CN116139910A - 一种镍基再羟基化硅基催化剂的新用途 - Google Patents

一种镍基再羟基化硅基催化剂的新用途 Download PDF

Info

Publication number
CN116139910A
CN116139910A CN202310114670.5A CN202310114670A CN116139910A CN 116139910 A CN116139910 A CN 116139910A CN 202310114670 A CN202310114670 A CN 202310114670A CN 116139910 A CN116139910 A CN 116139910A
Authority
CN
China
Prior art keywords
silicon
catalyst
nickel
carrier
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202310114670.5A
Other languages
English (en)
Other versions
CN116139910B (zh
Inventor
何德东
武少杰
罗永明
梅毅
张宜民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN202310114670.5A priority Critical patent/CN116139910B/zh
Publication of CN116139910A publication Critical patent/CN116139910A/zh
Application granted granted Critical
Publication of CN116139910B publication Critical patent/CN116139910B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • B01J29/0316Mesoporous materials not having base exchange properties, e.g. Si-MCM-41 containing iron group metals, noble metals or copper
    • B01J29/0333Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种镍基再羟基化硅基催化剂在甲烷干重整制备合成气中的应用;所述镍基再羟基化硅基催化剂是将硅基载体置于体积浓度2%‑10%的过氧化氢溶液中,室温浸泡处理10‑15h,固液分离后,固体用去离子水清洗至洗液为中性,干燥获得硅基‑OH载体,将硅基‑OH载体研磨筛分后与乙酰丙酮镍混合,混合物置于甲烷干重整设备中在无水空气气氛下原位煅烧,煅烧产物在氢气气氛、700‑800℃下还原处理制得;本发明制得的催化剂活性金属利用率高,抗烧结能力强,在甲烷干重整反应中具有优异的反应活性和稳定性;该催化剂在750℃高温条件下稳定催化反应150h未明显失活,且反应后保持了较小的镍颗粒尺寸,在能源和环境方面具有一定意义和良好的应用前景。

