EP0293702A1 - Elektromagnetischer Auslöser für einen Fehlerstromschutzschalter - Google Patents

Elektromagnetischer Auslöser für einen Fehlerstromschutzschalter Download PDF

Info

Publication number
EP0293702A1
EP0293702A1 EP88108178A EP88108178A EP0293702A1 EP 0293702 A1 EP0293702 A1 EP 0293702A1 EP 88108178 A EP88108178 A EP 88108178A EP 88108178 A EP88108178 A EP 88108178A EP 0293702 A1 EP0293702 A1 EP 0293702A1
Authority
EP
European Patent Office
Prior art keywords
yoke
armature
layer
trigger
hard material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88108178A
Other languages
English (en)
French (fr)
Other versions
EP0293702B1 (de
Inventor
Franz Doepke
Manfred Dipl.-Ing. Tu Schmidt
Wolfgang Dr.-Ing. Bosch
Bruno Dipl.-Wirtsch.-Ing. Gengenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doduco Solutions GmbH
Original Assignee
Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25856163&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0293702(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Doduco GmbH and Co KG Dr Eugen Duerrwaechter filed Critical Doduco GmbH and Co KG Dr Eugen Duerrwaechter
Publication of EP0293702A1 publication Critical patent/EP0293702A1/de
Application granted granted Critical
Publication of EP0293702B1 publication Critical patent/EP0293702B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/24Electromagnetic mechanisms
    • H01H71/32Electromagnetic mechanisms having permanently magnetised part
    • H01H71/327Manufacturing or calibrating methods, e.g. air gap treatments

