EP0160831A2 - Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kenreaktoranlagen - Google Patents

Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kenreaktoranlagen Download PDF

Info

Publication number
EP0160831A2
EP0160831A2 EP85103900A EP85103900A EP0160831A2 EP 0160831 A2 EP0160831 A2 EP 0160831A2 EP 85103900 A EP85103900 A EP 85103900A EP 85103900 A EP85103900 A EP 85103900A EP 0160831 A2 EP0160831 A2 EP 0160831A2
Authority
EP
European Patent Office
Prior art keywords
dicarboxylic acids
nuclear reactor
permanganic acid
treatment
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85103900A
Other languages
English (en)
French (fr)
Other versions
EP0160831A3 (en
EP0160831B1 (de
Inventor
Horst-Otto Bertholdt
Hans Dipl.-Ing. Hirning
Rudolf Papesch
Hubert Dipl.-Ing. Stamm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Kraftwerk Union AG
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6233426&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0160831(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kraftwerk Union AG, Siemens AG filed Critical Kraftwerk Union AG
Publication of EP0160831A2 publication Critical patent/EP0160831A2/de
Publication of EP0160831A3 publication Critical patent/EP0160831A3/de
Application granted granted Critical
Publication of EP0160831B1 publication Critical patent/EP0160831B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/001Decontamination of contaminated objects, apparatus, clothes, food; Preventing contamination thereof
    • G21F9/002Decontamination of the surface of objects with chemical or electrochemical processes
    • G21F9/004Decontamination of the surface of objects with chemical or electrochemical processes of metallic surfaces