Description

一种镍基再羟基化硅基催化剂的新用途
技术领域
本发明属于能源与环境催化剂领域,具体涉及一种镍基再羟基化硅基催化剂在甲烷干重整制备合成气中的应用。
背景技术
甲烷干重整(DRM)是一种非常有前景的反应,它可以将两种主要的温室气体CH4和CO2转化为有价值的合成气CO和H2。产品合成气是一种重要的工业中间体,可优先用于合成有价值的能源化学品,如烯烃、烷烃和液态碳氢化合物。Ni基催化剂具有较高的催化活性和成本效益,是DRM反应的首选催化剂。由于DRM反应是一个强热力学吸热反应,需要在高温下进行。然而,高温不仅促进了Ni纳米颗粒的烧结,而且加速了CH4分解产生积碳。两者都能导致镍基催化剂的快速失活。为了避免烧结和结焦,分散性良好的Ni颗粒以及金属-载体的强相互作用被认为是提供高效稳定的DRM催化剂的有效方法。
硅基载体尤其是有序SBA-15材料被认为是Ni纳米颗粒的理想载体,它能提供高比表面积和丰富孔道结构可以约束效应抑制金属颗粒聚集。虽然目前在这一领域进行了大量的研究,但这种催化剂的制备仍然具有挑战性。Ni/SBA-15催化剂的制备通常采用镍水溶液浸渍载体的方法。然而,此方法会让部分镍颗粒会沉积在二氧化硅的外表面,容易聚集。因此,如果使用简单浸渍,浸渍后的催化剂在高温煅烧以及反应条件下,金属很容易发生镍烧结,导致催化剂失活。
发明内容
针对现有技术存在的不足,本发明提供了一种镍基再羟基化硅基催化剂的新用途,即其在甲烷干重整制备合成气中的应用,所述镍基再羟基化硅基催化剂是将硅基载体置于体积浓度2%-10%的过氧化氢溶液中,在室温浸泡处理10-15h,固液分离后,固体用去离子水清洗至洗液为中性,干燥获得硅基-OH载体,将硅基-OH载体研磨筛分后与乙酰丙酮镍混合,混合物放入反应设备中通入无水空气原位煅烧,煅烧产物在氢气气氛、700-800℃下还原处理制得镍基再羟基化硅基催化剂;本发明中镍通过气相扩散的方法并在羟基的作用下均匀地分布在硅基-OH表面以及孔道内,在150h的甲烷干重整性能测试中,镍基再羟基化硅基催化剂显示了高DRM转化率和出色的DRM稳定性;
所述乙酰丙酮镍和硅基-OH载体的质量比为0.05-0.3:1。
所述煅烧是以10℃/min的升温速率升温至300-500℃保持1-3h后降至室温,煅烧过程中是以8-12mL/min的流速持续通入无水空气条件下进行。
所述硅基载体选自SBA-15、SiO2、MCM-41,为市售产品或按常规方法制得的试剂。
与现有技术相比,本发明具有以下有益效果:
1、催化剂制备方法简单易行,可重复性高,硅基载体经过再羟基化处理后再通过混合负载活性金属镍即可制得高性能甲烷干重整催化剂;
2、本发明催化剂较好地解决了目前甲烷干重整反应当中催化剂烧结失活,转化速率低等问题,通过再羟基化处理后制备的高性能镍基再羟基化硅基催化剂在甲烷干重整反应中取得了较高的催化活性和超长的稳定性,与现有文献相比处于较高水平;
3、催化剂制备成本较低,适用于工业化生产和市场推广应用。
附图说明
图1为实施例1不同方法制得的催化剂进行甲烷干重整反应的甲烷转化率结果(a图)和二氧化碳转化率结果(b图);
图2为实施例1不同方法制得的催化剂进行甲烷干重整反应的H2/CO结果示意图;
图3为实施例1不同方法制得的催化剂的H2-TPR谱图;
图4为实施例1不同方法制得的催化剂的H2-化学吸附计算出的镍分散度(a图)和镍颗粒尺寸(b图);
图5为实施例2的催化剂5Ni/SBA15-OH的甲烷和二氧化碳转化率结果;
图6为实施例2的催化剂5Ni/SBA15-OH的H2/CO结果示意图。
具体实施方式
下面通过实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中方法如无特殊说明均为常规方法,试剂如无特殊说明均为常规试剂或按常规方法配制的试剂;
下述实施例中SBA15是将24g Pluronic P123三嵌段聚合物(PEO-PPO-PEO,Aldrich)溶解在蒸馏水(650 mL)和盐酸(140 mL)混合液中,在室温下搅拌30min,直到P123完全溶解,接着,在持续搅拌的情况下一滴一滴地加入55mL正硅酸四乙酯(TEOS),并继续搅拌24h;然后,放入90℃的烘箱中晶化24h,将反应产物过滤、洗涤,并在80℃下干燥24h,最后以1℃/min的速率升温至550 ℃并焙烧6 h制得;
实施例1
1、将5g的SBA15置于2%过氧化氢溶液100mL中,在室温浸泡处理12h后,固液分离,固体去离子水洗涤至洗液为中性后,在室温下干燥12h制得SBA15-OH载体,并将SBA15-OH研磨筛分至40-60目;称取0.11g乙酰丙酮镍,加入1g筛分后的SBA15-OH载体,混合均匀;取0.1g混合物置于反应炉的石英管中心,在无水空气气氛下(10mL/min的流速持续通入)以10℃/min的升温速率升至300℃并保持120min,最后在氮气气氛下以10℃/min的升温速率加热至750℃,用含10%H2的氩气还原预处理1h,制得镍基再羟基化SBA15催化剂(Ni/SBA15-OH);
同时制备Ni/SBA15催化剂、Ni/SBA15-IWI催化剂作为对照;
其中Ni/SBA15催化剂是将普通SBA15研磨筛分至40-60目;称取0.11g乙酰丙酮镍,加入1g筛分后的SBA15载体,混合均匀;取0.1g混合物置于反应炉的石英管中心,以10 ℃/min的升温速率升至300℃并保持120min,即得催化剂Ni/SBA15;
Ni/SBA15-IWI催化剂是称取0.13g六水合硝酸镍溶于2mL去离子水中,然后加入1g普通SBA15,用玻璃棒搅拌30min,固体在80℃下干燥12h,产物置于马弗炉中,以10℃/min的升温速率升至500℃并保持360min,研磨筛分至40-60目制得;
2、镍基再羟基化SBA15催化剂的应用
(1)在石英管内合成镍基再羟基化SBA15催化剂后,以60mL/min的流速将甲烷-二氧化碳-氮气混合气(CH4:CO2:N2=1:1:1)通入反应器中的石英管内,在750 ℃、反应压力0.1M Pa,反应空速36000mL/g/h条件下进行甲烷干重整制备合成气,每隔2h取样,总反应时间是150h;用气相色谱仪器FID、TCD测量出CH4、CO2、H2、CO的峰面积,对其数据进行处理,计算转化率及H2/CO比值;
结果见图1、2,从图1、2中可以看出Ni/SBA15-OH催化剂在甲烷重整中,CH4和CO2的初始转化率分别达到了88%和96%,并且在150h的长时间反应中没有明显的失活,在150h时CH4和CO2分别下降了2.8%、2.0%,本发明催化剂具有稳定的催化活性,说明小颗粒,高分散的镍对催化性能起到了重要作用;Ni/SBA15-OH催化剂的初始H2/CO接近1,说明在反应过程中基本没有副反应的发生;
普通SBA15作为载体的催化剂(Ni/SBA15)的CH4和CO2的转化率明显低于Ni/SBA15-OH催化剂,初始转化率分别为73.2%和82.8%,且在100h的反应中出现了相对较快的失活,在100h时CH4和CO2分别下降了7.7%、7.3%,初始H2/CO也较低,为0.91;浸渍法的Ni/SBA15-IWI催化剂的CH4 和CO2 的初始转化率分别为78.8%和86.9%,在100h时CH4和CO2分别下降了24.6%、24.1%,发生了严重的失活,说明其表面镍是不稳定的,其初始H2/CO为0.93,随着时间增加H2/CO下降也较快。
(2)H2-TPR实验
采用天津鹏翔PX200吸附仪进行H2-TPR实验,通过该实验探索金属载体的作用力,吸附仪配备热导检测器(TCD),将50mg催化剂放在U型管中的石英棉之间,在150℃下采用氩气 (30mL/min)预处理1小时,以去除物理吸附的水;然后将催化剂冷却至50℃后,以10℃/min的加热速率从50℃升温至800℃,同时以30mL/min流速通入含10% H2的氩气,同时记录TCD信号变化数据。
结果见图3,从图中可以看出Ni/SBA15催化剂和Ni/SBA15-IWI催化剂的还原温度都较低,主峰位置分别为350℃和338℃,这说明普通未经处理的SBA15载体与镍相互作用较弱,无法保证镍的稳定。Ni/SBA15-IWI在383℃出现还原峰,这证明本发明Ni/SBA15-OH催化剂具有更强的的金属-载体相互作用力,并且在383℃处还原峰面积要大于Ni/SBA15催化剂和Ni/SBA15-IWI催化剂,这些都意味着Ni/SBA15-OH催化剂上镍与载体作用力更强,分散性更好;
(3)H2化学吸附实验
为了获得催化剂表面活性Ni分散程度和平均粒径等信息,在天津鹏翔PX200吸附仪上对实施例1中不同方法制得的催化剂进行了H2化学吸附实验,实验前,100mg催化剂在U形管中以10% H2/Ar (30 mL/min)在750℃下还原1 h,得到金属Ni,在此温度下用Ar纯化1h,冷却至50℃。随后持续脉冲H2流,直至吸附饱和,脉冲峰面积保持不变。
通过数据处理得到的镍分散度和镍颗粒尺寸如图4所示,图4a的镍颗粒分散度柱状图可以看到三种催化剂Ni/SBA15-OH、Ni/SBA15和Ni/SBA15-IWI的镍分散度分别为37.2%、19.6 %和12.1%,图4b三种催化剂Ni/SBA15-OH、Ni/SBA15和Ni/SBA15-IWI的镍颗粒尺寸信息也符合规律,分别为2.2 nm、3.9nm和6.6nm,这些现象都说明了通过气象扩散的方法在再羟基化的SBA15上负载镍,可以促进镍的分散,形成小的镍颗粒,从而增强甲烷重整的性能。
实施例2
1、将5g的SBA15置于2%的100mL过氧化氢溶液中,在室温浸泡处理12h后,固液分离,固体去离子水洗涤至洗液为中性后,在室温下干燥12h制得SBA15-OH载体,并将SBA15-OH研磨筛分至40-60目;称取0.22g乙酰丙酮镍,加入1g筛分后的SBA15-OH载体,混合均匀;取0.1g混合物置于反应炉的石英管中心,以10mL/min的流速持续通入无水空气条件下,同时以10℃/min的升温速率升至300℃并保持120min,然后在氮气气氛下以10℃/min的升温速率加热至750℃,最后用含10%H2的氩气还原预处理1h,获得镍基再羟基化SBA15催化剂(5Ni/SBA15-OH);
2、镍基再羟基化SBA15催化剂的应用
在石英管内合成镍基再羟基化SBA15催化剂后,以60mL/min的流速将甲烷-二氧化碳-氮气混合气(CH4:CO2:N2=1:1:1)通入反应器中的石英管内,在750℃、反应压力0.1M Pa,反应空速36000mL/g/h条件下进行甲烷干重整制备合成气,每隔2h取样,总反应时间是20h;用气相色谱仪器FID、TCD测量出CH4、CO2、H2、CO的峰面积,对其数据进行处理,计算转化率及H2/CO比值;结果见图5,从图5中可以看出5Ni/SBA15-OH催化剂在甲烷重整中表现较好的催化性能,CH4和CO2的初始转化率分别达到了91%和96%,并且在20h的反应中没有任何的下降趋势,从图6中可以看出5Ni/SBA15-OH的H2/CO达到了1,基本没有副反应的发生,这也证明了在高的金属负载量下,通过气相扩散法在再羟基化的SBA15上负载镍仍然可以制得分散均匀的镍,并保持稳定的催化活性。

