DE112011100601B4 - Zusammensetzung für eine Leitungsbeschichtung und deren Verwendung zur Herstellung einer isolierten Leitung und eines Kabelstrangs - Google Patents

Zusammensetzung für eine Leitungsbeschichtung und deren Verwendung zur Herstellung einer isolierten Leitung und eines Kabelstrangs Download PDF

Info

Publication number
DE112011100601B4
DE112011100601B4 DE112011100601.2T DE112011100601T DE112011100601B4 DE 112011100601 B4 DE112011100601 B4 DE 112011100601B4 DE 112011100601 T DE112011100601 T DE 112011100601T DE 112011100601 B4 DE112011100601 B4 DE 112011100601B4
Authority
DE
Germany
Prior art keywords
polyolefin
composition
flame retardant
water
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE112011100601.2T
Other languages
English (en)
Other versions
DE112011100601T5 (de
Inventor
Tatsuya Shimada
Masashi Kimura
Kousuke Shiraki
Masashi Sato
Mamoru Kondou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Publication of DE112011100601T5 publication Critical patent/DE112011100601T5/de
Application granted granted Critical
Publication of DE112011100601B4 publication Critical patent/DE112011100601B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/206Applications use in electrical or conductive gadgets use in coating or encapsulating of electronic parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/06Crosslinking by radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/22Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

Zusammensetzung für eine Leitungsbeschichtung, wobei die Zusammensetzung Folgendes enthält: (A) ein wasservernetzbares Polyolefin, das ein Polyolefin umfasst, welches mittels eines Silankopplungsreagens modifiziert ist, (B) ein nichtmodifiziertes Polyolefin, (C) ein modifiziertes Polyolefin, das mit einer oder einer Vielzahl an funktionellen Gruppen modifiziert ist, ausgewählt aus der Gruppe bestehend aus einer Carbonsäuregruppe, einer Säureanhydridgruppe, einer Aminogruppe und einer Epoxygruppe, (D) ein flammhemmendes Mittel, (E) einen Vernetzungskatalysator, der ein Silanolkondensationskatalysator ist, (F) ein phenolisches Antioxidationsmittel und (G) entweder ein Zinksulfid (G1) oder sowohl ein Zinkoxid (G2) als auch eine Imidazolverbindung (G3), wobei das flammhemmende Mittel (D) ein bromhaltiges flammhemmendes Mittel (D1) enthält.

