skilled in the art.
  • the plastic material, the molybdenum disulfide and, if appropriate, an additional colorant, together with further paint and printing ink additives are finely dispersed or dissolved in water or a common organic solvent or solvent mixture. You can do this by dispersing or dissolving the individual components for yourself or several together, and only then bringing all the components together.
  • the homogenized paint or the printing ink is then applied to a substrate by methods known per se and baked or dried, and the coating or printing ink film obtained is then labeled according to the invention.
  • High-energy pulsed laser sources are used to label the plastic objects that are suitable according to the invention.
  • the energy radiation according to the shape of the marking to be applied expediently at a steep angle, directed at the surface of the material to be marked, optionally focused, an effect marking being formed at the irradiated points without the surface of the labeled material being visibly damaged.
  • laser sources are solid-state pulse lasers, such as ruby lasers or frequency-multiplied Nd: YAG lasers, pulsed lasers with additional devices, such as pulsed dye lasers or Raman shifters, and continuous wave lasers with pulse modifications (Q-Switch, Mode-Locker), for example based on CW Nd: YAG lasers with a frequency multiplier, or CW ion lasers (Ar, Kr), also pulsed metal vapor lasers, such as Cu vapor lasers or Au vapor lasers, or possibly powerful pulsed semiconductor lasers that emit visible light directly or by frequency doubling , also pulsed gas lasers, such as excimer and nitrogen lasers.
  • solid-state pulse lasers such as ruby lasers or frequency-multiplied Nd: YAG lasers
  • pulsed lasers with additional devices such as pulsed dye lasers or Raman shifters
  • continuous wave lasers with pulse modifications Q-Switch, Mode-Locker
  • CW Nd YAG lasers with a frequency
  • pulse energy densities up to a few joules per cm2 power densities up to terawatts per cm2
  • pulse widths from femto-seconds to micro-seconds and repetition rates up to gigahertz are possible.
  • Pulse energy densities from millijoules to one kilojoule per cm2 and pulse widths from micro seconds to pico seconds are advantageously used. This corresponds to power densities from kilowatts per cm2 to megawatts per cm2 and repetition rates from a few hertz to 50 kilohertz.
  • Pulsed or pulse-modified, frequency-doubled Nd YAG lasers or metal vapor lasers, such as Au or in particular Cu vapor lasers, and excimer lasers are preferably used.
  • a pulsed frequency-doubled Nd: YAG laser between 0.05 and 1 joule per cm2 of pulse energy density, about 4 kilowatts peak power, 6-8 nano-seconds pulse width and 30 Hertz repetition rate (model Quanta Ray DCR-2 A from Spectra Physics, Mountain View, California).
  • exposure is, for example, to 250 millijoules per cm2 of pulse energy density, about 10 kilowatts of peak power, 30 nano-seconds pulse width and 6 kilohertz repetition rate.
  • Lasers with good adjustability of their laser parameters allow optimal adaptation to the needs of the materials to be labeled.
  • the optimum wavelength to be selected for irradiation is the one at which the radiation-sensitive MoS2 and possibly the additional colorant absorb the most, but the plastic to be labeled does not absorb much.
  • Laser light with a wavelength in the near UV and / or visible and / or near IR range is expediently used, but preferably with a wavelength in the visible range.
  • the visible range is the range between 0.38 ⁇ m and 0.78 ⁇ m
  • the near IR range is the range between 0.78 ⁇ m and 2 ⁇ m
  • the near UV range is between 0.25 and 0.38 ⁇ m .
  • the mask method There are generally three different methods for labeling with lasers: the mask method, the linear labeling and the dot-matrix method.
  • the laser is preferably coupled to a laser labeling system, so that the plastic can be labeled with any numbers, letters and special characters programmed in a computer, for example.
  • the choice of the laser system with regard to power and repetition rate is basically based on the labeling method used. High performance and low repetition rate, as with the solid-state pulse laser and excimer laser, are preferred for mask exposures. Medium to low power and fast repetition rates for pulsed metal vapor lasers or for continuous wave lasers with pulse modifications are preferred for labels that require dynamic beam guidance.
  • the beam deflection can take place, for example, acousto-optically, holographically, with galvo mirrors or polygon scanners.
  • the dynamic beam guidance enables extremely flexible labeling or marking, since the characters can be generated electronically.
  • a wide variety of types of marking and labeling can be obtained by the method according to the invention. Examples of this are: Variable text programming of numeric characters using text input via a keyboard, text program of standard characters or special characters, such as names, further initials and dedications, identity cards, signs or frequently repeated data, consecutive numbering of pieces, input of measurement quantities, input of stored programs, Line lettering or graphics and decorations, as well as security documents such as checks, traveler checks, banknotes, lottery tickets, credit cards, passports with data from computer programs, graphic data records or templates that can be read in with digitizing devices or scanners.
  • plastic objects such as molded plastic bodies or foils, and paint and printing ink films.
  • plastic objects such as tapes, sheets, tubes and profiles, buttons, buttons and plastic-covered electronic components or parts with different colors that are manufactured using the two-phase injection molding process.
  • the markings obtained according to the invention are corrosion-resistant, dimensionally stable, deformation-free, light, heat and weather resistant. They have a clean edge zone and are easily readable by the naked eye in the area described at the beginning, without, for example. Need to use IR or UV readers. Furthermore, the mechanical and physical properties of the material so labeled are practically unaffected, such as the mechanical strength and chemical resistance. The depth of penetration of the marking depends on the labeled plastic. It is usually less than 1 mm. The plastic material is largely protected. Inscriptions are therefore possible that do not cause any loss of surface gloss that can be seen by the eye and do not impair the strength properties of the workpiece.
  • a change in reflection with a variable contrast occurs at the irradiated points of the material under laser irradiation. Most of the time there is a color change to black or dark gray in the top view, bright markings in the see-through and the markings disappear when the viewing angle is narrow or reduced. Depending on the laser system, it is also possible to generate a contrast marking which, when viewed under a microscope, also has a clearly recognizable fine structure.
  • the mixture is then extruded in two passages on a single-screw extruder, and the granules obtained in this way are injected into plates on the injection molding machine (Allround Aarburg 200) at 220 ° C., which are then pressed at 180 ° C. for 5 minutes.
  • the press plates have a homogeneous metallic gray shimmering color.
  • the press plates obtained in this way are labeled with a laser beam deflected via two orthogonally movable mirrors in accordance with the shape of the marking to be applied (in the present case the inscription "GRETAG"; height and width of the letters 6 mm; font width 0.1 mm).
  • An Nd: YAG pulse laser (®Quanta Ray DCR 2, Spectra Physics) with frequency doubler (harmonic generator) and frequency filter (harmonic separator) is used as the laser.
  • the laser is adjusted and attenuated with neutral filters so that the beam focused on a lens (focal length 200 mm) on the surface of the plate reaches a pulse energy of 0.2 mJ with a pulse width of 10 nano-seconds.
  • the deflection unit with the orthogonally movable mirrors is part of a ®GRETAG 6210 laser marking system (GRETAG AG, Switzerland) and is mounted vertically above the sample plate.
  • the labeling achieved in this way is dark (black on the gray underlay with approximately vertical supervision) and stands out clearly from the unmarked metallic gray shimmering colored article. Depending on the incidence of light and the angle of observation, the marking is clearly recognizable or disappears completely.
  • the plastic granulate is mixed with the molybdenum disulfide pigment described in Example 1 and injected into flakes of size 55 ⁇ 45 ⁇ 1.5 mm in accordance with the information in the list below.
  • the samples thus produced are labeled according to Example 1 using the device described there; Instead of the 'GRETAG' lettering, two markings are made in the form of an arc (3/4 circle) and a rectangle (9x9 mm).
  • the labeled plates all show the effect that the markings are only visible under certain lighting and viewing angles, but practically disappear when the lighting is flat.
  • a platelet-shaped molybdenum IV disulfide pigment with a particle fraction of 80-90%, a size of 4-25 micrometers and a median value of 9.5 micrometers (measured on granulometer 715E598 from CILAS, F-91460, Marcoussis / FR), 7.3 ml of dioctyl phthalate and 13.3 g of stabilized polyvinyl chloride are mixed well in a beaker with a glass rod and then processed on a roller mill at 160 ° C. for 5 minutes to form a thin film.
  • the film thus obtained is labeled with a laser beam in accordance with Example 1.
  • the inscriptions obtained are dark (black on the gray surface) when viewed from a vertical angle, but they appear light when viewed through with a pronounced fine structure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Verfahren zur Lasermarkierung von Kunststoffgegenständen in an sich beliebiger Form, wonach der zu beschriftende Gegenstand einen strahlungsempfindlichen, eine Veränderung der Lichtreflexion verursachenden Zusatzstoff enthält und einem Laserstrahl so ausgesetzt wird, dass er entsprechend der Form der aufzubringenden Markierung mittels einer Maske geformt oder über die Oberfläche des zu markierenden Gegenstandes geführt wird, so dass an den bestrahlten Stellen des Gegenstandes eine visuelle Effektmarkierung entsteht, ohne dass die Oberfläche des beschrifteten Gegenstandes von Auge erkennbar beschädigt wird, dadurch gekennzeichnet, dass man als Zusatzstoff Molybdändisulfid verwendet und die Laserparameter Wellenlänge, Pulsenergiedichte und Pulsbreite so wählt, dass eine Effektmarkierung erzeugt wird, deren Kontrast sich je nach Beleuchtungs- und Beobachtungswinkel visuell verändert.

Description

  • Die vorliegende Eriindung betrifft ein Verfahren zur Lasermarkierung von Kunststoff­gegenständen in an sich beliebiger Form mit besonderen Effekten, sowie das so markierte Material.
  • Das Lasermarkieren von Kunststoffgegenständen mit einer Kontrastmarkierung an den bestrahlten Stellen des Kunststoffes ist bekannt. Zu diesem Zweck wird dem zu be­schriftenden Material oft ein laserempfindlicher Zusatzstoff beigemischt, wobei sich der Zusatzstoff durch Absorption der Laserenergie verfärbt, ausbleicht, sich zersetzt oder eine Verfärbung verursacht, so dass an den bestrahlten Stellen eine Kontrastmärkierung erzeugt wird (vgl. z.B. EP-Patentanmeldungen Nr. 0036680 und Nr. 0190997 sowie US-Patent­schrift Nr. 4307047).
  • Um Farbkontrastmarkierungen zu erzeugen, ist als Zusatzstoff z.B. ein Gemisch ver­schiedener Farbstoffe vorgeschlagen worden, wobei sich nur die eine Komponente des Gemisches bei der Bestrahlung verfärbt oder ausbleicht, so dass an den bestrahlten Stellen ein Farbkontrast entsteht (vgl. z.B. JP-Patentanmeldungen Nr. 58-210937 oder Nr. 60-155493).
  • Auch Russ und Graphit wurden als Zusatzstoff bei der Lasermarkierung von Kunststoffen vorgeschlagen. Gemäss der US-Patentschrift Nr. 4391764 wird z.B. dem Kunststoff als Füllstoff Russ oder Graphit in einer derartigen Konzentration beigemischt, dass die Absorption der Energiestrahlung eine lokale Zersetzung (einen Schmelz-Gasungsvorgang) im Kunststoff auslöst und daher eine meistens Schwarz/weiss-Kontrastmarkierung bewirkt.
  • Die oben aufgeführten Verfahren bzw. Zusammensetzungen vermögen jedoch den heutigen Anforderungen der Praxis nicht immer zu genügen; oft wird die Oberfläche des beschrifteten Materials an den bestrahlten Stellen stark beschädigt, was zu unerwünschten Rillen, Vertiefungen oder Verätzungen und darüber hinaus zu Markierungen unge­ nügender allgemeiner Eigenschaften, wie ungenügende Abrieb- und Kratzfestigkeit, schlechte Beständigkeit gegen Chemikalien und Verschmutzung, und unsaubere Rand­zonen, führt. Ausserdem ergeben diese Verfahren Markierungen, die von jedem Beobachtungswinkel aus visuell praktisch gleich aussehen.
  • Es wurde nun ein Laserbeschriftungsverfahren gefunden, das zu Effektmarkierungen führt, welche je nach Beleuchtungs- und Beobachtungswinkel deutlich sichtbar oder vollständig unsichtbar erscheinen und ausserdem noch einwandfreie allgemeine Eigenschaften, wie Abrieb- und Kratzfestigkeit, sowie gute Beständigkeit gegen Chemikalien, Licht und Wetter, besitzen. Zudem erlaubt das neue Verfahren eine sogenannte subkutane Be­schriftung des Materials, ohne dass dabei die Oberfläche des Gegenstandes von Auge erkennbar beschädigt wird.
  • Der vorliegende Erfindungsgegenstand betrifft demnach ein Verfahren zur Laser­markierung von Kunststoffgegenständen in an sich beliebiger Form, wonach der zu beschriftende Gegenstand einen strahlungsempfindlichen, eine Veränderung der Licht­reflexion verursachenden Zusatzstoff enthält und einem Laser mit pulsiertem Licht so ausgesetzt wird, dass der Strahl des Lasers entsprechend der Form der aufzubringenden Markierung mittels einer Maske geformt oder über die Oberfläche des zu markierenden Gegenstandes geführt wird, so dass an den bestrahlten Stellen des Gegenstandes eine visuelle Effektmarkierung entsteht, ohne dass die Oberfläche des beschrifteten Gegen­standes von Auge erkennbar beschädigt wird, dadurch gekennzeichnet, dass man als Zusatzstoff Molybdändisulfid verwendet und die Laserparameter Wellenlänge, Pulsenergiedichte und Pulsbreite so wählt, dass eine Effektmarkierung erzeugt wird, deren Kontrast sich je nach Beleuchtungs- und Beobachtungswinkel visuell verändert.
  • Bei der erfindungsgemäss erzeugten Markierung ist der Effekt eigenartig, indem die Markierung bei bestimmten Beleuchtungs- und Beobachtungswinkeln sichtbar, bei anderen Winkeln dagegen unsichtbar wird. Im allgemeinen ist die Markierung bei grösseren Beobachtungswinkeln, z.B. etwa bei Winkeln von 60°-90° schwarz. Bei schmalen Beobachtungswinkeln dagegen, also bei seitlicher Beobachtung, verschwindet die dunkle Markierung, d.h. es ist kein Kontrast mehr erkennbar. Bei dünnen Folien, z.B. PVC-Folien, erlaubt das erfindungsgemässe Verfahren eine Markierung mit noch einem zusätzlichen Effekt, indem die Markierung in der Aufsicht dunkel, in der Durchsicht dagegen hell und nahezu transparent erscheint.
  • Beim Kunststoff kann es sich z.B. um abgewandelte Naturstoffe handeln, beispielsweise um Cellulosederivate, wie Celluloseester oder Celluloseether, und besonders um vollsynthetische organische Polyplaste, das heisst um Kunststoffe, die durch Polymerisation, Polykondensation oder Polyaddition hergestellt sind. Aus der Klasse dieser Kunststoffe seien besonders folgende genannt: Polyolefine, wie Polyethylen, Polypropylen, Polybutylen oder Polyisobutylen, ferner Polystyrol, Polyvinylchlorid, Polyvinylidenchlorid, die fluorhaltigen Polymere, wie Polytetrafluorethylen, ferner Polyvinylacetale, Polyacrylnitril, Polyacrylsäure- und Polymethacrylsäureester oder Polybutadien, sowie Copolymerisate davon, insbesondere ABS oder EVA; Polyester, insbesondere hochmolekulare Ester aromatischer Polycarbonsäuren mit polyfunktionellen Alkoholen; Polyamide, Polyimide, Polycarbonate, Polyurethane, Polyether, wie Polyphenylenoxid, ferner Polyacetale, die Kondensationsprodukte von Formaldehyd mit Phenolen, die sogenannten Phenoplaste, und die Kondensationsprodukte von Formaldehyd mit Harnstoff, Thioharnstoff oder Melamin, die sogenannten Aminoplaste; die unter dem Namen "Epoxyharze" bekannten Polyadditions- bzw. Polykondensationsprodukte von Epi­chlorhydrin mit z.B. Diolen oder Polyphenolen, und ferner die als Lackharze verwendeten ungesättigten Polyester, wie beispielsweise Maleinatharze. Es sei betont, dass nicht nur die einheitlichen Verbindungen, sondern auch Gemische von Polyplasten, sowie Mischkondensate und Mischpolymerisate, wie z.B. solche auf Basis von Butadien, erfindungsgemäss verwendet werden können.
  • Kunststoffe in gelöster Form als Filmbildner oder Bindemittel für Anstrichstoffe oder Druckfarben kommen auch in Frage, wie z.B. Leinölfirnis, Nitrocellulose, Alkydharze, Phenolharze, Melaminharze, Acrylharze und Harnstoff-Formaldehydharze, wobei die daraus erhaltenen Filme erfindungsgemäss beschriftet werden können.
  • Für das erfindungsgemässe Verfahren besonders geeignete Kunststoffe sind Polyvinyl­chlorid, Polyvinylester, wie Polyvinylacetale, ferner Polyacrylsäure- und Polymethacryl­säureester, Polyester, Polyamide, Polyimide, Polycarbonate, Polyurethane, Polyether, insbesondere Polyphenylenoxide, ferner Polyacetale, Phenoplaste, Aminoplaste, Epoxyharze und ganz besonders Polyolefine, wie Polyethylen und Polypropylen.
  • Als Molybdändisulfid eignet sich insbesondere Molybdändisulfid in Schuppen- oder Plättchenform mit einem Teilchen-Durchmesser von weniger als 100 µm, ganz besonders aber mit einem Teilchen-Durchmesser von 0,1 bis 25 µm, und einer Dicke von bis zu 4 µm.
  • Ausgehend vom handelsüblichen Molybdändisulfid lässt sich Molybdändisulfid in der bevorzugten Teilchenbeschaffenheit auf bekannte Art erhalten, wie beispielsweise durch Mahlen in Luftstrahl-, Sand- oder Kugelmühlen. So erhält man ausgeprägt flächige, plättchen- oder schuppenförmige Molybdändisulfidteilchen beispielsweise durch Nassmahlung von grobkristallinem Molybdändisulfid in einer Mahlvorrichtung, die Metall-, Glas- oder Porzellankugeln, Kunststoffgranulat oder Sandkörner als Mahlkörper enthält. Diese Mahlkörper werden dabei beispielsweise durch Rotation des Gefässes oder durch Schwingungserzeuger oder Rührer in Bewegung gesetzt.
  • Die optimalen Effektmarkierungen lassen sich durch Variieren der Molybdändisulfid­menge innerhalb des nachstehend angegebenen Bereiches festlegen. Für als Anstrichstoff oder Druckfarbe vorliegende Kunstoffe verwendet man bevorzugt von 1,0 bis 15,0 Gew.%, insbesondere von 1,0 bis 10 Gew.% Molybdändisulfid, bezogen auf die trockene Anstrich- oder Druckfarbenschicht. Für in der Masse eingefärbte Kunststoffe verwendet man bevorzugt von 0,01 bis 5,0 Gew.%, insbesondere von 0,05 bis 1 Gew.% Molybdändisulfid, bezogen auf das Kunststoffmaterial.
  • Besonders bevorzugt eignet sich schuppen- oder plättchenförmiges Molybdändisulfid mit 60-95 Gew.% der Partikel, die einen Median-Wert von 1-12 µm aufweisen. Zweckmässig weisen sie einen Durchmesser von 0,1 bis 25 µm auf.
  • Neben dem Molybdändisulfid kann es von Vorteil sein, dem Kunststoffgegenstand auch noch ein zusätzliches Farbmittel oder ein Gemisch von Farbmitteln beizumischen. Das Farbmittel bzw. Gemisch davon darf im Kunststoff jedoch nur in solcher Konzentration vorhanden sein, dass die erfindungsgemäss erzeugte Effektmarkierung nicht beeinträchtigt bzw. überdeckt wird. Je nach Kunststoff bzw. Anstrichstoff oder Druckfarbe beträgt die Konzentration zweckmässig 0,01 bis 0,5 Gew.% bzw. 0,5 bis 5 Gew.%.
  • Als zusätzliche Farbmittel kommen anorganische oder organische Pigmente, sowie polymerlösliche Farbstoffe in Frage, insbesondere solche, die im sichtbaren Bereich absorbieren.
    Beispiele von anorganischen Pigmenten sind Weisspigmente, wie Titandioxide (Anatas, Rutil), Zinkoxid, Antimontrioxid, Zinksulfid, Lithopone, basisches Bleicarbonat, basisches Bleisulfat oder basisches Bleisilikat, ferner Buntpigmente, wie Eisenoxide, Nickel-antimon-titanat, Chrom-antimon-titanat, Manganblau, Manganviolett, Kobaltblau, Kobaltchromblau, Kobaltnickelgrau oder Ultramarinblau, Berlinerblau, Bleichromate, Bleisulfochromate, Molybdatorange, Molybdatrot, Cadmiumsulfide, Cadmiumsulfo­selenide, Antimontrisulfid, Zirkonsilikate, wie Zirkonvanadiumblau und Zirkon­praseodymgelb, sowie Russ oder Graphit in geringer Konzentration, ferner andere Effektpigmente, wie Aluminiummetall, eisenoxidbeschichtete Aluminiumpigmente oder plättchenförmige Mischphasenpgimente, wie plättchenförmiges Eisenoxid dotiert mit Al₂O₃ und/oder Mn₂O₃, sowie Perlglanzpigmente, wie basisches Bleicarbonat, Wismut­oxidchlorid, Wismutoxidchlorid auf Träger und insbesondere die Titandioxid-Glimmer-­Pigmente, wobei die letzteren auch andere farbgebende Metalloxide, wie Eisen-, Kobalt-, Mangan- oder Chromoxide, enthalten können.
  • Beispiele von organischen Pigmenten sind Azo, Azomethin-, Methin-, Anthrachinon-, Indanthron-, Pyranthron-, Flavanthron-, Benzanthron-, Phthalocyanin-, Perinon-, Perylen-, Dioxazin-, Thioindigo-, Isoindolin-, Isoindolinon-, Chinacridon-, Pyrrolopyrrol- oder Chinophthalonpigmente, ferner Metallkomplexe von z.B. Azo, Azomethin- oder Methin­farbstoffen, oder Metallsalze von Azoverbindungen sowie auch plättchenförmige organische Pigmente.
  • Als polymerlösliche Farbstoffe eignen sich beispielsweise Dispersionsfarbstoffe, wie solche der Anthrachinonreihe, beispielsweise Hydroxy-, Amino-, Alkylamino-, Cyclo­hexylamino-, Arylamino-, Hydroxylamino- oder Phenylmercapto-anthrachinone, sowie Metallkomplexe von Azofarbstoffen, insbesondere 1:2-Chrom- oder -Kobaltkomplexe von Monoazofarbstoffen, ferner Fluroeszenzfarbstoffe, wie solche aus der Cumarin-, Naphthalimid-, Pyrazolin-, Acridin-, Xanthen-, Thioxanthen-, Oxazin-, Thiazin- oder Benzthiazolreihe.
  • Die anorganischen und organischen Pigmente oder polymerlöslichen Farbstoffe können erfindungsgemäss einzeln oder als Gemische, gegebenenfalls zusammen mit Pigment­zusätzen, verwendet werden.
  • Geeignete Pigmentzusätze sind beispielsweise Fettsäuren mit mindestens 12 C-Atomen, wie Stearinsäure oder Behensäure, deren Amide, Salze oder Ester, wie Magnesiumstearat, Zinkstearat, Aluminiumstearat oder Magnesiumbehenat, ferner quaternäre Ammonium­verbindungen, wie Tri-(C₁-C₄)-alkylbenzylammoniumsalze, Wachse, wie Polyolefin­wachse, z.B. Polyethylenwachs, ferner Harzsäuren, wie Abietinsäure, Kolophoniumseife, hydriertes oder dimerisiertes Kolophonium, C₁₂-C₁₈-Paraffindisulfonsäure oder Alkyl­ phenole, Alkohole, wie ®TCD-Alkohol M, oder vicinale aliphatische 1,2-Di ole.
  • Die Herstellung der Kunststoffgegenstände erfolgt nach an und für sich bekannten Methoden, beispielsweise derart, dass man die benötigten Farbkomponenten (Molyb­dändisulfid und gegebenenfalls ein zusätzliches Farbmittel) gegebenenfalls in Form von Masterbatches, das Kunststoffmaterial und die üblichen Zusätze unter Verwendung von Extrudern, Walzwerken, Misch- oder Mahlapparaten zumischt. Das erhaltene Gemisch wird hierauf nach an sich bekannten Verfahren, wie Kalandrieren, Pressen, Strangpressen, Streichen, Schleudern, Giessen, Extrudieren, Aufblasen oder durch Spritzguss, in die ge­wünschte endgültige Form gebracht. Oft ist es erwünscht, zur Herstellung von nicht starren Formlingen oder zur Verringerung ihrer Sprödigkeit, dem Kunststoff vor der Verformung sogenannte Weichmacher einzuverleiben. Als solche können z.B. Ester der Phosphorsäure, Phthalsäure oder Sebacinsäure dienen. Die Weichmacher können vor oder nach der Einverleibung der erfindungsgemäss in Frage kommenden farbgebenden Komponenten in die Polymeren eingearbeitet werden.
  • Je nach Verwendungszweck können ferner dem Kunststoffmaterial noch weitere Stoffe zugefügt werden, wie beispielsweise Füllstoffe, wie Kaolin, Glimmer, Feldspate, Wollastonit, Aluminiumsilikat, Quarz- oder Glaspulver, Bariumsulfat, Calciumsulfat, Kreide, Talk, Calcit und Dolomit, ferner Lichtschutzmittel, Antioxidantien, Flamm­schutzmittel, Hitzestabilisatoren, Glasfasern oder Verarbeitungshilfsmittel, welche bei der Verarbeitung von Kunststoffen üblich und dem Fachmann bekannt sind.
  • Zur Herstellung der erfindungsgemäss in Frage kommenden Anstrichstoffe und Druck­farben werden das Kunststoffmaterial, das Molybdändisulfid und gegebenenfalls ein zusätzliches Farbmittel zusammen mit weiteren Anstrichstoff- und Druckfarbenzusätzen, in Wasser oder einem gemeinsamen organischen Lösungsmittel oder Lösungsmittel­gemisch fein dispergiert bzw. gelöst. Man kann dabei so verfahren, dass man die einzelnen Komponenten für sich oder auch mehrere gemeinsam dispergiert bzw. löst, und erst hierauf alle Komponenten zusammenbringt. Der homogenisierte Anstrichstoff bzw. die Druckfarbe wird dann auf einem Substrat nach an sich bekannten Verfahren aufgetragen und eingebrannt bzw. getrocknet, und der erhaltene Anstrich- bzw. Druckfarbenfilm dann erfindungsgemäss beschriftet.
  • Zur Beschriftung der erfindungsgemäss in Frage kommenden Kunststoffgegenstände werden energiereiche gepulste Laser-Quellen verwendet. Dabei wird die Energiestrahlung entsprechend der Form der aufzubringenden Markierung, zweckmässig in steilem Winkel, auf die Oberfläche des zu markierenden Materials gerichtet, gegebenenfalls fokussiert, wobei an den bestrahlten Stellen eine Effektmarkierung entsteht, ohne dass die Oberfläche des beschrifteten Materials von Auge erkennbar beschädigt wird.
  • Beispiele for solche Laser-Quellen sind Festkörper-Pulslaser, wie Rubinlaser oder frequenzvervielfachte Nd:YAG-Laser, gepulste Laser mit Zusatzeinrichtung, wie gepulste Farbstofflaser oder Ramanshifter, weiter Dauerstrichlaser mit Pulsmodifikationen (Q-Switch, Mode-Locker), beispielsweise auf Basis von CW Nd:YAG-Lasern mit Frequenzvervielfacher, oder CW Ionen-Laser (Ar, Kr), ferner gepulste Metalldampflaser, wie beispielsweise Cu-Dampflaser oder Au-Dampflaser, oder allenfalls leistungsstarke gepulste Halbleiter-Laser, die direkt oder durch Frequenzverdoppelung sichtbares Licht emittieren, ferner gepulste Gaslaser, wie Excimer- und Stickstofflaser.
  • Je nach eingesetztem Laser-System sind Pulsenergiedichten bis einige Joule pro cm², Leistungsdichten bis Terawatt pro cm², Pulsbreiten von Femto-Sekunden bis Micro-­Sekunden und Repetitionsraten bis Gigahertz möglich.
  • Vorteilhafterweise werden Pulsenergiedichten von Millijoule bis ein Kilojoule pro cm² und Pulsbreiten von Micro-Sekunden bis Pico-Sekunden eingesetzt. Dies entspricht Leistungsdichten von Kilowatt pro cm² bis Megawatt pro cm² und Repetitionsraten von wenigen Hertz bis 50 Kilohertz.
  • Bevorzugt werden gepulste oder pulsmodifizierte frequenzverdoppelte Nd:YAG-Laser oder Metalldampf-Laser, wie Au- oder insbesondere Cu-Dampflaser, sowie Excimer-Laser verwendet.
  • In der folgenden Tabelle sind einige handelsübliche Laser aufgeführt, die erfindungsgemäss in Frage kommen können.
    Figure imgb0001
  • Gemäss dem erfindungsgemässen Verfahren wird beispielsweise mit einem gepulsten frequenzverdoppelten Nd:YAG-Laser zwischen 0,05 und 1 Joule pro cm² Pulsenergie­dichte, etwa 4 Kilowatt Spitzenleistung, 6-8 Nano-Sekunden Pulsbreite und 30 Hertz Repetitionsrate (Modell Quanta Ray DCR-2 A der Firma Spectra Physics, Mountain View, California) gearbeitet.
  • Verwendet man einen Cu-Dampflaser (Plasma Kinetics Modell 151) mit Fokussieroptik, so wird beispielsweise mit 250 Millijoule pro cm² Pulsenergiedichte, etwa 10 Kilowatt Spitzenleistung, 30 Nano-Sekunden Pulsbreite und 6 Kilohertz Repetitionsrate belichtet.
  • Laser mit guter Einstellbarkeit ihrer Laserparameter, wie beispielsweise Pulsenergie und Einwirkzeit, erlauben eine optimale Anpassung an die Bedürfnisse der zu beschriftenden Materialien.
  • Die optimale, zur Bestrahlung auszuwählende Wellenlänge ist diejenige, bei welcher das strahlungsempfindliche MoS₂ und gegebenenfalls das zusätzliche Farbmittel am meisten, der zu beschriftende Kunststoff dagegen wenig absorbieren.
  • Zweckmässig wird Laserlicht mit einer Wellenlänge im nahen UV- und/oder sichtbaren und/oder nahen IR-Bereich verwendet, bevorzugt aber mit einer Wellenlänge im sicht­baren Bereich.
  • Unter sichtbarem Bereich versteht man den Bereich zwischen 0,38 µm und 0,78 µm, unter nahem IR-Bereich den Bereich zwischen 0,78 µm und 2 µm und unter nahem UV-Bereich den Bereich zwischen 0,25 und 0,38 µm.
  • Zur Beschriftung mit Lasern kommen im allgemeinen drei verschiedene Verfahren in Frage: das Maskenverfahren, die linienförmige Beschriftung und das Punkt-Matrix-­Verfahren. Bei den zwei letztgenannten Beschriftungsarten (dynamische Strahlführung) wird der Laser bevorzugt mit einem Laserbeschriftungssystem gekoppelt, so dass der Kunststoff mit beliebigen, beispielsweise in einem Computer programmierten Ziffern, Buchstaben und Sonderzeichen beschriftet werden kann.
  • Die Wahl des Lasersystems bezüglich Leistung und Repetitionsrate richtet sich grundsätzlich nach dem zur Anwendung gelangenden Beschriftungsverfahren. Hohe Leistung und niedere Repetitionsrate, wie beim Festkörper-Pulslaser und Excimerlaser, werden bevorzugt für Maskenbelichtungen angewandt. Mittlere bis kleine Leistungen und schnelle Repetitionsraten beim gepulsten Metalldampflaser oder beim Dauerstrichlaser mit Pulsmodifikationen werden bevorzugt für Beschriftungen angewandt, die eine dynamische Strahlführung erfordern. Die Strahlablenkung kann beispielsweise akustooptisch, holographisch, mit Galvo-Spiegeln oder Polygon-Scannern erfolgen. Die dynamische Strahlführung erlaubt eine äusserst flexible Beschriftung oder Markierung, da die Zeichen elektronisch erzeugt werden können.
  • Nach dem erfindungsgemässen Verfahren können die verschiedensten Markierungs- und Beschriftungsarten erhalten werden. Beispiele hierfür sind: Variable Textprogrammierung von numerischen Zeichen mittels Texteingabe über eine Tastatur, Textprogramm von Standardzeichen oder Sonderzeichen, wie Namenszüge, ferner Initialen und Widmungen, Identitätskarten, Signete oder sich oft wiederholende Daten, fortlaufende Stückzahl­numerierung, Eingabe von Messgrössen, Eingabe von gespeicherten Programmen, Linienbeschriftung oder auch Graphik und Dekorationen, ferner Sicherheitsdokumente, wie Checks, Travellerchecks, Banknoten, Lotteriebillete, Kreditkarten, Pässe mit Daten aus Computerprogrammen, graphische Datensätze oder Vorlagen, die mit Digitali­siergeräten oder Scannern eingelesen werden.
  • Nach dem erfindungsgemässen Verfahren können die verschiedensten Kunststoffgegen­stände beschriftet werden, wie Kunststoff-Formkörper oder -Folien sowie Anstrich- und Druckfarben-Filme. Beispiele hierfür sind Bänder, Tafeln, Rohre und Profile, Tasten, Knöpfe und mit Kunststoff umhüllte elektronische Bauteile oder im Zweiphasen-­Spritzgussverfahren hergestellte Teile mit unterschiedlichen Einfärbungen.
  • Die erfindungsgemäss erhaltenen Markierungen sind korrosionsbeständig, dimensions­stabil, deformationsfrei, licht-, hitze- und wetterbeständig. Sie haben saubere Randzone und sind von blossem Auge im eingangs beschriebenen Bereich gut lesbar, ohne zB. IR- oder UV-Lesegeräte verwenden zu müssen. Ferner werden die mechanischen und physikalischen Eigenschaften des so beschrifteten Materials praktisch nicht beeinträchtigt, wie beispielsweise die mechanische Festigkeit und die chemische Resistenz. Die Eindringtiefe der Markierung hängt vom beschrifteten Kunststoff ab. Sie beträgt üblicher­weise weniger als 1 mm. Das Kunststoffmaterial wird dabei weitgehendst geschont. Es sind somit Beschriftungen möglich, die keinen von Auge erkennbaren Verlust an Ober­flächenglanz bewirken und die Festigkeitseigenschaften des Werkstückes nicht beeinträchtigen.
  • Gemäss dem vorliegenden Verfahren tritt unter Laserbestrahlung an den bestrahlten Stellen des Materials eine Reflexionsänderung mit einem variablen Kontrast ein. Meistens entsteht in der Aufsicht ein Farbumschlag nach schwarz oder dunkelgrau, in der Durchsicht helle Markierungen und bei einem schmalen bzw. reduzierten Beobachtungs­winkel verschwinden die Markierungen. Zudem ist es möglich, je nach Lasersystem eine Kontrastmarkierung zu erzeugen, welche, unter dem Mikroskop betrachtet, zusätzlich eine deutlich erkennbare Feinstruktur aufweist.
  • Wird ein zusätzliches Farbmittel verwendet, so erscheint die Effektmarkierung in der Auf- und Durchsicht oft in der zurückbleibenden Farbnuance des eingesetzten Farbmittels.
  • In den folgenden Beispielen bedeuten Teile, sofern nichts anderes angegeben, Gewichtsteile.
  • Beispiel 1:
  • Eine Mischung von 10,0 g eines plättchenförmigen Molybdän-IV-sulfid­pigmentes, in dem 85 % der Partikel eine Partikelgrösse von 6-24 µm mit einem Medianwert von 9,6 µm aufweisen (gemessen auf Granulometer 715 E 598 der Firma CILAS, F-91463 Marcoussis/FR), 1,0 g Antioxydans (®IRGANOX 1010, CIBA-GEIGY AG) und 1000 g Polyethylen-HD Granulat (®VESTOLEN A 60-16, HUELS) wird während 15 Minuten in einer Glasflasche auf einer Rollbank gemischt. Danach wird die Mischung in zwei Passagen auf einem Einwellenextruder extrudiert, das so erhaltene Granulat wird auf der Spritzgussmaschine (Allround Aarburg 200) bei 220°C zu Platten verspritzt, die dann 5 Minuten bei 180°C nachgepresst werden. Die Pressplatten weisen eine homogene metallischgrau schimmernde Färbung auf.
    Die so erhaltenen Pressplatten werden mit einem über zwei orthogonal bewegliche Spiegel abgelenkten Laserstrahl entsprechend der Form der aufzubringenden Markierung beschriftet (im vorliegenden Fall die Beschriftung "GRETAG"; Höhe und Breite der Buchstaben 6 mm; Schriftbreite 0,1 mm). Als Laser wird ein Nd:YAG Pulslaser (®Quanta Ray DCR 2, Spectra Physics) mit Frequenzverdoppler (Harmonic Generator) und Frequenzfilter (Harmonic Separator) verwendet. Der Laser wird so eingestellt und mit Neutralfiltern abgeschwächt, dass der über eine Linse (Brennweite 200 mm) fokussierte Strahl auf der Oberfläche der Platte eine Puls-Energie von 0,2 mJ bei einer Pulsbreite von 10 Nano-Sekunden erreicht. Die Ablenkeinheit mit den orthogonal beweglichen Spiegeln ist Bestanteil eines ®GRETAG 6210 Laserbeschriftungssystems (GRETAG AG, Schweiz) und wird senkrecht über der Musterplatte montiert. Die so erzielte Beschriftung ist dunkel (schwarz auf der grauen Unterlage bei etwa senkrechter Aufsicht) und hebt sich deutlich vom unmarkierten metallischgrau schimmernd gefärbten Artikel ab. Je nach Lichteinfall und Beobachtungswinkel ist die Markierung deutlich erkennbar oder ver­schwindet vollständig.
  • Beispiele 2-9:
  • Das Kunststoffgranulat wird gemäss den Angaben der nachstehenden Liste mit dem in Beispiel 1 beschriebenen Molybdändisulfidpigment gemischt und zu Plättchen der Grösse 55x45x1,5 mm gespritzt. Die so hergestellten Proben werden gemäss Bei­spiel 1 mit dem dort beschriebenen Gerät beschriftet; anstelle des 'GRETAG' Schriftzuges werden je zwei Markierungen in der Form eines Kreisbogens (3/4-Kreis) und eines Rechteckes (9x9 mm) angebracht.
  • Die beschrifteten Platten zeigen alle den Effekt, dass die Markierungen nur unter bestimmten Beleuchtungs- und Betrachtungswinkeln sichtbar sind, bei flacher Beleuchtung aber praktisch verschwinden.
  • Je ein Muster jedes in der Liste aufgeführten Kunststoffes wurde während 500 Stunden im Weather-O-Meter exponiert; dabei blieben alle Markierungen erhalten.
  • Prüfmethoden in ABS, PC, PA, Xenoy, PES, PMMA, HDPE, PP (Herstellung der Muster)
  • Prüfung in ABS:
    Prüfkonzentration: 0,1% Molybdändisulfidpigment;
    Polymer: ABS [®TERLURAN 877M, BASF, DE];
    Ansatz: 1000 g;
    Mischen Polymer + Pigment: 31 Glasflasche, 15 Min. bei 60 Upm, Rollengestell;
    Extrudieren: 2x bei 190°C-Kleinextruder Typ 133,[Fa. Collin, DE];
    Granulieren: Stranggranuliermaschine - [Fa. WILCO AG, CH];
    Trocknen: 90°C während 4 Std. - Granulat-Gebläsetrockner [Turb. Etuve TE 25, MAPAG AG, CH];
    Spritztemperatur: 220°C;
    Spritzautomat Aarburg 200 allrounder; [Fa. Aarburg, DE];
    Probengrösse: 55x45 mm - 1,5 mm Dicke.
    Prüfung in PC:
    Prüfkonzentration: 0,1 % Molybdändisulfidpigment;
    Polymer: ®MACROLON 2800 [BASF];
    Mischen Polymer + Pigment: 15 Min. bei 60 Upm.;
    Vortrocknen: 120°C während 4 Std.;
    Extrudieren: 2x bei 270°C;
    Trocknen: 120°C während 4 Std.;
    Spritztemperatur: 300°C.
    Prüfung in PA 6:
    Prüfkonzentration: 0,1 % Molybdändisulfidpigment;
    Polymer: ®ULTRAMID B3K [BASF];
    Mischen Polymer + Pigment: 15 Min. bei 60 Upm.;
    Vortrocknen: 120°C während 4 Std.;
    Extrudieren: 2x bei 220°C;
    Trocknen: 120°C während 4 Std.;
    Spritztemperatur: 240°C.
    Prüfung in ®Xenoy (Polycarbonat/Polybutadienterephthalat-Gemisch)
    Prüfkonzentration: 0,1 % Molybdändisulfidpigment;
    Polymer: ®XENOY CL 100, Pulverqualität [General Electric, NL];;
    Mischen Polymer + Pigment: 15 Min. bei 60 Upm.;
    Extrudieren: 2x bei 250°C;
    Trocknen: 120°C während 4 Std.;
    Spritztemperatur: 280°C.
    Prüfung in PES:
    Prüfkonzentration: 0,1 % Molybdändisulfidpigment;
    Polymer: ®MELINOR B 90 [ICI, GB];
    Mischen Polymer + Pigment: 15 Min. bei 60 Upm.;
    Vortrocknen: 90°C während 4 Std.;
    Extrudieren: 2x bei 270°C;
    Trocknen: 90°C während 4 Std.;
    Spritztemperatur: 280°C.
    Prüfung in PMMA:
    Prüfkonzentration: 0,1 % Molybdändisulfidpigment;
    Polymer: ®Plexiglas Formmasse N 6 [Röhm GMBH, DE];
    Mischen Polymer + Pigment: 15 Min. bei 60 Upm.;
    Vortrocknung: 90°C während 8 Std.;
    Extrudieren: 2x bei 220°C;
    Spritztemperatur: 240°C.
    Prüfung in HDPE:
    Prüfkonzentration: 0,1 % Molybdändisulfidpigment;
    Polymer: ®VESTOLEN A 6016 [Hüls AG, DE];
    Mischen Polymer + Pigment: 15 Min. bei 60 Upm.;
    Extrudieren: 2x bei 200°C;
    Spritztemperatur: 220°C.
    Prüfung in PP:
    Prüfkonzentration: 0,1 % Molybdändisulfidpigment;
    Polymer: ®STAMYLAN P 83 HF 10 [DSM, NL];
    Mischen Polymer + Pigment: 15 Min. bei 60 Upm.;
    Extrudieren: 2x bei 200°C;
    Spritztemperatur: 240°C.
  • Beispiel 10:
  • 200 mg eines plättchenförmigen Molybdän-IV-disulfidpigmentes mit einem Partikelanteil von 80-90 % einer Grösse von 4-25 Micrometer und einem Medianwert von 9,5 Micrometer (gemessen auf Granulometer 715E598 der Firma CILAS, F-91460, Marcoussis/FR), 7,3 ml Dioctylphthalat und 13,3 g stabilisiertes Polyvinylchlorid werden in einem Becherglas mit einem Glasstab gut vermischt und dann auf einem Walzenstuhl bei 160°C während 5 Minuten zu einer dünnen Folie verarbeitet. Die so erhaltene Folie wird gemäss Beispiel 1 mit einem Laserstrahl beschriftet. Die erhaltenen Beschriftungen sind dunkel (schwarz auf der grauen Unterlage) bei etwa senkrechter Aufsicht, sie erscheinen aber hell in der Durchsicht mit einem ausgeprägter Feinstruktur.

Claims (12)

1. Verfahren zur Lasermarkierung von Kunststoffgegenständen in an sich beliebiger Form. wonach der zu beschriftende Gegenstand einen strahlungsempfindlichen, eine Ver­änderung der Lichtreflexion verursachenden Zusatzstoff enthält und einem Laser mit pulsiertem Licht so ausgesetzt wird, dass der Strahl des Lasers entsprechend der Form der aufzubringenden Markierung mittels einer Maske geformt oder über die Oberfläche des zu markierenden Gegenstandes geführt wird, so dass an den bestrahlten Stellen des Gegenstandes eine visuelle Effektmarkierung entsteht, ohne dass die Oberfläche des be­schrifteten Gegenstandes von Auge erkennbar beschädigt wird, dadurch gekennzeichnet, dass man als Zusatzstoff Molybdändisulfid verwendet und die Laserparameter Wellen­länge, Pulsenergiedichte und Pulsbreite so wählt, dass eine Effektmarkierung erzeugt wird, deren Kontrast sich je nach Beleuchtungs- und Beobachtungswinkel visuell verändert.
2. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man Laserlicht mit einer Wellenlänge im nahen UV- und/oder sichtbaren und/oder nahen IR-Bereich verwendet.
3. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man Laserlicht mit einer Wellenlänge im sichtbaren Bereich verwendet.
4. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man einen gepulsten oder pulsmodifizierten frequenzverdoppelten Nd:YAG-Laser oder einen Metalldampf-Laser oder einen Excimer-Laser verwendet.
5. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man Pulsenergiedichten von Millijoule bis ein Kilojoule pro cm² und Pulsbreiten von Micro-Sekunden bis Pico-Sekunden einsetzt.
6. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man Molybdändisulfid in Schuppen- oder Plättchenform mit einem Teilchen-Durchmesser von weniger als 100 µm und einer Dicke von bis zu 4 µm verwendet.
7. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man für in der Masse eingefärbte Kunststoffe von 0,01 bis 5,0 Gew.% und für als Anstrichstoff oder Druckfarbe vorliegende Kunststoffe von 1,0 bis 15,0 Gew.% Molybdändisulfid, bezogen auf das Kunststoffmaterial bzw. die trockene Anstrichstoff- oder Druckfarbenschicht, verwendet.
8. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass der Kunststoff Polyvinylchlorid, Polyvinylester, Polyacrylsäure- und Polymethacrylsäureester, Polyester, Polyamid, Polyimid, Polycarbonat, Polyurethan, Polyether, Polyacetal, Phenoplast, Aminoplast, Epoxyharz oder Polyolefin ist.
9. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass man dem Kunststoff­material ein zusätzliches Farbmittel oder ein Gemisch von Farbmitteln beimischt.
10. Verfahren gemäss Anspruch 9, dadurch gekennzeichnet, dass man als Farbmittel ein anorganisches oder organisches Pigment oder einen polymerlöslichen Farbstoff verwendet.
11. Verwendung von Molybdändisuflid zur Lasermarkierung von Kunststoffgegenständen mit besonderen Effekten gemäss Anspruch 1.
12. Das gemäss Anspruch 1 beschriftete Material.
EP90810601A 1989-08-18 1990-08-09 Lasermarkierung von Kunststoffgegenständen in an sich beliebiger Form mit besonderen Effekten Expired - Lifetime EP0413664B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH3011/89 1989-08-18
CH301189 1989-08-18

Publications (3)

Publication Number Publication Date
EP0413664A2 true EP0413664A2 (de) 1991-02-20
EP0413664A3 EP0413664A3 (en) 1991-10-16
EP0413664B1 EP0413664B1 (de) 1995-03-22

Family

ID=4246624

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90810601A Expired - Lifetime EP0413664B1 (de) 1989-08-18 1990-08-09 Lasermarkierung von Kunststoffgegenständen in an sich beliebiger Form mit besonderen Effekten

Country Status (4)

Country Link
US (1) US5075195A (de)
EP (1) EP0413664B1 (de)
JP (1) JPH03106944A (de)
DE (1) DE59008746D1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710570A1 (de) * 1994-11-04 1996-05-08 Quantum Chemical Corporation Polymerzusammensetzung und Verfahren zur Beschriftung der Oberfläche dieser Zusammensetzung durch Laser
EP0739933A1 (de) * 1990-11-07 1996-10-30 Teijin Limited Polyesterharzzusammensetzung
NL1000331C2 (nl) * 1995-05-10 1996-11-12 Dsm Nv Werkwijze voor de vervaardiging van een gekleurde markering.
EP0761461A2 (de) * 1995-08-26 1997-03-12 Basf Aktiengesellschaft Verfahren zur Beschriftung von Formkörpern
NL1001784C2 (nl) * 1995-11-30 1997-06-04 Dsm Nv Werkwijze voor de vervaardiging van een voorwerp met gekleurde markering.
EP0924095A1 (de) * 1997-12-22 1999-06-23 Japan Polychem Corporation Verfahren zur Lasermarkierung von Polyolefinharzen
EA000573B1 (ru) * 1997-10-15 1999-12-29 Ооо "Эфтэн" Способ маркировки ценных объектов
WO2005026247A1 (en) * 2003-09-17 2005-03-24 Ciba Specialty Chemicals Holding Inc. Laser markable polymeric compositions
EP1803110B1 (de) 2004-10-11 2018-12-05 Synovation B.V. Gewebebehälter sowie verfahren zum versehen eines solchen gewebebehälters mit daten

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68918300T2 (de) * 1988-02-05 1995-05-18 Raychem Ltd Laser-bearbeitete Polymere.
US5258145A (en) * 1991-09-27 1993-11-02 The United States Of America As Represented By The Secretary Of The Navy Method for manufacturing a high resolution structured x-ray detector
US5928842A (en) * 1994-02-24 1999-07-27 Nippon Kayaku Kabushiki Kaisha Marking method
US5489639A (en) * 1994-08-18 1996-02-06 General Electric Company Copper salts for laser marking of thermoplastic compositions
DE4436897A1 (de) * 1994-10-15 1996-04-18 Elastogran Gmbh Verfahren zur Beschriftung von Formkörpern
WO1997016279A1 (en) 1995-10-30 1997-05-09 Technolines, Inc. Laser method of scribing graphics
US5770125A (en) * 1995-11-27 1998-06-23 Mentor Corporation Haptic attachment system for intraocular lenses using diode laser
DE19618569A1 (de) * 1996-05-09 1997-11-13 Merck Patent Gmbh Mehrschichtige Interferenzpigmente
EP0915763B1 (de) * 1997-05-28 2003-01-08 Sagem S.A. Thermobandeinheit, worin das thermoband eine anordnung von mindestens einem markierten strich enthält
US5977514A (en) 1997-06-13 1999-11-02 M.A. Hannacolor Controlled color laser marking of plastics
US6852948B1 (en) 1997-09-08 2005-02-08 Thermark, Llc High contrast surface marking using irradiation of electrostatically applied marking materials
US6075223A (en) * 1997-09-08 2000-06-13 Thermark, Llc High contrast surface marking
US6238847B1 (en) 1997-10-16 2001-05-29 Dmc Degussa Metals Catalysts Cerdec Ag Laser marking method and apparatus
US5976411A (en) * 1997-12-16 1999-11-02 M.A. Hannacolor Laser marking of phosphorescent plastic articles
US6160835A (en) * 1998-03-20 2000-12-12 Rocky Mountain Instrument Co. Hand-held marker with dual output laser
US6576862B1 (en) * 1999-01-07 2003-06-10 Technolines Llc Laser-scribing process for rubber and thermoplastic materials such as a hose
AU5752800A (en) 1999-06-22 2001-01-09 Omg Ag & Co. Kg Laser marking compositions and method
US6776340B2 (en) * 1999-07-23 2004-08-17 Tri Star Technologies, A General Partnership Duplicate laser marking discrete consumable articles
US6482511B1 (en) * 1999-08-06 2002-11-19 E.I. Du Pont De Nemours & Company Laser markable monofilaments
EP1261662B1 (de) * 2000-02-11 2005-06-15 E.I. Dupont De Nemours And Company Thermoplastische harzzusammensetzungen fuers laserschweissen und daraus geformte artikel
US6706785B1 (en) 2000-02-18 2004-03-16 Rona/Emi Industries, Inc. Methods and compositions related to laser sensitive pigments for laser marking of plastics
JP4610120B2 (ja) * 2000-08-23 2011-01-12 日東電工株式会社 プラスチック構造体及び該プラスチック構造体の形成方法
US6503316B1 (en) 2000-09-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Bismuth-containing laser markable compositions and methods of making and using same
DE10063105A1 (de) * 2000-12-18 2002-06-20 Merck Patent Gmbh Lasermarkierbare Kunststoffe sowie ihre Herstellung und Verwendung
JP4565754B2 (ja) * 2001-02-26 2010-10-20 日東電工株式会社 プラスチック構造体
DE10136479A1 (de) * 2001-07-27 2003-02-06 Merck Patent Gmbh Farbige Beschriftung und Markierung von Kunststoffen und Lacken
AU2002364255A1 (en) 2001-12-24 2003-07-15 Digimarc Id Systems, Llc Covert variable information on id documents and methods of making same
US7793846B2 (en) 2001-12-24 2010-09-14 L-1 Secure Credentialing, Inc. Systems, compositions, and methods for full color laser engraving of ID documents
CN1316421C (zh) * 2001-12-24 2007-05-16 数字Id***有限公司 激光刻印方法和组合物以及上面有激光刻印的制品
US7694887B2 (en) 2001-12-24 2010-04-13 L-1 Secure Credentialing, Inc. Optically variable personalized indicia for identification documents
US7815124B2 (en) 2002-04-09 2010-10-19 L-1 Secure Credentialing, Inc. Image processing techniques for printing identification cards and documents
AU2002364036A1 (en) 2001-12-24 2003-07-15 Digimarc Id Systems, Llc Laser etched security features for identification documents and methods of making same
US7728048B2 (en) 2002-12-20 2010-06-01 L-1 Secure Credentialing, Inc. Increasing thermal conductivity of host polymer used with laser engraving methods and compositions
US7204884B2 (en) 2002-03-22 2007-04-17 Agc Automotive Americas Co. Laser marking system
DE50211300D1 (de) * 2002-05-08 2008-01-10 Kurz Leonhard Fa Mehrschichtenbild, insbesondere mehrfarbenbild
JP2005529004A (ja) * 2002-05-08 2005-09-29 レオナード クルツ ゲーエムベーハー ウント コンパニー カーゲー 少なくとも一部分に紙材料を含む基材を備えた多層体およびそのような多層体にレーザ誘起マークを作成する方法
US7824029B2 (en) 2002-05-10 2010-11-02 L-1 Secure Credentialing, Inc. Identification card printer-assembler for over the counter card issuing
US7238396B2 (en) * 2002-08-02 2007-07-03 Rieck Albert S Methods for vitrescent marking
JP3915930B2 (ja) * 2002-10-01 2007-05-16 Nok株式会社 マーキング方法およびマーキングされた成形品
US7804982B2 (en) 2002-11-26 2010-09-28 L-1 Secure Credentialing, Inc. Systems and methods for managing and detecting fraud in image databases used with identification documents
US7169471B1 (en) * 2003-02-06 2007-01-30 Emd Chemicals, Inc. Laser-marking additive
US7225991B2 (en) 2003-04-16 2007-06-05 Digimarc Corporation Three dimensional data storage
JP4582386B2 (ja) * 2003-08-29 2010-11-17 東罐マテリアル・テクノロジー株式会社 レーザーマーキング用材料
US20050056970A1 (en) * 2003-09-15 2005-03-17 3M Innovative Properties Company Method of forming dental restorative material packaging
US7005603B2 (en) * 2004-04-02 2006-02-28 Hewlett-Packard Development Company, L.P. Laser marking
US20080099312A1 (en) * 2006-10-25 2008-05-01 Habasit Ag Modular belt with surface engraving
KR20090082466A (ko) * 2006-11-07 2009-07-30 시바 홀딩 인크 착색 기판의 레이저 마킹
WO2008110487A1 (en) 2007-03-15 2008-09-18 Basf Se Heat-sensitive coating compositions based on resorcinyl triazine derivatives
RU2473414C2 (ru) 2007-06-12 2013-01-27 ТЕКНОЛАЙНЗ, ЭлЭлСи Способы и системы высокоскоростной и высокомощной лазерной гравировки
ATE538185T1 (de) * 2007-08-22 2012-01-15 Datalase Ltd Laserempfindliche beschichtungszusammensetzung
KR20100074334A (ko) * 2007-11-07 2010-07-01 바스프 에스이 신규한 섬유 생성물
US20090266804A1 (en) * 2008-04-24 2009-10-29 Costin Darryl J Combination extrusion and laser-marking system, and related method
CA2734490A1 (en) * 2008-08-21 2010-02-25 Echelon Laser Systems, Lp Laser etching of polyvinylchloride
US8640413B2 (en) * 2008-08-21 2014-02-04 Masonite Corporation Laser-marked multi-component assemblies, kits, and related methods
JP5645832B2 (ja) 2008-10-27 2014-12-24 データレース リミテッドDatalase Ltd. 基材にマーキングするためのレーザー感受性水性組成物
KR20170012603A (ko) 2008-11-05 2017-02-02 엑사테크 엘.엘.씨. 코팅된 플라스틱 기판의 부품 마킹
TW201029856A (en) * 2009-01-16 2010-08-16 Echelon Laser Systems Lp Surface marked articles, related methods and systems
CA2760161A1 (en) * 2009-04-27 2010-11-04 Echelon Laser Systems, Lp Staggered laser-etch line graphic system, method and articles of manufacture
MX2012001847A (es) * 2009-08-11 2012-08-15 Echelon Laser Systems Lp Eliminacion de olor causado por piel grabada por laser.
EP2477782A1 (de) * 2009-09-18 2012-07-25 Echelon Laser Systems, Lp Laserverfahren zur erzeugung von leicht abreissbaren materialien und daraus hergestellte artikel
US20110187025A1 (en) * 2010-02-04 2011-08-04 Costin Sr Darryl J Laser etching system and method
DE102010054837A1 (de) 2010-12-16 2012-06-21 Ritzi Lackiertechnik GmbH Verfahren zum Dekorieren, Beschriften und/oder Markieren von Bauteiloberflächen durch Bestrahlen mit Laserstrahlung
US8794724B2 (en) 2012-03-28 2014-08-05 Masonite Corporation Surface marked articles, related methods and systems
WO2016001335A1 (fr) 2014-07-01 2016-01-07 Qiova Procédé et système de micro-usinage pour former un motif sur un matériau et procédé d'utilisation d'un tel système de micro-usinage
DE102020118344A1 (de) 2020-07-11 2022-01-13 Schlenk Metallic Pigments Gmbh Laser Nachbehandlung von Metalleffektpigmentflächen zur lokalen Erhöhung der Radar- und/ oder Lichttransmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986000575A1 (en) * 1984-07-16 1986-01-30 Minnesota Mining And Manufacturing Company Graphic arts imaging constructions using vapor-deposited layers
US4609611A (en) * 1983-11-07 1986-09-02 Fuji Photo Film Co., Ltd. Light information recording medium
EP0327508A2 (de) * 1988-02-03 1989-08-09 Ciba-Geigy Ag Verfahren zur Laserbeschriftung pigmentierter Systeme

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2936926C2 (de) * 1979-09-12 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Verfahren zum Herstellen von mit verschiedenen Zeichen versehenen gleichartigen Kunststoffteilen, insbesondere Kunststoff-Gerätetasten durch Spritzgießen
NL8001731A (nl) * 1980-03-25 1981-10-16 Philips Nv Werkwijze voor het markeren van een kunststofoppervlak en voorwerp voorzien van een gemarkeerd kunststofoppervlak.
DE3044722C2 (de) * 1980-11-27 1982-11-25 Siemens AG, 1000 Berlin und 8000 München Verfahren zum Herstellen von mit verschiedenen Zeichen versehenen gleichartigen Kuststoffteilen, insbesondere Kunststoff-Gerätetasten durch Spritzgießen
JPS58210937A (ja) * 1982-06-02 1983-12-08 Sumitomo Bakelite Co Ltd 染顔料配合合成樹脂組成物
JPS60155493A (ja) * 1983-11-16 1985-08-15 Somar Corp マ−キング用材料及びマ−キング方法
US4654290A (en) * 1985-02-01 1987-03-31 Motorola, Inc. Laser markable molding compound, method of use and device therefrom
AU584563B2 (en) * 1986-01-31 1989-05-25 Ciba-Geigy Ag Laser marking of ceramic materials, glazes, glass ceramics and glasses
KR910000826B1 (ko) * 1986-11-14 1991-02-09 미쓰비시덴기 가부시기가이샤 레이저 마킹 방법
US4947750A (en) * 1988-08-19 1990-08-14 Presstek, Inc. Printing member for a press with dampening

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4609611A (en) * 1983-11-07 1986-09-02 Fuji Photo Film Co., Ltd. Light information recording medium
WO1986000575A1 (en) * 1984-07-16 1986-01-30 Minnesota Mining And Manufacturing Company Graphic arts imaging constructions using vapor-deposited layers
EP0327508A2 (de) * 1988-02-03 1989-08-09 Ciba-Geigy Ag Verfahren zur Laserbeschriftung pigmentierter Systeme

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0739933A1 (de) * 1990-11-07 1996-10-30 Teijin Limited Polyesterharzzusammensetzung
EP0710570A1 (de) * 1994-11-04 1996-05-08 Quantum Chemical Corporation Polymerzusammensetzung und Verfahren zur Beschriftung der Oberfläche dieser Zusammensetzung durch Laser
NL1000331C2 (nl) * 1995-05-10 1996-11-12 Dsm Nv Werkwijze voor de vervaardiging van een gekleurde markering.
WO1996035585A1 (en) * 1995-05-10 1996-11-14 Dsm N.V. Method for the manufacture of a coloured mark
EP0761461A2 (de) * 1995-08-26 1997-03-12 Basf Aktiengesellschaft Verfahren zur Beschriftung von Formkörpern
EP0761461A3 (de) * 1995-08-26 1997-08-27 Basf Ag Verfahren zur Beschriftung von Formkörpern
WO1997021550A1 (en) * 1995-11-30 1997-06-19 Dsm N.V. Process for the manufacture of a colour-marked object
NL1001784C2 (nl) * 1995-11-30 1997-06-04 Dsm Nv Werkwijze voor de vervaardiging van een voorwerp met gekleurde markering.
AU704581B2 (en) * 1995-11-30 1999-04-29 U-Nica Technology Ag Process for the manufacture of a colour-marked object
CN1076289C (zh) * 1995-11-30 2001-12-19 Dsm有限公司 彩色标记物体的制造方法及激光装置
EA000573B1 (ru) * 1997-10-15 1999-12-29 Ооо "Эфтэн" Способ маркировки ценных объектов
EP0924095A1 (de) * 1997-12-22 1999-06-23 Japan Polychem Corporation Verfahren zur Lasermarkierung von Polyolefinharzen
WO2005026247A1 (en) * 2003-09-17 2005-03-24 Ciba Specialty Chemicals Holding Inc. Laser markable polymeric compositions
EP1803110B1 (de) 2004-10-11 2018-12-05 Synovation B.V. Gewebebehälter sowie verfahren zum versehen eines solchen gewebebehälters mit daten

Also Published As

Publication number Publication date
EP0413664A3 (en) 1991-10-16
EP0413664B1 (de) 1995-03-22
DE59008746D1 (de) 1995-04-27
US5075195A (en) 1991-12-24
JPH03106944A (ja) 1991-05-07

Similar Documents

Publication Publication Date Title
EP0413664B1 (de) Lasermarkierung von Kunststoffgegenständen in an sich beliebiger Form mit besonderen Effekten
EP0190997B1 (de) Laserbeschriftung pigmentierter Systeme
DE69531576T2 (de) Kupfersalze zur Lasermarkierung von thermoplastischen Zusammensetzungen
EP0327508A2 (de) Verfahren zur Laserbeschriftung pigmentierter Systeme
DE4001856A1 (de) Farbige laserbeschriftung von kunststoffen
EP1145864B1 (de) Lasermarkierbare Kunststoffe
EP0641821B1 (de) Pigmentierte Kunststoff-Formmasse und ihre Verwendung
DE602004004288T2 (de) Lasermarkierbare polymerzusammensetzungen
EP3436284B1 (de) Verfahren zum partiellen einfärben von kunststoffteilen
DE10035204A1 (de) Lasermarkierbare Kunststoffe
EP3215347B1 (de) Lasermarkierbare und laserschweissbare polymere materialien
WO2017016645A1 (de) Lasermarkierbare polymere und beschichtungen
DE102014018586A1 (de) Lasermarkierbare und laserschweißbare polymere Materialien
DE102004045305A1 (de) Lasermarkierbare und laserschweißbare polymere Materialien
EP0841186A1 (de) Laserbeschriftbare Polymerformmassen
EP3645297B1 (de) Verbessertes verfahren zum partiellen einfärben von kunststoffteilen
EP3155039B1 (de) Lasermarkierbare und laserschweissbare polymere materialien
EP0550032A2 (de) Laserbeschriftbare Kunststoff-Formmasse, Verfahren zu ihrer Herstellung und Verwendung
EP0761461B1 (de) Verfahren zur Beschriftung von Formkörpern
DE102015009854A1 (de) Lasermarkierbare Polymere und Beschichtungen
WO2020039018A1 (de) Verbessertes verfahren für das partielle einfärben von kunststoffteilen
DE4344690C2 (de) Verfahren zur Herstellung farbig beschrifteter Kunststoff-Formkörper
EP4323195A1 (de) Verfahren für das partielle einfärben von kunststoffteilen mittels fester farbstoffe in farbträgerschichten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900811

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19931206

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59008746

Country of ref document: DE

Date of ref document: 19950427

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950510

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960625

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19960703

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960715

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970809

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050809