CN116078393A - 一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用 - Google Patents

一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN116078393A
CN116078393A CN202310088512.7A CN202310088512A CN116078393A CN 116078393 A CN116078393 A CN 116078393A CN 202310088512 A CN202310088512 A CN 202310088512A CN 116078393 A CN116078393 A CN 116078393A
Authority
CN
China
Prior art keywords
transition metal
preparation
metal salt
dry reforming
entropy oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310088512.7A
Other languages
English (en)
Inventor
许细薇
李俊
孙焱
李应南
骆杰
涂任
梁凯丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN202310088512.7A priority Critical patent/CN116078393A/zh
Publication of CN116078393A publication Critical patent/CN116078393A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用。本发明制备的催化剂在较低温度下(600℃)对甲烷有强烈的催化裂解作用,并且增强了CO2的吸附的解离,使得催化剂上不易产生积碳,同时高熵氧化物载体的熵稳定性抑制了过渡金属的迁移,有效地延长催化剂的寿命和保持高催化活性。所采用原料价廉易得,制备方法简单,对设备要求低,适合大规模生产。

Description

一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用
技术领域
本发明属于催化材料领域,特别涉及一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用。
背景技术
甲烷干重整(DRM)被认为是一种很有潜力的反应,它能够以污水处理厂、垃圾填埋场、农业废弃物发酵等产生的CH4,和燃料燃烧产生的CO2为原料来生产合成气,能够在有效地处理两大温室气体的同时,生产出工业原料。
过渡金属因其具有价格低廉,储量丰富易得,且催化能力强等优点,常被用于制作DRM催化剂。然而过渡金属催化剂存在的问题,一是在DRM过程中容易产生大量积碳,导致催化剂活性位点被堵塞甚至于失活,二是容易发生团聚,造成催化能力下降。
含五种或五种以上金属元素的单相氧化物通常被归类为高熵氧化物。高熵氧化物的熵稳定性有助于这类催化剂在高温反应中长期保持稳定的催化性能,因此具有较大的潜力。然而现有的高熵氧化物催化剂主要应用于电催化领域,在DRM中过度稳定,催化性能十分有限。
可见,不论是常用的过渡金属催化剂还是具有潜力的高熵氧化物催化剂,对于DRM还有待进一步改善。
发明内容
本发明的目的在于克服现有DRM过渡金属催化剂稳定性差,寿命较短与高熵氧化物催化剂选择性差,催化效果不理想的缺点与不足,提供一种用于低温甲烷干重整的溶出过渡金属-负载型高熵氧化物催化剂,该方法制备得到的溶出过渡金属-负载型高熵氧化物催化剂同时结合了过渡金属催化剂催化能力强与高熵氧化物催化剂稳定性高的优点,具有长时间保持高选择性,高催化能力的优点。
本发明的另一目的在于,提供上述催化剂的制备方法。
本发明的再一目的在于,提供上述催化剂的应用。
本发明的目的通过下述技术方案实现:
一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂的制备方法,包括如下步骤:
(1)配制金属盐溶液;
(2)配制碱性溶液;
(3)将碱性溶液加入金属盐溶液中,过滤、干燥得到沉淀物;
(4)将步骤(3)得到的沉淀物煅烧,再放入还原气氛中还原即得到过渡金属负载型高熵氧化物低温甲烷干重整催化剂。
步骤(1)所述的金属盐为过渡金属或非过渡金属的金属盐。
步骤(1)所述的金属盐为至少6种不同金属的金属盐。
所述的过渡金属盐包括锰,铁,镍,钴,铜的硝酸盐、乙酸盐或氯盐中的至少一种。
所述的非过渡金属盐包括镁,钇,锆,镧,铈,铒的硝酸盐或乙酸盐中的至少一种。
所述的金属盐为六水硝酸镍、六水硝酸镁、乙酸钇水合物、五水硝酸锆、六水硝酸铈和六水硝酸铒。
步骤(1)所述的配制的具体步骤为:将金属盐溶于水中搅拌得到金属盐溶液。
步骤(2)所述的配制的具体步骤为:将碱溶于水中搅拌得到碱性溶液。
步骤(2)所述的碱为碳酸钠,碳酸钾,氢氧化钠或氢氧化钾中的至少一种。
步骤(3)所述的加入的具体步骤为:将碱性溶液在2h内逐滴加入前驱体盐溶液中并搅拌,之后继续搅拌2h。
步骤(3)所述的过滤为抽滤。
