CN1452222A - 半导体装置的制造方法 - Google Patents

半导体装置的制造方法 Download PDF

Info

Publication number
CN1452222A
CN1452222A CN02160477A CN02160477A CN1452222A CN 1452222 A CN1452222 A CN 1452222A CN 02160477 A CN02160477 A CN 02160477A CN 02160477 A CN02160477 A CN 02160477A CN 1452222 A CN1452222 A CN 1452222A
Authority
CN
China
Prior art keywords
gas
film
nitride film
substrate
silicon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02160477A
Other languages
English (en)
Other versions
CN1224086C (zh
Inventor
户塚正裕
奥友希
服部亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN1452222A publication Critical patent/CN1452222A/zh
Application granted granted Critical
Publication of CN1224086C publication Critical patent/CN1224086C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02211Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound being a silane, e.g. disilane, methylsilane or chlorosilane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明的目的在于:在氮化膜的成膜中减少氨气使用量,改善所获得的氮化膜的膜厚均一性,其实现方法是采用催化剂CVD法、用硅烷气体与氨气在衬底1上形成氮化硅膜的方法。在该方法中,让在硅烷气体与氨气中添加了氢气的气体5先接触催化剂6,然后供给到衬底上。成膜装置20中设有反应室10。反应室10的内部有保持衬底的衬底座2,以及催化剂6。反应室10的外部,设有储存硅烷气体、氨气与氢气的气罐11~13。并且,还设有连接气罐和反应室的气体配管15,以及将所述气体从气体配管供给到反应室内部的供给部4。在此制造装置中,使来自供给部的所述气体先接触催化剂,然后供给衬底,在衬底1上形成氮化硅膜。

Description

半导体装置的制造方法
技术领域
本分明涉及氮化硅膜的成膜方法,特别是含有用催化剂化学气相淀积法的氮化硅膜的成膜方法、成膜装置、以及包含该成膜方法的半导体装置的制造方法。
背景技术
作为在硅衬底等的半导体衬底上形成氮化硅膜的方法,主要有从表面氮化硅衬底的方法、以及用化学气相淀积法(CVD法)形成氮化硅膜的成膜方法。其中,特别是把由硅烷气体和氨气体组成的原料气体通过加热的催化剂供给硅衬底上,在该衬底上成膜氮化硅膜的催化剂化学气相淀积法(催化剂CVD法),正在为业界所应用。
用图11说明用此催化剂CVD法形成氮化硅膜的成膜方法。首先,说明用此催化剂CVD法形成氮化膜的成膜装置,此成膜装置中设有在半导体衬底51上形成氮化膜的反应室60。此反应室60的内部,设有支承半导体衬底51的衬底座52、把由硅烷气体和氨气组成的原料气体55供给半导体衬底51的气体供给部54,以及介于气体供给部54与衬底座52之间的催化剂56。再有,一般被称为催化剂的物质中含有被电阻加热的金属。为了提高热接触,在衬底座52与半导体衬底51之间夹入碳片53。并且,此成膜装置具有分别储存由硅烷气体和氨气组成的原料气体的气罐,以及连接该气罐与反应室内部的气体供给部的气体配管;通过气体配管和气体供给部从气罐把原料气体导入反应室内部。
接着,说明用此催化剂CVD法形成氮化膜的方法。此氮化膜的成膜方法的顺序如下。
(a)在反应室60内的衬底座52上的碳片53上设置硅衬底51。
(b)通过气体配管65和气体导入部54,从分别储存由硅烷气体和氨气组成的原料气体的气罐(未作图示)把由硅烷气体和氨气组成的原料气体55导入反应室60。
(c)导入反应室60内的原料气体55与加热了的催化剂56接触之后,供给半导体衬底51。
(d)通过供给的原料气体55在半导体衬底51上形成氮化硅膜。
用上述传统的催化剂CVD法制成氮化膜有以下问题。
(1)原料气体中需要用约100倍于硅烷气体的流量比供给氨气。因为氨气对环境有害,所以必须减少流量。
(2)获得的氮化膜在衬底51面内的膜厚均匀度差。例如对于直径10.16cm(φ4″)的硅衬底,其面内膜厚均匀度约为13%。
(3)因为,半导体衬底51与衬底座52的接触不充分,因被加热催化剂发出的辐射热使半导体衬底51过升温;特别是GaAs衬底等的化合物半导体器件,不能放置在太高的温度下,即为了防止电阻电极的劣化,衬底温度须在约360℃以下。另外,如果为了避免过升温而空开催化剂与半导体衬底的间隔,则会降低成膜速度。又,为了除去衬底表面的吸附水,氮化硅膜成膜时衬底温度要在300℃以上。
发明内容
本发明的目的是,在氮化硅膜成膜时,在得到大的成膜速度的同时,还能抑制半导体衬底的过升温;另一目的是,改善所获得的氮化硅膜的膜厚均匀度;再一目的是,进一步减少使用的氨气。
本发明的氮化硅膜的成膜方法是用催化剂CVD法,是使用硅烷气体和氨气在衬底上形成氮化硅膜的成膜方法;
其特征在于:使在所述硅烷气体及氨气中添加了氢气的气体先接触催化剂,然后再供给到所述衬底上。
并且,本发明的氮化硅膜的成膜方法是所述氮化硅膜的成膜方法;其特征在于:以20以下的氨气/氢气的流量比供给气体。
并且,本发明的氮化硅膜的成膜方法是所述氮化硅膜的成膜方法;其特征在于:是用氨气/硅烷气体的流量比为20以下供给气体。
并且,本发明的氮化硅膜的成膜方法是所述氮化硅膜的成膜方法;其特征在于:用第二气体一边冷却所述衬底一边供给所述气体。
并且,本发明的氮化硅膜的成膜方法是所述氮化硅膜的成膜方法;其特征在于:所述第二气体是氢气。
本发明的半导体装置的制造方法的特征在于:包括先使在硅烷气体及氨气中添加了氢气的气体接触了催化剂,然后送到衬底上形成氮化硅膜的成膜方法。
本发明的氮化硅膜的成膜装置中设有:
反应室,
在所述反应室内的支承衬底的衬底座,
配置在所述反应室内部的催化剂,
在所述反应室外部分别储存硅烷气体、氨气以及氢气的气罐,
连接所述气罐与所述反应室的气体配管,以及
从所述气体配管把含有硅烷气体、氨气及氢气的气体供给所述反应室内部的气体供给部;
其特征在于:使来自所述气体供给部的所述气体先接触所述催化剂,然后供给所述衬底,在所述衬底上形成氮化硅膜。
并且,本发明的氮化硅膜的成膜装置是所述氮化硅膜的成膜装置,其特征在于:所述衬底座在放置所述衬底的一侧设有凹部,在所述衬底的背面和所述凹部之间形成空间,并在该空间内设有导入冷却所述衬底的第二气体配管。
并且,本发明的氮化硅膜的成膜装置是所述氮化硅膜的成膜装置,其特征在于:所述第二气体是氢气。
附图说明
图1是表示本发明实施例1的氮化硅膜的成膜装置结构的示意图。
图2是表示采用本发明实施例1的氮化硅膜的成膜方法的氨气流量与所获得的氮化膜的折射率之间的关系的曲线图。
图3是表示采用本发明实施例1的氮化硅膜的成膜方法的氨气流量与所获得的氮化膜的膜厚均匀度之间的关系的曲线图。
图4是表示本发明实施例1的氮化硅膜的成膜方法中是否有氢气与所获得的氮化膜特性之间的关系的曲线图。
图5是表示本发明实施例1的氮化硅膜的成膜方法中的混合气体的种类与所获得的氮化膜的折射率之间的关系的曲线图。