Definitions

  • the invention is based on a trigger with the features specified in the preamble of claim 1.
  • a trigger is known from DE-27 55 645 B2.
  • it also contains a permanent magnet which lies against the yoke; the magnetic force flow emanating from this permanent magnet causes the armature to be attracted by the yoke against the action of a return spring acting on the armature.
  • a trip coil surrounding the yoke is provided.
  • the tripping coil has the task of generating a power flow that is dependent on the fault current and that is opposite to the power flow emanating from the permanent magnet, so that the force with which the armature is attracted by the yoke is reduced and the return spring can pull the armature off the yoke.
  • the air gap between the armature and the yoke should be as small as possible.
  • the response sensitivity of the trigger should remain constant for as long as possible.
  • the surfaces of the pole faces of the armature or yoke with a corrosion-resistant and tough material with good sliding properties, namely with a metal of the first, second or eighth subgroup of the periodic system of the elements or their alloys with a layer thickness of up to 1 ⁇ m.
  • the group of precious metals, especially gold is intended, which should be deposited by electrolytic deposition or by vapor deposition.
  • the coating is intended to achieve a lubricating effect so that no abrasion is formed during the long service life and the air gap remains constant. It is stated in DE-27 55 645 B2, however, that the thin coating is not sufficient for corrosion protection, since it is not pore-free. In order to avoid corrosion, which could also change the air gap, it is therefore intended to use corrosion-resistant materials both as a soft magnetic material for the armature and for the yoke and for the coating. Applying thicker coatings that could provide effective protection against corrosion is prohibited, as they would reduce the sensitivity of the trigger.
  • the invention has for its object to provide an electromagnetic trigger for residual current circuit breaker that can be produced with reasonable effort and the air gap has an improved temporal consistency.
  • the problem of the temporal constancy of the air gap can be overcome with a thin hard material coating on the pole faces of the armature and the yoke.
  • the hard material layers are so wear-resistant, in particular abrasion-resistant, against the mechanical loads occurring during the tripping process and when the residual current circuit breaker is switched on, that the constancy of the air gap over time is drastically extended compared to known triggers.
  • the optimal layer thickness is between 0.4 ⁇ m and 0.8 ⁇ m.
  • already with such thin Hard material layers can achieve a significant improvement in the corrosion resistance of the yoke and the anchor.
  • the vapor-deposited hard material layers can in fact form a pore-free film even at lower layer thicknesses than the electrolytically applied layers described in DE-27 55 645 B2.
  • Titanium hard materials in particular titanium nitride, are preferably selected for the hard material layer.
  • carbides and carbon nitrides of titanium are also very suitable.
  • CVD method chemical vapor deposition
  • PVD method physical vapor deposition
  • ion plating ion plating
  • Cathode sputtering as a frequently used PVD process, takes place at temperatures below 250 ° C. and has the advantage that it has no influence on the magnetic properties of the base materials of the armature and the yoke to be coated.
  • CVD processes may require working at higher temperatures, they make it possible to specifically influence the surface structure, namely the micro-roughness, by varying the deposition parameters (temperature, pressure, coating time) in the CVD reactor.
  • the accompanying drawing shows schematically an electromagnetic release consisting of an armature 1, a yoke 2, a permanent magnet 3 for generating the magnetic flux, by the action of which the armature 1 is attracted to the yoke 2 and adheres to it, as long as not by one on one leg of the yoke 2 arranged trigger coil 4 an oppositely directed magnetic force flow is generated, the size of which is dependent on a fault current. If such a fault current occurs, the outgoing magnetic flux from the permanent magnet 3 is ge weakens and a return spring 5, which acts on the armature 1, can pull the armature 1 from the yoke 2 and thereby interrupt a circuit to be monitored.
  • the permanent magnet 3 resets the armature 1 by pulling it against the yoke 2.
  • their surfaces there have a thin layer of a hard material. Examples are given below.
  • a hard material layer is preferably applied to the relevant surfaces of both the armature 1 and the yoke 2 after they have been ground and polished flat.
  • the carefully cleaned anchors and yokes are deposited as substrates to be coated on holders in an evacuable coating chamber of a vacuum coating system.
  • the chamber is evacuated and, after reaching a vacuum of the order of 10 ⁇ 6 mbar, argon is introduced at a pressure of approx. 1 x 10 ⁇ 2 mbar for sputter etching of the substrates.
  • High frequency etching takes place at about 1500 V for 10 minutes, as a result of which the oxide layers on the substrates are detached.
  • a 0.5 ⁇ m thick titanium nitride layer is generated for about 10 minutes at a power of about 10 W / cm2.
  • the PVD coating applies a surface layer in which the substrate geometry or topography is essentially imaged, ie only relatively small changes in the micro roughness take place.
  • the coating times given above refer to the operation with a fixed substrate carrier, in continuous or batch systems with drum holders the coating times are extended according to the areas currently in engagement (in relation to the total area of the substrate carriers).
  • the carefully cleaned anchors and yokes are deposited on supports in an evacuable coating chamber as substrates to be coated.
  • the chamber is evacuated and after reaching a rough vacuum of approx. 1 mbar pressure, hydrogen is introduced into the chamber and the chamber is heated to 860 ° C. under a hydrogen atmosphere at a pressure of approx. 200 mbar.
  • nitrogen and titanium tetrachloride (TiCl4) are introduced into the chamber, the ratio of hydrogen to nitrogen being about 3.5: 1, and a pressure of 900 mbar is set in the chamber. Under this pressure and the At a temperature of 860 ° C, titanium nitride is deposited on the substrates.
  • the thickness of the titanium nitride layer has increased to 0.5 ⁇ m.
  • the chamber is then rinsed with cold argon and cooled, and the coated parts are removed. Their micro roughness is slightly increased compared to the uncoated parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)
  • Contacts (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

Es wird ein elektromagnetischer Auslöser für einen Fehlerstromschutzschalter mit einem Anker (1) und mit einem Joch (2) beschrieben, welche beide aus einem weichmagnetischen Werkstoff bestehen und bei geschlossenem Schalter mit ihren Polflächen unter Bildung eines minimalen Luftspaltes (6) aneinander anliegen, wobei mindestens eine der Polflächen des Ankers (1) und/oder mindestens eine der gegenüberliegenden Oberflächen des Joches (2) eine dünne Schicht aus einem Hartstoff, insbesondere aus Titannitrid, aufweist.