Description

  • Technisches Gebiet
  • Die vorliegende Erfindung betrifft eine Zusammensetzung für eine Leitungsbeschichtung und deren Verwendung zur Herstellung einer isolierter Leitung und eines Kabelstrangs und betrifft insbesondere eine Zusammensetzung für eine Leitungsbeschichtung, die vorteilhaft als eine Beschichtung für eine isolierte Leitung für Kraftfahrzeuge verwendet wird, von der eine Wärmebeständigkeit gefordert ist und die ausgezeichnete Eigenschaften wie flammhemmende Eigenschaft, mechanische Festigkeit, Wärmebeständigkeit und chemische Beständigkeit aufweist, sowie deren Verwendung zur Herstellung einer isolierten Leitung und eines Kabelstrangs.
  • Stand der Technik
  • Derzeit erfahren Hybridfahrzeuge eine weite Verbreitung, so dass für Leitungen und Verbinder für Kraftfahrzeuge eine hohe Spannungsfestigkeit und eine hohe Wärmebeständigkeit gefordert sind. Herkömmlicherweise werden an Orten, an denen eine hohe Wärme erzeugt wird, wie bei Kabelsträngen in Kraftfahrzeugen, Leitungen mit vernetztem Polyvinylchlorid (PVC) oder Polyolefin verwendet. Diese Leitungen werden meistens durch Elektronenbestrahlung vernetzt, wobei jedoch das Problem auftritt, dass die Vernetzung mittels Elektronenbestrahlung teure Vernetzungsvorrichtungen und -ausrüstungen erforderlich macht, was eine Erhöhung der Herstellungskosten verursacht. Aus diesem Grund wurde das Wasservernetzen in Betracht gezogen, bei dem ein vernetzbares Harz (wasservernetzbares Harz), das erhalten wird durch Modifizieren eines Polyolefinharzes mittels eines Silankopplungsreagens, verwendet wird, da das Vernetzen durch kostengünstige Ausrüstungen bewerkstelligt werden kann (siehe beispielsweise Patentliteraturen PTL 1 und 2).
  • Beispielsweise offenbart die Patentliteratur PTL 1 eine halogenfreie flammhemmende silanvernetzte Polyolefinzusammensetzung, die hergestellt wird durch Heißkneten und Vernetzten eines Silangraftmers (Komponente A) und einer Katalysatormastercharge (Komponente B), wobei das Silangraftmer (Komponente A) hergestellt wird durch Kneten einer Verbindung und 100 Masseteilen an Magnesiumhydroxid, wobei die Verbindung hergestellt wird durch Pfropfpolymerisieren eines Silankopplungsreagens auf ein Polyolefinelastomer durch Heißkneten von 100 Masseteilen eines Polyolefinelastomers, 1 bis 3 Masseteilen eines Silankopplungsreagens und 0,025 bis 0,063 Masseteilen eines Vernetzungsmittels, und wobei die Katalysatormastercharge (Komponente B) hergestellt wird durch Imprägnieren von 100 Masseteilen an Polyolefinelastomer mit 1,0 bis 3,12 Masseteilen eines Vernetzungsreagens und 7,14 bis 31,3 Masseteilen eines Vernetzungskatalysators.
  • Darüber hinaus offenbart die Patentliteratur PTL 2 als eine Zusammensetzung für eine Leitungsbeschichtung eine Harzzusammensetzung für die Verwendung zum Vermischen mit einem silanvernetzbaren Polyolefin, wobei die Harzzusammensetzung 100 Masseteile von mindestens einem Polymer, das aus der aus thermoplastischem Harz, Gummi und einem thermoplastischen Elastomer bestehenden Gruppe ausgewählt ist, 0,01 bis 0,6 Masseteile eines organischen Peroxids, 0,05 bis 0,5 Masseteile eines Silanolkondensationskatalysators und 100 bis 300 Masseteile an Magnesiumhydroxid enthält.
  • Liste der zitierten Patentliteratur
    • PTL 1: Patent JP 2000-212291
    • PTL 2: Patent JP 2006-131720
  • Zusammensetzungen für eine Leitungsbeschichtung und deren Verwendung zur Herstellung einer isolierter Leitung werden zudem in der DE 11 2010 004 666 T5 , wobei diese Druckschrift ein Stand der Technik gemäß §3(2) PatG ist, und in der JP 2009-051918 A offenbart.
  • Zusammenfassung der Erfindung
  • Technisches Problem
  • Wie in den Patentliteraturen PTL 1 bis 2 angegeben, ist es notwendig, dass eine große Menge an Füllstoff wie Magnesiumhydroxid, das als flammhemmendes Mittel dient, zu einem wasservernetzbaren Harz gegeben wird, um der flammhemmenden Eigenschaft für ein Leitung zu genügen, die mit dem wasservernetzbaren Harz isolierend beschichtet wird. Die Zugabe einer großen Menge an Füllstoff unterstützt jedoch eine oxidative Zersetzung des wasservernetzbaren Harzes, wodurch das Problem verursacht wird, dass die dem zu vernetzenden Material eigene Wärmebeständigkeit verschlechtert wird.
  • Da sich bei der Verwendung eines wasservernetzbaren Harzes die Vernetzung durch Wasser entwickelt, fördert Wasser in der Luft zudem das Vernetzen während des Warmformens, was zur Bildung einer unerwünschten Substanz führen kann. Um dieses Problem zu verhindern, ist es notwendig, dass die Anzahl an Verarbeitungsschritten unter Erwärmung minimiert wird, so dass üblicherweise vorab eine Mastercharge, welche einen Füllstoff und ein nicht wasservernetzbares Harz enthält, hergestellt wird und die Mastercharge und das wasservernetzbare Harz dann in einem Herstellungsverfahren vermischt werden. Die Zugabe einer großen Menge an Füllstoff zu der Mastercharge erhöht jedoch die Viskosität der Mastercharge, wodurch eine ungünstige Verteilung (Dispersion) oder eine Abnahme der Produktivität begünstigt werden.
  • Die vorliegende Erfindung wurde im Hinblick auf die oben beschriebenen Probleme gemacht, und es ist eine Aufgabe der vorliegenden Erfindung, eine Zusammensetzung für eine Leitungsbeschichtung mit flammhemmender Eigenschaft bereitzustellen, die ausgezeichnet hinsichtlich der Wärmebeständigkeit und Produktivität ist, ohne Verwendung einer Vernetzung mittels Elektronenbestrahlung, und deren Verwendung zur Herstellung einer isolierten Leitung und eines Kabelstrangs, bereitzustellen.
  • Lösung des Problems
  • Um die Aufgaben gemäß der vorliegenden Erfindung zu erfüllen, enthält eine Zusammensetzung für eine Leitungsbeschichtung gemäß der vorliegenden Erfindung
    • (A) ein wasservernetzbares Polyolefin als ein Polyolefin, das durch ein Silankopplungsreagens modifiziert ist,
    • (B) ein nichtmodifiziertes Polyolefin,
    • (C) ein modifiziertes Polyolefin, das mit einer oder einer Vielzahl an funktionellen Gruppe modifiziert ist, ausgewählt aus der Gruppe bestehend aus einer Carbonsäuregruppe, einer Säureanhydridgruppe, einer Aminogruppe und einer Epoxygruppe,
    • (D) ein flammhemmendes Mittel,
    • (E) einen Vernetzungskatalysator, der ein Silanolkondensationskatalysator ist,
    • (F) ein phenolisches Antioxidationsmittel und
    • (G) entweder ein Zinksulfid (G1) oder sowohl ein Zinkoxid (G2) als auch eine Imidazolverbindung (G3),
    wobei das flammhemmende Mittel (D) ein bromhaltiges flammhemmendes Mittel (D1) enthält.
  • Gemäß einem anderen Aspekt der vorliegenden Erfindung schließt die vorliegende Erfindung die Verwendung der erfindungsgemäßen Zusammensetzung zur Herstellung einer Leitungsbeschichtung einer isolierten Leitung ein, wobei die Zusammensetzung wasservernetzt wird.
  • Gemäß einem weiteren Aspekt der vorliegenden Erfindung schließt die vorliegende Erfindung die Verwendung der erfindungsgemäßen Zusammensetzung zur Herstellung einer Leitungsbeschichtung einer isolierten Leitung in einem Kabelstrang ein, wobei die Zusammensetzung wasservernetzt wird.
  • Vorteilhafte Effekte der Erfindung
  • Da die Zusammensetzung für die Leitungsbeschichtung gemäß der vorliegenden Ausführungsform der vorliegenden Erfindung (A) das wasservernetzbare Polyolefin als das mittels eines Silankopplungsreagens modifizierte Polyolefin, (B) das nichtmodifizierte Polyolefin, (C) das modifizierte Polyolefin, dass mittels einer oder einer Vielzahl an funktionellen Gruppen modifiziert ist, ausgewählt aus der Gruppe bestehend aus einer Carbonsäuregruppe, einer Säureanhydridgruppe, einer Aminogruppe und einer Epoxygruppe, (D) das flammhemmende Mittel, (E) den Vernetzungskatalysator, der ein Silanolkondensationskatalysator ist, (F) das phenolische Antioxidationsmittel und (G) entweder (G1) das Zinksulfid oder sowohl (G2) das Zinkoxid als auch (G3) die Imidazolverbindung enthält, wobei das flammhemmende Mittel (D) das bromhaltige flammhemmende Mittel (D1) enthält, kann diese hergestellt werden unter Verwendung eines Wasservernetzens, was eine kostengünstige Ausrüstung erforderlich macht, ohne dass ein Vernetzen mittels Elektronenbestrahlung angewendet wird bei der Herstellung einer flammhemmenden Harzbeschichtung aus der Zusammensetzung.
  • Die hergestellte Beschichtung macht es nicht notwendig, dass eine große Menge an Füllstoff wie Magnesiumhydroxid, welches als ein flammhemmendes Mittel dient, zugegeben wird, so dass keine Möglichkeit einer Verschlechterung der dem zu vernetzenden Material eigenen Wärmebeständigkeit auftritt und somit die Beschichtung eine ausgezeichnete Wärmebeständigkeit erhält.
  • Darüber hinaus nimmt die Viskosität der Mastercharge nicht zu, da keine Notwendigkeit besteht für die Zugabe einer großen Menge an Füllstoff, wenn eine Mastercharge, die einen Füllstoff und ein nicht wasservernetzbares Harz enthält, vorab hergestellt wird und dann die Mastercharge und das wasservernetzbare Harz vermischt werden beim Bilden einer vernetzten Harzbeschichtung wie einer Leitungsbeschichtung durch Wasservernetzen der flammhemmenden Harzzusammensetzung. Somit kann eine ungünstige Verteilung oder eine Abnahme der Produktivität vermieden werden, so dass die Beschichtung eine günstige Produktivität aufweist.
  • Die isolierte Leitung, die unter Verwendung der erfindungsgemäßen Zusammensetzung hergestellt wird, ist hinsichtlich der Wärmebeständigkeit und der mechanischen Eigenschaften ausgezeichnet, da sie die Beschichtung einschließt, welche die wasservernetzte Zusammensetzung für die Beschichtung enthält. Da darüber hinaus bei der isolierten Leitung kein teures Vernetzen mittels Elektronenbestrahlung oder synthetisches Magnesiumhydroxid verwendet werden, kann die isolierte Leitung zur Kosteneinsparung beitragen.
  • Der Kabelstrang, der unter Verwendung der erfindungsgemäßen Zusammensetzung erhalten wird, ist hinsichtlich der Wärmebeständigkeit und der mechanischen Eigenschaften ausgezeichnet, da er die oben genannte isolierte Leitung einschließt. Da bei dem Kabelstrang darüber hinaus kein teures Vernetzen mittels Elektronenbestrahlung oder synthetisches Magnesiumhydroxid verwendet werden, kann der Kabelstrang zur Kosteneinsparung beitragen.
  • Beschreibung der Ausführungsformen
  • Es wird nun eine ausführliche Beschreibung der bevorzugten Ausführungsformen der vorliegenden Erfindung gegeben. Eine Zusammensetzung für eine Leitungsbeschichtung gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung enthält beispielsweise die folgenden Materialien:
    • (A) ein wasservernetzbares Polyolefin als ein durch ein Silankopplungsreagens modifiziertes Polyolefin,
    • (B) ein nichtmodifiziertes Polyolefin,
    • (C) ein modifiziertes Polyolefin, das durch eine oder eine Vielzahl an funktionellen Gruppen modifiziert ist, ausgewählt aus der Gruppe bestehend aus einer Carbonsäuregruppe, einer Säureanhydridgruppe, einer Aminogruppe und einer Epoxygruppe,
    • (D) entweder ein bromhaltiges flammhemmendes Mittel (D1) als ein flammhemmendes Mittel oder ein bromhaltiges flammhemmendes Mittel (D1) und Antimontrioxid als (D2) flammhemmendes Mittel,
    • (E) einen Vernetzungskatalysator, der ein Silanolkondensationskatalysator ist,
    • (F) ein phenolisches Antioxidationsmittel,
    • (G) entweder ein Zinksulfid (G1) oder sowohl ein Zinkoxid (G2) als auch eine Imidazolverbindung (G3), und
    • (H) einen Kupferinhibitor.
  • Im Speziellen ist die Zusammensetzung gemäß der vorliegenden Ausführungsform der vorliegenden Erfindung dadurch charakterisiert, dass in der wasservernetzbaren Harzzusammensetzung, die hauptsächlich aus dem Polyolefinharz hergestellt ist, als das flammhemmende Mittel das bromhaltige flammhemmende Mittel (D1) enthalten ist. Es wird angenommen, dass das bromhaltige flammhemmende Mittel (D1) zum Zeitpunkt des Brennens von Polyolefin wirksam aktive Radikale einfängt. Die Zugabe des bromhaltigen flammhemmenden Mittels (D1) eliminiert die Notwendigkeit der Zugabe einer großen Menge an Füllstoff wie Magnesiumhydroxid, welches herkömmlicherweise zugegeben wird, so dass die Wärmebeständigkeit der aus der Harzzusammensetzung hergestellten Beschichtung verbessert ist und die Probleme einer ungünstigen Verteilung (Dispersion) und einer Abnahme der Produktivität in einem Herstellungsverfahren gelöst werden können. Nachfolgend werden Beschreibungen der Materialien bereitgestellt.
  • Die Harzzusammensetzung für die Leitungsbeschichtung wird hauptsächlich hergestellt aus Polyolefinharzen, die als Harzkomponente zumindest (A) das wasservernetzbare Polyolefin, (B) das nichtmodifizierte Polyolefin und (C) das modifizierte Polyolefin enthalten. Die Harzkomponente, die aus den Komponenten (A), (B) und (C) besteht, macht üblicherweise bis zu 40 Masse-% oder mehr und weiter bevorzugt 45 Masse-% oder mehr der Zusammensetzung aus.
  • Darüber hinaus ist bevorzugt, dass das Verhältnis zwischen der Harzkomponente, die aus den Komponenten (A), (B) und (C) besteht, und dem bromhaltigen flammhemmenden Mittel (D1) in der Zusammensetzung wie folgt eingestellt wird, damit ein harmonischer Ausgleich zwischen der Wärmebeständigkeit, den mechanischen Eigenschaften und der flammhemmenden Eigenschaft aufrechterhalten werden kann.
    • (A) Das wasservernetzbare Polyolefin: 30 bis 90 Masseteile, vorzugsweise 40 bis 80 Masseteile und weiter bevorzugt 50 bis 70 Masseteile.
    • (B) Das nichtmodifizierte Polyolefin + (C) das modifizierte Polyolefin: 70 bis 10 Masseteile, vorzugsweise 60 bis 20 Masseteile und weiter bevorzugt 50 bis 30 Masseteile.
    • (D1) Das bromhaltige flammhemmende Mittel: 10 bis 70 Masseteile, vorzugsweise 10 bis 50 Masseteile und weiter bevorzugt 10 bis 30 Masseteile bezogen auf 100 Masseteile des Gesamtgehalts der Komponenten (A), (B) und (C).
  • Das nichtmodifizierte Polyolefin (B) und das modifizierte Polyolefin (C) werden zugegeben, um die Eigenschaften des wasservernetzbaren Polyolefins zu verbessern. Eine vernetzte Beschichtung, die hergestellt ist aus einem wasservernetzbaren Polyolefin, einem Vernetzungskatalysator und einem flammhemmenden Mittel, weist eine ausreichende Wärmebeständigkeit auf. Die von der Wärmebeständigkeit verschiedenen Eigenschaften sind jedoch unzureichend, wenn die Beschichtung für eine Leitungsbeschichtung verwendet wird. Die Zugabe des nichtmodifizierten Polyolefins (B) und des modifizierten Polyolefins (C) kann die anderen Eigenschaften verbessern und kann dadurch eine Leitungsbeschichtung erhalten werden, bei der ein harmonischer Ausgleich zwischen den Eigenschaften aufrechterhalten werden kann. Darüber hinaus werden bei der Herstellung der Zusammensetzung (was später ausführlicher beschrieben wird) das nichtmodifizierte Polyolefin (B) und das modifizierte Polyolefin (C) geknetet, zu welchen Additive wie das flammhemmende Mittel gegeben werden, und sind in einer flammhemmenden Charge enthalten, die nicht das wasservernetzbare Polyolefin enthält.
  • Das Mischungsverhältnis zwischen dem nichtmodifizierten Polyolefin (B) und dem modifizierten Polyolefin (C) liegt vorzugsweise im Bereich von (B)/(C) = 95/5 bis 50/50 als ein Massenverhältnis, und weiter bevorzugt 90/10 bis 70/30 als ein Massenverhältnis. Das Mischungsverhältnis innerhalb dieser Bereiche kann zur Kosteneffizienz beitragen und kann eine übermäßige Reaktion durch die funktionelle Gruppe verhindern.
  • Beispiele des wasservernetzbaren Polyolefins (A) schließen silangepfropftes Polyolefin ein. Das silangepfropfte Polyolefin ist als ein Polyolefin definiert, das hergestellt wird durch Pfropfen eines Silankopplungsreagens auf das Polyolefin.
  • Beispiele des Polyolefins umfassen Polyethylen wie Polyethylen mit hoher Dichte (HDPE), Polyethylen mit mittlerer Dichte (MDPE), Polyethylen mit niedriger Dichte (LDPE), lineares Polyethylen mit niedriger Dichte (LLDPE) und Polyethylen mit sehr niedriger Dichte (VLDP), Polypropylen, ein Homopolymer der anderen Olefine, ein Ethylencopolymer wie ein Ethylen-alpha-Olefin-Copolymer, ein Ethylen-Vinylacetat-Copolymer, ein Ethylen-Acrylsäureester-Copolymer und ein Ethylen-Methacrylsäureester-Copolymer, ein Propylencopolymer wie ein Propylen-alpha-Olefin-Copolymer, ein Propylen-Vinylacetat-Copolymer, ein Propylen-Acrylsäureester-Copolymer und ein Propylen-Methacrylsäureester-Copolymer, und ein auf Olefin basierendes Elastomer wie ein Ethylenelastomer (PE-Elastomer) und ein Propylenelastomer (PP-Elastomer). Diese können einzeln oder in Kombination verwendet werden.
  • Darunter werden das Polyethylen, das Polypropylen, das Ethylen-Vinylacetat-Copolymer, das Ethylen-Acrylsäureester-Copolymer und das Ethylen-Methacrylsäureester-Copolymer bevorzugt verwendet.
  • Im Speziellen wird bei dem wasservernetzbaren Polyolefin (A) vorzugsweise ein Polyethylen, das eine geeignete Flexibilität aufweist, als das Polyolefin verwendet. Im Speziellen ist es bevorzugt, eines oder eine Vielzahl an Polyethylenen zu verwenden, ausgewählt aus der Gruppe bestehend aus dem Polyethylen mit sehr niedriger Dichte, dem linearen Polyethylen mit niedriger Dichte und dem Polyethylen mit niedriger Dichte. Wenn für eine Zusammensetzung für eine Leitungsbeschichtung ein Polyethylen verwendet wird, das hinsichtlich der Flexibilität ausgezeichnet ist, erlaubt dies eine einfache Handhabung der Leitung und deren gute und genaue Verdrahtung. Ein Metallocen-Polyethylen mit sehr niedriger Dichte wird vom Gesichtspunkt der Verbesserung der Zugdehnungseigenschaft bevorzugt für das Polyolefin verwendet.
  • Beispiele des Silankopplungsreagens umfassen Vinylalkoxysilan wie Vinyltrimethoxysilan, Vinyltriethoxysilan und Vinyltributoxysilan, n-Hexyltrimethoxysilan, Vinylacetoxysilan, gamma-Methacryloxypropyltrimethoxysilan und gamma-Methacryloxypropylmethyldimethoxysilan. Diese können einzeln oder in Kombination verwendet werden.
  • Der Gehalt des Silankopplungsreagens liegt vorzugsweise im Bereich von 0,5 bis 5 Masseteilen und weiter bevorzugt im Bereich von 3 bis 5 Masseteilen bezogen auf 100 Masseteile des Polyolefins, auf welches das Silankopplungsreagens gepfropft werden soll. Wenn der Gehalt weniger als 0,5 Masseteile beträgt, ist die Pfropfmenge des Silankopplungsreagens zu gering, wodurch es für die Zusammensetzung schwierig wird, während des Silanvernetzens einen ausreichenden Vernetzungsgrad zu erhalten. Wenn demgegenüber der Gehalt mehr als 5 Masseteile beträgt, findet die Vernetzungsreaktion im Übermaß statt, so dass ein gelartiges Material erzeugt wird. In einem derartigen Fall steigt die Wahrscheinlichkeit des Auftretens von Oberflächenunebenheiten auf der Produktoberfläche, was die Massenproduktivität des Produkts verschlechtert. Darüber hinaus wird die Schmelzviskosität der Zusammensetzung zu hoch und wird eine übermäßige Last auf einen Extruder ausgeübt, was zu einer verschlechterten Verarbeitbarkeit führt.
  • Die Pfropfmenge des Silankopplungsreagens (das Massenverhältnis des gepfropften Silankopplungsreagens zu dem Polyolefin, bevor das Silanpfropfen durchgeführt wird) beträgt vorzugsweise 15 Masse-% oder weniger, weiter bevorzugt 10 Masse-% oder weniger und noch weiter bevorzugt 5 Masse-% oder weniger in dem Fall, dass ein unerwünschtes Objekt erzeugt wird aufgrund eines übermäßigen Vernetzens während eines Leitungsbeschichtungsschritts. Demgegenüber liegt im Hinblick auf den Vernetzungsgrad (Gelgehalt) der Leitungsbeschichtung die Pfropfmenge vorzugsweise bei 0,1 Masse-% oder mehr, weiter bevorzugt 1 Masse-% oder mehr und noch weiter bevorzugt 2,5 Masse-% oder mehr.
  • Das Silankopplungsreagens wird auf das Polyolefin üblicherweise auf eine derartige Weise gepfropft, dass ein freie Radikale erzeugendes Mittel zu dem Polyolefin und dem Silankopplungsreagens gegeben wird, um diese alle unter Verwendung eines Zweischneckenextruders zu vermischen, um eine Charge für das Silanpfropfen herzustellen. Es ist darüber hinaus bevorzugt, dass das Silankopplungsreagens derart auf das Polyolefin gepfropft wird, dass das Silankopplungsreagens zugegeben wird, wenn das Silankopplungsreagens auf das Polyolefin gepfropft wird.
  • Beispiele des freie Radikale erzeugenden Mittels umfassen ein organisches Peroxid wie Dicumylperoxid (DCP), Benzoylperoxid, Dichlorbenzoylperoxid, Ditert-butylperoxid, Butylperacetat, tert-Butylperbenzoat und 2,5-Dimethyl-2,5-di(tert-butylperoxy)hexan. Darunter wird das Dicumylperoxid (DCP) bevorzugt verwendet. Wenn das Dicumylperoxid (DCP) als das freie Radikale erzeugende Mittel verwendet wird, ist es beispielsweise bevorzugt, die Charge zum Silanpfropfen auf 200°C oder mehr einzustellen, um eine Pfropfpolymerisation des Silankopplungsreagens auf das Polyolefin durchzuführen.
  • Der Gehalt des freie Radikale erzeugenden Mittels liegt vorzugsweise im Bereich von 0,025 bis 0,1 Masseteilen bezogen auf 100 Masseteile des Polyolefins, das silanmodifiziert werden soll. Wenn der Gehalt weniger als 0,025 Masseteile beträgt, findet die Pfropfreaktion des Silankopplungsreagens nicht in ausreichendem Maße statt, wodurch es für die Zusammensetzung schwierig wird, einen gewünschten Gelgehalt zu erreichen. Wenn demgegenüber der Gehalt mehr als 0,1 Masseteile beträgt, nimmt das Ausmaß der Spaltung der Moleküle des Polyolefins zu, so dass eine Vernetzung des Peroxids in unbeabsichtigtem Maße fortschreitet. In einem derartigen Fall läuft die Vernetzungsreaktion des Polyolefins übermäßig ab und steigt die Wahrscheinlichkeit des Auftretens von Oberflächenunebenheiten auf der Produktoberfläche, wenn das freie Radikale erzeugende Mittel mit der flammhemmenden Charge vermischt wird. Insbesondere erscheinen Unebenheiten auf der Oberfläche der Leitungsbeschichtung, wenn die Leitungsbeschichtung ausgebildet wird, und neigt die Leitungsbeschichtung dazu, eine verunstaltete Oberflächenerscheinung aufzuweisen. Darüber hinaus wird die Schmelzviskosität der Zusammensetzung zu hoch und wird eine übermäßige Last auf den Extruder ausgeübt, was zu einer verschlechterten Verarbeitbarkeit führt.
  • Das nichtmodifizierte Polyolefin (B) ist ein Polyolefin, das nicht durch ein Silankopplungsreagens oder eine funktionelle Gruppe modifiziert ist. Spezielle Beispiele des nichtmodifizierten Polyolefins umfassen das Polyolefin (A), welches oben beschrieben ist, und es wird somit auf dessen ausführliche Beschreibung verzichtet. Für das nichtmodifizierte Polyolefin (B) wird vorzugsweise Polyethylen wie VLDPE und LDPE verwendet, da das Polyethylen eine Leitung mit einer Flexibilität bereitstellen kann und der Füllstoff als das flammhemmende Mittel gut dispergiert werden kann.
  • Spezifische Beispiele des Polyolefins, das für das modifizierte Polyolefin (C), das durch die funktionelle Gruppe modifiziert ist, verwendet wird, umfassen das Polyolefin (A), welches oben beschrieben wurde und wird daher auf dessen ausführliche Beschreibung verzichtet. Im Hinblick auf die Kompatibilität wird für das modifizierte Polyolefin (C) ein Harz derselben Gruppe verwendet wie das Harz, das für das nichtmodifizierte Polyolefin verwendet wird. Darüber hinaus wird vorzugsweise ein Polyolefin wie VLDPE und LDPE für das modifizierte Polyolefin (C) verwendet, da das Polyethylen eine Leitung mit einer Flexibilität bereitstellen kann und der Füllstoff als das flammhemmende Mittel gut dispergiert werden kann.
  • Die funktionelle Gruppe ist ausgewählt aus einer Carbonsäuregruppe, einer Säureanhydridgruppe, einer Aminogruppe und einer Epoxygruppe. Diese funktionellen Gruppen werden verwendet, da sie günstige Haftungseigenschaften in Bezug auf den Füllstoff als dem flammhemmenden Mittel aufweisen.
  • Das modifizierte Polyolefin kann eine oder eine Vielzahl dieser funktionellen Gruppen enthalten. Darüber hinaus kann ein oder eine Vielzahl an modifizierten Polyolefinen verwendet werden, die ausgewählt werden aus modifizierten Polyolefinen derselben Art, die mittels unterschiedlicher funktioneller Gruppen modifiziert sind, modifizierten Polyolefinen verschiedener Arten, die mittels unterschiedlicher funktioneller Gruppen modifiziert sind, und modifizierten Polyolefinen verschiedener Arten, die mittels funktioneller Gruppen derselben Art modifiziert sind.
  • Der Gehalt der funktionellen Gruppe in dem modifizierten Polyolefin liegt vorzugsweise im Bereich von 0,5 bis 10 Masseteilen bezogen auf 100 Masseteile des Polyolefins. Wenn der Gehalt der funktionellen Gruppe mehr als 10 Masseteile beträgt, könnte die Eigenschaft des Abziehens der Beschichtung zum Zeitpunkt der Verarbeitung der Enden einer Leitung verschlechtert sein. Wenn demgegenüber der Gehalt der funktionellen Gruppe weniger als 0,5 Masseteile beträgt, ist die Wirkung der Modifizierung durch die funktionelle Gruppe unzureichend.
  • Das Polyolefin wird durch die funktionelle Gruppe modifiziert in einem Verfahren der Pfropfpolymerisierung einer Verbindung, welche die funktionelle Gruppe enthält, auf das Polyolefin oder in einem Verfahren der Copolymerisierung einer Verbindung, welche die funktionelle Gruppe enthält, und eines Olefinmonomers zum Erhalt eines Olefincopolymers.
  • Beispiele der Verbindung zum Einbringen der Carbonsäuregruppe und/oder der Säureanhydridgruppe als der funktionellen Gruppe umfassen eine alpha, beta-ungesättigte Dicarbonsäure wie Maleinsäure, Fumarsäure, Citraconsäure und Itaconsäure, deren Anhydride und eine ungesättigte Monocarbonsäure wie Acrylsäure, Methacrylsäure, Furnsäure, Crotonsäure, Vinylessigsäure und Pentansäure.
  • Beispiele der Verbindung zum Einbringen der Aminogruppe als der funktionellen Gruppe umfassen Aminoethyl(meth)acrylat, Propylaminoethyl(meth)acrylat, Dimethylaminoethyl(meth)acrylat, Diethylaminoethyl(meth)acrylat, Dibutylaminoethyl(meth)acrylat, Aminopropyl(meth)acrylat, Phenylaminoethyl(meth)acrylat und Cyclohexylaminoethyl(meth)acrylat.
  • Beispiele der Verbindung zum Einbringen der Epoxygruppe als der funktionellen Gruppe umfassen Glycidylacrylat, Glycidylmethacrylat, einen Itaconsäuremonoglycidylester, einen Butentricarbonsäuremonoglycidylester, einen Butentricarbonsäurediglycidylester, einen Butentricarbonsäuretriglycidylester, Glycidylester wie eine alpha-Chloracrylsäure, Maleinsäure, Crotonsäure und Fumarsäure, Glycidylether wie Vinylglycidylether, Allylglycidylether, Glycidyloxyethylvinylether und Styrol-p-glycidylether, und p-Glycidylstyrol.
  • Beispiele des bromhaltigen flammhemmenden Mittels (D1) umfassen Ethylenbis(pentabrombenzol) [auch bekannt als Bis(pentabromphenyl)ethan], Tetrabrombisphenol A (TBBA), Hexabromcyclododecan (HBCD), Bis(tetrabromphthalimid)ethan, TBBA-Carbonat-Oligomer, TBBA-Epoxy-Oligomer, bromiertes Polystyrol, TBBA-bis(dibrompropylether), Poly(dibrompropylether) und Hexabrombenzol. Ein bromhaltiges flammhemmendes Mittel, das einen relativ hohen Schmelzpunkt aufweist, wird bevorzugt verwendet, da es eine günstige flammhemmende Eigenschaft aufweist. Im Speziellen wird vorzugsweise ein bromhaltiges flammhemmendes Mittel verwendet, das einen Schmelzpunkt von 200°C oder mehr aufweist. Beispiele des bromhaltigen flammhemmenden Mittels, welches einen Schmelzpunkt von 200°C oder mehr aufweist, umfassen Ethylenbis(pentabrombenzol), Bis(tetrabromphthalimid)ethan und TBBA-bis(dibrompropylether).
  • Es wird darauf hingewiesen, dass ein flammhemmendes Mittel, welches hergestellt ist aus einer Decabromverbindung wie Decabromdiphenylether (DecaBDE), eine ausgeprägte flammhemmende Wirkung aufweist, jedoch den als Klasse I bezeichneten chemischen Substanzen entspricht, die aufgeführt sind im Artikels 4 des Gesetzes über die Bestätigung von Freisetzungsmengen spezifischer chemischer Substanzen in der Umwelt und der Förderung von Verbesserungen deren Handhabung („Act an Confirmation, etc. of Release Amounts of Specific Chemical Substances in the Environment and Promotion of Improvements to the Management Thereof”), so dass das flammhemmende Mittel in Bezug auf die Umwelt Nachteile gegenüber anderen bromhaltigen flammhemmenden Mitteln aufweist und somit in der vorliegenden Erfindung nicht verwendet werden kann.
  • Es ist lediglich wesentlich, dass das flammhemmende Mittel (D) zumindest das bromhaltige flammhemmende Mittel (D1) enthalten sollte. Es ist darüber hinaus bevorzugt, dass das flammhemmende Mittel (D) ferner Antimontrioxid (D2) als ein flammhemmendes Hilfsmittel enthält. Es wird angenommen, dass die Verwendung des Antimontrioxids (D2) zusammen mit dem bromhaltigen flammhemmenden Mittel einen synergistischen Effekt erzeugt. Es ist bevorzugt, Antimontrioxid mit einer Reinheit von 99% oder mehr zu verwenden. Das Antimontrioxid wird hergestellt durch Pulverisieren und Mikropartikulieren von Antimontrioxid, das als ein Mineral hergestellt wird. Das mikropartikulierte Antimontrioxid besitzt eine mittlere Teilchengröße von vorzugsweise 3 μm oder weniger und weiter bevorzugt 1 μm oder weniger. Wenn die mittlere Teilchengröße des Antimontrioxids größer ist, könnte die Grenzflächenfestigkeit zwischen dem Antimontrioxid und dem Harz verschlechtert sein. Das Antimontrioxid kann darüber hinaus einer Oberflächenbehandlung unterzogen werden, um die Teilchengröße einzustellen oder die Grenzflächenfestigkeit zwischen dem Antimontrioxid und dem Harz zu verbessern. Beispiele des Oberflächenbehandlungsmittels umfassen ein Silankopplungsreagens, eine höhere Fettsäure und ein Polyolefinwachs.
  • Der Vernetzungskatalysator (E) ist ein Silanolkondensationskatalysator zum Silanvernetzen des silangepfropften Polyolefins. Beispiele des Vernetzungskatalysators umfassen ein Metallcarboxylat, das ein Metall wie Zinn, Zink, Eisen, Blei und Cobalt enthält, einen Titanatester, eine organische Base, eine anorganische Säure und eine organische Säure.
  • Spezifische Beispiele des Vernetzungskatalysators (E) umfassen Dibutylzinndilaurat, Dibutylzinndimalat, Dibutylzinnmercaptid (z. B. Dibutylzinnbis-octylthioglycolat, Dibutylzinn-beta-mercaptopropionatpolymer), Dibutylzinndiacetat, Dioctylzinndilaurat, Zinnacetat, Zinncaprylat, Bleinaphthenat, Cobaltnaphthenat, Bariumstearat, Calciumstearat, Tetrabutyltitanat, Tetranonyltitanat, Dibutylamin, Hexylamin, Pyridin, Schwefelsäure, Chlorwasserstoffsäure, Toluolsulfonsäure, Acetat, Stearinsäure und Maleinsäure. Von diesen werden das Dibutylzinndilaurat, das Dibutylzinndimalat und das Dibutylzinnmercaptid bevorzugt verwendet.
  • Der Gehalt des Vernetzungskatalysators (E) liegt darüber hinaus vorzugsweise im Bereich von 0,5 bis 5 Masseteilen und weiter bevorzugt im Bereich von 1 bis 5 Masseteilen bezogen auf 100 Masseteile des silangepfropften Polyolefins (A) als der Harzkomponente der Charge für das Silanpfropfen. Der Gehalt von 0,5 Masseteilen oder mehr erlaubt es der Zusammensetzung, einen ausreichenden Vernetzungsgrad zu erhalten, was die Möglichkeit ausschließt, dass sie eine unzureichende Wirkung der Verbesserung der Wärmebeständigkeit aufweist. Darüber hinaus eliminiert ein Gehalt von 10 Masseteilen oder weniger die Möglichkeit, dass eine verunstaltete Oberflächenerscheinung aufgezeigt wird.
  • Beispiele des phenolischen Antioxidationsmittels (F) umfassen ein mono-phenolisches Antioxidationsmittel, ein bisphenolisches Antioxidationsmittel und ein polymeres phenolisches Antioxidationsmittel. Von diesen wird das polymere phenolische Antioxidationsmittel bevorzugt verwendet. Spezifische Beispiele des polymeren phenolischen Antioxidationsmittels (gehindertes phenolisches Antioxidationsmittel) umfassen Pentaerythritoltetrakis[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionat]. Der Gehalt des phenolischen Antioxidationsmittels (F) liegt vorzugsweise im Bereich von 0,5 bis 5 Masseteilen bezogen auf 100 Masseteile des Gesamtgehalts der Komponenten (A), (B) und (C).
  • Das eine (G) von entweder dem Zinksulfid (G1) oder sowohl dem Zinkoxid (G2) als auch der Imidazolverbindung (G3) verbessert die Wärmebeständigkeit der Beschichtung. Die ISO 6722 ist ein internationaler Standard, der für Leitungen für Kraftfahrzeuge verwendet wird. Eine Leitung für ein Kraftfahrzeug wird gemäß ISO 6722 in Abhängigkeit von ihrem zulässigen Temperaturgrenzwert eingeteilt in die Klassen A bis E. Wenn eine isolierte Leitung als Leitung für Kraftfahrzeuge verwendet wird, insbesondere wenn sie als ein Kabel für eine Batterie mit hoher Spannung verwendet wird, ist es manchmal erforderlich, dass sie die Eigenschaften der Klasse C aufweist, gemäß der die isolierte Leitung einen zulässigen Temperaturgrenzwert von 125°C aufweisen sollte, oder der Klasse D, gemäß der die isolierte Leitung einen zulässigen Temperaturgrenzwert von 150°C aufweisen sollte. Die Zugabe von einem (G) von entweder dem Zinksulfid (G1) oder sowohl dem Zinkoxid (G2) als auch der Imidazolverbindung (G3) ist in dem Fall wirksam, wo wie oben beschrieben eine hohe Wärmebeständigkeit gefordert ist. In jedem der Fälle der Zugabe von nur dem Zinksulfid (G1) und der Zugabe von nur dem Zinkoxid (G2) und der Imidazolverbindung (G3) kann ein ähnlicher Effekt der Wärmebeständigkeit erzeugt werden.
  • Das Zinkoxid wird hergestellt in einem Verfahren des Oxidierens von Zinkdämpfen, die aus einem Zinkmineral austreten beim Zugeben eines Reduktionsmittels wie Koks und einem Brennen des Zinkmaterials unter Beteiligung von Luft, oder in einem Verfahren des Herstellens aus einem Zinksulfid oder einem Zinkchlorid. Das Herstellungsverfahren des Zinkoxids ist nicht speziell beschränkt. Das Zinkoxid kann gemäß irgendeinem Verfahren hergestellt werden. Das Zinksulfid kann durch ein bekanntes Herstellungsverfahren hergestellt werden. Das Zinkoxid oder das Zinksulfid weist eine mittlere Teilchengröße von vorzugsweise 3 μm oder weniger und weiter bevorzugt 1 μm oder weniger auf. Wenn die mittlere Teilchengröße des Zinkoxids oder des Zinksulfids geringer ist, ist die Grenzflächenfestigkeit zwischen dem Zinkoxid oder dem Zinksulfid und dem Harz verbessert, was die Dispergierbarkeit verbessert.
  • Als die Imidazolverbindung (G3) wird vorzugsweise eine Benzimidazolverbindung, welche Schwefel enthält, verwendet. Spezifische Beispiele der Benzimidazolverbindung umfassen 2-Mercaptobenzimidazol, 2-Mercaptomethylbenzimidazol, 4-Mercaptomethylbenzimidazol, 5-Mercaptomethylbenzimidazol und deren Zinksalze. Darunter werden das 2-Mercaptobenzimidazol und dessen Zinksalze bevorzugt verwendet. Die Benzimidazolverbindung kann einen Substituenten wie eine Alkylgruppe an anderen Positionen des Benzimidazolgerüsts aufweisen.
  • Der Gehalt des Zinksulfids (G1) und der Gehalt des Zinkoxids (G2) und der Imidazolverbindung (G3) liegen vorzugsweise innerhalb der folgenden Bereiche, bezogen auf 100 Masseteile des Gesamthalts der Harzkomponenten (A), (B) und (C). Wenn der Gehalt geringer ist, tritt die Möglichkeit auf, dass ein unzureichender Effekt der Verbesserung der Wärmebeständigkeit aufgezeigt wird. Wenn demgegenüber der Gehalt zu groß ist, neigen die Teilchen dazu, zu koagulieren, und neigt die Leitung dazu, eine verunstaltete Oberflächenerscheinung aufzuweisen, und könnte die mechanische Eigenschaft wie die Abnutzungsbeständigkeit verschlechtert sein.
    Zinksulfid (G1): 1 bis 20 Masseteile, vorzugsweise 3 bis 10 Masseteile.
    Gesamtgehalt des Zinkoxids (G2) + der Imidazolverbindung (G3): 1 bis 20 Masseteile, vorzugsweise 3 bis 10 Masseteile.
  • Als der Kupferinhibitor (H) wird ein Aminkupferinhibitor wie 3-(n-Salicyloyl)amino-1,2,4-triazol verwendet. Die Zugabe des Kupferinhibitors (H) zu der Zusammensetzung erzeugt ferner den Effekt einer Verbesserung der Wärmebeständigkeit. Der Gehalt des Kupferinhibitors liegt im Bereich von 0,1 bis 3 Masseteilen bezogen auf 100 Masseteile des Gesamtgehalts der Harzkomponenten (A), (B) und (C).
  • Es ist bevorzugt, dass die Zusammensetzung für die Leitungsbeschichtung ferner eine Art oder mehrere Arten an Additiven enthält, welche für eine allgemeine Leitungsbeschichtung verwendet werden und verschieden sind von den oben beschriebenen Materialien, innerhalb eines Bereichs, bei dem die Eigenschaften der Leitung nicht verschlechtert werden. Beispiele der Additive umfassen ein Gleitmittel wie Stearinsäure, einen UV-Absorber, ein Verarbeitungshilfsmittel (z. B. Wachs, Gleitmittel), ein flammhemmendes Hilfsmittel und ein Färbemittel.
  • Wenn ein anorganischer Füllstoff wie Magnesiumhydroxid, Magnesiumoxid und Calciumcarbonat als das Additiv zugegeben wird, kann die Härte des Harzes eingestellt werden, wodurch die Verarbeitbarkeit und der Formänderungswiderstand der Beschichtung bei hohen Temperaturen verbessert werden können. Der Gehalt des anorganischen Füllstoffs beträgt 30 Masseteile oder weniger und vorzugsweise 10 Masseteile oder weniger bezogen auf 100 Masseteile des Gesamtgehalts der Harzkomponenten (A), (B) und (C) und liegt innerhalb eines Bereichs, bei dem die Festigkeit des Harzes nicht verschlechtert ist. Als das Magnesiumhydroxid werden natürliches Magnesiumhydroxid aus natürlichem Mineral, das durch Pulverisieren eines hauptsächlich aus Magnesiumhydroxid bestehenden Minerals hergestellt wird, oder synthetisches Magnesiumhydroxid, das aus einer im Meerwasser enthaltenen Mg-Quelle synthetisiert wird, verwendet.
  • Darüber hinaus liegt der Gehalt des Gleitmittels wie Stearinsäure vorzugsweise bei 5 Masseteilen oder weniger und vorzugsweise 3 Masseteilen oder weniger bezogen auf 100 Masseteile des Gesamtgehalts der Harzkomponenten (A), (B) und (C). Die Zugabe des Gleitmittels hat den Effekt einer Verbesserung der Oberflächenerscheinung der Leitung, wobei jedoch die Zugabe einer großen Menge des Gleitmittels die Verarbeitbarkeit einer Leitung und die Verarbeitbarkeit eines Kabelstrangs nachteilig beeinflussen könnte.
  • Nachfolgend wird eine Beschreibung eines Verfahrens zur Herstellung einer isolierten Leitung aus der Zusammensetzung für die Leitungsbeschichtung gegeben. Es ist lediglich wesentlich, dass die Zusammensetzung für die Leitungsbeschichtung, welche das wasservernetzbare Polyolefin (A), das nichtmodifizierte Polyolefin (B), das modifizierte Polyolefin (C), das flammhemmende Mittel (D), das bromhaltige flammhemmende Mittel (D1), das Antimontrioxid (D2), den Vernetzungskatalysator (E), entweder das Zinksulfid (G1) oder sowohl das Zinkoxid (G2) als auch die Imidazolverbindung (G3), den Kupferinhibitor (H) und die anderen Additive enthält, warmgeknetet werden sollte, ein Leiter mit den warmgekneteten Komponenten extrusionsbeschichtet werden sollte und die Leitungsbeschichtung, die durch Extrusion aufbeschichtet wurde, wasservernetzt werden sollte.
  • Das oben beschriebene Warmkneten der Materialien kann unter Verwendung eines allgemein verwendeten Kneters wie eines Banbury-Mischers, eines Druckkneters, eines Knetextruders, eines Zweischneckenextruders und einer Walze durchgeführt werden.
  • Es ist darüber hinaus bevorzugt, dass die Zusammensetzung für die Leitungsbeschichtung hergestellt wird durch Mischen einer Charge, welche das wasservernetzbare Polyolefin enthält, und der flammhemmenden Charge, welche vorab getrennt voneinander hergestellt wurden. Im Speziellen wurde die Charge, welche das wasservernetzbare Polyolefin enthält, hergestellt durch Warmkneten von lediglich dem wasservernetzbaren Polyolefin (A) oder durch Warmkneten von Materialien für das wasservernetzbare Polyolefin (A) (d. h. dem Polyolefin, dem Silankopplungsreagens und dem freie Radikale erzeugenden Mittel), während die flammhemmende Charge hergestellt wird durch Warmkneten des nichtmodifizierten Polyolefins (B), des modifizierten Polyolefins (C) und des bromhaltigen flammhemmenden Mittels (D1) und des Antimontrioxids (D2) als flammhemmendes Mittel (D), mit Ausnahme des Vernetzungskatalysators. Der Vernetzungskatalysator wird zu der Charge, welche das wasservernetzbare Polyolefin enthält, und der flammhemmenden Charge gegeben, und diese werden warmgeknetet. Dann wird ein Leiter mit den warmgekneteten Komponenten extrusionsbeschichtet und wird eine Leitungsbeschichtung um den Leiter herum ausgebildet. Die extrusionsbeschichtete Leitungsbeschichtung wird dann wasservernetzt. Es ist darüber hinaus bevorzugt, dass der Vernetzungskatalysator zu entweder der Charge, welche das wasservernetzbare Polyolefin enthält, oder der flammhemmenden Charge gegeben wird.
  • Das oben beschriebene Ausbilden der Leitungsbeschichtung durch vorab getrenntes Herstellen der Charge, welche das wasservernetzbare Polyolefin enthält, und der flammhemmenden Charge, dann Kneten der Chargen, Extrusionsbeschichten des Leiters mit den warmgekneteten Komponenten kann das Auftreten von Oberflächenunebenheiten auf einer Oberfläche der Leitungsbeschichtung verhindern und ermöglicht somit, dass die Leitungsbeschichtung eine günstige Oberflächenerscheinung aufweist. Darüber hinaus wird die Schmelzviskosität der Zusammensetzung während des Schritts des Warmknetens und während des Schritts des Extrusionsbeschichtens nicht zu hoch, wodurch verhindert werden kann, dass eine übermäßige Last auf den Extruder ausgeübt wird. Somit kann eine günstige Verarbeitbarkeit erreicht werden.
  • Die zu Pellets geformten Chargen können in dem Schritt des Warmknetens unter Verwendung eines Mischers oder eines Extruders trockenvermischt werden. Der Leiter wird im Schritt des Extrusionsbeschichtens unter Verwendung einer allgemeinen Extrusionsformvorrichtung mit der Leitungsbeschichtung extrusionsbeschichtet. Die im Schritt des Extrusionsbeschichtens gebildete Leitungsbeschichtung kann vernetzt werden, indem es im Vernetzungsschritt Dampf oder Wasser ausgesetzt wird. Der Vernetzungsschritt wird vorzugsweise unter den Temperaturbedingungen von einer Umgebungstemperatur bis 90°C während 48 Stunden oder weniger, weiter bevorzugt bei Temperaturen von 60 bis 80°C während 12 bis 24 Stunden durchgeführt.
  • Als Nächstes wird eine Beschreibung einer isolierten Leitung gegeben. Die isolierte Leitung umfasst einen Leiter, der aus Kupfer, einer Kupferlegierung, Aluminium oder einer Aluminiumkupferlegierung hergestellt ist, und eine Leitungsbeschichtung, die auf den Leiter beschichtet ist, wobei das Beschichtung durch Wasservernetzen der oben beschriebenen Zusammensetzung für die Leitungsbeschichtung hergestellt wird. Der Durchmesser, das Material und andere Eigenschaften des Leiters sind nicht speziell beschränkt und können in Abhängigkeit von der beabsichtigten Verwendung festgelegt werden. Darüber hinaus ist die Dicke der isolierenden Beschichtung nicht speziell beschränkt und kann unter Berücksichtigung des Leiterdurchmessers festgelegt werden. Die Leitungsbeschichtung kann einen einlagigen Aufbau aufweisen oder kann einen mehrlagigen Aufbau aufweisen.
  • Im Hinblick auf die Wärmebeständigkeit weist die Leitungsbeschichtung nach dem Wasservernetzen vorzugsweise einen Vernetzungsgrad von 50% oder mehr und weiter bevorzugt 60% oder mehr auf. Der Vernetzungsgrad kann angepasst werden gemäß der Pfropfmenge des Silankopplungsreagens des enthaltenen silangepfropften Polyolefins, der Art und Menge des Vernetzungskatalysators oder den Bedingungen der Silanvernetzung (Wasservernetzung) (Temperatur und Dauer).
  • Als Nächstes wird eine Beschreibung eines Kabelstrangs gegeben. Der Kabelstrang umfasst die oben beschriebenen isolierten Leitungen. Der Kabelstrang weist einen derartigen Aufbau auf, dass ein einzelnes Leitungsbündel, das nur aus den oben beschriebenen isolierten Leitungen besteht, oder ein gemischtes Leitungsbündel, das aus den oben beschriebenen isolierten Leitungen und anderen isolierten Leitungen besteht, mit einem Kabelstrangschutz beschichtet ist.
  • Die Anzahl der in dem einzelnen Leitungsbündel oder dem gemischten Leitungsbündel enthaltenen Leitungen ist nicht speziell beschränkt und kann beliebig festgelegt werden.
  • Wenn das gemischte Leitungsbündel verwendet wird, ist der Aufbau der anderen isolierten Leitungen nicht speziell beschränkt. Die Leitungsbeschichtung kann einen einlagigen Aufbau aufweisen oder kann einen mehrlagigen Aufbau aufweisen. Darüber hinaus ist die Art der isolierenden Beschichtung nicht speziell beschränkt.
  • Darüber hinaus ist der Kabelstrangschutz angeordnet, um die Außenoberfläche des Leitungsbündels zu beschichten, um das innen liegende Leitungsbündel vor der äußeren Umgebung zu schützen. Beispiele des Kabelstrangschutzes umfassen einen Kabelstrangschutz mit einem bandförmigen Grundelement, bei dem an mindestens einer Seite davon ein Klebstoff aufgebracht ist, einen Kabelstrangschutz mit einem schlauchförmigen Grundelement und einen Kabelstrangschutz mit einem blattförmigen Grundelement. Der Kabelstrangschutz wird vorzugsweise in Abhängigkeit von der beabsichtigten Verwendung gewählt.
  • Spezifische Beispiele des Grundelements für den Kabelstrangschutz umfassen halogenfreie flammhemmende Harzzusammensetzungen verschiedener Arten, Vinylchloridharzzusammensetzungen verschiedener Arten und halogenhaltige Harzzusammensetzungen verschiedener Arten, die von den Vinylchloridharzzusammensetzungen verschieden sind.
  • BEISPIELE
  • Es wird nun eine Beschreibung der vorliegenden Erfindung speziell unter Bezug auf Beispiele und Vergleichsbeispiele gegeben. Die vorliegende Erfindung ist jedoch nicht darauf beschränkt.
  • Verwendete Materialien, Hersteller und andere Informationen
  • Nachfolgend werden die in den Beispielen und Vergleichsbeispielen verwendeten Materialien zusammen mit ihren Herstellern und Handelsnamen aufgeführt.
    • [1] Silangepfropftes PP [Hersteller: MITSUBISHI CHEMICAL CORPORATION, Handelsname: „LINKLON XPM800HM”]
    • [2] Silangepfropftes PE1 [Hersteller: MITSUBISHI CHEMICAL CORPORATION, Handelsname: „LINKLON XLE815N” (LLDPE)]
    • [3] Silangepfropftes PE2 [Hersteller: MITSUBISHI CHEMICAL CORPORATION, Handelsname: „LINKLON XCF710N” (LDPE)]
    • [4] Silangepfropftes PE3 [Hersteller: MITSUBISHI CHEMICAL CORPORATION, Handelsname: „LINKLON QS241HZ” (HDPE)]
    • [5] Silangepfropftes PE4 [Hersteller: MITSUBISHI CHEMICAL CORPORATION, Handelsname: „LINKLON SH700N” (VLDPE)]
    • [6] Silangepfropftes EVA [Hersteller: MITSUBISHI CHEMICAL CORPORATION, Handelsname: „LINKLON XVF600N”]
    • [7] PP-Elastomer [Hersteller: JAPAN POLYPROPYLENE CORPORATION; Handelsname: „NEWCON NAR6”]
    • [8] PE 1: VLDPE [Hersteller: DUPONT DOW ELASTOMERS JAPAN KK, Handelsname: „ENGAGE 8003”]
    • [9] PE 2: LDPE [Hersteller: NIPPON UNICAR COMPANY LIMITED, Handelsname: „NUC8122”]
    • [10] PE 3: LLDPE [Hersteller: PRIME POLYMER CO., LTD, Handelsname: „ULTZEX10100W”]
    • [11] Maleinsäure-denaturiertes PE [Hersteller: NOF CORPORATION, Handelsname: „MODIC AP512P”]
    • [12] Epoxy-denaturiertes PE [Hersteller: SUMITOMO CHEMICAL CO., LTD., Handelsname: „BONDFAST E (E-GMA)”]
    • [13] Maleinsäure-denaturiertes PP [Hersteller: MITSUBISHI CHEMICAL CORPORATION, Handelsname: „ADMER QB550”]
    • [14] Bromhaltiges flammhemmendes Mittel 1: Ethylenbis(pentabrombenzol) [Hersteller: ALBEMARLE JAPAN CORPORATION, Handelsname: „SAYTEX8010”]
    • [15] Bromhaltiges flammhemmendes Mittel 2: TBBA-bis(dibrompropylether) [Hersteller: SUZUHIRO CHEMICAL CO., LTD., Handelsname: „FCP-680”]
    • [16] Bromhaltiges flammhemmendes Mittel 3: Tetrabrombisphenol A [Hersteller: ALBEMARLE JAPAN CORPORATION, Handelsname: „SAYTEXCP2000”]
    • [17] Antimontrioxid [Hersteller: YAMANAKA & CO., Ltd., Handelsname: „ANTIMONY TRIOXIDE MSW GRADE”]
    • [18] Magnesiumhydroxid [Hersteller: KYOWA CHEMICAL INDUSTRY CO., LTD., Handelsname: „KISUMA 5”]
    • [19] Calciumcarbonat [Hersteller: SHIRAISHI CALCIUM KAISHA, LTD., Handelsname: „VIGOT15”]
    • [20] Antioxidationsmittel 1 [Hersteller: CIBA SPECIALTY CHEMICALS INC., Handelsname: „IRGANOX 1010”]
    • [21] Antioxidationsmittel 2 [Hersteller: CIBA SPECIALTY CHEMICALS INC., Handelsname: „IRGANOX 1330”]
    • [22] Kupferinhibitor [Hersteller: ADEKA CORPORATION, Handelsname: „CDA-1”]
    • [23] Zinkoxid [Hersteller: HAKUSUITECH CO., LTD., Handelsname: „ZINC OXIDE JIS2”]
    • [24] Zinksulfid [Hersteller: SACHTLEBEN CHEMIE GMBH, Handelsname: „SACHTOLITH HD-S”]
    • [25] Additiv: Benzimidazolverbindung [Hersteller: KAWAGUCHI CHEMICAL INDUSTRY CO., LTD., Handelsname: „ANTAGE MB”]
    • [26] Gleitmittel 1: Erucasäureamid [Hersteller: NOF CORPORATION, Handelsname: „ALFLOW P10”]
    • [27] Gleitmittel 2: Stearinsäureamid [Hersteller: NOF CORPORATION, Handelsname: „ALFLOW S10”]
    • [28] Vernetzungskatalysator [Hersteller. MITSUBISHI CHEMICAL CORPORATION, Handelsname: „LINKLON LZ0515H”]
  • Herstellung einer flammhemmenden Charge
  • Es wurden wie folgt flammhemmende Chargen hergestellt: Es wurden die Materialien für die flammhemmenden Chargen mit den in den Spalten A der Beispiele und Vergleichsbeispiele in den Tabellen 1 und 2 angegebenen Verhältnissen hergestellt und in einen Zweischneckenknetextruder gegeben. Die Materialien für eine jede flammhemmende Charge wurden bei 200°C während 0,1 bis 2 Minuten warmgeknetet, und die gekneteten Komponenten wurden dann zu Pellets geformt. Somit wurden flammhemmende Chargen entsprechend der Beispiele und Vergleichsbeispiele hergestellt.
  • Herstellung einer isolierten Leitung
  • Die flammhemmenden Chargen, welche die Materialien mit den in Spalte A angegebenen Verhältnissen enthielten und die silangepfropften Polyolefine und Vernetzungskatalysatoren (bei dem Vergleichsbeispiel 1 wurde kein silangepfropftes Polyolefin zugegeben), wurden für die Beispiele und Vergleichsbeispiele mit den in den Spalten B der Tabellen 1 und 2 angegebenen Verhältnissen hergestellt und wurden unter Verwendung eines Trichters eines Extruders bei ungefähr 180 bis 200°C warmgeknetet und einer Extrusionsverarbeitung unterzogen. Leiter mit einem Außendurchmesser von 2,4 mm wurden mit den auf diese Weise hergestellten Zusammensetzungen extrusionsbeschichtet und es wurden Isolierungen mit einer Dicke von 0,7 mm ausgebildet (d. h. der Außendurchmesser der isolierten Leitungen nach dem Extrusionsbeschichten betrug 3,8 mm). Dann wurde jede der Zusammensetzungen in einem Bad bei einer hohen Feuchtigkeit von 95% und bei einer hohen Temperatur von 60°C während 24 Stunden wasservernetzt. Auf diese Weise wurden die isolierten Leitungen gemäß den Beispielen und Vergleichsbeispielen hergestellt. Die erhaltenen isolierten Leitungen wurden in Bezug auf die folgenden Eigenschaften bewertet.
  • Gelgehalt
  • Die Gelgehalte der isolierten Leitungen wurden gemäß dem JASO-D608-92 gemessen. Im Speziellen wurden ungefähr 0,1 g an Testproben der Isolierung der isolierten Leitungen eingewogen und in Teströhrchen gegeben. Zu jeder Probe wurden 20 ml Xylol gegeben und jede Probe wurde dann in einem Ölbad mit konstanter Temperatur während 24 Stunden auf 120°C erwärmt. Dann wurde jede der Proben aus dem Teströhrchen entnommen und während 6 Stunden in einem Trockner bei 100°C getrocknet. Jede Probe wurde auf Raumtemperatur gekühlt und genau gewogen. Die prozentualen Anteile der Massen der Testproben nach dem Test zu den Massen der Testproben vor dem Test wurden als Gelgehalte definiert. Testproben mit einem Gelgehalt von 50% oder mehr wurden als gut bewertet und Testproben mit einem Gelgehalt von weniger als 50% wurden als schlecht bewertet. Der Gelgehalt ist ein allgemein verwendeter Index bezüglich eines Wasservernetzungszustands einer vernetzten Leitung.
  • Produktivität
  • Beim Extrudieren einer jeden isolierten Leitung wurde die Geschwindigkeit einer jeden isolierten Leitung erhöht und verringert, und die isolierten Leitungen, die einen festgelegten Außendurchmesser auch bei der Geschwindigkeit von 50 m/min oder höher aufzeigen konnten, wurden als gut bewertet, die isolierten Leitungen, die 300% oder mehr aufzeigten, wurden als ausgezeichnet bewertet, und die isolierten Leitungen, die bei einer Geschwindigkeit von 50 m/min oder mehr nicht den festgelegten Außendurchmesser aufzeigen konnten, wurden als schlecht bewertet.
  • Flammhemmende Eigenschaft
  • Es wurde ein Flammbeständigkeitstest für jede der isolierten Leitungen gemäß dem ISO 6722 durchgeführt. Die isolierten Leitungen, die innerhalb von 70 Sekunden gelöscht waren, wurden als gut bewertet, und die isolierten Leitungen, die nach mehr als 70 Sekunden gelöscht waren, wurden als schlecht bewertet.
  • Rauheit der Leitungsoberfläche
  • Die Rauheit der Leitungsoberfläche wird verwendet, um die Oberflächenerscheinung einer isolierten Leitung zu bewerten. Die Messung der mittleren Oberflächenrauheit (Ra) einer jeden isolierten Leitung wurde unter Verwendung eines Nadeldetektors durchgeführt. Die isolierten Leitungen, deren Ra geringer als 1 μm war, wurden als gut bewertet, die isolierten Leitungen, deren Ra geringer als 0,5 μm war, wurden als ausgezeichnet bewertet, und die isolierten Leitungen, deren Ra mehr als 1 μm betrug, wurden als schlecht bewertet. Die Messung der Rauheit der Leitungsoberfläche wurde durchgeführt unter Verwendung des „SURFTEST SJ301”, hergestellt von MITUTOYO CORPORATION.
  • Zugdehnung
  • Die Messung der Zugdehnung einer jeden isolierten Leitung wurde mittels einer Zugtests gemäß dem JIS C 3005 durchgeführt. Im Speziellen wurden die isolierten Leitungen, nachdem die Leiter daraus entfernt worden waren, jeweils zu einer Länge von 100 mm geschnitten und wurden so schlauchförmige Teststücke erhalten, die lediglich die Leitungsbeschichtung umfassten. Dann wurden bei Raumtemperatur von 23 ± 5°C beide Enden eines jeden Teststücks an den Klammern einer Zugtestvorrichtung befestigt und mit einer Zuggeschwindigkeit von 200 mm/min gezogen, und wurden die Last und Dehnung zum Zeitpunkt des Reißens eines jeden Teststücks gemessen. Die isolierten Leitungen mit einer Zugdehnung von 125% oder mehr wurden als gut bewertet, die isolierten Leitungen mit einer Zugdehnung 300% oder mehr wurden als ausgezeichnet bewertet und die isolierten Leitungen mit einer Zugdehnung von weniger als 125% wurden als schlecht bewertet.
  • ISO-Langzeiterwärmungstest
  • Für jede der isolierten Leitungen wurde ein Alterungstest gemäß der ISO 6722 bei 150°C während 3000 Stunden durchgeführt und wurde dann bei jeder der isolierten Leitungen eine Stehspannungsprüfung von 1 kV während 1 Minute durchgeführt. Die isolierten Leitungen, die der Stehspannungsprüfung von 1 kV während 1 Minute nach dem Alterungstest während 3000 Stunden standhielten, wurden als bestanden angesehen und mit gut bewertet, und die isolierten Leitungen, die der Stehspannungsprüfung von 1 kV während 1 Minute nach dem Alterungstest während 3000 Stunden nicht standhielten, wurden als durchgefallen angesehen und mit schlecht bewertet.
  • JASO-Langzeiterwärmungstest
  • Für jede der isolierten Leitungen wurde ein Alterungstest gemäß JASO-D609 bei 150°C während 10.000 Stunden durchgeführt und wurde dann für jede der isolierten Leitungen eine Messung der Zugdehnung unter denselben wie oben bei dem Zugtest beschriebenen Bedingungen durchgeführt. Die isolierten Leitungen mit einer Zugdehnung von 100% oder mehr wurden als bestanden angesehen und mit gut bewertet, und die isolierten Leitungen mit einer Zugdehnung von weniger als 100% wurden als durchgefallen angesehen und mit schlecht bewertet.
  • Verschleißfestigkeit
  • Für jede der isolierten Leitungen wurde ein Verschleißfestigkeitstest gemäß der ISO 6722 durchgeführt. Die isolierten Leitungen, die einer 500-maligen oder öfteren Hin- und Herbewegung der Klinge widerstehen konnten, wurden als gut bewertet, und die isolierten Leitungen, die einer 500-maligen oder öfteren Hin- und Herbewegung der Klinge nicht standhielten, wurden als schlecht bewertet.
  • Tabelle 1
    Figure DE112011100601B4_0001
  • Tabelle 2
    Figure DE112011100601B4_0002
  • Wie aus den Tabellen 1 und 2 ersichtlich ist, enthielt die isolierte Leitung des Vergleichsbeispiels 1 kein bromhaltiges flammhemmendes Mittel, während die isolierte Leitung des Beispiels 1 dies enthielt. Aus diesem Grund war die isolierte Leitung des Vergleichsbeispiels 1 hinsichtlich der flammhemmenden Eigenschaft schlechter.
  • Die isolierte Leitung des Vergleichsbeispiels 2 enthielt kein Zinksulfid, während die isolierte Leitung des Beispiels 2 dies enthielt. Aus diesem Grund war die isolierte Leitung des Vergleichsbeispiels 2 hinsichtlich der Wärmebeständigkeit schlechter und bestand demgemäß weder den ISO-Langzeiterwärmungstest noch den JASO-Langzeiterwärmungstest.
  • Die isolierte Leitung des Vergleichsbeispiels 3 enthielt keinen Vernetzungskatalysator, während die isolierte Leitung des Beispiels 3 diesen enthielt. Aus diesem Grund wies die isolierte Leitung des Vergleichsbeispiels 3 einen niedrigen Gelgehalt auf und wurde im Hinblick auf die Rauheit der Leitungsoberfläche und die Verschleißfestigkeit als schlecht bewertet und bestand weder den ISO-Langzeiterwärmungstest noch den JASO-Langzeiterwärmungstest.
  • Die isolierte Leitung des Vergleichsbeispiels 4 enthielt nichtmodifiziertes Polyolefin anstelle von silangepfropftem Polyolefin, während die isolierte Leitung des Beispiels 4 ein silangepfropftes Polyolefin enthielt. Das heißt, die isolierte Leitung des Vergleichsbeispiels 4 enthielt kein wasservernetzbares Polyolefin. Aus diesem Grund war die isolierte Leitung des Vergleichsbeispiels 4 nicht vernetzt und wurde hinsichtlich des Gelgehalts als schlecht bewertet und bestand weder den ISO-Langzeiterwärmungstest noch den JASO-Langzeiterwärmungstest.
  • Die isolierte Leitung des Vergleichsbeispiels 5 enthielt weder ein Antioxidationsmittel, einen Kupferinhibitor noch ein Zinksulfid, während die isolierte Leitung des Beispiels 5 diese enthielt. Aus diesem Grund bestand die isolierte Leitung des Vergleichsbeispiels 5 weder den ISO-Langzeiterwärmungstest noch den JASO-Langzeiterwärmungstest.
  • Die isolierte Leitung des Vergleichsbeispiels 6 enthielt weder ein flammhemmendes Mittel noch ein nichtmodifiziertes Polyolefin. Aus diesem Grund war die isolierte Leitung des Vergleichsbeispiels 6 hinsichtlich der flammhemmenden Eigenschaft und der Produktivität schlechter.
  • Demgegenüber waren die isolierten Leitungen der Beispiele 1 bis 6 hinsichtlich der Eigenschaften alle gut und hinsichtlich der Produktivität und Wärmebeständigkeit ausgezeichnet.
  • Die vorangegangene Beschreibung der bevorzugten Ausführungsformen der vorliegenden Erfindung wurde zum Zweck der Veranschaulichung und Beschreibung gegeben, beabsichtigt jedoch nicht, erschöpfend oder für die vorliegende Erfindung auf die speziell offenbarten Formen einschränkend zu sein, und es sind Modifikationen und Variationen möglich, insofern diese nicht von den Prinzipien der vorliegenden Erfindung abweichen.

Claims (10)

  1. Zusammensetzung für eine Leitungsbeschichtung, wobei die Zusammensetzung Folgendes enthält: (A) ein wasservernetzbares Polyolefin, das ein Polyolefin umfasst, welches mittels eines Silankopplungsreagens modifiziert ist, (B) ein nichtmodifiziertes Polyolefin, (C) ein modifiziertes Polyolefin, das mit einer oder einer Vielzahl an funktionellen Gruppen modifiziert ist, ausgewählt aus der Gruppe bestehend aus einer Carbonsäuregruppe, einer Säureanhydridgruppe, einer Aminogruppe und einer Epoxygruppe, (D) ein flammhemmendes Mittel, (E) einen Vernetzungskatalysator, der ein Silanolkondensationskatalysator ist, (F) ein phenolisches Antioxidationsmittel und (G) entweder ein Zinksulfid (G1) oder sowohl ein Zinkoxid (G2) als auch eine Imidazolverbindung (G3), wobei das flammhemmende Mittel (D) ein bromhaltiges flammhemmendes Mittel (D1) enthält.
  2. Zusammensetzung nach Anspruch 1, wobei das flammhemmende Mittel (D) ferner Antimontrioxid (D2) enthält.
  3. Zusammensetzung nach Anspruch 1 oder 2, ferner enthaltend einen Kupferinhibitor (H).
  4. Zusammensetzung nach einem der Ansprüche 1 bis 3, wobei der Gehalt des wasservernetzbaren Polyolefins (A) 30 bis 90 Masseteile beträgt, der Gesamtgehalt des nichtmodifizierten Polyolefins (B) und des modifizierten Polyolefins (C), das durch die funktionelle Gruppe modifiziert ist, 10 bis 70 Masseteile beträgt und der Gehalt des bromhaltigen flammhemmenden Mittels (D1) 10 bis 70 Masseteile beträgt, bezogen auf 100 Masseteile des Gesamtgehalts der Komponenten (A), (B) und (C).
  5. Zusammensetzung nach einem der Ansprüche 1 bis 4, wobei das bromhaltige flammhemmende Mittel (D1) ein oder eine Vielzahl von bromhaltigen flammhemmenden Mitteln umfasst, ausgewählt aus der Gruppe bestehend aus Ethylenbis(pentabrombenzol), Bis(tetrabromphthalimid)ethan und Tetrabrombisphenol A-bis(dibrompropylether).
  6. Zusammensetzung nach einem der Ansprüche 1 bis 5, wobei das Polyolefin des wasservernetzbaren Polyolefins (A) ein oder eine Vielzahl an Polyethylenen umfasst, ausgewählt aus der Gruppe bestehend aus Polyethylen mit sehr niedriger Dichte, linearem Polyethylen mit niedriger Dichte und Polyethylen mit niedriger Dichte.
  7. Zusammensetzung nach einem der Ansprüche 1 bis 6, wobei ein gegebenenfalls enthaltener anorganischer Füllstoff in einem Gehalt von 30 Masseteile oder weniger bezogen auf 100 Masseteile des Gesamtgehalts der Harzkomponenten (A), (B) und (C) enthalten ist.
  8. Verwendung der Zusammensetzung gemäß einem der Ansprüche 1 bis 7 zur Herstellung einer Leitungsbeschichtung einer isolierten Leitung, wobei die Zusammensetzung wasservernetzt wird.
  9. Verwendung nach Anspruch 8, wobei die Zusammensetzung für die Leitungsbeschichtung Folgendes umfasst: eine flammhemmende Charge, die zumindest das nichtmodifizierte Polyolefin (B), das modifizierte Polyolefin (C), das durch die funktionelle Gruppe modifiziert ist, und das bromhaltige flammhemmende Mittel (D1) enthält, das wasservernetzbare Polyolefin (A) und den Vernetzungskatalysator (E), wobei die flammhemmende Charge, das wasservernetzbare Polyolefin und der Vernetzungskatalysator geknetet werden, ein Leiter der Leitung mit den gekneteten Komponenten als der Leitungsbeschichtung beschichtet wird und dann die Leitungsbeschichtung wasservernetzt wird.
  10. Verwendung der Zusammensetzung gemäß einem der Ansprüche 1 bis 7 zur Herstellung einer Leitungsbeschichtung einer isolierten Leitung in einem Kabelstrang, wobei die Zusammensetzung wasservernetzt wird.
DE112011100601.2T 2010-02-18 2011-02-15 Zusammensetzung für eine Leitungsbeschichtung und deren Verwendung zur Herstellung einer isolierten Leitung und eines Kabelstrangs Active DE112011100601B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010033817A JP5593730B2 (ja) 2010-02-18 2010-02-18 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP2010-033817 2010-02-18
PCT/JP2011/053085 WO2011102324A1 (ja) 2010-02-18 2011-02-15 電線被覆材用組成物、絶縁電線およびワイヤーハーネス

Publications (2)

Publication Number Publication Date
DE112011100601T5 DE112011100601T5 (de) 2013-01-31
DE112011100601B4 true DE112011100601B4 (de) 2017-06-01

Family

ID=44482909

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112011100601.2T Active DE112011100601B4 (de) 2010-02-18 2011-02-15 Zusammensetzung für eine Leitungsbeschichtung und deren Verwendung zur Herstellung einer isolierten Leitung und eines Kabelstrangs

Country Status (5)

Country Link
US (1) US9093197B2 (de)
JP (1) JP5593730B2 (de)
CN (1) CN102762650B (de)
DE (1) DE112011100601B4 (de)
WO (1) WO2011102324A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5593730B2 (ja) 2010-02-18 2014-09-24 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5870477B2 (ja) * 2010-09-10 2016-03-01 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5703789B2 (ja) * 2011-01-31 2015-04-22 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5845517B2 (ja) * 2012-01-30 2016-01-20 株式会社オートネットワーク技術研究所 難燃性組成物および絶縁電線
JP2014009238A (ja) * 2012-06-27 2014-01-20 Furukawa Electric Co Ltd:The 耐熱性樹脂組成物、当該耐熱性樹脂組成物を有する配線材、ケーブル及び成形品
JP5989419B2 (ja) * 2012-06-27 2016-09-07 古河電気工業株式会社 耐熱性樹脂組成物、当該耐熱性樹脂組成物の製造方法、当該耐熱性樹脂組成物を有する配線材、ケーブル及び成形品
JP2014009237A (ja) * 2012-06-27 2014-01-20 Furukawa Electric Co Ltd:The 耐熱性樹脂組成物、当該耐熱性樹脂組成物を有する配線材、ケーブル及び成形品
JP2014067594A (ja) * 2012-09-26 2014-04-17 Sumitomo Wiring Syst Ltd シラン架橋電線の製造方法及びシラン架橋電線
JP2014203765A (ja) 2013-04-09 2014-10-27 住友電装株式会社 架橋pvc被覆電線の製造方法
CN103524847B (zh) * 2013-09-30 2016-01-27 芜湖航天特种电缆厂 一种硅烷交联聚乙烯电缆料及其制备方法
JP2015071667A (ja) * 2013-10-02 2015-04-16 住友電気工業株式会社 ハロゲンフリーコンパウンドの製造方法及び絶縁電線の製造方法
EP3161063B1 (de) * 2014-06-27 2024-03-06 Dow Global Technologies LLC Stabilisierte feuchtigkeitshärtende polymerzusammensetzungen
JP6295886B2 (ja) * 2014-08-22 2018-03-20 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP6287919B2 (ja) * 2015-03-24 2018-03-07 株式会社オートネットワーク技術研究所 電線被覆材組成物、絶縁電線及びワイヤーハーネス
JP6776584B2 (ja) * 2016-04-04 2020-10-28 日立金属株式会社 電線・ケーブルの製造方法
US20190040245A1 (en) * 2016-04-13 2019-02-07 Adeka Corporation Flame-retardant polyolefin-based resin composition
PL3372631T3 (pl) 2017-03-08 2021-11-29 Armacell Enterprise Gmbh & Co. Kg Elastyczna pianka o poprawionych właściwościach izolacyjnych
JP6284673B1 (ja) 2017-07-05 2018-02-28 古河電気工業株式会社 樹脂組成物、樹脂被覆材、自動車用ワイヤーハーネス及び自動車用ワイヤーハーネスの製造方法
JP6733695B2 (ja) * 2018-03-20 2020-08-05 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
CN109535533A (zh) * 2018-11-02 2019-03-29 广东聚石化学股份有限公司 一种用于5g光缆护套的耐热型低烟无卤线缆料及其制备方法
CN115380067A (zh) * 2020-04-13 2022-11-22 陶氏环球技术有限责任公司 阻燃剂聚合物组合物
JP7067590B2 (ja) * 2020-07-09 2022-05-16 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP7491149B2 (ja) * 2020-09-03 2024-05-28 株式会社オートネットワーク技術研究所 難燃性樹脂組成物、絶縁電線、ワイヤーハーネス
CN114907672A (zh) * 2022-06-01 2022-08-16 合肥工业大学 一种具有绝缘故障指示功能的环氧复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212291A (ja) 1999-01-28 2000-08-02 Yazaki Corp ノンハロゲン難燃シラン架橋ポリオレフィン組成物の製造方法
JP2006131720A (ja) 2004-11-04 2006-05-25 Riken Technos Corp シラン架橋性ポリオレフィンとの混合用難燃性樹脂組成物及びその成形体
DE112010004666T5 (de) * 2009-12-02 2013-01-31 Autonetworks Technologies, Ltd. Zusammensetzung für Leitungsbeschichtungsmaterial, isolierte Leitung und Kabelstrang

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5476646A (en) * 1977-12-01 1979-06-19 Hitachi Cable Ltd Crosslinking of flame-retardant polyolefin and preparation of electrical wire insulated with crosslinked flame-retardant polyolefin
JPS6058256B2 (ja) * 1979-02-15 1985-12-19 タツタ電線株式会社 難燃性合成樹脂組成物
JPH02158646A (ja) 1988-12-09 1990-06-19 Hitachi Cable Ltd 難燃性電気絶縁組成物
JP2869817B2 (ja) 1990-11-24 1999-03-10 株式会社フジクラ 難燃性組成物
US5284889A (en) 1992-11-20 1994-02-08 Minnesota Mining And Manufacturing Company Electrically insulating film backing
JPH07138419A (ja) 1993-11-19 1995-05-30 Nippon Petrochem Co Ltd 難燃性樹脂組成物
JPH07196857A (ja) 1993-12-29 1995-08-01 Nippon Petrochem Co Ltd 低発煙性高難燃性樹脂組成物
JP3186542B2 (ja) * 1995-09-27 2001-07-11 住友ベークライト株式会社 難燃発泡架橋ポリオレフィン絶縁電線の製造方法
US6924031B2 (en) 1998-09-25 2005-08-02 Pirelli Cavi E Sistemi S.P.A. Low-smoke self-extinguishing electrical cable and flame-retardant composition used therein
JP2000265091A (ja) 1999-03-12 2000-09-26 Mitsubishi Electric Corp 着色撚り線及びその製造方法
JP2000294039A (ja) 1999-04-09 2000-10-20 Hitachi Cable Ltd 絶縁電線
JP2000290439A (ja) * 1999-04-12 2000-10-17 Sumitomo Wiring Syst Ltd オレフィン系エラストマー組成物
JP2002201318A (ja) * 2000-12-28 2002-07-19 Sumitomo Wiring Syst Ltd オレフィン系熱可塑性エラストマー組成物
JP2002356591A (ja) 2001-05-30 2002-12-13 Yazaki Corp 電線保護チューブ
JP2003193622A (ja) 2001-12-25 2003-07-09 Sumitomo Electric Ind Ltd 樹脂被覆防食pc鋼材
JP2005002245A (ja) * 2003-06-13 2005-01-06 Advanced Plastics Compounds Co シラン架橋難燃性樹脂成形体
EP1953193A4 (de) 2005-11-21 2012-01-18 Sumitomo Electric Industries Flammwidrige harzzusammensetzung und damit hergestellter isolierter draht, damit hergestellter isolierter abgeschirmter draht, damit hergestelltes isoliertes kabel und damit hergestellter isolierter schlauch
JP4998844B2 (ja) 2006-02-03 2012-08-15 住友電気工業株式会社 ノンハロゲン絶縁電線
JP2008117691A (ja) 2006-11-07 2008-05-22 Sumitomo Electric Ind Ltd ノンハロゲン絶縁電線
JP4197187B2 (ja) 2006-12-12 2008-12-17 株式会社オートネットワーク技術研究所 難燃性樹脂組成物ならびにこれを用いた絶縁電線およびワイヤーハーネス
JP5133578B2 (ja) 2007-02-27 2013-01-30 株式会社オートネットワーク技術研究所 絶縁電線およびワイヤーハーネス
JP2008222800A (ja) 2007-03-09 2008-09-25 Fujikura Ltd ノンハロゲン難燃性樹脂組成物、難燃性絶縁電線及び自動車用ワイヤーハーネス
JP5343327B2 (ja) 2007-05-31 2013-11-13 株式会社オートネットワーク技術研究所 難燃性シラン架橋オレフィン系樹脂の製造方法および絶縁電線ならびに絶縁電線の製造方法
JP5103061B2 (ja) * 2007-06-05 2012-12-19 株式会社オートネットワーク技術研究所 難燃シラン架橋ポリオレフィン系樹脂組成物および絶縁電線
JP5098451B2 (ja) 2007-06-08 2012-12-12 日立電線株式会社 耐放射線性非ハロゲン難燃性樹脂組成物及びこれを用いた電線・ケーブル
WO2009008537A1 (ja) 2007-07-12 2009-01-15 Autonetworks Technologies, Ltd. 難燃性シラン架橋オレフィン系樹脂組成物および絶縁電線ならびに難燃性シラン架橋オレフィン系樹脂の製造方法
JP5323332B2 (ja) * 2007-08-25 2013-10-23 古河電気工業株式会社 難燃性絶縁電線
JP2009092055A (ja) 2007-09-21 2009-04-30 Toyota Motor Corp 内燃機関の制御装置
JP5255404B2 (ja) 2008-10-31 2013-08-07 古河電気工業株式会社 異種金属からなる電線と端子の接続部及び接続方法
JP5444737B2 (ja) 2009-01-30 2014-03-19 株式会社オートネットワーク技術研究所 難燃性組成物および絶縁電線ならびに難燃性組成物の製造方法
JP5593730B2 (ja) 2010-02-18 2014-09-24 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
JP5870477B2 (ja) 2010-09-10 2016-03-01 株式会社オートネットワーク技術研究所 電線被覆材用組成物、絶縁電線およびワイヤーハーネス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212291A (ja) 1999-01-28 2000-08-02 Yazaki Corp ノンハロゲン難燃シラン架橋ポリオレフィン組成物の製造方法
JP2006131720A (ja) 2004-11-04 2006-05-25 Riken Technos Corp シラン架橋性ポリオレフィンとの混合用難燃性樹脂組成物及びその成形体
DE112010004666T5 (de) * 2009-12-02 2013-01-31 Autonetworks Technologies, Ltd. Zusammensetzung für Leitungsbeschichtungsmaterial, isolierte Leitung und Kabelstrang

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ISO 6722
JIS C 3005
JIS2
JP 2006-131720 A *
JP 2009-051918 A *

Also Published As

Publication number Publication date
US9093197B2 (en) 2015-07-28
WO2011102324A1 (ja) 2011-08-25
DE112011100601T5 (de) 2013-01-31
CN102762650B (zh) 2014-06-18
US20120273268A1 (en) 2012-11-01
CN102762650A (zh) 2012-10-31
JP2011168697A (ja) 2011-09-01
JP5593730B2 (ja) 2014-09-24

Similar Documents

Publication Publication Date Title
DE112011100601B4 (de) Zusammensetzung für eine Leitungsbeschichtung und deren Verwendung zur Herstellung einer isolierten Leitung und eines Kabelstrangs
DE112008001402B4 (de) Verfahren zur Herstellung eines flammhemmenden silanvernetzten Olefinharzes und eines isolierten Drahts
DE112010000002B4 (de) Flammhemmende Zusammensetzung, Verfahren zur Herstellung der flammhemmenden Zusammensetzung und und deren Verwendung zur Herstellung eines isolierten Drahts
DE112011101191B4 (de) Zusammensetzung für eine Leitungsbeschichtung, deren Verwendung zur Herstellung einer nicht vernetzten isolierenden Beschichtung einer isolierten Leitung und Verfahren zur Herstellung einer isolierten Leitung
DE112008001781B4 (de) Zusammensetzung für ein flammwidriges Silan-quervernetztes Olefinharz, Verfahren zu ihrer Herstellung und ihre Verwendung zum Beschichten eines Leiters, flammwidriges Silan-quervernetzten Olefinharz sowie Verfahren zu seiner Herstellung
DE112012000622T5 (de) Zusammensetzung für ein Leitungsbeschichtungsmaterial, isolierte Leitung und Kabelbaum
DE112011103020T5 (de) Zusammensetzung für ein Leitungsbeschichtungsmaterial, isolierte Leitung und Kabelbaum
DE112006001039B4 (de) Nicht-halogenhaltiger isolierter Draht und Kabelbaum
US9951242B1 (en) Electric wire coating material composition, insulated electric wire, and wire harness
DE19941180B4 (de) Partiell vernetzte thermoplastische Feuerhemmende Harzzusammensetzung, deren Verwendung, Verfahren zu deren Herstellung sowie Formteil
DE112010004666T5 (de) Zusammensetzung für Leitungsbeschichtungsmaterial, isolierte Leitung und Kabelstrang
DE3689096T2 (de) Feuerhemmende Polyolefinzusammensetzung.
DE102008011146B4 (de) Halogenfreie Harzzusammensetzung und deren Verwendung in einem isolierten elektrischen Kabel oder einem Kabelbündel
DE112004002371B4 (de) Vernetzte flammhemmende Harzzusammensetzung und deren Verwendung in einem nichthalogenhaltigen Draht
JP6350129B2 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
DE112007001703T5 (de) Isolierte Leitung und Kabelbaum
DE102009005850A1 (de) Halogenfreie Harzzusammensetzung, damit ummantelter Draht und Kabelstrang mit mindestens einem zuvor genannten ummantelten Draht
DE112004002347B4 (de) Unvernetzte flammhemmende Harzzusammensetzung sowie deren Verwendung
DE112010004548B4 (de) Flammwidrige Harzzusammensetzung und deren Verwendung
WO2016027651A1 (ja) 電線被覆材用組成物、絶縁電線およびワイヤーハーネス
DE112006001102B4 (de) Halogenfreie isolierte Leitung und Kabelbaum
DE112019001430T5 (de) Zusammensetzung für Drahtbeschichtungsmaterial, isolierter Draht und Kabelbaum
DE112010000847T5 (de) Flammschutzmittel, flammhemmende Harzzusammensetung, und isolierter Draht
EP2415823B1 (de) Vernetzbare Polymermischung für Mäntel von Kabeln und Leitungen
EP3635072B1 (de) Feuerhemmende kabel aus halogenfreien und schwermetallfreien zusammensetzungen

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: C08L0023020000

Ipc: C08L0023260000

R020 Patent grant now final
R084 Declaration of willingness to licence