图6(a)~(c)是表示用本发明实施例1的半导体装置制造方法制造的半导体装置几个例子的示意图。
图7是表示本发明实施例2的氮化硅膜成膜装置结构的示意图。
图8是图7的成膜装置的反应室内的示意图。
图9是表示本发明实施例3的氮化硅膜的成膜方法中的氢气流量与所获得的氮化膜的折射率之间的关系的曲线图。
图10是表示本发明实施例3的氮化硅膜的成膜方法中的氢气流量与氮化膜的成膜速度之间的关系的曲线图。
图11是表示采用传统的催化剂CVD法的氮化硅膜成膜装置结构的示意图。
【符号说明】
1半导体衬底;2衬底座;4气体供给部;5混合气体;6催化剂;8挡板;10反应室;11硅烷气体气罐;12氨气气罐;13氢气气罐;14a、14b、14c流量调整器;15原料气体配管;16排气管;17排气;20、20a氮化硅膜的成膜装置;21半导体衬底;22a源电极;22b栅电极;22c漏电极;22d、22e金属薄膜;23氮化硅膜;30凹部;31a、31b冷却气体配管;32氢气;33空间;51半导体衬底;52衬底座;53碳片;54气体供给部;55原料气体;56催化剂;58挡板;60反应室;65原料气体配管。
具体实施方式
以下参照附图说明本发明实施例中的氮化硅膜的成膜方法、成膜装置以及半导体装置的制造方法。图中实际相同的部件均采用相同的符号。
实施例1
以下,说明本发明实施例1的氮化硅膜的成膜装置及成膜方法。首先,按照图1的示意图说明此氮化硅膜成膜装置20的结构。成膜装置20中,设有通过催化剂CVD反应在半导体衬底1上形成氮化硅膜的反应室10。反应室10的内部设有:支承半导体衬底1的衬底座2,把含有硅烷气体(SiH4)、氨气(NH3)以及氢气(H2)的原料气体5送到反应室10内部的半导体衬底1的气体供给部4,以及位于气体供给部4与硅衬底1之间的催化剂6。再有,在反应室10中也可以设置将从气体供给部4向硅衬底1流动的原料气体切断的挡板8。另外,成膜装置20在反应室的外部还设有分别储存硅烷气体、氨气及氢气的气罐11、12、13。还设有用以连接气罐11、12、13和反应室10内部的气体供给部4的气体配管15。成膜装置20中,设有给硅烷气体、氨气添加供给氢气的设备,通过添加氢气,即使减少氨气的流量也可以形成具有充分膜特性的氮化硅膜。因此,可以减少对环境有害的氨气流量。再有,本例中作为硅烷气体用的是硅烷气体(SiH4),但是,对此并无限定,采用其他硅烷气体(SinH2n+2)也可以。
下面,说明此氮化硅膜的成膜装置20中的原料气体的配管***。在氮化硅膜成膜装置20中设有分别储存硅烷气体、氨气及氢气的气罐11、12、13。通过流量调整器14a、14b、14c,再通过气体配管15和气体供给部4把含有硅烷气体、氨气及氢气的原料气体5从气罐11、12、13导入反应室10的内部。并且,反应室10的内部设有排气管16,通过该排气管16进行排气16。再有,在此连接于反应室10的气体配管15中硅烷气体、氨气及氢气被混合,但并不以此为限,也可以在气罐11、12、13与反应室10之间设置预先混合各种气体的混合室(未作图示)。
接着,说明氮化硅膜的成膜方法。该成膜方法的进行顺序如下。
(a)在反应室10的内部,在衬底座2上设置作为半导体衬底的GaAs衬底1。衬底1的温度保持在300℃。
(b)通过气体配管15和气体供给部4,从气罐11、12、13把含有硅烷气体、氨气及氢气的原料气体5导入反应室10内。这时,原料气体中的氨气/氢气的流量比设为0.5以下;由此可以减少对环境有害的氨气的流量。
(c)导入反应室10内的原料气体5先与被加热的催化剂6接触,然后被送半导体衬底1上。例如,设定如下的成膜条件:首先,将反应室10内的气体压力设定为5Pa;又在催化剂6中使用表面温度保持为约1750℃的钨丝;催化剂6与半导体衬底1之间的距离d设定为约75mm,以将衬底1的温升抑制在50℃以内。
(d)被供给的原料气体5在半导体衬底1上形成氮化硅膜。
进而,研讨所述氮化硅膜的成膜方法中送至反应室内的各种气体的流量比。作为供给的气体的设定,将添加氢气的流量设为100sccm,将硅烷气体的流量设为:1. 0sccm、1. 4sccm、2. 4sccm等三种。“sccm”是流量单位,意指“标准立方厘米/分(standardcc/min)”。即表示标准状态(0℃、大气压(1.013hPa)下每分钟的流量。这时的氨气流量与所获得的氮化膜特性之间的关系的研究结果,如图2及图3所示。图2是表示氨气流量与所获得的氮化膜折射率之间的关系曲线图。化学计量比的氮化硅膜Si3iN4的折射率约为2.05;据认为,膜的折射率越高,氮气的含量越少。
由图2可知,随着氨气流量的增加而折射率慢慢地下降。另一方面,如果氨气流量设为约10sccm以下,则膜的折射率急剧变高,而氨气含量则减少。因此,在得到与原来同等程度的折射率2.00~2.05的氮化硅膜的情况下,硅烷气体的流量为1.5sccm,氨气/氢气的流量比在0.04~0.5的范围内即可。但是,并不以此为限,只要设定能获得所要膜特性的成膜条件即可。