Definitions

  • the invention relates to a process for the chemical decontamination of metallic components of nuclear reactor plants, in which an oxidative treatment with a permanganate solution is carried out before dicarboxylic acids are used for further treatment.
  • an alkaline permanganate solution at a temperature of about 100 ° C. is used for the oxidative treatment. It is then rinsed out with deionate before continuing with a citrate oxalate solution which is adjusted to a pH of 3.5 with ammonia and which contains an inhibitor and ethylenediaminetetraacetic acid.
  • the inhibitor is iron III formate.
  • the known method with its individual stages and the rinsing steps in between works with high chemical concentrations and is relatively time-consuming. It has also not yet been used for primary systems of nuclear reactors which would have to be practically emptied for this purpose and which would have to be refilled after the treatment.
  • the invention is therefore based on the object of reducing the dose burden on inspection and repair personnel by chemical decontamination of the primary system To enable nuclear reactors or parts thereof, which can be carried out with less effort. As an important secondary condition, it should be ensured that chemical decontamination results in only a small amount of secondary waste, which in turn must be eliminated in a radiation-safe manner.
  • permanganic acid is used for the oxidative treatment. As has been found, this can be used for the same effect with significantly lower concentrations and, moreover, it can be achieved that the subsequent treatment with dicarboxylic acids also requires much smaller amounts of acid, so that there is correspondingly less secondary waste. Above all, however, the treatment can be carried out by introducing the permanganic acid into the primary coolant of a water-cooled nuclear reactor. It is therefore no longer necessary to drain the primary coolant. Rather, the new process can be carried out in such a way that the primary coolant is cleaned by ion exchange resins and remains in the nuclear reactor for further operation.
  • the permanganic acid is advantageously produced by converting potassium permanganate. This can be done by withdrawing potassium using an ion exchanger. The conversion can take place outside the system to be treated in special containers, but also during the decontamination of entire primary circuits with the auxiliary systems available in the nuclear power plant (such as primary coolant cleaning). The permanganic acid is then in a concentration range of 20 to 400 mg / kg.
  • An advantageous development of the invention consists in that a mixture with an oxalic acid content of at most 1/3 is used as the dicarboxylic acids.
  • Dicarboxylic acids with a chain length of C 3 and hydroxidicarboxylic acids can be used as further dicarboxylic acids of the mixture.
  • the dicarboxylic acids are introduced directly into the permanganic acid solution, especially for cleaning primary circuits. This saves the usual rinsing processes and the draining and discarding or processing of the permanganate solution.
  • 1 shows the primary cooling circuit of a pressurized water reactor that is to be decontaminated, and the auxiliary power plants required for this purpose.
  • 2 shows the time course of the decontamination treatment for a first cycle.
  • the pressurized water reactor comprises a reactor pressure vessel 2, a steam generator 3 and a main coolant pump 4. This promotes this from the reactor pressure vessel 2 via the hot line 5 in the primary cooling water reaching the steam generator 3 via the cold strand 6 back into the reactor pressure vessel 2.
  • a volume control system 8 is used to treat the primary cooling water. It is connected to the cold line 6 in the area between the pump 4 and the steam generator 3 with an outlet line 10. It runs via a recuperative heat exchanger 12 and a cooler 13 to a shut-off valve 14. This is followed by control valves 15, 16 and 17 which lead to a storage tank 18. The coolant can be conveyed back from the storage tank 18 into the primary circuit 1 via a high-pressure feed pump 20. The cooled and cleaned primary coolant passes through the recuperative heat exchanger 12 before it returns to the cold line 6 via the line 21 behind the pump 4.
  • Devices for coolant treatment are located parallel to valves 15 to 17. They include an indicated with 24 coolant cleaning as well as a gasification g ühlstoffent- 25. For the ingestion of large amounts of refrigerant is provided a coolant storage 26th The devices 24 to 26, like a coolant preparation 27, are connected to an exhaust gas system 28, which receives the gaseous activity carriers that occur during the coolant treatment.
  • boron is removed from the coolant, which is used for combustion control.
  • the boron and the boron-free deionate can be fed to a boric acid and deionate feed 30, which is connected to the volume control system 8 via a line 31 sen, into which a chemical feed 32 also feeds.
  • the liquid waste produced in the coolant cleaning can be passed on to a treatment plant 35 for radioactive waste water, which is followed by the treatment of radioactive concentrates indicated at 36.
  • the temperature in the primary system is reduced to 60 60 ° C. and the dicarboxylic acid mixture is introduced directly into the permanganic acid solution.
  • dicarboxylic acids or hydroxidicarboxylic acids which are entered up to a concentration of 300 mg / kg in the primary coolant, as shown by curve part 41, and further 100 mg / kg parts of oxalic acid, as curve part 42 is intended to show .
  • dicarboxylic acids are mesoxalic acid, malonic acid and dihydroxyfumaric acid and dihydroxy tartaric acid are used.
  • the HMnP 4 and MnO 2 present in the system react with the oxalic acid and are reduced to Mn ++ ions.
  • the oxalic acid is oxidized to C0 2 , the C0 2 being removed via the degasser.
  • the contents of the primary circuit are heated to 100 ° C again. Parts of the primary coolant are then shunted over ion exchange filters that are part of the coolant cleaning 24 or coolant preparation 27, so that the facilities already present in the power plant are used.
  • the chemical concentration can be reduced to practically zero (curve 44).
  • the manganese content originating from the oxidative conversion is reduced, as indicated by the dashed curve part 45.
  • the components of the oxide layer are also filtered out. This happens after the curve 46, which represents the content of iron, chromium, nickel and possibly cobalt.
  • the withdrawal of the cations and the dicarboxylic acid via the ion exchanger is controlled in such a way that the dicarboxylic acid is present in excess, equivalent to the dissolved cations. This is crucial in order to prevent the activity from failing again.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Food Science & Technology (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Bei Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kernreaktoranlagen erfolgt eine oxidative Behandlung mit einer Permanganatlösung, bevor mit Dicarbonsäuren gebeizt wird. Erfindungsgemäß wird zur oxidativen Behandlung Permangansäure verwendet, die vorzugsweise durch Umwandlung von Kaliumpermanganat hergestellt wird. Bei Leichtwasserreaktoren kann die Permangansäure vorteilhaft direkt in das Primärkühlmittel eingegeben werden. Danach können in das angesäuerte Primärkühlmittel unmittelbar Dicarbonsäuren eingegeben werden, das dann durch Ionenaustauscherharze gereinigt wird und im Kernreaktor verbleibt.

Description

  • Die Erfindung betrifft ein Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kernreaktoranlagen, bei dem zunächst eine oxidative Behandlung mit einer Permanganatlösung erfolgt, bevor zur weiteren Behandlung Dicarbonsäuren eingesetzt werden.
  • Bei dem aus der-DE-PS 26 13 351 bekannten und in der Praxis bewährten Verfahren wird zur oxidativen Behandlung eine alkalische Permanganatlösung bei einer Temperatur von etwa 1000C eingesetzt. Sie wird anschließend mit Deionat ausgespült, bevor dann mit einer Citrat-Oxalat-Lösung weitergearbeitet wird, die mit Ammoniak auf einen pH-Wert von 3,5 eingestellt wird und die einen Inhibitor sowie Äthylendiamintetraessigsäure enthält. Der Inhibitor ist Eisen-III-Formiat.
  • Das bekannte Verfahren mit seinen einzelnen Stufen und den dazwischen liegenden Spülgängen arbeitet mit hohen Chemikalien-Konzentrationen und ist relativ zeitaufwendig. Es ist auch noch nicht für Primärsysteme von Kernreaktoren angewendet worden, die für diesen Zweck praktisch entleert werden müßten und nach der Behandlung wieder zu füllen wären. Deshalb geht die Erfindung von der Aufgabe aus, eine Absenkung der Dosisbelastung von Inspektions- und Reparaturpersonal durch eine chemische Dekontamination des Primärsystems von Kernreaktoren bzw. von Teilen davon zu ermöglichen, die mit geringerem Aufwand durchgeführt werden kann. Dabei soll als wichtige Nebenbedingung gewährleistet sein, daß bei der chemischen Dekontamination nur wenig Sekundärabfall entsteht, der wiederum strahlungssicher beseitigt werden muß.
  • Erfindungsgemäß wird zur oxidativen Behandlung Permangansäure verwendet. Damit kann man, wie gefunden wurde, für den gleichen Effekt mit wesentlich geringeren Konzentrationen auskommen und außerdem erreichen, daB auch die anschließende Behandlung mit Dicarbonsäuren mit viel kleineren Säuremengen auskommt, so daB auch entsprechend weniger Sekundärabfall entsteht. Vor allem aber kann die Behandlung so erfolgen, daß die Permangansäure in das PrimärkUhlmittel eines wassergekühlten Kernreaktors eingegeben wird. Ein Ablassen des Primärkühlmittels ist also nicht mehr erforderlich. Das neue Verfahren kann vielmehr so ausgeführt werden, daß das Primärkühimittel durch Ionenaustauscherharze gereinigt wird und für den weiteren Betrieb im Kernreaktor verbleibt.
  • Die Permangansäure wird vorteilhaft durch Umwandlung von Kaliumpermanganat hergestellt. Dies kann durch Entzug von Kalium mittels Ionenaustauscher erfolgen. Die Umwandlung kann hierbei außerhalb des zu behandelnden Systems in besonderen Behältern, aber auch während der Dekontamination ganzer Primärkreise mit den im Kernkraftwerk vorhandenen Hilfssystemen (wie Primärkuhlmittelreinigung) erfolgen. Die Permangansäure liegt dann in einem Konzentrationsbereich von 20 bis 400 mg/kg vor.
  • Eine vorteilhafte Weiterbildung der Erfindung besteht darin, daß als Dicarbonsäuren ein Gemisch mit einem Oxalsäureanteil von höchstens 1/3 verwendet wird. Dabei können als weitere Dicarbonsäuren des Gemisches Dicarbonsäuren mit einer Kettenlänge von C 3 und Hydroxidicarbonsäuren verwendet werden. Die Dicarbonsäuren werden insbesondere zur Reinigung von Primärkreisen unmittelbar in die Permangansäurelösung eingegeben. Man erspart damit die bisher üblichen Spülvorgänge und das Ablassen und Verwerfen oder Aufarbeiten der Permanganatlösung.
  • Mit dem vorstehend geschilderten Verfahren ergibt sich eine gegenüber dem Bekannten vielfach geringere Chemikalien-Konzentration. Damit ist auch die Gefahr eines unerwünschten Angriffs auf die Grundmaterialien der zu dekontaminierenden Bauteile entsprechend verringert. Die geringere Chemikalien-Konzentration führt darüber hinaus zu geringeren Mengen an Sekundärabfall. Dennoch erreicht man hohe Dekontaminationsfaktoren. Zwischen-und Endspülschritte können ganz entfallen.
  • Zur näheren Erläuterung der Erfindung wird im folgenden anhand der beiliegenden Zeichnung ein Ausführungsbeispiel beschrieben. Dabei zeigt die Fig. 1 den Primärkühlkreis eines Druckwasserreaktors, der dekontaminiert werden soll, und die dazu benötigten kraftwerkseigenen Hilfseinrichtungen. In Fig. 2 ist der zeitliche Verlauf der Dekontaminationsbehandlung für einen ersten Zyklus dargestellt.
  • Der Druckwasserreaktor umfaßt mit seinem Primärkreis 1 einen Reaktordruckbehälter 2, einen Dampferzeuger 3 und eine Hauptkühlmittelpumpe 4. Diese fördert das aus dem Reaktordruckbehälter 2 über den heißen Strang 5 in den Dampferzeuger 3 gelangende Primärkühlwasser über den kalten Strang 6 in den Reaktordruckbehälter 2 zurück.
  • Zur Behandlung des PrimärkUhlwassers dient ein Volumenregelsystem 8. Es ist an den kalten Strang 6 im Bereich zwischen der Pumpe 4 und dem Dampferzeuger 3 mit einer Auslaßleitung 10 angeschlossen. Sie verläuft über einen Rekuperativ-Wärmetauscher 12 und einen Kühler 13 zu einem Absperrventil 14. Daran schließen sich Stellventile 15, 16 und 17 an, die zu einem Speicherbehälter 18 führen. Aus dem Speicherbehälter 18 kann das Kühlmittel über eine Hochdruckeinspeisepumpe 20 in den Primärkreis 1 zurückgefördert werden. Dabei passiert das abgekühlte und gereinigte Primärkühlmittel den Rekuperativ-Wärmetauscher 12, bevor es über die Leitung 21 hinter der Pumpe 4 in den kalten Strang 6 zurück gelangt.
  • Parallel zu den Ventilen 15 bis 17 liegen Einrichtungen zur Kühlmittelbehandlung. Sie umfassen eine mit 24 angedeutete Kühlmittelreinigung sowie eine gühlmittelent- gasung 25. Für die Aufnahme größerer Kühlmittelmengen ist eine Kühlmittellagerung 26 vorgesehen. Die Einrichtungen 24 bis 26 sind ebenso wie eine Kühlmittelaufbereituug 27 an ein Abgassystem 28 angeschlossen, das die bei der Kühlmittelbehandlung anfallenden gasförmigen Aktivitätsträger aufnimmt.
  • Mit der Kühlmittelaufbereitung 27 wird dem Kühlmittel Bor entzogen, das zur Abbrandregelung verwendet wird. Das Bor und das borfreie Deionat kann einer Borsäure-und Deionateinspeisung 30 zugeführt werden, die über eine Deitung 31 an das Volumenregelsystem 8 angeschlossen ist, in die auch eine Chemikalien-Einspeisung 32 einspeist.
  • Die in der Kühlmittelreinigung entstehenden flüssigen Abfälle können zu einer Behandlungsanlage 35 für radioaktive Abwässer weitergeleitet werden, an die sich die bei 36 angedeutete Behandlung radioaktiver Konzentrate anschließt.
  • Zu einer Dekontamination des Primärkreises 1 ergibt sich folgender verfahrenstechnischer Ablauf mit einzelnen Schritten:
    • 1.1. Primärkreis 1 mit Hauptkühlmittelpumpe 4 in Betrieb, Temperatur~90°C p≈30 bar, Borkonzentration im Primärkühlmittel 2200 mg/kg.
    • 1.2. Ansetzen der HMnO4-Lösung im Borsäureansetzbehälter der Borsäure- und Deionateinspeisung 30.
    • 1.3. Zudosieren von HMn04 im Primärkühlmittel bis zu einer Konzentration von~ 50 mg/kg.
    • 1.4. Erhöhen der Temperatur des Primärkreises 1 auf 100°C.
    • 1.5. Oxidationsbehandlung durch Umwälzen mit Hauptkühlmittelpumpe 4, 5 Stunden.
    • 1.6. Absenken der Temperatur auf 50 - 60°C.
    • 1.7. Ansetzen der Dicarbonsäuremischung zum Beispiel im Borsäureansetzbehälter der Borsäure- und Deionateinspeisung 30.
    • 1.8. Zudosierung der Dicarbonsäuren, Entgasung 25 ist mit maximaler Leistung im Betrieb.
    • 1.9. Endkonzentration ca. 300 - 400 mg/kg für die Summe der Dicarbonsäuren.
    • 2.0. Erhöhen der Temperatur des Primärkreises 1 auf 100°C.
    • 2.1. Inbetriebnahme der Kühlmittelreinigung 24.
    • 2.2. Entfernen der gelösten Kationen (Aktivität) sowie der Dicarbonsäuren mittels Anionen/Kationentauscher.
    • 2.3. Primärkühlmittel gereinigt.
    • 2.4. Bei Bedarf Wiederholung des Vorganges 1.2. - 2.3. (2. Zyklus).
    • 2.5. Bei Bedarf Wiederholung des Vorganges 1.2. - 2.3. (3. Zyklus).
  • In Fig. 2 ist für einen einzelnen Zyklus die Chemikalien-Konzentration auf der Ordinate in ppm dargestellt. Die Abszisse ist die Zeitachse mit einem Höchstwert von 20 Stunden.
  • Ausgehend von einer im Zeitpunkt T1 durch ZufUhren von Permangansäure in den Primärkreis beginnenden Permanganatkonzentration von 50 ppm erfolgt eine oxidative Behandlung, die zu einer Auflockerung des Gefüges der die Kontamination verursachenden Oxidschicht führt. Dieser Vorgang ist durch den Kurvenzug 38 angedeutet. Er zeigt eine schwach abnehmende Konzentration an MnO4- und einen mit dem gestrichelten Kurvenzug 39 angedeuteten Anstieg des MnO2-Gehalts.
  • Nach 5 Stunden wird im Zeitpunkt T2 die Temperatur im Primärsystem auf ≤ 600C abgesenkt und die Dicarbonsäuremischung unmittelbar in die Permangansäurelösung eingegeben. Dabei handelt es sich um Dicarbonsäuren bzw. Hydroxidicarbonsäuren, die bis zu einer Konzentration von 300 mg/kg im Primärkuhlmittel eingegeben werden, wie durch den Kurventeil 41 gezeichnet ist, sowie um weitere 100 mg/kg-Anteile Oxalsäure, wie der Kurventeil 42 zeigen soll. Als Dicarbonsäuren werden zum Beispiel Mesoxalsäure, Malonsäure, Dihydroxyfumarsäure und Dihydroxyweinsäure verwendet. Bei der Zugabe reagiert das im System vorhandene HMnP4 und MnO2 mit der Oxalsäure und wird zu Mn++-Ionen reduziert. Die Oxalsäure wird dabei zu C02 oxidiert, wobei das C02 über den Entgaser abgeführt wird.
  • Nach Ablauf der HMna4-Oxalsäurereaktion wird der Inhalt des Primärkreises wieder auf 100°C erwärmt. Teile des Primärkühlmittels werden dann im Nebenschluß über Ionenaustauscherfilter gefahren, die Teil der Kühlmittelreinigung 24 bzw. Kühlmittelaufbereitung 27 sind, so daß dabei die im Kraftwerk bereits vorhandenen Einrichtungen benutzt werden. Im Lauf von 20 Stunden bis zum Zeitpunkt T3 kann dabei die Chemikalien-Konzentration auf praktisch Null abgefahren werden (Kurvenzug 44). Dabei verringert sich der aus der oxidativen Umsetzung stammende Mangangehalt, wie durch den gestrichelten Kurventeil 45 angedeutet ist. Zugleich werden aber auch die Bestandteile der Oxidschicht ausgefiltert. Dies geschieht nach dem Kurvenzug 46, der den Gehalt an Eisen, Chrom, Nickel und gegebenenfalls Kobalt darstellt. Der Entzug der Kationen und der Dicarbonsäure über die Ionenaustauscher wird hierbei so gesteuert, daß die Dicarbonsäure äquivalent zu den gelösten Kationen im Überschuß vorliegt. Dies ist entscheidend, um ein Wiederausfällen der gelösten Aktivität zu vermeiden.
  • 9 Patentansprüche 2 Figuren

Claims (9)

1. Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kernreaktoranlagen, bei dem zunächst eine oxidative Behandlung mit einer Peruanganatlösung erfolgt, bevor zur weiteren Behandlung Dicarbonsäuren eingesetzt werden, dadurch gekennzeichnet, daß zur oxidativen Behandlung Permangansäure verwendet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Permangansäure durch Umwandlung von Permanganatsalzen zum Beispiel aus Kaliumpermanganat hergestellt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Umwandlung sowohl außerhalb der zu dekontaminierenden Bauteile als auch während der Behandlung im System erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Permangansäure in einm Konzentrationsbereich von 20 bis 400 mg/kg verwendet wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Gemisch aus Dicarbonsäuren mit einem Oxalsäureanteil von höchstens 1/3 verwendet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß als weitere Dicarbonsäuren des Gemisches sowohl Hydroxidicarbonsäuren als auch höherkettige Dicarbonsäuren verwendet werden.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Dicarbonsäuren unmittelbar in die Permangansäure-Lösung eingegeben werden.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Permangansäure in das Primärkühlmittel eines wassergekühlten Kernreaktors eingegeben wird.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das Primärkühlmittel durch Ionenaustauscherharze gereinigt wird und für den weiteren Betrieb im Kernreaktor verbleibt.
EP85103900A 1984-04-12 1985-04-01 Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kenreaktoranlagen Expired - Lifetime EP0160831B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3413868 1984-04-12
DE19843413868 DE3413868A1 (de) 1984-04-12 1984-04-12 Verfahren zur chemischen dekontamination von metallischen bauteilen von kernreaktoranlagen

Publications (3)

Publication Number Publication Date
EP0160831A2 true EP0160831A2 (de) 1985-11-13
EP0160831A3 EP0160831A3 (en) 1987-11-25
EP0160831B1 EP0160831B1 (de) 1991-12-04

Family

ID=6233426

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85103900A Expired - Lifetime EP0160831B1 (de) 1984-04-12 1985-04-01 Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kenreaktoranlagen

Country Status (8)

Country Link
US (1) US4756768A (de)
EP (1) EP0160831B1 (de)
JP (1) JPS60235099A (de)
BR (1) BR8501711A (de)
CA (1) CA1254113A (de)
DE (2) DE3413868A1 (de)
ES (1) ES8702726A1 (de)
FI (1) FI84118C (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003113A1 (en) * 1987-10-02 1989-04-06 Abb Reaktor Gmbh Process for decontaminating surfaces
EP0355477A1 (de) * 1988-08-12 1990-02-28 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Dekontamination des Primärsystems eines Kernkraftwerkes
BE1002593A3 (nl) * 1988-11-09 1991-04-02 Lemmens Godfried Werkwijze voor de dekontaminatie van radioaktief besmette materialen.
DE102007038947A1 (de) 2007-08-17 2009-02-26 Areva Np Gmbh Verfahren zur Dekontamination von mit Alphastrahlern kontaminierten Oberflächen von Nuklearanlagen
US8608861B2 (en) 2005-11-29 2013-12-17 Areva Np Gmbh Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
CN107170503A (zh) * 2017-06-02 2017-09-15 苏州热工研究院有限公司 一种降低在役压水堆核电厂集体剂量的化学清洗方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0355628B1 (de) * 1988-08-24 1993-11-10 Siemens Aktiengesellschaft Verfahren zur chemischen Dekontamination der Oberfläche eines metallischen Bauteils einer Kernreaktoranlage
US5170840A (en) * 1992-06-15 1992-12-15 Grunwald James L Method for detecting breaches in heat exchanger tubing
DE4232246A1 (de) * 1992-09-25 1994-03-31 Siemens Ag Verfahren zur Zerstörung einer organischen Substanz
DE19818772C2 (de) * 1998-04-27 2000-05-31 Siemens Ag Verfahren zum Abbau der Radioaktivität eines Metallteiles
US6635232B1 (en) 1999-05-13 2003-10-21 Kabushiki Kaisha Toshiba Method of chemically decontaminating components of radioactive material handling facility and system for carrying out the same
DE19851852A1 (de) * 1998-11-10 2000-05-11 Siemens Ag Verfahren zur Dekontamination einer Oberfläche eines Bauteiles
JP3977963B2 (ja) 1999-09-09 2007-09-19 株式会社日立製作所 化学除染方法
TW529041B (en) * 2000-12-21 2003-04-21 Toshiba Corp Chemical decontamination method and treatment method and apparatus of chemical decontamination solution
JP2003098294A (ja) * 2001-09-27 2003-04-03 Hitachi Ltd オゾンを用いた除染方法及びその装置
JP4131814B2 (ja) * 2002-11-21 2008-08-13 株式会社東芝 放射化部品の化学除染方法および装置
KR100724710B1 (ko) * 2002-11-21 2007-06-04 가부시끼가이샤 도시바 방사화 부품의 화학적 오염제거 시스템 및 방법
KR101063132B1 (ko) * 2006-02-09 2011-09-07 가부시끼가이샤 도시바 화학 제염 장치 및 그 제염 방법
DE102008063941A1 (de) * 2008-12-19 2010-07-01 Forschungszentrum Jülich GmbH Verfahren zur Reduzierung oder zumindest teilweisen Entfernung spezifischer Radiotoxika aus einer kerntechnischen Anlage
DE102009047524A1 (de) * 2009-12-04 2011-06-09 Areva Np Gmbh Verfahren zur Oberflächen-Dekontamination
DE102010028457A1 (de) * 2010-04-30 2011-11-03 Areva Np Gmbh Verfahren zur Oberflächen-Dekontamination
EP2758966B1 (de) 2011-09-20 2016-03-16 Horst-Otto Bertholdt Verfahren zum abbau einer oxidschicht
DE102013102331B3 (de) 2013-03-08 2014-07-03 Horst-Otto Bertholdt Verfahren zum Abbau einer Oxidschicht
JP6249916B2 (ja) * 2014-09-24 2017-12-20 三菱重工業株式会社 過マンガン酸の調製装置
JP6796587B2 (ja) * 2015-02-05 2020-12-09 フラマトム ゲゼルシャフト ミット ベシュレンクテル ハフツング 原子炉の冷却システムで金属表面を除染する方法
DE102016104846B3 (de) 2016-03-16 2017-08-24 Areva Gmbh Verfahren zur Behandlung von Abwasser aus der Dekontamination einer Metalloberfläche, Abwasserbehandlungsvorrichtung und Verwendung der Abwasserbehandlungsvorrichtung
ES2795002T3 (es) * 2017-01-19 2020-11-20 Framatome Gmbh Procedimiento para descontaminar superficies metálicas de una instalación nuclear
EP3494579B1 (de) * 2017-02-14 2020-08-26 Siempelkamp Nis Ingenieurgesellschaft MBH Verfahren zum abbau einer radionuklidhaltigen oxidschicht
CN107101525A (zh) * 2017-03-21 2017-08-29 华电电力科学研究院 一种对发电厂锅炉过热器循环化学清洗的方法
CN107481772B (zh) * 2017-08-22 2019-07-02 深圳中广核工程设计有限公司 核电站放射性浓缩液排放管路的冲洗***及冲洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496017A (en) * 1966-04-28 1970-02-17 Atomic Energy Commission Method and composition for decontamination of stainless steel surfaces
US3873362A (en) * 1973-05-29 1975-03-25 Halliburton Co Process for cleaning radioactively contaminated metal surfaces
US4226640A (en) * 1978-10-26 1980-10-07 Kraftwerk Union Aktiengesellschaft Method for the chemical decontamination of nuclear reactor components
EP0071336A1 (de) * 1981-06-17 1983-02-09 Central Electricity Generating Board Verfahren zur chemischen Zersetzung von Oxydniederschlägen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3013909A (en) * 1960-03-31 1961-12-19 Guyon P Pancer Method of chemical decontamination of stainless steel nuclear facilities
US3615817A (en) * 1969-02-04 1971-10-26 Atomic Energy Commission Method of decontaminating radioactive metal surfaces
JPS5293900A (en) * 1976-02-02 1977-08-06 Hitachi Ltd Purififying method and device for nuclear reactor
GB2077482B (en) * 1980-06-06 1983-06-08 Us Energy Coolant system decontamination

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3496017A (en) * 1966-04-28 1970-02-17 Atomic Energy Commission Method and composition for decontamination of stainless steel surfaces
US3873362A (en) * 1973-05-29 1975-03-25 Halliburton Co Process for cleaning radioactively contaminated metal surfaces
US4226640A (en) * 1978-10-26 1980-10-07 Kraftwerk Union Aktiengesellschaft Method for the chemical decontamination of nuclear reactor components
EP0071336A1 (de) * 1981-06-17 1983-02-09 Central Electricity Generating Board Verfahren zur chemischen Zersetzung von Oxydniederschlägen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gmelin Handbuch der Anorganischen Chemie, Springer Verlag, 1975, 8. Auflage, Band MANGAN, Seiten 85-86 *
H. Remy, Lehrbuch der Anorganischen Chemie, Akademische Verlagsgesellschaft, 1973, 12. und 13. Auflage, Band II, Seiten 285 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989003113A1 (en) * 1987-10-02 1989-04-06 Abb Reaktor Gmbh Process for decontaminating surfaces
EP0313843A1 (de) * 1987-10-02 1989-05-03 ABB Reaktor GmbH Verfahren zur Dekontamination von Oberflächen
EP0355477A1 (de) * 1988-08-12 1990-02-28 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Dekontamination des Primärsystems eines Kernkraftwerkes
BE1002593A3 (nl) * 1988-11-09 1991-04-02 Lemmens Godfried Werkwijze voor de dekontaminatie van radioaktief besmette materialen.
US8608861B2 (en) 2005-11-29 2013-12-17 Areva Np Gmbh Method for the decontamination of an oxide layer-containing surface of a component or a system of a nuclear facility
DE102007038947A1 (de) 2007-08-17 2009-02-26 Areva Np Gmbh Verfahren zur Dekontamination von mit Alphastrahlern kontaminierten Oberflächen von Nuklearanlagen
CN107170503A (zh) * 2017-06-02 2017-09-15 苏州热工研究院有限公司 一种降低在役压水堆核电厂集体剂量的化学清洗方法
CN107170503B (zh) * 2017-06-02 2019-04-02 苏州热工研究院有限公司 一种降低在役压水堆核电厂集体剂量的化学清洗方法

Also Published As

Publication number Publication date
JPH0310919B2 (de) 1991-02-14
ES8702726A1 (es) 1986-12-16
DE3413868A1 (de) 1985-10-17
CA1254113A (en) 1989-05-16
US4756768A (en) 1988-07-12
BR8501711A (pt) 1985-12-10
EP0160831A3 (en) 1987-11-25
DE3584790D1 (de) 1992-01-16
FI84118C (fi) 1991-10-10
JPS60235099A (ja) 1985-11-21
FI84118B (fi) 1991-06-28
EP0160831B1 (de) 1991-12-04
FI850780L (fi) 1985-10-13
ES542157A0 (es) 1986-12-16
FI850780A0 (fi) 1985-02-26

Similar Documents

Publication Publication Date Title
EP0160831B1 (de) Verfahren zur chemischen Dekontamination von metallischen Bauteilen von Kenreaktoranlagen
DE102017115122B4 (de) Verfahren zum Dekontaminieren einer Metalloberfläche in einem Kernkraftwerk
EP1955335B1 (de) Verfahren zur dekontamination einer eine oxidschicht aufweisenden oberfläche einer komponente oder eines systems einer kerntechnischen anlage
EP2417606B1 (de) Verfahren zur oberflächen-dekontamination
DE3122543A1 (de) Dekontaminierungs-verfahren
EP2564394B1 (de) Verfahren zur oberflächen-dekontamination
CH673545A5 (de)
EP0180826A1 (de) Verfahren zur chemischen Dekontamination von Grosskomponenten und Systemen aus metallischen Werkstoffen von Kernreaktoren
DE69706207T2 (de) Verfahren zur Verhinderung der Ablagerung von radioaktiven Korrosionsprodukten in einem Kernkraftwerk
DE4410747A1 (de) Verfahren und Einrichtung zum Entsorgen einer Lösung, die eine organische Säure enthält
EP2787509B1 (de) Verfahren zum Abbau einer Oxidschicht
DE3120167C2 (de)
EP1082728A1 (de) Verfahren zum abbau der radioaktivität eines metallteiles
DE4423398A1 (de) Verfahren und Einrichtung zum Entsorgen eines Kationenaustauschers
EP0054607A1 (de) Verfahren zur Entfernung von Ammoniumnitrat aus wässrigen Lösungen
EP3895184B1 (de) Verfahren zur konditionierung von ionenaustauscherharzen und vorrichtung zur durchführung des verfahrens
WO2018149862A1 (de) Verfahren zum abbau einer radionuklidhaltigen oxidschicht
EP3430628B1 (de) Verfahren zur behandlung von abwasser aus der dekontamination einer metalloberfläche in einem primärkühlmittelkreislauf eines kernreaktors, kernreaktor-abwasserbehandlungsvorrichtung und verwendung der kernreaktor-abwasserbehandlungsvorrichtung
DE4126468C2 (de) Verfahren zur Behandlung des Primärkühlmittels eines Druckwasserreaktors
DE3642841C2 (de)
EP0951582A1 (de) Oberflächenbehandlung von stahl oder nickellegierung und behandelter stahl oder nickellegierung
DE1567436C (de) Verfahren zum Reimgen von als Mode rator eines Kernreaktors dienendem Schwer
DE1806499A1 (de) Verfahren zur Abwasserreinigung
DE1935273C3 (de) Verfahren zum Entfernen von Salpetersäure und/oder Nitrat- und Nitrit-Ionen aus wäßrigen Abfall-Lösungen
EP0527356A1 (de) Verfahren zur Behandlung des Primärkühlmittels eines Druckwasserkernreaktors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE CH DE FR GB IT LI NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19871218

17Q First examination report despatched

Effective date: 19900205

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19911204

REF Corresponds to:

Ref document number: 3584790

Country of ref document: DE

Date of ref document: 19920116

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ABB PATENT GMBH

Effective date: 19920812

NLR1 Nl: opposition has been filed with the epo

Opponent name: ABB PATENT GMBH.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19930319

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19940401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19940401

EAL Se: european patent in force in sweden

Ref document number: 85103900.8

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19971028

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SIEMENS AKTIENGESELLSCHAFT BERLIN UND MUENCHEN -DA

NLS Nl: assignments of ep-patents

Owner name: FRAMATOME ANP GMBH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20040419

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040421

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20040426

Year of fee payment: 20

Ref country code: CH

Payment date: 20040426

Year of fee payment: 20

Ref country code: BE

Payment date: 20040426

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040622

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20050401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BE20 Be: patent expired

Owner name: *FRAMATOME ANP G.M.B.H.

Effective date: 20050401

EUG Se: european patent has lapsed
NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20050401

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

BE20 Be: patent expired

Owner name: *FRAMATOME ANP G.M.B.H.

Effective date: 20050401