步骤(3)所述的干燥为使用鼓风干燥箱干燥。
步骤(4)所述的煅烧为700~1000℃下煅烧0.5~2h;优选为900℃下煅烧1h。
步骤(4)所述的还原气氛为100mL/min速率的H2/N2,H2:N2为10:90。
步骤(4)所述的还原为700~1000℃下还原0.5~2h;优选为900℃下还原1h。
上述制备方法制备得到的过渡金属负载型高熵氧化物低温甲烷干重整催化剂。
上述过渡金属负载型高熵氧化物低温甲烷干重整催化剂在催化甲烷干重整中的应用。
所述的催化甲烷干重整的反应温度为550~650℃;优选为600℃。
本发明相对于现有技术具有如下的优点及效果:
本发明制备的催化剂在较低温度下(600℃)对甲烷有强烈的催化裂解作用,并且增强了CO2的吸附的解离,使得催化剂上不易产生积碳,同时高熵氧化物载体的熵稳定性抑制了过渡金属的迁移,有效地延长催化剂的寿命和保持高催化活性。所采用原料价廉易得,制备方法简单,对设备要求低,适合大规模生产。
附图说明
图1是实施例1制备得到的Ni/(CeZrMgYEr)O2-x的XRD图。
图2是实施例1制备得到的Ni/(CeZrMgYEr)O2-x的TEM图。
图3是实施例1制备得到的Ni/(CeZrMgYEr)O2-x的EDX图
图4是实施例1制备得到的Ni/(CeZrMgYEr)O2-x的XPS图。
图5是本发明制备得到的溶出过渡金属-负载型高熵氧化物催化剂的CO2-TPD图。
图6是本发明制备得到的溶出过渡金属-负载型高熵氧化物催化剂的催化活性测试转化率结果图。
图7是本发明制备得到的溶出过渡金属-负载型高熵氧化物催化剂的催化活性测试H2/CO结果图。
图8是实施例1制备得到的Ni/(CeZrMgYEr)O2-x的连续50h催化活性测试结果图。
图9是实施例1制备得到的Ni/(CeZrMgYEr)O2-x的连续50h催化活性测试后TG分析结果图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
下面实施方案中若未注明具体试验条件,则通常按照常规试验条件或按照试剂公司所建议的试验条件。所使用的材料、试剂等,若无特殊说明,均为从商业途径得到的试剂和材料。
实施例1 Ni/(CeZrMgYEr)O2-x的制备
(1)将1.45g六水硝酸镍,0.51g六水硝酸镁,0.53g乙酸钇水合物,0.86g五水硝酸锆,0.87g六水硝酸铈,0.92g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)将2.1g无水碳酸钾溶于100ml去离子水中,搅拌30min,形成碱性溶液。
(3)将碱性溶液在2h内逐滴加入前驱体盐溶液中,搅拌,逐渐形成稳定的悬浊液,待所有碱性溶液全部滴入前驱体盐溶液并搅拌满2h后,继续搅拌2h。随后使用循环水式真空泵抽滤,滤渣用100ml去离子水洗涤3次,然后放入105℃鼓风干燥箱中干燥12h,得到沉淀物;
(4)将步骤(3)得到的沉淀物放入马弗炉中在900℃中煅烧1h。在管式炉中以100ml/min的速率通入10%H2/N2(H2:N2为10:90)维持加热管的还原性气氛,管式炉维持900℃,取1g步骤(3)中煅烧后的沉淀物,放入管式炉中还原1h,即得过渡金属负载型高熵氧化物低温甲烷干重整催化剂Ni/(CeZrMgYEr)O2-x,之后对得到的催化剂进行XRD/TEM/EDX/XPS表征测试,结果如图1~4所示。
实施例2 Fe/(CeZrMgYEr)O2-x的制备
(1)将2.02g九水硝酸镍,0.51g六水硝酸镁,0.53g乙酸钇水合物,0.86g五水硝酸锆,0.87g六水硝酸铈,0.92g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Fe/(CeZrMgYEr)O2-x
实施例3 Co/(CeZrMgYEr)O2-x的制备
(1)将1.46g六水硝酸钴,0.51g六水硝酸镁,0.53g乙酸钇水合物,0.86g五水硝酸锆,0.87g六水硝酸铈,0.92g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Co/(CeZrMgYEr)O2-x
实施例4 Ni/(CeZrMgYLa)O2-x
(1)将1.45g六水硝酸镍,0.51g六水硝酸镁,0.53g乙酸钇水合物,0.86g五水硝酸锆,0.87g六水硝酸铈,0.87g六水硝酸镧溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Ni/(CeZrMgYLa)O2-x
实施例5 Ni/(Ce0.1Zr0.4Mg0.2Y0.2Er0.1)O2-x的制备
(1):将1.45g六水硝酸镍,0.26g六水硝酸镁,0.27g乙酸钇水合物,0.86g五水硝酸锆,0.22g六水硝酸铈,0.46g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Ni/(Ce0.1Zr0.4Mg0.2Y0.2Er0.1)O2-x
实施例6 Ni/(Ce0.25Zr0.25Mg0.2Y0.2Er0.1)O2-x的制备