图3是表示氨气流量与得到的氮化膜的膜厚均匀度之间的关系的曲线图。膜厚均匀度可按下列顺序算出。首先,在多个测定点测定所得到的氮化硅膜的膜厚,算出其最大值及最小值;然后根据下式算出膜厚均匀度;
膜厚均匀度=(最大值-最小值)/(最大值+最小值)
由图3可知,如氨气流量减少,则膜厚均匀度变低,膜厚的均匀程度被改善。如进一步减少氨气流量,则膜厚均匀度变高,均匀程度劣化。最好在得到的氮化膜的膜厚均匀度为约10%以下的成膜条件下形成氮化硅膜。
由图2与图3可知,在供给气体的工序中,最好将氨气/氢气的流量比设定为0.5以下。并且,最好将氨气/硅烷气体的流量比设定为20以下。
接着,用图4说明此氮化硅膜的成膜方法中,作为添加在硅烷气体和氨气中的添加气体的氢气的效果。图4是表示是否有氢气和所获得的氮化硅膜的特性之间的关系的曲线图。图4中分别示出了:氨气的流量设为100sccm、氢气的流量设为0sccm时,以及氨气的流量设为4sccm、氢气的流量设为100sccm时所获得的各氮化膜的特性。由图4可知:通过添加氢气,在同等程度折射率的情况下膜厚均匀度得到改善。
再用图5说明:此氮化硅膜的成膜方法中作为添加气体选择氢气的效果。图5是表示添加气体的种类与所获得的氮化硅膜折射率之间的关系的曲线图。图5表示使用作为添加气体的氢气时,硅烷气体的流量与所获得的氮化膜折射率的关系。另外,示出了作为添加气体使用氦气时的一个例子。如图5所示,在添加气体为氦气时所获得的氮化膜折射率比使用氢气时的高,膜中的氮气组成比变小。由此可知,通过选择氢气作为添加气体可以控制所获得的氮化膜的氮的含有率。再有,不限于具有化学计量比的氮化硅膜Si3N4,也可以制作具有所要求膜组成成分的氮化膜。
再就用所述的氮化硅膜成膜方法获得的氮化硅膜(实施例1)的特性和用传统的氮化硅膜成膜方法获得氮化硅膜(比较例1)的特性进行比较与说明。比较例1
本例说明用传统的氮化硅膜成膜方法获得的氮化硅膜的特性。传统方法获得的氮化硅膜的折射率大致在2.00~2.05的范围内;氢浓度作为N-H结合键为2×1021cm-3、作为Si-H结合键为4×1020cm-3。并且,用缓冲氟酸(BHF6∶1)的刻蚀速度约为9nm/分。另外,构成膜剥离难度指标的张力值为4×109dyn/cm2
实施例1
本例说明用本发明的氮化硅膜成膜方法所获得的氮化硅膜的特性。所获得氮化硅膜的折射率大致在2.00~2.05的范围内;氢气浓度作为N-H结合键为1×1021cm-3、作为Si-H结合键为4×1020cm-3。这种成膜方法中,在原料气体中添加了氢气,但与上述传统的氮化硅膜中含有的氢浓度大致相同。用缓冲氟酸(BHF6∶1)的刻蚀速度约为4nm/分。与上述传统的氮化膜相比刻蚀速度较小,与比较例相比表面性(planarity)较好。作为膜剥离难度指标的张力值为1×109dyn/cm2。
并且,半导体装置的制造方法中也可以包括上述氮化硅膜的成膜方法。以下,说明含有用包含上述氮化硅膜成膜方法的半导体装置的制造方法获得的氮化硅膜的半导体装置的用途。含有这种氮化硅膜的半导体装置可以有种种用途。例如,图6的(a)~(c)是表示用这种半导体装置制造方法制造的半导体装置的几个例子的示意图。图6(a)是把氮化硅膜作为表面保护膜使用的半导体装置的情况,(b)是把氮化硅膜作为电容器使用的半导体装置的情况,(c)是把氮化硅膜作为层间绝缘膜使用的半导体装置的情况。再有,上述只是一个例子,并不以此不限。用这种半导体装置制造方法获得的氮化硅膜也可以用作退火时的覆盖膜(cap film),离子注入时的穿透膜(through film),以及半导体激光器的端面保护膜。
实施例2
以下,用图7与图8说明本分明的实施例2的氮化硅膜的成膜装置及成膜方法。图7是表示此成膜装置结构的示意图,图8是图7的反应室周边的模式图。首先,如图7的示意图所示,此氮化硅膜成膜装置20a与实施例1的氮化硅膜成膜装置的不同点在于:在半导体衬底1的背面和衬底座2的凹部30之间形成空间33,在该空间33中设有让冷却气体32流通的气体配管31a、31b。使气体32流过半导体衬底1与衬底座2之间形成的空间33来冷却衬底1,就可以抑制因被加热的催化剂6的辐射热使衬底1过升温。从而,虽然缩小催化剂6与半导体衬底1之间的距离d,但还是可以抑制衬底1的过升温,可使成膜速度得到提高。并且,使用氢气作为冷却气体32时,即使是从衬底座2的空间33流出,氢气也可以发挥作为添加气体的功能;因此,最好用氢气作为冷却气体。
接着,就本成膜装置20a上的衬底座2进行说明。如图7与图8所示:此衬底座2在放置半导体衬底1处设有小于该衬底1的凹部30。如把半导体衬底1放置于衬底座2上,则由该衬底1的背面和衬底座2的凹部30形成空间33。并且,此衬底座2备有使冷却衬底1的气体32流过该空间33的气体配管31a、31b。让气体32通过此气体配管31a、31b流到该空间33;通过流通的气体32冷却半导体衬底1。因此,就可以防止因被加热的催化剂6的辐射热使衬底1过升温。流过该空间的气体32最好是氢气,但也并不限于此,也可以使用氦气、氮气等惰性气体。并且,该空间33的气体32的压力在100Pa~1000Pa左右,具体地说,最好保持在约400Pa左右。再有,该空间33的气体32的压力并不限于上述范围,还可以增加到大气压的1/10左右。
下面,通过比较例2和实施例2的对比,就本氮化硅膜的成膜方法中的氮化硅膜的成膜条件,说明催化剂6与衬底1之间的距离d和衬底温度上升之间的关系;用图7、图8及图11中开闭挡板8、58时的衬底1的温度差ΔT,评价衬底1的温度上升的程度。比较例2
在图11所示的传统的氮化硅膜成膜方法中,在催化剂56与半导体衬底51之间的距离d2为75mm时,挡板51的开闭造成的衬底51的温度差ΔT为48℃;距离d2是50mm时,衬底51的温度差ΔT是76℃。这里,为了把衬底51的温度差ΔT抑制在50℃以下,催化剂56与半导体衬底51之间的距离d2必须设定成75mm。这种情况下的氮化硅膜的成膜速度约为4.3nm/分。
实施例2
在图7及图8所示的本发明的实施例2的氮化硅膜成膜方法中,催化剂6与半导体衬底1之间的距离d1是75mm时,由于挡板8的开闭造成的衬底1的温度差ΔT是20℃;距离d1是50mm时,温度差ΔT是28℃。这样,即使催化剂6与半导体衬底1之间的距离d1是50mm的情况下,也可以把温度差ΔT抑制在50℃以下;因此,成膜速度可以提高到9.5nm/分。
实施例3
下面,说明本发明的实施例3的氮化硅膜成膜方法。本氮化硅膜成膜方法与实施例1的氮化硅膜的成膜方法的不同点在于:在减少氨气的同时减少氢气流量。这样,由于减少了氢气流量,因此可以使氮化膜的成膜速度提高。
接着,用图9及图10说明在此氮化硅膜成膜方法中的添加气体氢气的流量。在图9是表示氢气的流量与所获得的氮化膜的折射率之间的关系的曲线图。图9中给出了:对于氨气流量为4sccm和100sccm时,氢气的流量和所获得的氮化膜的折射率之间的关系。如图9所示,即使改变氢气的流量,氮化膜的折射率也几乎不变。图10是表示氢气流量与氮化硅膜成膜速度之间的关系的曲线图。由图10可知,随着氢气流量的增加而成膜速度降低;由此,可以把氢气流量减少到约10sccm左右。再有,把氨气流量设为4sccm、硅烷气体的流量设为1.5sccm时,为了维持规定的气体压力,氢气流量至少需要10sccm左右。如图10所示,在氢气流量为10sccm时,可以得到约8nm/分的成膜速度。
实施例4
下面,说明本发明实施例4的氮化硅膜的成膜方法。本氮化硅膜的成膜方法与实施例3的氮化硅膜的成膜方法的不同点在于:在氮化硅膜的成膜工序中,用氢气冷却衬底。在这种情况下,采用图7所示的实施例2的氮化硅膜成膜装置20a,使氢气32流过衬底1的背面与衬底座2的凹部30之间形成的空间33,冷却衬底1;即使催化剂6与衬底1之间的距离为50mm时,也可以抑制衬底的过升温。并且,气体的供给条件与实施例3相同,氢气流量为10sccm,氨气流量为4sccm。由此,氮化硅膜的成膜速度可进一步提高到11.5nm/分。
【发明效果】
本发明的氮化硅膜成膜方法,是用硅烷气体与氨气、用催化剂CVD法衬底状形成氮化硅膜的方法。在这种情况下,添加氢气供给上述原料气体,通过在原料气体中添加氢气,可以减少氨气流量,同时可以形成具有充分膜特性的氮化膜。因此,可以减少对环境有害的氨气的用量。
并且,依据本发明的氮化硅膜成膜方法,氨气/氢气的流量比为0.5以下,因此,可以减少氨气的流量。
并且,依据本发明的氮化硅膜的成膜方法,氨气/硅烷气体的流量比为20以下;因此是传统的氨气/硅烷气体的流量比100倍左右,因此,可以减少硅烷气体的流量比。
并且,依据本发明的氮化硅膜的成膜方法,一边用第二气体冷却衬底,一边把含有原料气体与氢气的气体供给衬底。因此,可以抑制因被加热的催化剂的辐射热造成衬底的过升温。
并且,依据本发明的氮化硅膜成膜方法,使用氢气作为冷却衬底的第二气体。因此,即使氢气流入反应室,氢气作为添加气体起作用,也不会给氮化膜的成膜以不良影响。
依据本发明的半导体装置的制造方法,包含上述氮化硅膜的成膜方法。在此成膜方法中,当用催化剂CVD法成膜氮化硅膜时,在含有硅烷气体和氨气的原料气体中添加氢气。这样,通过在原料气体中添加氢气,可以减少氨气的流量,同时还可以形成具有充分膜特性的氮化膜。因此,可以减少对环境有害的氨气。
依据本发明的氮化硅膜的成膜装置,设有把氢气添加给硅烷气体、氨气的配管设备。通过此配管设备把氢气添加给原料气体,因此,可以减少氨气的流量;同时还可以形成具有充分膜特性的氮化膜。由此,可以减少对环境有害的氨气。
并且,依据本发明的氮化硅膜的成膜装置,衬底座在放置衬底侧有凹部;放置衬底时,在衬底的背面与衬底座的凹部形成空间。并且,在该空间设有流通气体的气体配管。使气体在此空间流通,冷却衬底;因此,可以抑制因被加热的催化剂的辐射热造成衬底的过升温。这样,不但可以缩小催化剂与衬底之间的距离d,还可以抑制衬底的过升温,提高成膜速度。
另外,依据本发明的氮化硅膜的成膜装置,用氢气作为冷却衬底的气体。因此,即使氢气流入反应室内,也能起到添加气体的作用,不会给氮化硅膜的成膜以不良影响。

Claims (5)

1.一种用硅烷气体与氨气以催化剂CVD法在衬底上形成氮化硅膜的半导体装置的制造方法;
其特征在于:使在所述硅烷气体与氨气中添加了氢气的气体先接触催化剂,然后供给到所述衬底上。
2.如权利要求1所述的半导体装置的制造方法,其特征在于:以0.5以下的氨气/氢气的流量比供给气体。
3.如权利要求1所述的半导体装置的制造方法,其特征在于:以20以下的氨气/硅烷气体的流量比供给气体。
4.如权利要求1所述的半导体装置的制造方法,其特征在于:一边用第二气体冷却所述衬底,一边供给所述气体。
5.如权利要求4所述的半导体装置的制造方法,其特征在于:所述第二气体为氢气。
CNB021604770A 2002-04-15 2002-12-27 半导体装置的制造方法 Expired - Lifetime CN1224086C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP112321/2002 2002-04-15
JP2002112321A JP3868324B2 (ja) 2002-04-15 2002-04-15 シリコン窒化膜の成膜方法、成膜装置、及び半導体装置の製造方法
JP112321/02 2002-04-15

Publications (2)

Publication Number Publication Date
CN1452222A true CN1452222A (zh) 2003-10-29
CN1224086C CN1224086C (zh) 2005-10-19

Family

ID=28786668

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021604770A Expired - Lifetime CN1224086C (zh) 2002-04-15 2002-12-27 半导体装置的制造方法

Country Status (8)

Country Link
US (1) US6933250B2 (zh)
EP (1) EP1357587B1 (zh)
JP (1) JP3868324B2 (zh)
KR (1) KR100536113B1 (zh)
CN (1) CN1224086C (zh)
DE (1) DE60205719T2 (zh)
HK (1) HK1060214A1 (zh)
TW (1) TW594854B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206813A (zh) * 2010-08-20 2011-10-05 浙江正泰太阳能科技有限公司 Pecvd***中的气体混合装置、方法和***

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003293540A1 (en) 2002-12-13 2004-07-09 Raytheon Company Integrated circuit modification using well implants
JP4128898B2 (ja) * 2003-04-18 2008-07-30 古河電気工業株式会社 半導体素子の製造方法
JP4118187B2 (ja) * 2003-05-09 2008-07-16 信越半導体株式会社 太陽電池の製造方法
JP4279176B2 (ja) 2004-03-02 2009-06-17 株式会社アルバック シリコン窒化膜の形成方法
EP1574597B1 (en) * 2004-03-12 2012-01-11 Universiteit Utrecht Holding B.V. Process for producing thin films and devices
TW200603287A (en) * 2004-03-26 2006-01-16 Ulvac Inc Unit layer posttreating catalytic chemical vapor deposition apparatus and method of film formation therewith
JP2005310861A (ja) * 2004-04-19 2005-11-04 Mitsui Chemicals Inc 炭化窒化珪素膜の形成方法
JP4589054B2 (ja) * 2004-08-18 2010-12-01 株式会社クラレ 表示装置用フィルムの製造方法
JP2006093242A (ja) * 2004-09-21 2006-04-06 Sanyo Electric Co Ltd 半導体装置の製造方法
KR100688837B1 (ko) * 2005-05-12 2007-03-02 삼성에스디아이 주식회사 결정질 실리콘 증착을 위한 화학기상증착장치
JP4017648B2 (ja) * 2006-01-23 2007-12-05 シャープ株式会社 プラズマ処理装置および同装置により製造された半導体素子
JP2008091382A (ja) * 2006-09-29 2008-04-17 Ulvac Japan Ltd シリコン窒化膜形成方法
JP5186776B2 (ja) 2007-02-22 2013-04-24 富士通株式会社 半導体装置及びその製造方法
US8980382B2 (en) 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US8741788B2 (en) 2009-08-06 2014-06-03 Applied Materials, Inc. Formation of silicon oxide using non-carbon flowable CVD processes
JP5357689B2 (ja) * 2009-10-02 2013-12-04 三洋電機株式会社 触媒cvd装置、膜の形成方法、太陽電池の製造方法及び基材の保持体
US8449942B2 (en) 2009-11-12 2013-05-28 Applied Materials, Inc. Methods of curing non-carbon flowable CVD films
US20110159213A1 (en) * 2009-12-30 2011-06-30 Applied Materials, Inc. Chemical vapor deposition improvements through radical-component modification
SG181670A1 (en) 2009-12-30 2012-07-30 Applied Materials Inc Dielectric film growth with radicals produced using flexible nitrogen/hydrogen ratio
KR101528832B1 (ko) 2010-01-06 2015-06-15 어플라이드 머티어리얼스, 인코포레이티드 유동성 유전체 층의 형성 방법
JP2013521650A (ja) 2010-03-05 2013-06-10 アプライド マテリアルズ インコーポレイテッド ラジカル成分cvdによる共形層
JPWO2012014992A1 (ja) * 2010-07-30 2013-09-12 学校法人東海大学 不揮発性半導体メモリ装置及びその製造方法、並びに電荷蓄積膜
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US8664127B2 (en) 2010-10-15 2014-03-04 Applied Materials, Inc. Two silicon-containing precursors for gapfill enhancing dielectric liner
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8450191B2 (en) 2011-01-24 2013-05-28 Applied Materials, Inc. Polysilicon films by HDP-CVD
US8716154B2 (en) 2011-03-04 2014-05-06 Applied Materials, Inc. Reduced pattern loading using silicon oxide multi-layers
US8658533B2 (en) * 2011-03-10 2014-02-25 International Business Machines Corporation Semiconductor interconnect structure with multi-layered seed layer providing enhanced reliability and minimizing electromigration
US8445078B2 (en) 2011-04-20 2013-05-21 Applied Materials, Inc. Low temperature silicon oxide conversion
US8466073B2 (en) 2011-06-03 2013-06-18 Applied Materials, Inc. Capping layer for reduced outgassing
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US8617989B2 (en) 2011-09-26 2013-12-31 Applied Materials, Inc. Liner property improvement
US8551891B2 (en) 2011-10-04 2013-10-08 Applied Materials, Inc. Remote plasma burn-in
DE102012205616B4 (de) * 2012-04-04 2016-07-14 Siltronic Ag Vorrichtung zum Abscheiden einer Schicht auf einer Halbleiterscheibe mittels Gasphasenabscheidung
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3856587A (en) * 1971-03-26 1974-12-24 Co Yamazaki Kogyo Kk Method of fabricating semiconductor memory device gate
US3852587A (en) * 1973-11-05 1974-12-03 C Koehler Combination head and case mounted light
JPH01225093A (ja) 1988-03-01 1989-09-07 Hitachi Maxell Ltd エレクトロルミネツセンス素子の製造方法
JPH06295901A (ja) 1993-04-07 1994-10-21 Nippon Steel Corp 二酸化珪素膜の成膜方法
US5679404A (en) * 1995-06-07 1997-10-21 Saint-Gobain/Norton Industrial Ceramics Corporation Method for depositing a substance with temperature control
JP3737221B2 (ja) * 1996-09-06 2006-01-18 英樹 松村 薄膜作成方法及び薄膜作成装置
JP3141805B2 (ja) 1997-01-20 2001-03-07 日本電気株式会社 半導体装置の製造方法
JP3116887B2 (ja) 1998-02-02 2000-12-11 日本電気株式会社 半導体装置の製造方法
JP4459329B2 (ja) * 1999-08-05 2010-04-28 キヤノンアネルバ株式会社 付着膜の除去方法及び除去装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206813A (zh) * 2010-08-20 2011-10-05 浙江正泰太阳能科技有限公司 Pecvd***中的气体混合装置、方法和***

Also Published As

Publication number Publication date
US6933250B2 (en) 2005-08-23
JP2003309119A (ja) 2003-10-31
KR20030082356A (ko) 2003-10-22
TW594854B (en) 2004-06-21
EP1357587B1 (en) 2005-08-24
DE60205719D1 (de) 2005-09-29
KR100536113B1 (ko) 2005-12-14
TW200305201A (en) 2003-10-16
EP1357587A1 (en) 2003-10-29
DE60205719T2 (de) 2006-06-14
US20030194881A1 (en) 2003-10-16
HK1060214A1 (en) 2004-07-30
CN1224086C (zh) 2005-10-19
JP3868324B2 (ja) 2007-01-17

Similar Documents

Publication Publication Date Title
CN1224086C (zh) 半导体装置的制造方法
CN102414786B (zh) 在原位清洁后利用nh3净化对mocvd腔室进行去污染处理
CN1311533C (zh) 制造半导体器件的方法和设备
CN1479805A (zh) 薄膜形成方法及薄膜形成装置
CN1692480A (zh) 形成含硅绝缘膜的cvd方法和装置
US20060159847A1 (en) Method and apparatus for low temperature dielectric deposition using monomolecular precursors
US10000850B2 (en) Deposition method and method of manufacturing a catalyst wire for a catalytic chemical vapor deposition apparatus
CN1860587A (zh) 利用间歇前驱气流工艺形成金属层的方法
CN1295756C (zh) 在阻挡膜上形成钨膜的方法
WO2010129292A4 (en) Cluster tool for leds
CN101040371A (zh) 用于形成多组分介电薄膜的直接液体注入***和方法
CN101048852A (zh) 用于平行晶圆处理反应器的基板载具
CN1431716A (zh) 半导体装置及半导体装置的制造方法
CN1768158A (zh) 纳米层沉积法
JP2002026006A (ja) 半導体素子のアルミニウム酸化膜形成方法
CN1732288A (zh) 形成高质量的低温氮化硅层的方法和设备
CN101311336B (zh) 薄膜形成装置及其使用方法
CN1650045A (zh) 成膜装置
CN1842894A (zh) 在晶片上沉积薄膜的方法
US20060068103A1 (en) Film forming method
JP4856010B2 (ja) 触媒化学気相成長装置
CN1513201A (zh) 沉积方法、沉积设备、绝缘膜及半导体集成电路
CN1366334A (zh) 在半导体衬底上化学汽相淀积钨的方法
CN101484609B (zh) 成膜方法和成膜装置
JP2004075493A (ja) CVD−SiC被覆黒鉛材及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20051019

CX01 Expiry of patent term