Description

  • Die Erfindung geht aus von einem Auslöser mit den im Oberbegriff des Anspruchs 1 angegebenen Merkmalen. Ein solcher Auslöser ist aus der DE-27 55 645 B2 bekannt geworden. Er enthält ausser den im Oberbegriff angegebenen Elementen noch einen Dauermagneten, welcher dem Joch anliegt; der von diesem Dauermagnet ausgehende magnetische Kraftfluß bewirkt, dass der Anker entgegen der Wirkung einer am Anker angreifenden Rückzugfeder vom Joch angezogen wird. Ausserdem ist eine das Joch umgebende Auslösespule vorge­sehen. Die Auslösespule hat die Aufgabe, einen vom Fehler­strom abhängigen, dem vom Dauermagneten ausgehenden Kraft­fluß entgegengerichteten Kraftfluß zu erzeugen, so dass die Kraft, mit welcher der Anker vom Joch angezogen wird, ver­kleinert wird und die Rückzugfeder den Anker vom Joch ab­ziehen kann.
  • Um eine hohe Empfindlichkeit des Auslösers zu erzielen, soll der Luftspalt zwischen dem Anker und dem Joch mög­lichst klein sein. Ausserdem soll die Ansprechempfindlich­keit des Auslösers über möglichst lange Zeit konstant bleiben. Um das zu erreichen, ist es aus der DE-27 55 645 B2 bekannt, die Oberflächen der Polflächen des Ankers oder des Joches mit einem korrosionsfesten und zähen Stoff mit guten Gleiteigenschaften, nämlich mit einem Metall der ersten, zweiten oder achten Nebengruppe des Periodischen Systems der Elemente oder deren Legierungen mit einer Schichtstärke von bis zu 1 µm zu versehen. Dabei ist insbesondere an die Gruppe der Edelmetalle, vor allen Dingen an Gold ge­dacht, welche durch elektrolytische Abscheidung oder durch Aufdampfen abgeschieden werden sollen. Durch die Beschich­tung soll ein Schmiereffekt erreicht werden, so dass sich während der langen Lebensdauer kein Abrieb mehr bildet und der Luftspalt insoweit konstant bleibt. Es ist in der DE-27 55 645 B2 allerdings angegeben, dass die dünne Be­schichtung für einen Korrosionsschutz nicht ausreicht, da sie nicht porenfrei ist. Um Korrosion zu vermeiden, die den Luftspalt ebenfalls verändern könnte, ist deshalb vor­gesehen, sowohl als weichmagnetischen Werkstoff für den Anker und für das Joch als auch für die Beschichtung korrosionsfeste Werkstoffe zu verwenden. Dickere Beschichtungen aufzutragen, die einen wirksamen Korrosionsschutz bieten könnten, ver­bietet sich, da sie die Empfindlichkeit des Auslösers her­absetzen würden.
  • Um diesen Nachteilen zu begegnen, ist in der DE-34 10 596 A1 vorgeschlagen worden, mindestens die Oberflächen der Pol­flächen vom Anker oder Joch eines solchen Auslösers für einen Fehlerstromschutzschalter aus einer pulvermetallurgisch her­gestellten, weichmagnetischen Eisen-Nickel-Legierung herzu­stellen, weil man weiß, dass eine pulvermetallurgisch herge­stellte Eisen-Nickel-Legierung oxidationsfester ist als eine schmelzmetallurgisch hergestellte Eisen-Nickel-Legierung. Die Kosten für eine pulvermetallurgisch hergestellte Eisen-­Nickel-Legierung sind allerdings höher als für vergleichbare schmelzmetallurgisch hergestellte Eisen-Nickel-Legierungen und die erwünschte zeitliche Konstanz des Luftspaltes wird dennoch nicht erreicht.
  • Der Erfindung liegt die Aufgabe zugrunde, einen elektro­magnetischen Auslöser für Fehlerstromschutzschalter zu schaffen, der mit vertretbarem Aufwand herstellbar ist und dessen Luftspalt eine verbesserte zeitliche Konstanz aufweist.
  • Diese Aufgabe wird gelöst durch einen Auslöser mit den im Patentanspruch 1 angegebenen Merkmalen. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unter­ansprüche.
  • Überraschenderweise hat es sich gezeigt, dass man dem Problem der zeitlichen Konstanz des Luftspaltes mit einer dünnen Hartstoffbeschichtung der Polflächen des Ankers und des Joches beikommen kann. Selbst bei Schichtstärken von weniger als 1 µm sind die Hartstoffschichten gegenüber den beim Auslösevorgang und beim Wiedereinschalten des Fehler­stromschutzschalters auftretenden mechanischen Belastungen so verschleißfest, insbesondere abriebfest, dass die zeit­liche Konstanz des Luftspaltes im Vergleich zu bekannten Auslösern drastisch verlängert wird. Die optimale Schicht­dicke liegt zwischen 0,4 µm und 0,8 µm. Überraschenderweise hat sich weiterhin gezeigt, dass sich bereits mit so dünnen Hartstoffschichten eine wesentliche Verbesserung der Korrosionsbeständigkeit des Joches und des Ankers er­reichen läßt. Die aufgedampften Hartstoffschichten können nämlich schon bei geringeren Schichtstärken als die in der DE-27 55 645 B2 beschriebenen elektrolytisch aufgebrachten Schichten einen porenfreien Film bilden.
  • Vorzugsweise werden für die Hartstoffschicht Hartstoffe des Titans, insbesondere Titannitrid gewählt. Gut geeig­net sind aber auch die Karbide und die Karbonnitride des Titans.
  • Zum Erzeugen einer solchen Hartstoffschicht eignen sich die Verfahren der chemischen Dampfabscheidung (CVD-­Verfahren) und der physikalischen Dampfabscheidung (PVD-Verfahren), insbesondere das Ionenplattieren. Das Kathodenzerstäuben als häufig angewandtes PVD-Verfahren findet bei Temperaturen unter 250° C statt und hat den Vorteil, dass es keinen Einfluß auf die magnetischen Eigenschaften der zu beschichtenden Grundmaterialien des Ankers und des Joches hat. CVD-Verfahren erfordern zwar U.U. das Arbeiten bei höherer Temperatur, ermöglichen es jedoch, durch Variation der Abscheideparameter (Temperatur, Druck, Beschichtungsdauer) im CVD-Reaktor die Oberflächenstruktur, nämlich die Mikro­rauhigkeit gezielt zu beeinflussen. Damit ist auch eine gezielte Beeinflussung des Luftspaltes und - damit zusammen­ hängend - der Auslöseempfindlichkeit des Auslösers möglich, wobei die eingestellte Empfindlichkeit infolge der harten Oberfläche langzeitstabil bleibt. Erste Versuche haben ge­zeigt, dass sich die Langzeitstabilität der Auslöseschwelle des Auslösers durch die erfindungsgemäße Hartstoffbe­schichtung im Vergleich zu bekannten Auslösern um einen Faktor 5 bis 25 erhöhen läßt.
  • Um die Auslöseschwelle des Auslösers durch die Abscheide­bedingungen des CVD-Verfahrens gezielt beeinflussen zu können, geht man am besten von einem Anker und von einem Joch mit sehr glatter, polierter Oberfläche aus, welche durch die nachfolgende Beschichtung mit Hartstoff eine etwas stärkere, aber wohl definierte, durch die Abscheide­bedingungen festgelegte,langzeitstabile Rauhigkeit er­hält.
  • Die beigefügte Zeichnung zeigt schematisch einen elektro­magnetischen Auslöser, bestehend aus einem Anker 1, aus einem Joch 2, einem Dauermagneten 3 zum Erzeugen des Magnetflusses, durch dessen Wirkung der Anker 1 vom Joch 2 angezogen wird und daran haftet, solange nicht durch eine auf einem Schenkel des Joches 2 angeordnete Auslösespule 4 ein entgegengesetzt gerichteter magnetischer Kraftfluß erzeugt wird, dessen Größe von einem Fehlerstrom abhängig ist. Tritt ein solcher Fehlerstrom auf, wird der vom Dauermagneten 3 ausgehende magnetische Kraftfluß ge­ schwächt und eine Rückzugfeder 5, welche am Anker 1 angreift, kann den Anker 1 vom Joch 2 abziehen und da­durch einen zu überwachenden Stromkreis unterbrechen. Wenn in der Auslösespule 4 kein Strom fließt, stellt der Dauermagnet 3 den Anker 1 zurück, indem er ihn gegen das Joch 2 zieht. Um die Größe des Luftspaltes 6 zwischen dem Joch 2 und dem Anker 1 über lange Zeit konstant zu halten, tragen ihre dort liegenden Oberflächen eine dünne Schicht aus einem Hartstoff. Beispiele dafür sind nachstehend angegeben. Vorzugsweise wird eine Hartstoff­schicht auf die betreffenden Oberflächen sowohl des Ankers 1 als auch des Joches 2 aufgetragen, nachdem diese plan geschliffen und poliert worden sind.
  • Beispiel 1:
  • Zur PVD-Beschichtung werden die sorgfältig gereinigten Anker und Joche als zu beschichtende Substrate auf Halterungen in einer evakuierbaren Beschichtungskammer einer Vakuumbeschichtungsanlage deponiert. Die Kammer wird evakuiert und nach Erreichen eines Unterdruckes in der Größenordnung von 10⁻⁶ mbar wird zum Sputterätzen der Substrate Argon mit einem Druck von ca. 1 x 10⁻² mbar eingelassen. Unter Hochfrequenz wird bei etwa 1500 V 10 Minuten lang geätzt, wodurch die Oxidschichten auf den Substraten abgelöst werden. Nach Schaltung eines Titantargets als Kathode und Zugabe von etwa 5 % Stick­stoff wird für ca. 10 Minuten bei einer Leistung von etwa 10 W/cm² eine 0,5 µm starke Titannitrid-Schicht erzeugt. Während der Beschichtung findet keine Erwärmung durch eine Substratheizung statt; erhöhte Substrat­ temperaturen zwischen 150° C und 200° C sind haupt­sächlich durch den Ionenbeschuß beim Sputterätzen bedingt. Durch die PVD-Beschichtung wird eine Ober­flächenschicht aufgetragen, bei der im wesentlichen die Substratgeometrie bzw. Topographie abgebildet wird, d.h. es finden nur relativ kleine Änderungen der Mikrorauhheiten statt. Die oben angegebenen Beschichtungszeiten beziehen sich auf den Betrieb mit feststehendem Substratträger, bei Durchlauf- oder Batchanlagen mit Trommelhalterung verlängern sich die Beschichtungszeiten entsprechend der gerade im Ein­griff befindlichen Flächen (im Verhältnis zur Gesamt­fläche der Substratträger).
  • Beispiel 2:
  • Zur CVD-Beschichtung werden die sorgfältig gerinig­ten Anker und Joche als zu beschichtende Substrate auf Halterungen einer evakuierbaren Beschichtungs­kammer deponiert. Die Kamemr wird evakuiert und nach Erreichen eines Grobvakuums von ca. 1 mbar Druck wird in die Kammer Wasserstoff eingeleitet und die Kam­mer unter der Wasserstoffatmosphäre bei einem Druck von ca. 200 mbar auf 860° C aufgeheizt. Dann wer­den Stickstoff und Titantetrachlorid (TiCl₄) in die Kammer eingeführt, wobei das Verhältnis von Wasser­stoff zu Stickstoff etwa 3,5 : 1 beträgt, und es wird dabei ein Druck von 900 mbar in der Kammer eingestellt. Unter diesem Druck und der Temperatur von 860° C findet eine Abscheidung von Titannitrid auf den Substraten statt. Nach 25 min Beschichtungsdauer ist die Dicke der Titannitrid­schicht auf 0,5 µm angewachsen. Die Kammer wird nun mit kaltem Argon gespult und abgekühlt und die be­schichteten Teile werden entnommen. Ihre Mikrorauh­heit ist gegenüber den unbeschichteten Teilen leicht erhöht.

Claims (9)

1. Elektromagnetischer Auslöser für einen Fehlerstrom­schutzschalter mit einem Anker und mit einem Joch, welche beide aus einem weichmagnetischen Werkstoff be­stehen und bei geschlossenem Schalter mit ihren Polflächen unter Bildung eines minimalen Luftspaltes aneinander an­liegen, wobei mindestens eine der Polflächen des Ankers und/oder mindestens eine der gegenüberliegenden Ober­flächen des Joches eine dünne Schicht aus einem anderen Werkstoff aufweist, dadurch gekennzeichnet, dass die Schicht aus einem Hartstoff besteht.
2. Auslöser nach Anspruch 1, dadurch gekennzeichnet, dass die Schicht eine Härte von wenigstens 1000 HV aufweist.
3. Auslöser nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, dass die Schicht aus Hartstoffen des Titans besteht.
4. Auslöser nach Anspruch 3, dadurch gekennzeichnet, dass die Schicht aus Titan-Nitrid besteht.
5. Auslöser nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schicht zwischen 0,4 µm und 0,8 µm dick ist.
6. Anwendung eines Aufdampfverfahrens zur Erzeugung einer aus Hartstoffen bestehenden Schicht auf dem Anker und/oder Joch eines Auslösers gemäß einem der vor­stehenden Ansprüche.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Aufdampfverfahren ein PVD-Verfahren ge­wählt wird.
8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass als Aufdampfverfahren ein CVD-Verfahren gewählt wird.
9. Durch ein CVD-Verfahren hergestellter Auslöser nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Oberflächenrauhigkeit der aus einem Hartstoff bestehenden Schichten größer ist als die Rauhigkeit der bestehenden Oberflächen des Ankers bzw. des Joches vor der Beschichtung mit dem Hartstoff.
EP19880108178 1987-05-29 1988-05-21 Elektromagnetischer Auslöser für einen Fehlerstromschutzschalter Expired - Lifetime EP0293702B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3718204 1987-05-29
DE3718204 1987-05-29
DE19873719946 DE3719946A1 (de) 1987-05-29 1987-06-15 Elektromagnetischer ausloeser fuer einen fehlerstromschutzschalter
DE3719946 1987-06-15

Publications (2)

Publication Number Publication Date
EP0293702A1 true EP0293702A1 (de) 1988-12-07
EP0293702B1 EP0293702B1 (de) 1992-05-06

Family

ID=25856163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19880108178 Expired - Lifetime EP0293702B1 (de) 1987-05-29 1988-05-21 Elektromagnetischer Auslöser für einen Fehlerstromschutzschalter

Country Status (3)

Country Link
EP (1) EP0293702B1 (de)
DE (2) DE3719946A1 (de)
ES (1) ES2031952T3 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403534B (de) * 1991-01-16 1998-03-25 Biegelmeier Gottfried Fehlerstromschutzschalter
FR2793947A1 (fr) * 1999-05-20 2000-11-24 Thermocompact Sa Relais a haute sensibilite, et procede pour sa fabrication
EP1345246A2 (de) * 2002-03-12 2003-09-17 ABB PATENT GmbH Auslöseeinrichtung für einen Fehlerstromschutzschalter und Verfahren zu dessen Herstellung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004017779A1 (de) * 2004-04-13 2005-11-10 Siemens Ag Auslöserelais
DE102012009665B4 (de) 2012-05-12 2022-04-07 Doepke Schaltgeräte GmbH Elektrisches Auslöserelais für einen Schalter, insbesondere für einen Schutzschalter zum Überwachen elektrischer Netze

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2045189B2 (de) * 1970-09-12 1975-07-03 Castolin S.A., St. Sulpice, Lausanne, Vaud (Schweiz) Pulverförmige Hartstoffmischung
DE2440362A1 (de) * 1974-08-23 1976-03-04 Licentia Gmbh Elektromagnet
DE2755645B2 (de) * 1977-12-14 1980-02-07 Schutzapparate-Gesellschaft Paris + Co Mbh Kg, 5885 Schalksmuehle Elektromagnetischer Auslöser, insbesondere Haltemagnetauslöser für Fehlerstromschutzschalter
DE3410596A1 (de) * 1984-03-22 1985-09-26 Siemens Ag Elektromagnetischer ausloeser fuer fehlerstromschutzschalter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2045189B2 (de) * 1970-09-12 1975-07-03 Castolin S.A., St. Sulpice, Lausanne, Vaud (Schweiz) Pulverförmige Hartstoffmischung
DE2440362A1 (de) * 1974-08-23 1976-03-04 Licentia Gmbh Elektromagnet
DE2755645B2 (de) * 1977-12-14 1980-02-07 Schutzapparate-Gesellschaft Paris + Co Mbh Kg, 5885 Schalksmuehle Elektromagnetischer Auslöser, insbesondere Haltemagnetauslöser für Fehlerstromschutzschalter
DE3410596A1 (de) * 1984-03-22 1985-09-26 Siemens Ag Elektromagnetischer ausloeser fuer fehlerstromschutzschalter

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
METALLOBERFLÄCHE, Band 40, Nr. 12, Dezember 1986, München, DE; K. REICHELT: "Aufdampfen und Aufstäuben von Hartstoffschichten" *
THIN SOLID FILMS, Band 126, Nr. 314, April 1985, Lausanne, CH; T.A. MÄNTYLÄ et al.: "Corrosion behaviour and protective quality of TiN coatings" *
W. FOERST: "Ullmanns Encyklopädie der technischen Chemie", Band 12, Auflage 3, Urban & Schwarzenber, 1960, München-Berlin, DE *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT403534B (de) * 1991-01-16 1998-03-25 Biegelmeier Gottfried Fehlerstromschutzschalter
FR2793947A1 (fr) * 1999-05-20 2000-11-24 Thermocompact Sa Relais a haute sensibilite, et procede pour sa fabrication
EP1345246A2 (de) * 2002-03-12 2003-09-17 ABB PATENT GmbH Auslöseeinrichtung für einen Fehlerstromschutzschalter und Verfahren zu dessen Herstellung
EP1345246A3 (de) * 2002-03-12 2003-10-15 ABB PATENT GmbH Auslöseeinrichtung für einen Fehlerstromschutzschalter und Verfahren zu dessen Herstellung

Also Published As

Publication number Publication date
DE3870707D1 (de) 1992-06-11
EP0293702B1 (de) 1992-05-06
DE3719946A1 (de) 1988-12-22
ES2031952T3 (es) 1993-01-01
DE3719946C2 (de) 1991-10-31

Similar Documents

Publication Publication Date Title
DE3513014C2 (de) Verfahren zur Behandlung der Oberfläche von Werkstücken
EP0306612B2 (de) Verfahren zur Aufbringung von Schichten auf Substraten
EP0439561B1 (de) Verfahren und vorrichtung zur beschichtung von substraten
DE19522331B4 (de) Verfahren zum Beschichten mindestens eines Werkstückes, Anlage hierfür sowie Verfahren zum Betrieb einer kathodischen Bogenentladung und Verwendung desselben
AT391106B (de) Schichtverbundwerkstoff mit diffusionssperr- schicht, insbesondere fuer gleit- und reibelemente,sowie verfahren zu seiner herstellung
DE2215151A1 (de) Verfahren zum herstellen von duennen schichten aus tantal
EP0756022B1 (de) Korrosionsgeschütztes Stahlfeinblech und Verfahren zu seiner Herstellung
DE3150591A1 (de) Verfahren zur herstellung von metallueberzuegen durch zerstaeubungsionenbeschichtung
EP2159821A2 (de) Beschichtungsvorrichtung zum Beschichten eines Substrats, sowie ein Verfahren zum Beschichten eines Substrats
EP0817238B1 (de) Aluminium-Gussteil und Verfahren zu seiner Herstellung
DE1621321B2 (de) Verfahren zur herstellung eines festhaftenden korrosionsschutz ueberzuges auf mit zink ueberzogene stahlgegenstaende
EP0293702B1 (de) Elektromagnetischer Auslöser für einen Fehlerstromschutzschalter
WO1997050108A9 (de) Aluminium-gussteil und verfahren zu seiner herstellung
DE3601439C1 (de) Schichtverbundwerkstoff,insbesondere fuer Gleit- und Reibelemente,sowie Verfahren zu seiner Herstellung
DE69102687T2 (de) Beschichtung zum Schutz vor Verschleiss auf einem Substrat auf Titanbasis.
EP2989654B1 (de) Lichtbogenverdampfungs-beschichtungsquelle mit permanentmagnet
EP1161570B1 (de) Verfahren zur beschichtung eines trägerkörpers mit einem hartmagnetischen se-fe-b-material mittels plasmaspritzens
DE3214989A1 (de) Mit edelmetall oder einer edelmetallegierung beschichtetes elektrisches kontaktstueck
DE69727278T2 (de) Elektromagnetischen Auslöser mit einer amorphen Kohlenstoffbeschichtung und sein Fertigungsverfahren
DE3345493A1 (de) Vorrichtung zum stabilisieren eines verdampfungslichtbogens
DE69305458T2 (de) A1-Si-Cr-BESCHICHTETE STAHLPLATTE UND DEREN HERSTELLUNG
DE69722619T2 (de) Vorrichtung zur Kondensationserzeugung eines Schichtes auf einem Substrat
EP1397526A2 (de) Modifizierter dlc-schichtaufbau
EP3583619B1 (de) Lichtbogenkathodenverdampfung mit vorbestimmtem kathodenmaterialabtrag
DE2638135A1 (de) Elektrischer schaltkontakt

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOEPKE & CO. SCHALTGERAETEFABRIK GMBH & CO. KG

Owner name: DODUCO GMBH + CO DR. EUGEN DUERRWAECHTER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DODUCO GMBH + CO DR. EUGEN DUERRWAECHTER

17P Request for examination filed

Effective date: 19890605

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DODUCO KG. DR. EUGEN DUERRWAECHTER

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DODUCO GMBH + CO DR. EUGEN DUERRWAECHTER

17Q First examination report despatched

Effective date: 19910422

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 3870707

Country of ref document: DE

Date of ref document: 19920611

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: MODIANO & ASSOCIATI S.R.L.

26 Opposition filed

Opponent name: SIEMENS AKTIENGESELLSCHAFT, BERLIN UND MUENCHEN

Effective date: 19920622

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2031952

Country of ref document: ES

Kind code of ref document: T3

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AG

Effective date: 19920622

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950405

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950508

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950523

Year of fee payment: 8

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19960204

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 960204