(1)将1.45g六水硝酸镍,0.26g六水硝酸镁,0.27g乙酸钇水合物,0.54g五水硝酸锆,0.54g六水硝酸铈,0.46g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Ni/(Ce0.25Zr0.25Mg0.2Y0.2Er0.1)O2-x
实施例7 Ni/(Ce0.4Zr0.1Mg0.2Y0.2Er0.1)O2-x的制备
(1)将1.45g六水硝酸镍,0.26g六水硝酸镁,0.27g乙酸钇水合物,0.21g五水硝酸锆,0.87g六水硝酸铈,0.46g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Ni/(Ce0.4Zr0.1Mg0.2Y0.2Er0.1)O2-x
实施例8 Ni/(Ce0.25Zr0.25Mg0.3Y0.1Er0.1)O2-x的制备
(1)将1.45g六水硝酸镍,0.77g六水硝酸镁,0.27g乙酸钇水合物,0.54g五水硝酸锆,0.54g六水硝酸铈,0.46g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Ni/(Ce0.25Zr0.25Mg0.3Y0.1Er0.1)O2-x
实施例9 Ni/(Ce0.25Zr0.25Mg0.1Y0.3Er0.1)O2-x的制备
(1)将1.45g六水硝酸镍,0.26g六水硝酸镁,0.80g乙酸钇水合物,0.54g五水硝酸锆,0.54g六水硝酸铈,0.46g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Ni/(Ce0.25Zr0.25Mg0.1Y0.3Er0.1)O2-x
实施例10 Ni/(Ce0.25Zr0.25Mg0.1Y0.1Er0.3)O2-x的制备
(1)将1.45g六水硝酸镍,0.26g六水硝酸镁,0.27g乙酸钇水合物,0.54g五水硝酸锆,0.54g六水硝酸铈,1.38g六水硝酸铒溶于100ml的去离子水中,搅拌30min,形成前驱体盐溶液。
(2)参照实施例1步骤(2)~(4)的方法制备得到Ni/(Ce0.25Zr0.25Mg0.1Y0.1Er0.3)O2-x
实施例11过渡金属负载型高熵氧化物的CO2吸附特性研究
在AutoChem1 II 2920设备上对实施例1和实施例8~10进行CO2程序升温脱附(CO2-TPD)实验。将约50mg新鲜的样品置于U型石英形管中,在300℃和氩气流量为20mL·min-1的条件下预处理30min,然后冷却至50℃。然后将气体切换至10%CO2/N2(50mL·min-1)以吸附CO2 1h。在氩气流(50mL·min-1)下进行吹扫1h后,将样品加热至800℃(10℃·min-1)。用热导检测器(TCD)记录解吸的CO2。实验结果记录如图5所示。其中,实施例1的CO2吸附量高于其他实施例许多,证明了实施例1具有优异的CO2吸附能力。
实施例12过渡金属负载型高熵氧化物的催化活性研究
在直石英管(长度350mm,内径=12mm)中加入0.6g实施例1中制备得到的催化剂,用石英棉固定在管子中间位置。原料气(36%CH4,21%CO2,7%O2,以N2平衡)以140mL·min-1的总流速通过催化剂。将石英管放入温度恒定为600℃的管式炉中反应。开始反应后的1h收集产生的气体,每次收集2min,并通过GC(Agilent)分析反应器流出物中气体产物的浓度。
对样品进行CH4和CO2转化率,以及H2/CO值的计算,并将计算结果进行统计,如图6。
CH4转化率根据下式计算:
Figure BDA0004069611160000071
其中,CCH4为CH4转化率,NCH4,入为CH4通入量,NCH4,出为气相检测的反应后CH4剩余量。
CO2转化率根据下式计算:
Figure BDA0004069611160000072
其中,CCO2为CO2转化率,NCO2,入为CO2通入量,NCO2,出为气相检测的反应后CO2剩余量。
H2/CO值根据下式计算:
Figure BDA0004069611160000073
其中,NH2,出为气相检测的反应后H2产生量,NCO,出为气相检测的反应后CO产生量。
对实施例2~10制备得到的催化剂进行相同测试。
实验结果如图6~7所示,实施例1的CH4和CO2转化率与其他实施例相比为最高。其中,CO2转化率与CH4转化率相比较低的原因是气氛中的O2与CO2在反应中是竞争关系,O2的转化取代了部分CO2转化。并且,实施例1的H2/CO与其他实施例相比最接近1,说明几乎没有副反应发生。以上证明了实施例1具有优异的催化性能。
实施例13过渡金属负载型高熵氧化物的循环效果研究
循环实验设置与实施例12的催化活性实验保持一致,开始反应后1h开始收集产气,此后每1h收集一次,连续收集50次,实验结果统计于图8。
如图8所示,CH4转化率在前28h内都比较稳定,在50%以上,最高转化率更是达到了54.5%,而之后便缓慢下降,在第50h时降到最低值,但仍然有40.4%的转化率。而CO2转化率却相对比较平稳,在50h内几乎都维持在10%~15%之间。CH4转化率和CO2转化率在50h保持在相对稳定的水平,证明了实施例1的稳定性较高。并且,反应前期的副反应较少,产物以H2和CO为主,因此H2/CO值接近1.00。