Claims (4)

1.一种镍基再羟基化硅基催化剂在甲烷干重整制备合成气中的应用;
所述镍基再羟基化硅基催化剂是将硅基载体置于体积浓度2%-10%的过氧化氢溶液中,室温浸泡处理10-15h,固液分离后,固体用去离子水清洗至洗液为中性,干燥获得硅基-OH载体,将硅基-OH载体研磨筛分后与乙酰丙酮镍混合,混合物置于甲烷干重整设备中在无水空气气氛下原位煅烧,煅烧产物在氢气气氛、700-800℃下还原处理制得;
催化剂制得后原位进行甲烷干重整制备合成气。
2.根据权利要求1所述应用,其特征在于:乙酰丙酮镍和硅基-OH载体的质量比为0.05-0.3:1。
3.根据权利要求1所述应用,其特征在于:煅烧是在300-500℃下处理1-3h后,降至室温,煅烧过程中无水空气以8-12mL/min的流速持续通入。
4.根据权利要求1所述应用,其特征在于:硅基载体选自SBA-15、SiO2、MCM-41。
CN202310114670.5A 2023-02-15 2023-02-15 一种镍基再羟基化硅基催化剂的新用途 Active CN116139910B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310114670.5A CN116139910B (zh) 2023-02-15 2023-02-15 一种镍基再羟基化硅基催化剂的新用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310114670.5A CN116139910B (zh) 2023-02-15 2023-02-15 一种镍基再羟基化硅基催化剂的新用途

Publications (2)

Publication Number Publication Date
CN116139910A true CN116139910A (zh) 2023-05-23
CN116139910B CN116139910B (zh) 2024-03-22

Family

ID=86357883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310114670.5A Active CN116139910B (zh) 2023-02-15 2023-02-15 一种镍基再羟基化硅基催化剂的新用途

Country Status (1)

Country Link
CN (1) CN116139910B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101045A (en) * 1966-04-04 1968-01-31 Exxon Research Engineering Co Stabilized high-surface area nickel catalyst
CN1676218A (zh) * 2005-01-17 2005-10-05 天津大学 铈钛复合氧化物负载金属催化剂及制备方法和应用
JP2008189540A (ja) * 2007-01-12 2008-08-21 Tdk Corp 酸素透過膜及び水素発生装置
CN105381818A (zh) * 2015-06-15 2016-03-09 清华大学 一种用于甲烷二氧化碳重整制合成气高分散Ni催化剂的制备方法
CN105964261A (zh) * 2016-05-24 2016-09-28 昆明理工大学 一种抗积碳抗烧结的甲烷干重整Ni基催化剂的制备方法
CN108273508A (zh) * 2018-02-28 2018-07-13 西京学院 一种高性能甲烷重整制合成气镍基催化剂的制备方法
CN111054447A (zh) * 2019-11-29 2020-04-24 山西永东化工股份有限公司 一种可使煤焦油催化裂化净化与缩合的催化剂及其应用
US20220040677A1 (en) * 2020-08-04 2022-02-10 Uchicago Argonne, Llc Multimetallic catalysts for methanation of carbon dioxide and dry reforming of methane
CN114768859A (zh) * 2022-05-27 2022-07-22 西安交通大学 适用于甲烷干重整的镍硅催化剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1101045A (en) * 1966-04-04 1968-01-31 Exxon Research Engineering Co Stabilized high-surface area nickel catalyst
CN1676218A (zh) * 2005-01-17 2005-10-05 天津大学 铈钛复合氧化物负载金属催化剂及制备方法和应用
JP2008189540A (ja) * 2007-01-12 2008-08-21 Tdk Corp 酸素透過膜及び水素発生装置
CN105381818A (zh) * 2015-06-15 2016-03-09 清华大学 一种用于甲烷二氧化碳重整制合成气高分散Ni催化剂的制备方法
CN105964261A (zh) * 2016-05-24 2016-09-28 昆明理工大学 一种抗积碳抗烧结的甲烷干重整Ni基催化剂的制备方法
CN108273508A (zh) * 2018-02-28 2018-07-13 西京学院 一种高性能甲烷重整制合成气镍基催化剂的制备方法
CN111054447A (zh) * 2019-11-29 2020-04-24 山西永东化工股份有限公司 一种可使煤焦油催化裂化净化与缩合的催化剂及其应用
US20220040677A1 (en) * 2020-08-04 2022-02-10 Uchicago Argonne, Llc Multimetallic catalysts for methanation of carbon dioxide and dry reforming of methane
CN114768859A (zh) * 2022-05-27 2022-07-22 西安交通大学 适用于甲烷干重整的镍硅催化剂及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DALENA FRANCESCO 等: "Steam Reforming of Bioethanol Using Metallic Catalysts on Zeolitic Supports: An Overview", 《CATALYSTS》, vol. 12, no. 6, 3 June 2022 (2022-06-03), pages 1 - 24 *
HE SUFANG 等: "Characterization and catalytic properties of Ni/SiO2 catalysts prepared with nickel citrate as precursor", 《MATERIALS RESEARCH BULLETIN》, vol. 49, 31 August 2013 (2013-08-31), pages 108 - 113, XP028785013, DOI: 10.1016/j.materresbull.2013.08.051 *
KWEON SUNGJOON 等: "Defect-stabilized nickel on beta zeolite as a promising catalyst for dry reforming of methane", 《CATALYSIS SCIENCE & TECHNOLOGY》, vol. 12, no. 10, 28 February 2022 (2022-02-28), pages 3106 - 3115 *
ZHANG YIMIN 等: "The tailored role of "defect" sites on ?-alumina: A key to yield an efficient methane dry reforming catalyst with superior nickel utilization", 《APPLIED CATALYSIS B-ENVIRONMENTAL》, vol. 315, 21 May 2022 (2022-05-21), pages 1 - 11, XP087103713, DOI: 10.1016/j.apcatb.2022.121539 *
张磊 等: "镍源对Ni/SBA-15催化乙醇水蒸气重整制氢反应性能的影响", 《第九届全国环境催化与环境材料学术会议——助力两型社会快速发展的环境催化与环境材料会议论文集(NCECM 2015)》, 20 November 2015 (2015-11-20), pages 331 *
杨梦婷 等: "用于甲烷二氧化碳重整的Ni/SBA-15催化剂的研究进展", 《应用化工》, vol. 49, no. 2, 28 October 2020 (2020-10-28), pages 227 - 233 *

Also Published As

Publication number Publication date
CN116139910B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
CN108465466B (zh) 一种二氧化铈包裹Pd的球形催化剂及其制备方法
CN107252702B (zh) 一种Co-N-C/SiO2复合纳米催化剂、其制备方法及应用
Wang et al. Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2: Effect of Cr adding time in sol-gel process
CN110252378B (zh) 一种单原子双活性中心Co基氨合成催化剂及其制备方法
CN111215053A (zh) 负载型单原子分散贵金属催化剂及制备方法
CN109589978B (zh) 一种金属单原子催化剂的制备方法
Shi et al. Citric acid assisted one-step synthesis of highly dispersed metallic Co/SiO2 without further reduction: As-prepared Co/SiO2 catalysts for Fischer–Tropsch synthesis
JP5928894B2 (ja) 多価アルコールの水素化分解用触媒、及び該触媒を使用する1,3−プロパンジオールの製造方法
CN109675597B (zh) 一种多孔碳化钴的制备方法
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
CN110961137A (zh) 一种氮掺杂石墨化多孔碳负载的钴基催化剂及制备方法
CN109277100B (zh) 一种以氧化铈为载体的钌基氨合成催化剂
CN114192180A (zh) 一种改性氮化硼负载的镍基甲烷干重整催化剂、其制备方法及其应用
CN108295849B (zh) My/LaxSr1-xTi1-yO3催化剂、其制法及应用
CN114272927A (zh) 二氧化锆改性层状多孔蛭石负载镍基催化剂的制备方法
CN116139910B (zh) 一种镍基再羟基化硅基催化剂的新用途
CN113289594A (zh) 一种硼修饰的富含五配位铝的氧化铝定向负载Ru基催化剂的制备方法及应用
CN110732335B (zh) 一种用于甲烷干气重整反应的过渡金属@BOx核-壳结构纳米催化剂及其制备方法
CN116078393A (zh) 一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用
CN102441387B (zh) 一种高活性钴基费托合成催化剂的制备方法
CN113457722B (zh) 一种甲烷二氧化碳干重整催化剂及其制备方法和应用
CN102441388B (zh) 一种高稳定性钴基费托合成催化剂的制备方法
CN110614097A (zh) 载体为含有硅胶和六方介孔材料的复合材料的异丁烷脱氢催化剂及其制备方法和应用
CN111229296B (zh) 一种基于mfi型结构分子筛的择形异构化催化剂的制备方法
CN103769227A (zh) 一种改性硅胶载体及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant