CN115064693B - 一种o3相高熵层状金属氧化物及其制备方法和应用 - Google Patents

一种o3相高熵层状金属氧化物及其制备方法和应用 Download PDF

Info

Publication number
CN115064693B
CN115064693B CN202210728072.2A CN202210728072A CN115064693B CN 115064693 B CN115064693 B CN 115064693B CN 202210728072 A CN202210728072 A CN 202210728072A CN 115064693 B CN115064693 B CN 115064693B
Authority
CN
China
Prior art keywords
metal oxide
entropy
layered
phase high
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210728072.2A
Other languages
English (en)
Other versions
CN115064693A (zh
Inventor
纪效波
王浩吉
侯红帅
邹国强
邓文韬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN202210728072.2A priority Critical patent/CN115064693B/zh
Publication of CN115064693A publication Critical patent/CN115064693A/zh
Application granted granted Critical
Publication of CN115064693B publication Critical patent/CN115064693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明提供了一种O3相高熵层状金属氧化物及其制备方法和应用,该金属氧化物的化学通式为:Nax(M1M2…Mn)yO2,其晶体结构呈O3相层状结构,其中,M1M2…Mn为Li、Cu、Ni、Co、Fe、Mn、Ti、Mg、Zn、Al中的至少5种,n为n≥5的整数,0<x≤1,0.05≤y≤0.35。该金属氧化物具有良好的离子、电子电导率,可作为正极材料应用于钠离子电池中。本发明提供的制备方法得到的金属氧化物物相纯度高、结晶性好且粒径均匀,并且所需设备要求低、操作简单、成本低、可控性强、合成样品纯度高且重复性好,可适性好,满足工业生产的要求。

Description

一种O3相高熵层状金属氧化物及其制备方法和应用
技术领域
本发明涉及正极材料技术领域,更具体地,涉及一种O3相高熵层状金属氧化物及其制备方法和应用。
背景技术
电子、电动汽车以及智能电网的不断普及,不断刺激着对大规模化电化学储能的发展进步。在各种可充电电池中,钠离子电池(SIB)被认为是大规模电网储存具有潜力的替代***之一。钠离子电池拥有锂离子电池无法比拟的优势是低廉的成本:正负极集流体均可用铝箔、丰富的钠资源且分布均匀等等,这都有利于钠离子电池的大规模应用。在对过去电池组分进行评估发现,正极材料占成本比例最高,约为32.4%,并且正极也是决定整个电池电化学性能优劣的关键,因此开发具有高能量密度、高功率密度以及优异的循环稳定性的正极材料是目前钠离子电池发展的难点和重点。
目前常用的钠离子电池正极材料主要包括层状过渡金属氧化物、聚阴离子化合物、普鲁士蓝类似物和有机盐。其中,层状过渡金属氧化物由于能提供较高的理论比容量、二维的Na+扩散通道、较强的可塑性和简易的合成过程而备受关注。根据Delmas等人的描述,将层状材料根据氧的堆积顺序和Na+的占位位点分为O2、O3、P2和P3型,其中,O和P代表Na+处于三棱柱和八面体的配位环境,而2和3代表重复堆叠单元中的过渡金属层数。P型和O型结构层状氧化物各有优势,P型展现出比O型更好的循环稳定性和倍率性能,而O型具有高的比容量。但是,层状过渡金属氧化物或多或少都面临着不可逆相变、容量迅速衰减以及空气敏感性的问题。
发明内容
基于现有技术中存在的上述技术问题,本发明的目的之一在于提供一种O3相高熵层状金属氧化物,该金属氧化物具有良好的离子、电子电导率,可作为钠离子电池正极材料使用。
具体地,该金属氧化物化学通式为:Nax(M1M2…Mn)yO2,其晶体结构呈O3相层状结构,其中,M1M2…Mn为Li、Cu、Ni、Co、Fe、Mn、Ti、Mg、Zn、Al中的至少5种,n为n≥5的整数,0<x≤1,0.05≤y≤0.35。
在一些实施方式中,所述金属氧化物的化学式为:Na(MnNiCoFeTi)0.2O2或Na(CuNiFeCoMnTi)1/6O2
本发明的目的之二在于提供上述的O3相高熵层状金属氧化物的制备方法,该方法包括以下步骤:
S1、将钠盐和5种以上金属盐按各金属元素的摩尔比称取,溶于酸中,形成混合溶液A;
S2、按总金属元素:络合剂=1:2的摩尔比称取络合剂制成溶液B;
S3、将所述溶液B逐滴加入所述混合溶液A中,混匀,水浴加热,蒸干,得到凝胶;
S4、将所述凝胶烘干、研磨,依次经过预烧、烧结,冷却,得到所述高熵层状金属氧化物。
在一些实施方式中,该方法包括以下步骤:
S1、将钠盐以及5种以上金属盐按各个元素的摩尔比称取,搅拌溶解在稀硝酸溶液(由60%的浓硝酸与去离子水按体积比3:8混合制成)中,继续在30℃水浴下搅拌至溶解形成均匀混合溶液A;
S2、按总金属元素:络合剂=1:2的摩尔比称取络合剂配置成溶液B;
S3、将溶液B逐滴加入到混合溶液A中,搅拌混匀,水浴加热并搅拌将混合溶液蒸干,得到凝胶;
S4、将步骤S3得到的凝胶烘干、研磨破碎,在马弗炉中预烧,再烧结,随炉冷却至约150℃(150℃±5℃)移至手套箱中降至室温,研磨得到所述的钠离子高熵层状氧化物正极材料。
在一些实施方式中,步骤S1中,所述金属盐为硫酸盐、硝酸盐、氯化盐、碳酸盐、有机盐中的至少一种。
在一些实施方式中,步骤S1中,将所需化学计量100wt%~110wt%的钠盐和不同元素的金属盐Mn按比例称取。
在一些实施方式中,预烧温度为400~500℃,保温时间为2~4h;烧结温度为800~1000℃,保温时间为6~24h。
在一些实施方式中,所述络合剂为酒石酸、柠檬酸、EDTA、草酸中的至少一种。
在一些实施方式中,步骤S3中,水浴加热过程中,以200~600rpm的速度进行搅拌,加热温度为60~90℃。
在一些实施方式中,烘干温度为80~120℃。
本发明的目的之三在于提供一种正极材料,所述正极材料包括上述任一实施方式所述的钠离子高熵层状金属氧化物。
本发明的目的之四在于提供一种正极极片,所述正极极片包括上述的正极材料。
本发明的目的之五在于提供一种钠离子电池,所述钠离子电池包括上述的正极极片。
相较于现有技术,本发明的有益效果如下:
本发明提供的高熵层状金属氧化物,具备特定的结构,具有优异的离子、电子电导率,以及优异的充放电比容量和循环性能,可作为正极材料应用于钠离子电池中。
本发明提供的高熵层状金属氧化物的制备方法,得到的金属氧化物物相纯度高、结晶性好且粒径均匀,并且所需设备要求低、操作简单、成本低、可控性强、合成样品纯度高且重复性好,可适性好,满足工业生产的要求。
附图说明
图1为本发明的O3相层状高熵氧化物钠离子正极材料制备的工艺流程;
图2为实施例1中得到的O3相高熵层状氧化物Na(MnNiCoFeTi)0.2O2的XRD图;
图3为实施例1中得到的O3相高熵层状氧化物Na(MnNiCoFeTi)0.2O2电流密度为0.1C(1C=120mAh g-1)的充放电曲线图;
图4为实施例1中得到的O3相高熵层状氧化物Na(MnNiCoFeTi)0.2O2电流密度为0.1C(1C=120mAh g-1)的循环性能图;
图5为实施例1中得到的O3相高熵层状氧化物Na(MnNiCoFeTi)0.2O2电流密度为0.5C(1C=120mAh g-1)的循环性能图;
图6为实施例2中得到的O3相高熵层状氧化物Na(CuNiFeCoMnTi)1/6O2的XRD图;
图7为实施例2中得到的O3相高熵层状氧化物Na(CuNiFeCoMnTi)1/6O2电流密度为0.1C的充放电曲线图;
图8和9为实施例2中得到的O3相高熵层状氧化物Na(CuNiFeCoMnTi)1/6O2电流密度为0.1C(1C=120mAh g-1)的循环性能图;
图9为实施例2中得到的O3相高熵层状氧化物Na(CuNiFeCoMnTi)1/6O2电流密度为0.5C(1C=120mAh g-1)的循环性能图。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
实施例1
如图1所示,一种O3相高熵层状金属氧化物,其制备方法如下:
按化学计量比分别称取无水乙酸钠、四水合乙酸锰、六水合硝酸镍、六水合硝酸钴、九水合硝酸铁、钛酸正丁酯在30℃水浴下搅拌溶解在体积比为稀硝酸溶液(由60%的浓硝酸与去离子水按体积比3:8混合制成)中形成混合溶液A,其中无水乙酸钠过量5%防止高温煅烧过程中的挥发损失;按总金属元素:酒石酸=1:2的摩尔比称取相应的酒石酸,将酒石酸溶解在去离子水中形成溶液B;将溶液B缓慢(10~20滴/min)滴加入混合溶液A,在80℃水浴下加热并搅拌至溶液蒸干形成凝胶;将凝胶在120℃鼓风干燥箱中烘12h后研磨成粉末;在马弗炉中以3°/min的速率升温至450℃保温2h,再加热至900℃保温15h后随炉冷却至150℃,然后移至手套箱中冷却至室温,得到O3型层状金属氧化物Na(MnNiCoFeTi)0.2O2,其XRD检测结果如图2所示。
实施例2
如图1所示,一种O3相高熵层状金属氧化物,其制备方法如下:
按化学计量比分别称取无水乙酸钠、四水合乙酸锰、六水合硝酸镍、六水合硝酸钴、九水合硝酸铁、三水合硝酸铜、钛酸正丁酯在30℃水浴下搅拌溶解在稀硝酸溶液(由60%的浓硝酸与去离子水按体积比3:8混合制成)中形成混合溶液A,其中无水乙酸钠过量5%防止高温煅烧过程中的挥发损失;按总金属元素:酒石酸=1:2的摩尔比称取相应的酒石酸溶解在去离子水中形成溶液B;将溶液B缓慢(10~20滴/min)滴加入混合溶液A,在80℃水浴下加热并搅拌至溶液蒸干形成凝胶;将凝胶在80℃鼓风干燥箱中烘12h后研磨成粉末;在马弗炉中以3°/min的速率升温至450℃保温2h,再以3°/min加热至900℃保温15h后随炉冷却至150℃,然后移至手套箱中冷却至室温,得到O3型层状金属氧化物Na(CuNiFeCoMnTi)1/6O2,其XRD检测结果如图6所示。
应用实施例
将实施例1和2得到的O3相高熵层状金属氧化物分别与Super P和PVDF按质量比为8:1:1混合,以1-甲基-2-吡咯烷酮(NMP)作为溶剂球磨30min,调制成浆料后涂在铝箔上,放入真空干燥箱中在80℃干燥12h;之后用裁片机裁剪成直径14mm圆形正极片。
将金属钠冲制成直径19mm的圆片作为负极,以1.0M高氯酸钠(NaClO4)/碳酸乙烯酯(EC):二甲基碳酸脂(DMC):甲基乙基碳酸酯(EMC)(体积分数=1:1:1Vol%)/5.0%FEC溶液作为电解液,直径19mm的玻璃纤维为隔膜,在高纯氩填充的手套箱内组装得到CR2016扣式电池。
在不同的电压区间内测试材料的电化学性能,实施例1得到的金属氧化物的测试结果如图3至图5以及表1所示;实施例2得到的金属氧化物的测试结果如图7至图9所示以及表1所示。
表1实施例1和2得到的金属氧化物材料的电化学性能测试结果
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

1.一种O3相高熵层状金属氧化物的制备方法,其特征在于,所述金属氧化物的化学式为:Na(CuNiFeCoMnTi)1/6O2,其晶体结构呈O3相层状结构,其制备方法包括以下步骤:
S1、将钠盐和Cu、Ni、Fe、Co、Mn、Ti的金属盐按各金属元素的摩尔比称取,溶于酸中,形成混合溶液A;
S2、按总金属元素:络合剂=1:2的摩尔比称取络合剂制成溶液B;
S3、将所述溶液B逐滴加入所述混合溶液A中,混匀,水浴加热,蒸干,得到凝胶;
S4、将所述凝胶烘干、研磨,依次经过预烧、烧结,冷却,得到所述高熵层状金属氧化物;其中,步骤S4中,预烧温度为400~500℃,烧结温度为800~1000℃;
冷却过程中,先随炉冷却至150℃后再移至手套箱中冷却至室温。
2.根据权利要求1所述的O3相高熵层状金属氧化物的制备方法,其特征在于,步骤S1中,所述金属盐为硫酸盐、硝酸盐、氯化盐、碳酸盐、有机盐中的至少一种。
3.根据权利要求1所述的O3相高熵层状金属氧化物的制备方法,其特征在于,预烧保温时间为2~4h;烧结保温时间为6~24h。
4.根据权利要求1所述的O3相高熵层状金属氧化物的制备方法,其特征在于,所述络合剂为酒石酸、柠檬酸、EDTA、草酸中的至少一种。
5.根据权利要求1所述的O3相高熵层状金属氧化物的制备方法,其特征在于,步骤S3中,水浴加热过程中,以200~600rpm的速度进行搅拌,加热温度为60~90℃。
6.权利要求1-5任一项所述的制备方法制得的O3相高熵层状金属氧化物。
7.一种正极材料,其特征在于,包括权利要求6所述的金属氧化物。
8.一种正极极片,其特征在于,包括权利要求7所述的正极材料。
9.钠离子电池,其特征在于,包括权利要求8所述的正极极片。
CN202210728072.2A 2022-06-24 2022-06-24 一种o3相高熵层状金属氧化物及其制备方法和应用 Active CN115064693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210728072.2A CN115064693B (zh) 2022-06-24 2022-06-24 一种o3相高熵层状金属氧化物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210728072.2A CN115064693B (zh) 2022-06-24 2022-06-24 一种o3相高熵层状金属氧化物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN115064693A CN115064693A (zh) 2022-09-16
CN115064693B true CN115064693B (zh) 2024-05-28

Family

ID=83202825

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210728072.2A Active CN115064693B (zh) 2022-06-24 2022-06-24 一种o3相高熵层状金属氧化物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115064693B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024092314A1 (en) * 2022-11-04 2024-05-10 University Of Technology Sydney Cathode materials

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467119A (zh) * 2020-12-02 2021-03-09 东北大学秦皇岛分校 一种层状高熵氧化物钠离子电池正极材料制备方法及应用
KR20210046528A (ko) * 2019-10-18 2021-04-28 주식회사 에코프로비엠 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN113410456A (zh) * 2021-06-29 2021-09-17 福建师范大学 一类低钠含量的o3型钠离子电池层状正极材料
CN113629233A (zh) * 2021-08-09 2021-11-09 清华大学深圳国际研究生院 一种p2-o3复合相富锂锰基锂离子电池正极材料及其制备方法和应用
CN114249593A (zh) * 2022-01-06 2022-03-29 韶关学院 一种高熵钙钛矿结构阴极材料及制备方法与应用
CN114573339A (zh) * 2022-03-31 2022-06-03 华北电力大学 高储能密度无铅高熵钙钛矿陶瓷、制备方法、及电容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210046528A (ko) * 2019-10-18 2021-04-28 주식회사 에코프로비엠 리튬 이차전지 양극활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
CN112467119A (zh) * 2020-12-02 2021-03-09 东北大学秦皇岛分校 一种层状高熵氧化物钠离子电池正极材料制备方法及应用
CN113410456A (zh) * 2021-06-29 2021-09-17 福建师范大学 一类低钠含量的o3型钠离子电池层状正极材料
CN113629233A (zh) * 2021-08-09 2021-11-09 清华大学深圳国际研究生院 一种p2-o3复合相富锂锰基锂离子电池正极材料及其制备方法和应用
CN114249593A (zh) * 2022-01-06 2022-03-29 韶关学院 一种高熵钙钛矿结构阴极材料及制备方法与应用
CN114573339A (zh) * 2022-03-31 2022-06-03 华北电力大学 高储能密度无铅高熵钙钛矿陶瓷、制备方法、及电容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NaMn0.2Fe0.2Co0.2Ni0.2Ti0.2O2 high-entropy layered oxide - experimental and theoretical evidence of high electrochemical performance in sodium batteries;Katarzyna Walczak 等;《Energy Storage Materials》;第第47卷卷;第500–514 页 *

Also Published As

Publication number Publication date
CN115064693A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
CA2623636C (en) Method of producing positive electrode active material and nonaqueous electrolyte battery using same
US8105719B2 (en) Anode material for lithium batteries
KR20170070180A (ko) 층상 산화물 재료 및 이의 제조 방법, 극편, 2차 전지 및 이의 용도
CN102738451A (zh) 一种改性锂离子电池正极材料及其制备方法
CN102870256A (zh) 基于锂的电池的经金属氧化物涂布的正电极材料
CN105336941A (zh) 高电压镍钴锰酸锂正极材料及其制备方法、正极、电池
CN1785800A (zh) 稀土掺杂磷酸铁锂粉体的制备方法
KR20140119621A (ko) 리튬 과량 양극활물질 제조용 전구체 및 이에 의하여 제조된 리튬 과량 양극활물질
CN104134797A (zh) 一种高容量富锂正极材料及其制备方法
CN114744186B (zh) 一种层状富锂锰基复合正极材料、制备方法及电池
CN115986110A (zh) 一种钠离子电池正极材料及其制备方法
CN115763766A (zh) Na2MnPO4F包覆的O3型层状钠离子电池正极材料及其制备方法
CN115064693B (zh) 一种o3相高熵层状金属氧化物及其制备方法和应用
CN115286042A (zh) 一种锂离子电池的富锂锰基正极材料及其制备方法
CN109755530B (zh) 一种高压钴酸锂正极材料的钛钡双金属氧化物表面包覆方法
CN110880587A (zh) 一种尖晶石-o2型富锂氧化物正极材料及其制备方法和应用
KR20180015046A (ko) 리튬 이차전지용 리튬복합 산화물 및 이의 제조 방법
CN113285068A (zh) 一种单晶锰酸锂正极材料及其制备方法
CN116805684A (zh) 一种Al、Zn、Ti和Fe共掺杂双相层状氧化物钠离子电池高熵正极材料
CN116454267A (zh) 一种钠电层状氧化物及其制备方法
CN110729481A (zh) 一种锂离子电池负极活性材料MnxFe1-xC2O4合成方法和应用
CN116081710A (zh) 一种钾掺杂的镍锰铜三元层状氧化物及其制备方法和应用
CN102738455A (zh) 层状锰酸锂及其制备方法
CN104577101A (zh) 一种表面改性锂离子电池富锂锰正极材料的制备方法
CN115224259A (zh) 钛掺杂镍锰酸锂正极材料及制备方法、应用和锂离子电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant