EP0357650B1 - Verbrennungsmotor - Google Patents

Verbrennungsmotor Download PDF

Info

Publication number
EP0357650B1
EP0357650B1 EP88903788A EP88903788A EP0357650B1 EP 0357650 B1 EP0357650 B1 EP 0357650B1 EP 88903788 A EP88903788 A EP 88903788A EP 88903788 A EP88903788 A EP 88903788A EP 0357650 B1 EP0357650 B1 EP 0357650B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
piston
engine according
crank shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP88903788A
Other languages
English (en)
French (fr)
Other versions
EP0357650A1 (de
Inventor
Gerhard Karl Kienle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT88903788T priority Critical patent/ATE68850T1/de
Publication of EP0357650A1 publication Critical patent/EP0357650A1/de
Application granted granted Critical
Publication of EP0357650B1 publication Critical patent/EP0357650B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B57/00Internal-combustion aspects of rotary engines in which the combusted gases displace one or more reciprocating pistons
    • F02B57/08Engines with star-shaped cylinder arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B13/00Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion
    • F01B13/04Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder
    • F01B13/06Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder in star arrangement
    • F01B13/068Reciprocating-piston machines or engines with rotating cylinders in order to obtain the reciprocating-piston motion with more than one cylinder in star arrangement the connection of the pistons with an actuated or actuating element being at the inner ends of the cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/04Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft
    • F01B9/042Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with rotary main shaft other than crankshaft the connections comprising gear transmissions
    • F01B2009/045Planetary gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four

Definitions

  • the invention relates to an internal combustion engine, with at least one piston moving back and forth in a cylindrical piston bore, which acts on a rotatably mounted crankshaft via a connecting rod, with a rotor containing the piston bore, which is rotatably supported in a housing, and with the crankshaft is coupled in motion by a gear mechanism such that the rotor and crankshaft rotate in opposite directions of rotation, the piston bore arranged in the rotor communicating with an opening in the outer surface of the rotor, which is located at an inlet opening and an outlet opening of the housing when the rotor rotates moved past.
  • the object of the present invention is to provide an internal combustion engine of the type mentioned in the introduction, in which a combined oil supply and discharge system is provided, which both lubricates the various Bearing and cooling in the piston area is used.
  • crankshaft is traversed by an oil line system which is provided with outlet openings in the area of the connecting rod bearings and / or the crankshaft bearings and / or the crankshaft parts, and that oil drainage channels are provided from the at least one piston bore go off, which extend radially outwardly parallel to the piston bore for cooling the same, and that the location of the piston bore, from which the oil discharge channels in the piston bore extend, is arranged such that it is released by the piston at top dead center.
  • a structurally simple design of the channel system for the bearing lubrication results from the features of claim 2.
  • the opposed pistons arranged in this way become one smooth and smooth running and contribute to a simple construction.
  • the pistons or cylinders located opposite one another are offset in the direction of the axis of the crankshaft.
  • the coaxial piston or cylinder arrangement results in a flatter and more compact design, from which a reduction in weight and an even quieter running can be derived.
  • An expedient embodiment of this exemplary embodiment results from the features of claim 7 and / or those of claim 8.
  • valve-free and / or slide-free control of the intake process and the exhaust process can be provided by appropriate arrangement and design of the inlet and outlet openings.
  • the housing 1 is formed in this internal combustion engine by a cylindrical wall 2, an upper flat cover plate 3 and a likewise substantially round lower base plate 4.
  • the housing 1 thus has in principle the shape of a round disk, the height of which is equal to the height of the cylindrical wall 2.
  • This housing is stationary.
  • a rotor 10 rotates in the housing 1.
  • This rotor comprises two axially offset cylinders 11, 12, a disk 35 and a race 17.
  • the cylinders 11, 12 are provided with cylindrical piston bores 13 and 14, in which pistons 15, 16 are arranged to move back and forth.
  • the cylinders 11, 12 in the form of inserts are firmly connected to the inner race 17.
  • Crosspieces 18, 19 (not shown in FIG.
  • the race 17 is provided with openings 20, 21 at the points at which the piston bores 13, 14 adjoin it.
  • Connecting rods 24, 25 are articulated to the pistons 15, 16 by means of piston pins 22, 23, which are mounted on a crankshaft 30 in connecting rod bearings 36, 37 arranged offset from one another by 180 °, so that the pistons execute a simultaneously opposite movement.
  • the crankshaft 30 is supported in the base plate 4 with its lower bearing journal 31.
  • the upper journal 32 of the crankshaft 30 is rotatably mounted in a blind hole 33 which is provided in the disk 35.
  • the disk 35 is an integral part of the rotor 10 and rotates with this.
  • crankshaft 30 and rotor 10 can thus be rotated against each other. Furthermore, the crankshaft 30 is rotatable relative to the housing 1.
  • a coupling of the rotary movement of the rotor 10 (containing the cylinders 11, 12, race 17, webs 18, 19, disk 35, output shaft 34) with the rotary movement of the crankshaft 30 takes place via a planetary gear.
  • This is formed by an inner ring gear 40 (see FIG. 2) on the underside (in FIG. 1) of the rotor 10, a toothed wheel 41 on the crankshaft 30 and two further toothed wheels 42 and 43.
  • the gears 42 and 43 are mounted in the base plate 4 of the housing 1. They are “two-stage”, that is to say they have first toothings 421 and 431 which are in engagement with the inner ring gear 40 on the rotor 10.
  • the cylindrical wall 2 is provided with an inlet slot 50 and an outlet slot 51 along the circumference.
  • the inlet slot 50 extends approximately over a circular angle of 70 °. It is covered by an inlet chamber 52, the inlet opening 53 of which is e.g. communicates with a carburetor (not shown).
  • the outlet slot 51 also extends over approximately 70 °. It is connected to an outlet chamber 54 which is connected via an outlet opening 55 e.g. communicates with an exhaust pipe (not shown).
  • the relative arrangement of the slots 50, 51 to one another is as follows: In the case of a circular cross section of the rotor 10, of which the inner race 17 is a part, the inlet slot 50 and outlet slot 51 lie next to one another on the same circle half, in such a way that the inlet slot 50 is in the region between 270 ° and 360 °, and the outlet slot 51 is in the range between 180 ° and 270 °.
  • the piston 16 is then in the dashed position 16 '. Then the suction process is finished.
  • the opening 21 has left the region in that it overlaps with the inlet slot 50 in whole or in part.
  • the compression process begins, in which the piston 16 is pressed radially outwards as a result of the further movement of the crankshaft 30 and rotor 10 in the directions shown.
  • the top dead center is reached when the piston 16 is in the position which is offset by 180 ° with respect to the starting position (FIG. 2). This is the position in which the piston 15 is shown in FIG. 2.
  • the ignition takes place by means of a spark plug 71.
  • the expansion process begins.
  • the piston moves radially inwards again.
  • the rotor 10 rotates further in the direction of the arrow 60 until the second bottom dead center is reached, at which the piston 16 has rotated by 270 ° with respect to the starting position shown in FIG.
  • the piston is then in the dashed line indicated position 16 ".
  • the exhaust gases begin to be expelled by again moving the piston 16 radially outwards and at the same time sweeping over the opening 21 of the exhaust slot 50 so that it expels the exhaust gas. only one revolution of rotor 10.
  • the cycle for the piston 15 takes place, but offset by half a revolution of the rotor 10. That is, when the piston 16 sucks, the piston 15 is in the expansion phase; when the piston 16 compresses, the piston 16 expels the exhaust gases. When the piston 16 expands, the piston 15 sucks; when the piston 16 ejects the exhaust gases, the piston 15 compresses.
  • the ignition for this is effected by a spark plug 70, which is arranged above the spark plug 71 about the offset of the cylinder axes.
  • the slots 50, 51 are assigned to both pistons 15, 16. It is also possible to use only one spark plug, which is arranged in a middle plane, that is, opposite both combustion chambers.
  • Lubrication takes place in such a way that an oil pump (not shown) a bore 75 (shown in broken lines) in the crankshaft 30 is supplied with oil under pressure.
  • the bore 75 is connected to transverse bores 76, 76 ', 78 and 77, through which on the one hand the connecting rod bearings 36, 37 and the bearing 32, 33 are lubricated and on the other hand oil also freely enters the interior of the housing 1 (bore 77) can, where it is thrown radially onto the underside of the pistons 15, 16 and thus also against the cylinder piston bores 13, 14 as a result of the centrifugal force.
  • the oil is discharged through oil channels 80, 81.
  • the oil is also transported as a result of the centrifugal force, since the oil channels 80, 81 are located in the rotating rotor 10.
  • the oil channels 80, 81 open into the cylinder-piston bores 13, 14 at locations that are at the top dead center of the pistons 15, 16 just below the underside of the pistons 15, 16. From there, the oil returns to the oil pan 90.
  • the oil channel 80 is guided up to the race 17 in the radial direction, and at a relatively short distance from the wall of the cylinder-piston bore 13, so that cooling of the wall of the Cylinder 11 can be done.
  • the oil channel 80 then extends parallel to the axis of rotation along the race 17 so that it is also cooled.
  • the oil channel 81 can also be designed accordingly.
  • the sealing problems can be solved very easily in that all the seals which are provided on the outside of the race 17 and which seal this against the cylindrical wall 2 of the housing 1 are pressed into the sealing position by centrifugal force when the rotor 10 rotates.
  • a further seal or sealing strip is additionally provided in the execution as a diesel engine.
  • the cooling can also be accomplished relatively easily with a corresponding oil throughput, since when it emerges from the oil channels in the crankshaft, the centrifugal force ensures that the oil reaches all points to be lubricated or cooled.
  • the motor also ensures an extremely compact design and thus also a comparatively low weight.
  • the housing 101 is likewise formed by a cylindrical wall 102, an upper flat cover plate 103 and a likewise substantially round lower one Base plate 104 formed.
  • a rotor 110 rotates in the stationary housing 101.
  • This rotor 110 also comprises two cylinders 111 and 112, which, however, in contrast to the first exemplary embodiment, are arranged coaxially, the longitudinal axes of which are therefore in alignment.
  • the two cylinders 111 and 112 are designed as inserts and held between an upper and a lower disk 135, 135 ', which are components of the rotor 110.
  • the cylinders 111 and 112 are provided with cylindrical piston bores 113 and 114, in which pistons 115 and 116 are also arranged to move back and forth in opposite directions.
  • the cylinders 111, 112 are firmly connected to the disks 135, 135 'and have annular sealing strips 107, 108 with respect to the wall 102.
  • a race can be provided in front of the cylinder, which then contains the sealing strips .
  • Conrods 124, 125 are articulated to the pistons 115, 116 by means of only indicated piston pins 122, 123, the longitudinal axes of which of the pistons are in alignment at top dead center.
  • the connecting rod 124 is essentially U-shaped and has a shoulder on the cross leg of the U longitudinally connecting the two lateral legs, which is pivotally connected to the piston 115 via the piston pin 122.
  • the two free ends of the Parallel, longitudinal legs of the U-shaped connecting rod 124 are mounted in connecting rod bearings 136, 136 'arranged in the same axis, which are provided in two opposite side crank disks 138, 139 of a crankshaft 130 at a point on the circumference thereof.
  • connecting rod bearings 136 and 136 ' are on the inside of the U-shaped connecting rod 124 facing away from the crank disks 138, 139, two parallel rod-shaped intermediate members 126, 126' held such that they can be pivoted relative to the connecting rod 124, but with the two crank disks 138, 139 are rotatably connected. Their ends facing away from this are articulated or pivotably connected to the other rod-shaped connecting rod 125 by means of a bearing 137.
  • the intermediate members 126, 126 ' have a length which corresponds to the diameter of the crank disk 138, 139.
  • the connecting rod 125 is arranged between the two intermediate members 126, 126 '.
  • the articulation point of the connecting rod 125 via the piston pin 123 in the piston 116 is coaxial with the articulation point of the U-shaped connecting rod 124 via the piston pin 122 in the piston 115. It is understood that the clear distance from the connecting rod bearings 136, 136 'to Cross leg of the U-shaped connecting rod 124 is slightly larger than the length of the intermediate members 126, 126 ', so that during the rotational movement of the crankshaft 130, the intermediate members 126, 126' can move through or between the U-shaped connecting rods 124.
  • crankshaft 130 is different from the crankshaft of the first Embodiment, with its upper journal 132, the holes 133, 133 'in the disks 135 and 103 and is mounted in the latter, rotatably connected to an output shaft 134.
  • crankshaft 130 and rotor 110 can be rotated relative to one another and crankshaft 130 relative to housing 101.
  • the rotation of the rotor 110 is coupled to the rotation of the crankshaft 130 via a planetary gear, which is designed and acts in the same way as the planetary gear shown in FIGS. 1, 2 and 2a. In this respect, this planetary gear is not described further here.
  • Figure 3 therefore, the same reference numerals as in Figure 1, only with a 1 in front, used.
  • the lubrication and cooling of the internal combustion engine according to the second exemplary embodiment in FIG. 3 takes place in a structurally similar manner to that in the first exemplary embodiment.
  • An oil pump which is not shown here, presses oil into an axial bore 175 in the crankshaft 130.
  • the bore 175 is continued and ends in the crank disks 138, 139, the bearings 136, 136 ', 137 and the intermediate members 126, 126' in a transverse bore 178 opening radially outwards in the bearing bore 133 '.
  • the piston bore 113, 114 is thrown onto the underside of the pistons 115, 116 and thus also onto the inner surfaces of the cylinders.
  • the oil is drained off along the inner circumference of the piston bore 113, 114 at preferably evenly spaced oil channels 180. 180 'which open into a wide circumferential groove 181, 181' which is provided on the outside of the cylinder 111, 112.
  • the grooves 181, 181 ' extend along a substantial longitudinal part of the cylinder 111, 112, so that they are suitable as a channel for cooling the cylinder area.
  • an exhaust passage 182, 182 ' is provided in the disk 135', in contrast to which a narrow inner annular groove 183 is arranged in the base plate 104, which, for example, has two bores 184 , 184 'opens into the oil pan 190.
  • the inlet and outlet openings with the associated chambers can be provided in a corresponding manner as in the first embodiment.
  • the rotor 110 is rotated in the opposite direction, namely in the direction of arrow 160 the inlet slit 150 and the outlet slit 151 overlap each other by respective tapering, with the remaining blowing out of the burned mixture by the piston 116 from the combustion chamber, fresh air is already drawn in.
  • the overlap of inlet and outlet slots 150, 151 is preferably provided over an angular range between 5 ° and 15 °. This overlap is advantageous to the extent that when the remaining burned mixture is blown out, a negative pressure is already created, which is advantageous for the suction that then begins at the same time.
  • the suction process extends beyond bottom dead center UT (dashed piston position 116 ′) and that over an angular range between 30 ° and 60 °, whereby the inertia is taken into account.
  • This is followed by compression at the time ES, the spark plug 170 being arranged shortly before the top dead center position OT (shown position of the piston 115).
  • the compressed mixture ignites.
  • the mixture can be burned, ie the expansion process can be carried out, which extends into an angular range of approximately 30 ° to 60 ° before the bottom dead center position UT (dashed piston position 116 ⁇ ).
  • the outlet slot 151 is opened or the cylinder chamber comes into connection therewith, so that the blowing out of the burned mixture begins, at the end of which this ejection or blowing process again overlaps with the suction process. It goes without saying that this sequence also takes place in the other piston 115 in a manner offset in time and position.
  • FIG. 5 shows a developed side view of an area of the cylindrical wall 102 which contains the inlet slot 150.
  • the inlet shield is 150 and in FIG however, a slider 192 is also provided in the same way for the outlet slot serves to partially cover the inlet slot 150 during part-load operation of the internal combustion engine.
  • the slider 192 with a symmetrical recess 193 has a certain curve shape and a control mechanism 194, the lever 195 of which can be driven between the positions V (full load) and T (partial load), the inlet slot 150 being essentially fully open at full load.
  • the slide 192 is arranged on the circumference and is therefore curved in accordance with the wall 102 and can be moved from one side along the wall 102. It goes without saying that instead of this, two opposing slides that can be moved toward one another can also be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transmission Devices (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Supercharger (AREA)

Description

  • Die Erfindung betrifft einen Verbrennungsmotor, mit mindestens einem sich in einer zylindrischen Kolbenbohrung hin und her bewegenden Kolben, der über ein Pleuel auf eine drehbar gelagerte Kurbelwelle einwirkt, mit einem die Kolbenbohrung beinhaltenden Läufer, der in einem Gehäuse drehbar gelagert ist und der mit der Kurbelwelle durch ein Getriebe bewegungsmäßig derart gekoppelt ist, daß Läufer und Kurbelwelle in entgegengesetzten Drehrichtungen umlaufen, wobei die im Läufer angeordnete Kolbenbohrung mit einer Öffnung in der Außenfläche des Läufers in Verbindung steht, die sich bei der Drehung des Läufers an einer Einlaßöffnung und einer Auslaßöffnung des Gehäuses vorbeibewegt.
  • Ein derartiger Verbrennungsmotor ist aus der US-Patentschrift 1 598 518 bekannt geworden. Bei diesem bekannten Verbrennungsmotor erfolgt die Kühlung von außen einerseits mit Hilfe einer im Bereich der Zündkerzen angeordneten Wasserkammer und andererseits mit Hilfe eines in den Läufer an einer Stirnseite integrierten Lüfterrades. Welcher Art die Schmierung der beweglichen Teile ist, ergibt sich aus dieser Patentschrift nicht.
  • Aufgabe der vorliegenden Erfindung ist es, einen Verbrennungsmotor der eingangs genannten Art zu schaffen, bei dem ein kombiniertes Ölzuführ- und Abführsystem vorgesehen ist, das sowohl der Schmierung der verschiedenen Lager als auch der Kühlung im Kolbenbereich dient.
  • Zur Lösung dieser Aufgabe ist bei einem Verbrennungsmotor der genannten Art vorgesehen, daß die Kurbelwelle von einem Ölleitungssystem durchzogen ist, das im Bereich der Pleuellager und/oder der Kurbelwellenlager und/oder der Kurbelwellenteile mit Austrittsöffnungen versehen ist, und daß von der mindestens einen Kolbenbohrung Ölabflußkanäle abgehen, die sich zur Kühlung derselben radial nach außen parallel zur Kolbenbohrung erstrecken, und daß die Stelle der Kolbenbohrung, von der die Ölabfuhrkanäle in der Kolbenbohrung abgehen, derart angeordnet ist, daß sie vom Kolben im oberen Totpunkt freigegeben wird.
  • Durch das erfindungsgemäße Ölkanalsystem und durch das Zunutzemachen der auftretenden Fliehkräfte im Läufer ist es möglich, mit Hilfe eines einzigen Ölzuführ- und -abführsystem gleichzeitig für eine Lagerschmierung und eine Ölkühlung im Kolbenbereich zu sorgen.
  • Eine konstruktiv einfache Ausführung des Kanalsystems für die Lager schmierung ergibt sich durch die Merkmale des Anspruchs 2.
  • Eine verbesserte Ölkühlung im Kolbenbereich ergibt sich durch die Merkmale des Anspruchs 3 und/oder die des Anspruchs 4.
  • Bei einem mit den Merkmalen des Anspruchs 5 versehenen Ausführungsbeispiel ist vorteilhaft, daß die so angeordneten gegenläufigen Kolben zu einem runden und ruhigen Lauf und zu einer einfachen Konstruktion beitragen.
  • Nach der US-PS 1 598 518 sind die jeweils einander gegenüberliegenden Kolben bzw. Zylinder in Richtung der Achse der Kurbelwelle versetzt angeordnet. Gemäß einem mit den Merkmalen des Anspruchs 6 ausgestatteten Ausführungsbeispiels ergibt die gleichachsige Kolben- bzw. Zylinderanordnung eine flachere und kompaktere Bauweise, woraus sich eine Gewichtsverminderung und ein noch ruhigerer Lauf herleiten läßt. Eine zweckmäßige Ausgestaltung dieses Ausführungsbeispieles ergibt sich aus den Merkmalen des Anspruchs 7 und/oder denen des Anspruchs 8.
  • Bevorzugte konstruktive Ausführungen von Läufer, Kurbelwelle und Getriebe bzw. deren Bewegungsverbindungen miteinander ergeben sich aus den Merkmalen einzelner oder mehrerer der Ansprüche 9 bis 13.
  • Entsprechend den Merkmalen einer oder mehrerer der Ansprüche 14 bis 16 kann die ventil- und/oder schieberlose Steuerung des Ansaugvorgangs und des Ausstoßvorgangs durch entsprechende Anordnung und Ausbildung der Einlaß- und Auslaßöffnungen vorgesehen werden.
  • Mit den Merkmalen des Anspruchs 17 ist eine kraftstoffsparende Betriebsweise bei Teillast des Verbrennungsmotors gegeben.
  • Ausführungsbeispiele der Erfindung und deren vorteilhafte Weiterbildungen sind im folgenden unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es stellen dar:
    • Figur 1 einen Schnitt durch ein erstes Ausführungsbeispiel;
    • Figur 2 einen weiteren Schnitt durch das erste Ausführungsbeispiel entsprechend der Linie II-II In Figur 1;
    • Figur 2a eine schematische Darstellung der Kupplung der Bewegung des Läufers mit der Bewegung der Kurbelwelle;
    • Figur 3 einen Schnitt ähnlich dem der Figur 1, jedoch gemäß einem zweiten Ausführungsbeispiel;
    • Figur 4 eine der Figur 2 entsprechende, jedoch schematisierte Darstellung gemäß einer Variante beider Ausführungsbeispiele;
    • Figur 5 in schematischer und abgewickelter Seitenansicht einen Steuerschieber für Teillastbetrieb.
  • Gemäß dem in den Figuren 1, 2 und 2a dargestellten Ausführungsbeispiel vorliegender Erfindung wird bei diesem Verbrennungsmotor das Gehäuse 1 durch eine zylindrische Wandung 2, eine obere flache Abdeckscheibe 3 und eine ebenfalls im wesentlichen runde untere Grundplatte 4 gebildet. Das Gehäuse 1 hat somit im Prinzip die Form einer runden Scheibe, deren Höhe gleich der Höhe der zylindrischen Wandung 2 ist. Dieses Gehäuse ist stationär. In dem Gehäuse 1 läuft ein Läufer 10 um. Dieser Läufer umfaßt zwei axial zueinander versetzte Zylinder 11, 12, eine Scheibe 35 und einen Laufring 17. Die Zylinder 11, 12 sind mit zylindrischen Kolbenbohrungen 13 bzw. 14 versehen, in denen Kolben 15, 16 hin und her beweglich angeordnet sind. Die Zylinder 11, 12 in Form von Einsätzen sind mit dem inneren Laufring 17 fest verbunden. Stege 18, 19 (in Figur 1 der Einfachheit halber nicht mit eingezeichnet) dienen dazu, dem gesamten Läufer 10 als Einheit eine hinreichende Starrheit zu verleihen. Der Laufring 17 ist an den Stellen, an denen die Kolbenbohrungen 13, 14 an ihn angrenzen, mit Öffnungen 20, 21 versehen. An die Kolben 15, 16 sind mittels Kolbenbolzen 22, 23 Pleuel 24, 25 angelenkt, die in in 180° zueinander versetzt angeordneten Pleuellagern 36, 37 an einer Kurbelwelle 30 gelagert sind, so daß die Kolben eine gleichzeitig gegenläufige Bewegung ausführen. Die Kurbelwelle 30 ist mit ihrem unteren Lagerzapfen 31 in der Grundplatte 4 gelagert. Der obere Lagerzapfen 32 der Kurbelwelle 30 ist in einer Sacklochbohrung 33 drehbar gelagert, die in der Scheibe 35 vorgesehen ist. Die Scheibe 35 ist fester Bestandteil des Läufers 10 und dreht sich mit diesem. Mit der Scheibe 35 ist ferner die Abtriebswelle 34 fest verbunden, die in der oberen Abdeckscheibe 3 des Gehäuses 1 gelagert ist. Kurbelwelle 30 und Läufer 10 sind also gegeneinander drehbar. Ferner ist die Kurbelwelle 30 gegenüber dem Gehäuse 1 drehbar.
  • Eine Kopplung der Drehbewegung des Läufers 10 (enthaltend die Zylinder 11, 12, Laufring 17, Stege 18, 19, Scheibe 35, Abtriebswelle 34) mit der Drehbewegung der kurbelwelle 30 erfolgt über ein Planetengetriebe. Dies wird durch einen inneren Zahnkranz 40 (vgl. Figur 2) auf der Unterseite (in Figur 1) des Läufers 10, ein Zahnrad 41 auf der Kurbelwelle 30 und zwei weitere Zahnräder 42 und 43 gebildet. Die Zahnräder 42 und 43 sind in der Grundplatte 4 des Gehäuses 1 gelagert. Sie sind "zweistufig" ausgebildet, d.h. sie weisen erste Verzahnungen 421 bzw. 431 auf, die sich mit dem inneren Zahnkranz 40 am Läufer 10 im Eingriff befinden. Sie weisen ferner, mit etwas geringererem Durchmesser, zweite Verzahnungen 422 bzw. 432 auf, die sich im Eingriff mit dem Zahnrad 41, das Bestandteil der Kurbelwelle 30 ist bzw. mit diesem fest angeordnet ist, befinden. Auf diese Weise ist sichergestellt, daß eine durch die Hin und Herbewegung der Kolben erzwungene Drehung des Läufers 10 auch stets zu einer definierten Drehung des Läufers 10 im Gehäuse 1 führt, wobei die Drehrichtungen von Läufer 10 und Kurbelwelle 30 einander entgegengesetzt sind. Schematisch ist dies in Figur 2a dargestellt.
  • Die zylindrische Wandung 2 ist, wie aus Figur 2 zu ersehen, entlang des Umfangs mit einem Einlaßschlitz 50 und einem Auslaßschlitz 51 versehen. Der Einlaßschlitz 50 erstreckt sich etwa über einen Kreiswinkel von 70°. Er wird abgedeckt durch eine Einlaßkammer 52, deren Einlaßöffnung 53 z.B. mit einem Vergaser (nicht gezeigt) in Verbindung steht. Der Auslaßschlitz 51 erstreckt sich ebenfalls über ca. 70°. Er ist mit einer Auslaßkammer 54 verbunden, die über eine Auslaßöffnung 55 z.B. mit einem Auspuffrohr (nicht gezeigt) in Verbindung steht. Wenn nun die Öffnungen 20 bzw. 21 in dem Laufring 15 sich bei sich drehendem Läufer 10 an den Schlitzen 50, 51 vorbeibewegen, bewegen sich entsprechend die radial auswärts der Kolben 15, 16 gelegenen Bereiche der Kolbenbohrungen 13, 14 im Zylinder 11, 12 an den Schlitzen 50, 51 vorbei und stehen mit diesen während der Vorbeibewegung in Verbindung.
  • Die relative Anordnung der Schlitze 50, 51 zueinander ist wie folgt: Bei kreisförmigem Querschnitt des Läufers 10, dessen Bestandteil der innere Laufring 17 ist, liegen Einlaßschlitz 50 und Auslaßschlitz 51 auf derselben Kreishälfte nebeneinander, und zwar derart, daß sich der Einlaßschlitz 50 im Bereich zwischen 270° und 360°, und der Auslaßschlitz 51 im Bereich zwischen 180° und 270° befindet.
  • Für die Erklärung des Bewegungsablaufs am Beispiel des gezeigten Zweizylinder-Motors im Vier-Takt-Betrieb sei nun mit der in Figur 2 gezeigten Stellung des Kolbens 16 begonnen. Dreht sich der Läufer 10 gegenüber der dort gezeigten Stellung im Uhrzeigersinn, wie durch Pfeil 60 angedeutet, so überstreicht die Öffnung 21 den Einlaßschlitz 50. Gleichzeitig dreht sich die Kurbelwelle 30 entgegen dem Uhrzeigersinn, wie durch Pfeil 61 angedeutet. Dadurch wird der Kolben 16 (ebenso wie der Kolben 15) radial nach innen bewegt. Durch den Einlaßschlitz 50 hindurch saugt der Kolben 16 Brennstoff/Luft-Gemisch (oder im Falle eines Dieselmotors: Frischluft) an. Seinen unteren Totpunkt hat er erreicht, wenn sich der Läufer 10 gegenüber der in Figur 2 gezeigten Stellung um 90° weitergedreht hat. Der Kolben 16 befindet sich dann in der gestrichelt angedeuteten Position 16′. Dann ist der Ansaugvorgang beendet. Die Öffnung 21 hat den Bereich, indem sie sich ganz oder teilweise mit dem Einlaßschlitz 50 überschneidet, verlassen. Jetzt beginnt der Verdichtungsvorgang, in dem der kolben 16 als Folge der Weiterbewegung von Kurbelwelle 30 und Läufer 10 in den gezeigten Richtungen radial nach außen gedrückt wird. Der obere Totpunkt ist erreicht, wenn sich der kolben 16 in der Stellung befindet, die gegenüber der Ausgangsstellung (Figur 2) um 180° versetzt ist. Das ist die Position, in der in Figur 2 der Kolben 15 dargestellt ist. Hier erfolgt die Zündung mittels einer Zündkerze 71. Dann beginnt der Expansionsvorgang. Der Kolben bewegt sich wieder radial nach innen. Dabei dreht sich der Läufer 10 weiter in Richtung des Pfeiles 60, bis der zweite untere Totpunkt erreicht ist, bei der sich der Kolben 16 gegenüber der in Figur 2 gezeigten Ausgangslage um 270° gedreht hat. Der kolben befindet sich dann in der gestrichelt angedeuteten Position 16". Beim Weiterdrehen beginnt das Ausstoßen der Abgase, indem der kolben 16 wieder radial nach außen bewegt wird und gleichzeitig die Öffnung 21 des Auslaßschlitzes 50 überstreicht, so daß er das Abgas ausstößt. Es wird also ein vollkommener Viertakt-Zyklus bei, nur einer Umdrehung des Läufers 10 erreicht. Das ist u.a. die Folge davon. daß Läufer 10 und Kurbelwelle 30 sich entgegengesetzt drehen, so daß bei nur einer Umdrehung des Läufers 10 bzw. nur einer Umdrehung der Kurbelwelle 30 der Kolben 16 zwei Hübe ausführt und während des ersten Hubs die Takte Ansaugen/Verdichten und im zweiten Hub die Takte Expandieren/Ausstoßen erledigt.
  • Ebenso, wie dies im vorhergehenden für den Kolben 16 beschrieben ist, läuft der Zyklus für den Kolben 15 ab, jedoch um eine halbe Umdrehung des Läufers 10 versetzt. D.h.: Wenn der Kolben 16 ansaugt, befindet sich der Kolben 15 in der Expansionsphase; wenn der Kolben 16 verdichtet, stößt der Kolben 16 die Abgase aus. Wenn der Kolben 16 expandiert, saugt der Kolben 15 an; wenn der Kolben 16 die Abgase ausstößt, verdichtet der Kolben 15. Die Zündung hierfür erfolgt durch eine Zündkerze 70, die um den Versatz der Zylinderachsen über der Zündkerze 71 angeordnet ist. Die Schlitze 50, 51 sind beiden Kolben 15, 16 zugeordnet. Es ist auch möglich nur eine Zündkerze zu verwenden, die dazu in einer mittleren Ebene, also beiden Brennkammern gegenüberliegend angeordnet ist.
  • Die Schmierung erfolgt in der Art, daß durch eine Ölpumpe (nicht gezeigt) einer (gestrichelt eingezeichnete) Bohrung 75 in der Kurbelwelle 30 unter Druck stehendes Öl zugeführt wird. Die Bohrung 75 steht mit Querbohrungen 76, 76′, 78 und 77 in Verbindung, durch die einerseits die Pleuellager 36, 37 bzw. das Lager 32, 33 geschmiert werden und andererseits auch Öl frei in den Innenraum des Gehäuses 1 (Bohrung 77) gelangen kann, wo es in Folge der Zentrifugalkraft radial auf die Unterseite der Kolben 15, 16 und damit auch an die Zylinder-Kolbenbohrungen 13, 14 geschleudert wird. Die Ableitung des Öls erfolgt durch Ölkanäle 80, 81. Der Transport des Öls erfolgt auch als Folge der Zentrifugalkraft, da sich die Ölkanäle 80, 81 in dem sich drehenden Läufer 10 befinden. Die Ölkanäle 80, 81 öffnen sich in die Zylinder-Kolbenbohrungen 13, 14 an Stellen, die sich im oberen Totpunkt der Kolben 15, 16 kurz unterhalb der Unterseite der Kolben 15, 16 befinden. Von dort gelangt das Öl zurück in die Ölwanne 90. Der Ölkanal 80 ist dabei bis hin zum Laufring 17 in radialer Richtung geführt, und zwar in relativ geringem Abstand zur Wandung der Zylinder-Kolbenbohrung 13, so daß auf diese Weise eine Kühlung der Wand des Zylinders 11 erfolgen kann. Der Ölkanal 80 erstreckt sich dann parallel zur Drehachse am Laufring 17 entlang, so daß dieser ebenfalls gekühlt wird. Auch der Ölkanal 81 kann entsprechend ausgebildet sein.
  • Da schon bei einer Umdrehung des Läufers 10 ein voller Viertakt-Zyklus durchlaufen wird, und zwar von jedem Kolben, kann der Motor schon bei niederen Drehzahlen hohe Leistung aufbringen und läuft im Verhältnis zu einem Motor mit stationärem Zylinder außerordentlich ruhig. Die Laufruhe wird dadurch noch verstärkt, daß sich Kurbelwelle und Läufer entgegengesetzt drehen, so daß sich bei entsprechender Dimensionierung ihrer Messen die von ihnen verursachten Vibrationen zum Teil ausgleichen und dämpfen. Außerdem entsteht dadurch, daß sich der Läufer an den Einlaß- und Auslaßschlitzen 50, 51 vorbeibewegt, ein Motor ohne Ventile, d.h. von extrem einfacher und damit billiger Bauart. Die Abdichtungsprobleme lassen sich dadurch sehr leicht lösen, daß alle Dichtungen, die auf der Außenseite des Laufrings 17 vorgesehen sind und diesen gegenüber der zylindrischen Wandung 2 des Gehäuses 1 abdichten, bei Drehung des Läufers 10 durch Zentrifugalkraft in Abdichtstellung gedrückt werden. Dabei sind bei der Ausführung als Dieselmotor jeweils zusätzlich eine weitere Dichtung bzw. Dichtleiste vorgesehen.
  • Auch die Kühlung läßt sich bei entsprechendem Öl-Durchsatz relativ einfach bewerkstelligen, da bei Austritt aus den Ölkanälen in der Kurbelwelle die Zentrifugalkraft dafür sorgt, daß das Öl alle zu schmierenden bzw. zu kühlenden Stellen erreicht. Der Motor gewährleistet außerdem eine extrem kompakte Bauweise und damit auch ein vergleichsweise geringes Gewicht.
  • Bei dem in Figur 3 gemäß einem zweiten Ausführungsbeispiel dargestellten Verbrennungsmotor ist ebenfalls das Gehäuse 101 durch eine zylindrische Wandung 102, eine obere flache Abdeckscheibe 103 und eine ebenfalls im wesentliche runde untere Grundplatte 104 gebildet. In dem stationären Gehäuse 101 läuft ein Läufer 110 um. Dieser Läufer 110 umfaßt ebenfalls zwei Zylinder 111 und 112, die jedoch im Gegensatz zum ersten Ausführungsbeispiel gleichachsig angeordnet sind, deren Längsachsen also in einer Flucht liegen. Die beiden Zylinder 111 und 112 sind als Einsätze ausgebildet und zwischen einer oberen und einer unteren Scheibe 135, 135′ gehalten, die Bestandteile des Läufers 110 sind. Auch hier sind die Zylinder 111 und 112 mit zylindrischen Kolbenbohrungen 113 bzw. 114 versehen, in denen Kolben 115 bzw. 116 ebenfalls gegenläufig hin und her beweglich angeordnet sind. Die Zylinder 111, 112 sind mit den Scheiben 135, 135′ fest verbunden und besitzen gegenüber der Wandung 102 ringförmige Dichtleisten 107, 108. Es versteht sich, daß auch bei dieser Ausführungsform vor dem Zylinder ein Laufring vorgesehen sein kann, der dann die Dichtleisten enthält. An die Kolben 115, 116 sind mittels nur angedeuteter Kolbenbolzen 122, 123 Pleuel 124, 125 angelenkt, deren Längsachsen im oberen Totpunkt der Kolben in einer Flucht liegen.
  • Anders als beim ersten Ausführungsbeispiel gemäß Figur 1 sind bei diesem Ausführungsbeispiel die beiden Pleuel 124 und 125 unterschiedlich ausgebildet. Das Pleuel 124 ist im wesentlichen U-förmig ausgebildet und besitzt am die beiden seitlichen Schenkel verbindenden Querschenkel des U-längsmittig einen Ansatz, der über den Kolbenbolzen 122 mit dem Kolben 115 schwenkbar verbunden ist. Die beiden freien Enden der parallelen, längs verlaufenden Schenkel des U-förmigen Pleuels 124 sind in gleichachsig angeordneten Pleuellagern 136, 136′ gelagert, die in zwei einander gegenüberliegenden seitlichen Kurbelscheiben 138, 139 einer Kurbelwelle 130 an einer Stelle von deren Umfang vorgesehen sind. Ebenfalls an diesen Pleuellagern 136 und 136′ sind an den den Kurbelscheiben 138, 139 jeweils abgewandten Innenseiten des U-förmigen Pleuels 124 zwei parallele stabförmige Zwischenglieder 126, 126′ derart gehalten, daß sie zwar gegenüber dem Pleuel 124 schwenkbar, jedoch mit den beiden Kurbelscheiben 138, 139 drehfest verbunden sind. Ihre hierzu abgewandten Enden sind mittels eines Lagers 137 mit dem anderen stabförmigen Pleuel 125 gelenkig bzw. schwenkbar verbunden. Dabei besitzen die Zwischenglieder 126, 126′ eine Länge, die dem Durchmesser der Kurbelscheibe 138, 139 entspricht. Das Pleuel 125 ist zwischen den beiden Zwischengliedern 126, 126′ angeordnet. Auf diese Weise ist der Anlenkpunkt des Pleuels 125 über den Kolbenbolzen 123 im Kolben 116 gleichachsig mit dem Anlenkpunkt des U-förmigen Pleuels 124 über den Kolbenbolzen 122 im Kolben 115. Es versteht sich, daß der lichte Abstand von den Pleuellagern 136, 136′ zum Querschenkel des U-förmigen Pleuels 124 etwas größer als die Länge der Zwischenglieder 126, 126′ ist, so daß bei der Rotationsbewegung der Kurbelwelle 130 die Zwischenglieder 126, 126′ sich durch bzw. zwischen das U-förmige Pleuel 124 bewegen können.
  • Die Kurbelwelle 130 ist anders als die Kurbelwelle des ersten Ausführungsbeispiels, mit ihrem oberen Lagerzapfen 132, der Bohrungen 133, 133′ in den Scheiben 135 und 103 durchdringt und in der letzteren gelagert ist, mit einer Abtriebswelle 134 drehfest verbunden. Auch hier sind Kurbelwelle 130 und Läufer 110 gegeneinander drehbar und die Kurbelwelle 130 gegenüber dem Gehäuse 101.
  • Die Kopplung der Drehbewegung des Läufers 110 mit der Drehbewegung der Kurbelwelle 130 erfolgt über ein Planetengetriebe, das in derselben Weise wie das in den Figuren 1, 2 und 2a dargestellte Planetengetriebe ausgebildet ist und wirkt. Insoweit wird hier dieses Planentengetriebe nicht weiter beschrieben. In Figur 3 sind deshalb dieselben Bezugsziffern wie in Figur 1, lediglich mit einer 1 davor, verwendet.
  • Die Schmierung und Kühlung des Verbrennungsmotors gemäß dem zweiten Ausführungsbeispiel der Figur 3 erfolgt in konstruktiv ähnlicher Weise wie beim ersten Ausführungsbeispiel. Eine Ölpumpe, die hier nicht dargestellt ist, drückt Öl in eine axiale Bohrung 175 in der Kurbelwelle 130. Die Bohrung 175 ist in den Kurbelscheiben 138, 139, den Lagern 136, 136′, 137 und den Zwischengliedern 126, 126′ fortgeführt und endet in einer Querbohrung 178 radial nach außen mündend in der Lagerbohrung 133′. Der Austritt dieser Bohrung 175 zum Innenraum der Zylinder-Kolbenbohrung 113, 114 ist in der Weise gelöst, daß im Bereich der Lager 136, 136′, 137 hier nur angedeutete Nuten bzw. Rillen 177 in einer der einander gegenüberliegenden Oberflächen von Pleueln 124, 125 bzw. Zwischengliedern 126, 126′ bzw. Kurbelscheiben 138, 139 vorgesehen sind.
  • Auch hier wird infolge der Zentrifugalkraft des aus diesem Bohrungssystem 175, 177 austretende Öl auf die Unterseite der Kolben 115, 116 und damit auch an die Innenflächen der Zylinder Kolbenbohrung 113, 114 geschleudert. Die Ableitung des Öls erfolgt über längs des Innenumfangs der Kolbenbohrung 113, 114 in vorzugsweise gleichmäßigem Abstand vorgesehene Ölkanäle 180. 180′ die in eine breite Umfangsnut 181, 181′ münden, die außenumfangsseitig am Zylinder 111, 112 vorgesehen ist. Die Nuten 181, 181′ erstrecken sich längs eines wesentlichen Längenteils des Zylinders 111, 112, so daß sie als Kanal zur Kühlung des Zylinderbereichs geeignet sind. An einem den Ölkanälen 180, 180′ abgewandten Endbereich der Nuten 181, 181′ ist in der Scheibe 135′ ein Abzugskanal 182, 182′ vorgesehen, demgegenüber eine schmale innere Ringnut 183 in der Grundplatte 104 angeordnet ist, die über bspw, zwei Bohrungen 184, 184′ in die Ölwanne 190 mündet.
  • Bei diesem Ausführungsbeispiel können die Einlaß- und Auslaßöffnungen mit den zugehörigen Kammern wie beim ersten Ausführungsbeispiel in entsprechender Weise vorgesehen sein. Dies gilt in entsprechender Weise für die Zündkerze 170, die wegen der gleichachsigen Anordnung der Zylinder bzw. Kolben und damit der Verbrennungsräume gehäusemittig an einer Stelle des Außenumfangs des Gehäuses 101 angeordnet ist.
  • Es ist aber sowohl beim ersten als auch beim zweiten Ausführungsbeispiel vorliegender Erfindung auch möglich die einzelnen Phasen des Viertakt-Bewegungsablaufs entsprechend der schematichen Darstellung der Figur 4 ablaufen zu lassen. In dieser Darstellung bedeuten die Abkürzungen OT = oberer Totpunkt, AS = Auslaß schließt, UT = unterer Totpunkt, ES = Einlaß schließt, ZZ = Zündzeitpunkt, AO = Auslaß öffnet, EO = Einlaß öffnet. Während des Zeitraums S wird angesaugt, während des Zeitraums P wird verdichtet, während des Zeitraums C wird das Gemisch verbrannt und während des Zeitraums E werden die verbrannten Gase ausgeblasen. Wie dieser schematischen Darstellung zu entnehmen ist, erfolgt ausgehend von der in ausgezogenen Linien dargestellten oberen Totpunktlage der beiden Kolben mit der Drehung der Kurbelwelle 130 entgegen dem Uhrzeigersinn entsprechend Pfeil 161 ein Drehen des Läufers 110 in entgegengesetzter Richtung, nämlich in Richtung des Pfeils 160. Da der Einlaßschitz 150 und der Auslaßschiltz 151 duch jeweiliges sich Verjüngen sich einander überlappen, erfolgt mit dem restlichen Ausblasen des verbrannten Gemisches durch den Kolben 116 aus der Brennkammer bereits das Ansaugen von Frischluft. Die Überlappung von Einlaß- und Auslaßschlitz 150, 151 ist vorzugsweise über einen Winkelbereich zwischen 5° und 15° vorgesehen. Diese Überlappung ist insoweit vorteilhaft, als mit dem Ausblasen des restlichen verbrannten Gemisches bereits ein Unterdruck entsteht, der für das dann gleichzeitig beginnende Ansaugen von Vorteil ist. Der Ansaugvorgang reicht bis über den unteren Totpunkt UT (gestrichelte Kolbenlage 116′) und zwar über einen Winkelbereich zwischen 30° und 60° hinaus, wodurch der Massenträgheit Rechnung getragen wird. Daran anschließend im Zeitpunkt ES erfolgt das Verdichten, wobei kurz vor der oberen Totpunktlage OT (eingezeichnete Stellung des Kolben 115) die Zündkerze 170 angeordnet ist. Das verdichtete Gemisch zündet. Somit kann ab OT das Verbrennen des Gemisches d.h. der Expansionvorgang vollzogen werden, der bis in einen Winkelbereich von etwa 30° bis 60° vor der unteren Totpunktlage UT (gestrichelte Kolbenlage 116˝) reicht. Zu diesem Zeitpunkt wird der Aulaßschlitz 151 geöffnet bzw. kommt die Zylinderkammer mit diesem im Verbindung, so daß das Ausblasen des verbrannten Gemisches beginnt, an dessen Ende sich dieser Ausstoß- bzw. Ausblasvorgang wieder mit dem Ansaugvorgang überschneidet. Es versteht sich, daß dieser Ablauf in um 180° zeit- und lageversetzter Weise auch beim anderen Kolben 115 erfolgt. Dies bedeutet, daß sich die Auslaßöffnung 151 in einem Winkelbereich von zwischen 120° und 150° bis zwischen 275° und 285° und die Einlaßöffnung 150 in einem Winkelbereich von zwischen 255° und 265° bis zwischen 390° und 420° erstreckt.
  • Figur 5 zeigt in abgewickelter Seitenansicht einen den Einlaßschlitz 150 beinhaltenden Bereich der zylindrischen Wandung 102. Bei dieser Ausführungsform, die auch in entsprechender Weise beim Ausführungsbeispiel der Figur 1 und bei der Variante der Figur 4 Anwendung finden kann, ist dem Einlaßschiltz 150 und in nicht dargestellter jedoch in gleicher Weise auch dem Auslaßschlitz ein Schieber 192 vorgesehen, der dazu dient, den Einlaßschlitz 150 bei Teillastbetrieb des Verbrennungsmotors teilweise zu überdecken. Dazu ist der Schieber 192 mit einer symmetrischen Aussparung 193 bestimmte Kurvenform und einem Ansteuermechanismus 194, dessen Hebel 195 zwischen den Stellungen V (Vollast) und T (Teillast) antreibbar bewegbar ist, wobei bei Vollast der Einlaßschlitz 150 im wesentlichen vollständig geöffnet ist. Der Schieber 192 ist umfangsseitig angeordnet und daher entsprechend der Wandung 102 gewölbt und von einer Seite her längs der Wandung 102 bewegbar. Es versteht sich, daß statt dessen auch zwei gegenüberliegende und aufeinader zu bewegbare Schieber vorgesehen sein können.
  • Wenn auch bei den vorstehenden Ausführungsbeispielen Anordnungen mit zwei gegenüberliegenden Kolben/Zylinder-Einheiten beschrieben sind, versteht es sich, daß auch Anordnungen mit mehr als zwei, bspw, vier, sechs oder acht Kolben/Zylinder-Einheiten möglich sind, wobei jeweils 2er-Einheiten entsprechend winklig und bzgl. des Gehäuses in axialer Richtung von weniger als den Zylinderaußendurchmesser versetzt sind.

Claims (17)

1. Verbrennungsmotor, mit mindestens einem sich in einer zylindrischen Kolbenbohrung (13, 14; 113, 114) hin und her bewegenden kolben (15, 16; 115, 116), der über ein Pleuel (24, 25; 124, 125) und ein Pleuellager (36, 37; 136, 137) auf eine drehbar gelagerte Kurbelwelle (30; 130) einwirkt, mit einem die Kolbenbohrung (13, 14; 113, 114) beinhaltenden Läufer (10; 100), der in einem Gehäuse (1; 101) drehbar gelagert ist und der mit der Kurbelwelle (30; 130) durch ein Getriebe (40, 41, 42, 43; 140, 141, 142, 143) bewegungsmäßig derart gekoppelt ist, daß Läufer und Kurbelwelle in entgegengesetzten Drehrichtungen (60; 160 bzw. 61; 161) umlaufen, wobei die im Läufer (10; 110) angeordnete Kolbenbohrung (13, 14; 113, 114) mit einer Öffnung (20, 21) in der Außenfläche des Läufers (10, 17; 100, 117) in Verbindung steht, die gegenüber dem Gehäuse (1; 101) abgedichtet ist und die sich bei der Drehung des Läufers (110; 100) an einer Einlaßöffnung (50) und einer Auslaßöffnung (51) des Gehäuse vorbeibewegt, dadurch gekennzeichnet, daß die Kurbelwelle (30; 130) von einem Ölleitungssystem (75; 175) durchzogen ist, das im Bereich der Pleuellager (36, 37; 136, 137) und/oder der Kurbelwellenlager (32; 132) und/oder der Kurbelwellenscheiben (138, 139) mit Austrittsöffnungen versehen ist, und daß von der mindestens einen Kolbenbohrung (13; 113) Ölabflußkanäle (80; 180) abgehen, die sich zur Kühlung derselben teilweise radial nach außen parallel zur Kolbenbohrung (13; 113) erstrecken, und daß die Stelle der Kolbenbohrung (13; 113), von der die Ölabfuhrkanäle (80; 180) in der Kolbenbohrung (13; 113) abgehen, derart angeordnet ist, daß sie vom Kolben (15; 115) im oberen Totpunkt freigegeben wird.
2. Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Austrittsöffnungen im Bereich der Pleuellager (136) durch axiale Nuten bzw. Rillen (177) an der Außenfläche der Kurbelwellenscheiben (138, 139) und/oder der Pleuel (124, 125) gebildet sind.
3. Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Ölabflußkanäle (180) über den Innenumfang der Kolbenbohrungen (113, 114) verteilt angeordnet sind und zylinderaußenseitig in eine Außenumfangsnut (181) münden, die mit einer Abflußbohrung (184) in der Scheibe (135′) des Läufers (110) in Verbindung ist.
4. Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß in einem Läufer (10; 100), zwei um 180° gegeneinander versetzte Kolbenbohrungen (13, 14; 113, 114) angeordnet sind, und daß die Pleuel (24; 124, 125) an der Kurbelwelle (30; 130) an zwei gegeneinander um 180° versetzten Pleuellagern (36, 37; 136, 136′, 137) angreifen.
5. Verbrennungsmotor nach Anspruch 1 oder 4, dadurch gekennzeichnet, daß die Längsachsen der Kolbenbohrungen (113, 114) miteinander in einer Flucht liegen und daß die Pleuellager (136, 136′, 137) entsprechend symmetrisch zu diesen Längsachsen angeordnet sind.
6. Verbrennungsmotor nach Anspruch 5, dadurch gekennzeichnet, daß zumindest eines der beiden Pleuel (124, 125) im wesentlichen U-förmig ausgebildet ist und über ein schwenkbares Zwischenglied (126, 126′) mit dem anderen Pleuel (125, 124) gelenkig verbunden ist.
7. Verbrennungsmotor nach Anspruch 6, dadurch gekennzeichnet, daß der eine Pleuel (124) U-förmig und der andere Pleuel (125) ein flacher Stab ist und daß an und zwischen beiden Pleueln (124, 125) zwei parallele stabförmige Zwischenelemente (126, 126′) beidendig gelenkig angeordnet sind, die an der Kurbelwelle (130) starr angreifen.
8. Verbrennungsmotor nach den Ansprüchen 1 oder 2 und 7, dadurch gekennzeichnet, daß die Austrittsöffnungen im Bereich der Pleuellager (136) durch axiale Nuten bzw. Rillen (177) an der Außenfläche der stabförmigen Zwischenelemente (126, 126′) und/oder Pleuel (124, 125) gebildet sind.
9. Verbrennungsmotor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß der Läufer (10) einen zylindrischen Laufring (17) aufweist, der in dem Gehäuse (1) drehbar angeordnet ist, daß die genannten Öffnungen (20, 21) in dem Laufring (17) vorgesehen sind und radial nach innen mit den Kolbenbohrungen (13, 14) in Verbindung stehen, daß die innerhalb des Laufrings (17) angeordneten zylinder (11, 12) gegeneinander und gegenüber dem Laufring (17) durch Stege (18, 19) versteift sind und daß der Ölabflußkanal (80) zur Kühlung entlang des Laufringes (17) geführt ist.
10. Verbrennungsmotor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Kurbelwelle (30) mit ihrem einen Ende (31) in einer von zwei Platten (3, 4) drehbar gelagert ist, welche den Deckel bzw. den Boden des Gehäuses (1) bilden, daß die Kurbelwelle (30) mit ihrem anderen Ende (32) in einer Scheibe (35) gelagert ist, die Teil des Läufers (10) ist, und daß die Abtriebswelle (34) mit dem Läufer (10) fest verbunden ist.
11. Verbrennungsmotor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Kurbelwelle (130) mit beiden Enden (131, 132) in einer Platte (103, 104) drehbar gelagert ist, welche den Deckel bzw. den Boden des Gehäuses (101 bilden und eine Scheibe (135) durchdringt, die Teil des Läufers (110) ist und daß die Kurbelwelle (130) mit ihrem einen Ende mit der Abtriebswelle (134) drehfest verbunden ist.
12. Verbrennungsmotor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß das Getriebe einen Zahnkranz (40; 140) am Läufer (10; 110), zwei damit im Eingriff befindliche am Gehäuse gelagerte Zahnräder (42, 43; 142, 143) und ein mit den beiden letztgenannten Zahnräderen (42, 43; 142, 143) sich im Eingriff befindliches Zahnrad (41; 141) aufweist, welch letzteres mit der Kurbelwelle (30; 130) verbunden ist.
13. Verbrennungsmotor nach Anspruch 12, dadurch gekennzeichnet, daß die beiden Zahnräder (42, 43; 142, 143) je zwei übereinander liegende Verzahnungen (421, 422, 431, 432; 1421, 1422, 1431, 1432) mit unterschiedlichem Durchmesser aufweisen, wobei jeweils die eine Verzahnung (421, 431; 1421, 1431) mit dem Zahnkranz (40; 140) am Läufer (10; 110) und die andere Verzahnung (422, 432; 1422, 1432) mit dem Zahnrad (41; 141) auf der Kurbelwelle (30; 130) in Eingriff steht.
14. Verbrennungsmotor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß sich die Einlaßöffnung (50) und/oder die Auslaßöffnung (51) in der zylindrischen Wandung (2) des Gehäuses (1) über einen Winkel von ca. 70° erstreckt.
15. Verbrennungsmotor nach Anspruch 1 oder einem der Ansprüche 2 bis 13, dadurch gekennzeichnet, daß sich die Einleßöffnung (150) und/oder die Auslaßöffnung (151) in der zylindrischen Wandung (102) des Gehäuses (101) über einen Winkel im Bereich von 125° bis 165° erstreckt.
16. Verbrennungsmotor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Einlaßöffnung (50; 150) und die Auslaßöffnung (51) entlang der zylindrischen Wandung (2; 102) des Gehäuses (1; 101) benachbart angeordnet sind und einander überschneiden.
17. Verbrennungsmotor nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die Einlaßöffnung (50; 150) und/oder die Auslaßöffnung (51) von einer Schieberanordnung (192) teilweise abdeckbar ist bzw. sind.
EP88903788A 1987-04-16 1988-04-13 Verbrennungsmotor Expired - Lifetime EP0357650B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT88903788T ATE68850T1 (de) 1987-04-16 1988-04-13 Verbrennungsmotor.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3712992 1987-04-16
DE19873712992 DE3712992A1 (de) 1987-04-16 1987-04-16 Verbrennungsmotor

Publications (2)

Publication Number Publication Date
EP0357650A1 EP0357650A1 (de) 1990-03-14
EP0357650B1 true EP0357650B1 (de) 1991-10-23

Family

ID=6325805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88903788A Expired - Lifetime EP0357650B1 (de) 1987-04-16 1988-04-13 Verbrennungsmotor

Country Status (5)

Country Link
EP (1) EP0357650B1 (de)
JP (1) JP2575054B2 (de)
AT (1) ATE68850T1 (de)
DE (3) DE3712992A1 (de)
WO (1) WO1988008074A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814269A1 (de) * 1988-04-27 1989-11-09 Maier Max Kolbenmaschine
DE3937874A1 (de) * 1989-11-15 1990-04-05 Erich Ellbogen Verbrennungsmotor mit hohem wirkungsgrad, schadstoffarm und kleiner baugroesse
DE4142385A1 (de) * 1991-12-20 1993-06-24 Bayerische Motoren Werke Ag Mehrzylindrige hubkolbenmaschine mit einem hypozykloid-hubgetriebe, insbesondere brennkraftmaschine
AU3620993A (en) * 1992-03-13 1993-10-05 Nikolaus Ennser Internal combustion engine
CN1053259C (zh) * 1994-11-08 2000-06-07 缪东云 对旋式气缸发动机
WO2005056993A1 (fr) * 2003-12-12 2005-06-23 Uzharovsky, Yuriy Vitalyevich Moteur a combustion interne et procede de fonctionnement dudit moteur
KR101175071B1 (ko) * 2010-05-31 2012-08-23 김대성 회전형 피스톤 엔진
DE102010064296B4 (de) * 2010-12-29 2014-05-15 Otto Hermann Becker Rotationsverbrennungsmotor und Verfahren zur Einstellung der Steuerzeiten eines Rotationsverbrennungsmotors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE265905C (de) *
GB191511543A (en) * 1915-08-10 1916-08-10 Joseph Seward Ruston Improvements in or relating to Internal Combustion Engines.
US1598518A (en) * 1923-12-08 1926-08-31 Thomas E Braley Rotary explosive engine
US2665668A (en) * 1949-03-22 1954-01-12 Patrick C Ward Engine
IT1029474B (it) * 1975-02-05 1979-03-10 Magliano M Motore a scoppio con cilindro o cilindri posti in posizione radiale in un corpo rotante in un carter fisso

Also Published As

Publication number Publication date
DE8717614U1 (de) 1989-05-18
EP0357650A1 (de) 1990-03-14
JP2575054B2 (ja) 1997-01-22
WO1988008074A1 (en) 1988-10-20
JPH02503103A (ja) 1990-09-27
DE3865839D1 (de) 1991-11-28
ATE68850T1 (de) 1991-11-15
DE3712992A1 (de) 1988-11-03

Similar Documents

Publication Publication Date Title
DE68903984T2 (de) Kolbenmaschine mit rotierendem Zylinderblock.
DE68914852T2 (de) Brennkraftmaschine mit rohrförmigem drehschieber.
WO2007079766A1 (de) Rotationshubkolbenmaschine
EP1856375B1 (de) Schwenkkolbenmaschine
EP0357650B1 (de) Verbrennungsmotor
DE3150654C2 (de) Rotationskolben-Brennkraftmaschine
DE19901110A1 (de) Schwenkkolbenmaschine
EP0548297B1 (de) Schwenkkolbenmaschine
EP0136565A2 (de) Aggregat bestehend aus einer Hubkolbenmaschine und einem Getriebe
DE2153946C2 (de) Führungsgetriebe für eine Umlaufkolben-Brennkraftmaschine
DE3825372A1 (de) Drehkolbenmaschine
DE4011862C2 (de) Kolbenbrennkraftmaschine
EP0214959A1 (de) Umlaufkolben-brennkraftmaschine
DE4337668C1 (de) Kolbenmaschine
DE3906912A1 (de) Hin- und herbewegliche kolben- und zylinderanordnung fuer verbrennungskraftmaschinen und dergleichen
DE3444023A1 (de) Drehkolbenmaschine
DE885023C (de) Brennkraftmaschine mit Zylindern, deren Achsen sich parallel zur Achse der Maschinenwelle erstrecken
DE501342C (de) Kurbelwellenloser Zweitakt-Zwillingsmotor
DE2234077A1 (de) Kombinierte viertakt-brennkraftmaschine
DE2857309C2 (de) Steuerung einer Rotationskolben-Brennkraftmaschine mit Kreis- und Hubeingriff
DE3205207C2 (de) Rotationskolben-Brennkraftmaschine mit exzentrisch gelagertem Kolben
DE2405706A1 (de) Rotationsmechanismus
DE19513046A1 (de) Kreiskolbenmotor
DE9320837U1 (de) Brennkraftmaschine, insbesondere Brennkraftmaschine mit umlaufenden Kolben als 3-Scheiben-Kreiskolbenmotor
DE4229009A1 (de) Verbrennungsmotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE FR GB IT LI SE

17Q First examination report despatched

Effective date: 19910313

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE FR GB IT LI SE

REF Corresponds to:

Ref document number: 68850

Country of ref document: AT

Date of ref document: 19911115

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3865839

Country of ref document: DE

Date of ref document: 19911128

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 88903788.3

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070201

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070423

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070424

Year of fee payment: 20

Ref country code: SE

Payment date: 20070424

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070620

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070607

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070418

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20080412

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20080412