如图9所示,经过50h的连续反应后,实施例1中只产生了5.52wt%的积碳,说明实施例1能够有效地抑制反应中积碳的产生。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂的制备方法,其特征在于包括如下步骤:
(1)配制金属盐溶液;
(2)配制碱性溶液;
(3)将碱性溶液加入金属盐溶液中,过滤、干燥得到沉淀物;
(4)将步骤(3)得到的沉淀物煅烧,再放入还原气氛中还原即得到过渡金属负载型高熵氧化物低温甲烷干重整催化剂。
2.根据权利要求1所述的制备方法,其特征在于
步骤(1)所述的金属盐为过渡金属或非过渡金属的金属盐;
步骤(1)所述的金属盐为至少6种不同金属的金属盐。
3.根据权利要求2所述的制备方法,其特征在于:
所述的过渡金属盐包括锰,铁,镍,钴,铜的硝酸盐、乙酸盐或氯盐中的至少一种;
所述的非过渡金属盐包括镁,钇,锆,镧,铈,铒的硝酸盐或乙酸盐中的至少一种。
4.根据权利要求1所述的制备方法,其特征在于:
步骤(2)所述的碱为碳酸钠,碳酸钾,氢氧化钠或氢氧化钾中的至少一种。
5.根据权利要求1所述的制备方法,其特征在于:
步骤(1)所述的配制的具体步骤为:
将金属盐溶于水中搅拌得到金属盐溶液。
6.根据权利要求1所述的制备方法,其特征在于:
步骤(2)所述的配制的具体步骤为:
将碱溶于水中搅拌得到碱性溶液。
7.根据权利要求1所述的制备方法,其特征在于:
步骤(3)所述的加入的具体步骤为:
将碱性溶液在2h内逐滴加入前驱体盐溶液中并搅拌,之后继续搅拌2h;
步骤(3)所述的过滤为抽滤;
步骤(3)所述的干燥为使用鼓风干燥箱干燥。
8.根据权利要求1所述的制备方法,其特征在于:
步骤(4)所述的煅烧为700~1000℃下煅烧0.5~2h;
步骤(4)所述的还原气氛为100mL/min速率的H2/N2,H2:N2为10:90;
步骤(4)所述的还原为700~1000℃下还原0.5~2h。
9.权利要求1~8任一所述的制备方法制备得到的过渡金属负载型高熵氧化物低温甲烷干重整催化剂。
10.权利要求9所述的过渡金属负载型高熵氧化物低温甲烷干重整催化剂在催化甲烷干重整中的应用。
CN202310088512.7A 2023-01-18 2023-01-18 一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用 Pending CN116078393A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310088512.7A CN116078393A (zh) 2023-01-18 2023-01-18 一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310088512.7A CN116078393A (zh) 2023-01-18 2023-01-18 一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN116078393A true CN116078393A (zh) 2023-05-09

Family

ID=86208118

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310088512.7A Pending CN116078393A (zh) 2023-01-18 2023-01-18 一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN116078393A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019168A (zh) * 2023-06-29 2023-11-10 华南农业大学 一种高稳定性的过渡金属高熵载氧体及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314993A1 (en) * 2008-06-19 2009-12-24 University Of Saskatchewan Catalyst for production of synthesis gas
US20160296917A1 (en) * 2015-04-09 2016-10-13 Council Of Scientific & Industrial Research Ni Nano Cluster Support on MgO-CeO2-ZrO2 Catalyst for Tri-Reforming of Methane and a Process for Preparation Thereof
CN115261921A (zh) * 2022-07-20 2022-11-01 昆明理工大学 FeCoNiMnCr高熵合金/高熵氧化物异质相催化剂及其制备方法和应用
CN115518649A (zh) * 2022-09-15 2022-12-27 三峡大学 (CoCuZnMnMg)3O4高熵氧化物的制备方法
CN115555030A (zh) * 2022-10-28 2023-01-03 吉林大学 具有受阻路易斯对的多孔层状高熵氧化物制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090314993A1 (en) * 2008-06-19 2009-12-24 University Of Saskatchewan Catalyst for production of synthesis gas
US20160296917A1 (en) * 2015-04-09 2016-10-13 Council Of Scientific & Industrial Research Ni Nano Cluster Support on MgO-CeO2-ZrO2 Catalyst for Tri-Reforming of Methane and a Process for Preparation Thereof
CN115261921A (zh) * 2022-07-20 2022-11-01 昆明理工大学 FeCoNiMnCr高熵合金/高熵氧化物异质相催化剂及其制备方法和应用
CN115518649A (zh) * 2022-09-15 2022-12-27 三峡大学 (CoCuZnMnMg)3O4高熵氧化物的制备方法
CN115555030A (zh) * 2022-10-28 2023-01-03 吉林大学 具有受阻路易斯对的多孔层状高熵氧化物制备方法及应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117019168A (zh) * 2023-06-29 2023-11-10 华南农业大学 一种高稳定性的过渡金属高熵载氧体及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN109746022B (zh) 一种用于二氧化碳还原的高分散铜锌催化剂的制备方法及其使用方法
Bermejo-López et al. Alternate cycles of CO 2 storage and in situ hydrogenation to CH 4 on Ni–Na 2 CO 3/Al 2 O 3: influence of promoter addition and calcination temperature
CN114522688B (zh) 一种多孔碳负载双金属催化剂及其制备和应用
Xu et al. Bio-oil chemical looping reforming coupled with water splitting for hydrogen and syngas coproduction: Effect of supports on the performance of Ni-Fe bimetallic oxygen carriers
CN111229235A (zh) NiO/MgAl2O4催化剂及其制备方法和应用
CN114272950A (zh) 一种ch4、co2重整制备合成气催化剂及其制备方法与应用
CN102515096A (zh) 三维有序大孔钙钛矿型氧化物用于含碳燃料化学链制氢的用途
CN109395735A (zh) 一种甲烷化催化剂、其制备方法及利用其制备甲烷的方法
JP2014506183A (ja) メタン合成触媒の製造方法及び触媒前駆体
CN110433811B (zh) MgO改性的Ni/CaO双功能催化剂及制备方法和应用
WO2021042874A1 (zh) 一种二氧化碳甲烷化镍基催化剂及其制备方法和应用
CN116078393A (zh) 一种过渡金属负载型高熵氧化物低温甲烷干重整催化剂及其制备方法与应用
CN112808273A (zh) MgFe水滑石基催化剂及其在悬浮床加氢脱氧生产生物柴油中的应用
CN107321352B (zh) 循环流化床镍基重整催化剂及其制备方法和应用
Luo et al. Hydrogen and syngas co-production by coupling of chemical looping water splitting and glycerol oxidation reforming using Ce–Ni modified Fe-based oxygen carriers
CN110711584B (zh) 半焦负载型焦油水蒸气重整催化剂及其制备方法和应用
CN102091629A (zh) 二氧化碳甲烷化催化剂
CN112811476B (zh) 一种镍掺杂钙铁石型氧载体及其制备方法和应用
CN116020434B (zh) 一种不积硫、抗失活的羰基硫水解催化剂及其应用
CN110694624B (zh) 一种基于Cu和MgO的双功能催化剂及制备方法和应用
CN114260016A (zh) 一种将Pd/ZnFexAl2-xO4催化剂用于甲醇重整制氢的方法
KR20170027674A (ko) 수증기 메탄 개질용 저온 고효율 니켈계 촉매 및 이의 이용
CN116371421B (zh) 一种负载型催化剂及其制备方法和应用
CN114471584B (zh) 改性硅酸钙基镍系催化剂及其制备方法、应用
CN115212885B (zh) 一种用于合成气直接制取低碳醇的硅酸钴衍生的钴基催化剂及制备方法和预处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination