CN113410456A - 一类低钠含量的o3型钠离子电池层状正极材料 - Google Patents

一类低钠含量的o3型钠离子电池层状正极材料 Download PDF

Info

Publication number
CN113410456A
CN113410456A CN202110726094.0A CN202110726094A CN113410456A CN 113410456 A CN113410456 A CN 113410456A CN 202110726094 A CN202110726094 A CN 202110726094A CN 113410456 A CN113410456 A CN 113410456A
Authority
CN
China
Prior art keywords
positive electrode
electrode material
type
layered positive
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110726094.0A
Other languages
English (en)
Inventor
姚胡蓉
甘露
袁新光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN202110726094.0A priority Critical patent/CN113410456A/zh
Publication of CN113410456A publication Critical patent/CN113410456A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明属于电化学电源领域,具体涉及一类低钠含量的O3型钠离子电池层状正极材料。该层状正极材料化学式为Na0.67AxByCzDrO2,A选自二价金属离子中的两种或三种,B选自三价金属离子中的两种或三种、C选自四价金属离子中的两种或三种、D选自五价金属离子中的一种或两种,过渡金属层元素种类在7~10种之间,且满足x+y+z+r=1,且2.8≤2x+3y+4z+5r≤3.2。本发明基于特定的高熵过渡金属层组分成功获得低钠含量的O3型结构材料,使得材料的结构设计更具有可控性,对高性能的钠离子电池层状正极材料的优化设计提供了新的见解,具有广阔的应用前景。

Description

一类低钠含量的O3型钠离子电池层状正极材料
技术领域
本发明属于电化学电源领域,具体涉及一类低钠含量的O3型钠离子电池层状正极材料。
背景技术
随着人们对环境问题和化石燃料快速消耗的担忧持续增长,现代社会对可再生能源的利用和智能电网的推广的强烈需求推动了先进储能技术的发展,大型电化学储能***的需求在过去的数十年中受到了极大的关注。在各种电能存储***中,充电电池由于其高安全性、高转换效率、低成本和环境友好被认为是先进储能技术最典型的代表之一。碱金属离子电池由于能量密度高、循环寿命长等优点在储能领域占据着极为重要的地位。
近年来,碱金属离子电池中层状氧化物正极材料由于具有可逆脱嵌锂、钠离子等的晶体结构、比容量高、制备方法简单以及价格低廉等一系列优势,使其得到储能领域的科学家们的深入研究,成为备受关注的焦点。
层状过渡金属氧化物NaxMO2(M为过渡金属)是目前研究最广泛的候选材料之一,P2型中钠离子占据三棱柱间隙位,氧层排列规律为ABBA,0.45≤x≤0.8;O3型材料钠离子占据八面***,氧层排列规律为ABCABC,0.8≤x≤1。晶体结构的差异自然对材料电化学性能造成明显的影响。
相结构的差别和材料中所含的钠离子含量息息相关,一般来说,高Na含量(0.8≤x≤1)有助于形成O3型结构,而低Na含量(0.45≤x≤0.8)则形成P2型结构,结构的设计和调控主要还是依靠高通量的尝试性实验,具有明显的盲目性。
发明内容
本发明的目的是提供一类低钠含量的O3型钠离子电池层状正极材料:该层状正极材料化学式Na0.67AxByCzDrO2,A选自二价金属元素中的两种或三种,B选自三价金属元素中的两种或三种,C选自四价金属元素中的两种或三种、D选自五价金属元素中的一种或两种。
层状正极材料Na0.67AxByCzDrO2中过渡金属层元素种类在7~10种之间。
层状正极材料Na0.67AxByCzDrO2中x、y、z、r分别为对应元素所占过渡金属元素组分的摩尔分数,关系满足x+y+z+r=1,且2.8≤2x+3y+4z+5r≤3.2。
所述的A元素为Ni、Cu、Mg或Zn中的两种或三种;
所述的B元素为Fe、Co、Al、Sc或In中的两种或三种;
所述的C元素为Mn、Ti、Sn、V、Cr、Zr或Hf中的两种或三种;
所述的D元素为Sb、Nb、Mo、Pt或Bi中的一种或两种。
上述材料应用传统的固相法即可制得,方法具体如下:
(3)由相应元素的金属氧化物按照比例进行投料研磨混匀,研磨时间24~36h,将研磨混匀后的粉末用压片机在10MPa的压力下压成直径为10mm的圆片;
(4)将圆片放在坩埚中移至马弗炉中进行程序升温煅烧;煅烧温度为800~1000℃;煅烧时间为10~15h,得到本发明所述的一类低钠含量的O3型钠离子电池层状正极材料。
上述程序升温煅烧步骤中,升温速率为3~8℃min-1
所述的相应氧化物具体为NiO,CuO,MgO,ZnO,Fe2O3,Co3O4,Al2O3,Sc2O3,In2O3,Mn2O3,TiO2,SnO2,VO2,Cr2O3,ZrO2,HfO2,Sb2O3,Nb2O5,MoO3,PtO2,Bi2O5
本发明中所涉及的试剂和仪器,如无特殊说明,均可从商业途径获得。
通过使用XRD的衍射图谱对比,以上材料均拥有晶面指数为(003)的衍射峰,且符合O3相的标准衍射图谱,故可判断材料是O3型材料。
与现有技术相比,本发明对钠离子层状正极材料的结构设计更有靶向性,为设计高性能正极材料提供了参考,具有一定的规律性和普适性。
上述材料与导电添加剂、粘结剂及溶剂按一定比例混合,经制浆、涂片、干燥等工艺流程制备可得到复合物正极。得到的极片与隔膜、有机电解液、负极金属钠在手套箱中进行组装,可得到钠离子电池进行能量的存储和释放。
本发明利用构筑高熵过渡金属层组分,提升过渡金属层的电荷无序化,弱化过渡金属层和氧层间的相互作用,进而增强了钠层和氧层间的库仑相互作用,所以在低钠含量下钠离子仍然占据层间距更窄的八面***,呈现O3型结构。
附图说明
图1为Na0.67Ni0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2的XRD图谱
具体实施方式
下面结合附图并通过具体实施例对本发明作进一步说明。
附图中,P2相的三强峰在衍射角度为15.79°、39.45°、48.84°晶面指数分别为(002)、(012)、(104),O3相的三强峰在衍射角度为16.58°、36.89°、41.91°晶面指数分别为(003)、(012)、(104),通过使用XRD的衍射图谱对比,说明以上材料均拥有晶面指数为(003)的衍射峰,且符合O3相的标准衍射图谱,故可判断材料是O3型材料。
实施例1
(一)制备Na0.67Ni0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2正极材料
按照目标产物中的物质的量称取相应质量的Na2CO3、NiO、CuO、MgO、Fe2O3、Co3O4、Mn2O3、TiO2、Sb2O3、SnO2,球磨24h混合均匀,在10MPa的压力下压成直径10mm的圆片,置于马弗炉中在900℃的高温下程序升温煅烧15h后得到样品粉末,升温速率为8℃min-1
(二)对Na0.67Ni0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2正极材料样品粉末进行XRD测试
使用X射线衍射仪,利用X射线在晶体物质中的衍射效应获得Na0.67Ni0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2样品粉末的XRD图谱,参照标准的PDF卡片对材料的结构进行分析,如附图所示。
(三)应用:
Na0.67Ni0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2制备复合物正极
将制备的本实施例制备的正极材料与导电添加剂Super-P、粘结剂聚偏二氟乙烯(PVDF)按质量比为8∶1∶1均匀混合,并加入溶剂N-甲基吡咯烷酮经过制浆、涂片、干燥等工艺得到复合物正极。
将上述制备的复合物正极同钠负极在手套箱中组装成钠离子电池,电解液选择碳酸酯电解液(1M NaClO4的EC/PC(体积比为1:1)溶液),使用蓝电充放电测试仪对上述钠离子电池进行恒定倍率0.2C下的充放电测试,结果良好。
实施例2
(一)制备Na0.67Ni0.12Cu0.12Zn0.12Fe0.1Co0.1Al0.1Mn0.1V0.1Sb0.14O2正极材料。(原材料为Na2CO3、NiO、CuO、ZnO、Fe2O3、Co3O4、Al2O3、Mn2O3、VO2、Sb2O3,其余步骤同实施例1)
(二)对Na0.67Ni0.12Cu0.12Zn0.12Fe0.1Co0.1Al0.1Mn0.1V0.1 Sb0.14O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
实施例3
(一)制备Na0.67Ni0.18Zn0.18Fe0.1Sc0.1Al0.1Mn0.1V0.1Ti0.1Nb0.04O2正极材料。(原材料为Na2CO3、NiO、ZnO、Fe2O3、Sc2O3、Al2O3、Mn2O3、VO2、TiO2、Nb2O5,其余步骤同
实施例1)
(二)对Na0.67Ni0.18Zn0.18Fe0.1Sc0.1Al0.1Mn0.1V0.1Ti0.1Nb0.04O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
实施例4
(一)制备Na0.67Mg0.18Zn0.18Fe0.1Sc0.1In0.1Mn0.16Ti0.16Pt0.02O2正极材料。(原材料为Na2CO3、MgO、ZnO、Fe2O3、Sc2O3、In2O3、Mn2O3、TiO2、PtO2,其余步骤同实施例1)
(二)对Na0.67Mg0.18Zn0.18Fe0.1Sc0.1In0.1Mn0.16Ti0.16Pt0.02O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
实施例5
(一)制备Na0.67Ni0.12Zn0.12Mg0.12Sc0.15Al0.15Sn0.11V0.11Hf0.11Pt0.01O2正极材料。(原材料为Na2CO3、NiO、ZnO、MgO、Sc2O3、Al2O3、SnO2、VO2、HfO2、PtO2,其余步骤同实施例1)
(二)对Na0.67Ni0.12Zn0.12Mg0.12Sc0.15Al0.15Sn0.11V0.11Hf0.11Pt0.01O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
对比例1
(一)制备Na0.67Ni0.18Mg0.18Co0.3Mn0.23Sn0.2O2正极材料。(原材料为Na2CO3、NiO、MgO、Co3O4、Mn2O3、SnO2,其余步骤同实施例1)
(二)对Na0.67Ni0.18Mg0.18Co0.3Mn0.23Sn0.2O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
对比例2
(一)制备Na0.67Ni0.12Cu0.12Mg0.12Al0.15Co0.15Mn0.43O2正极材料。(原材料为Na2CO3、NiO、CuO、MgO、Al2O3、Co3O4、Mn2O3,其余步骤同实施例1)
(二)对Na0.67Ni0.12Cu0.12Mg0.12Al0.15Co0.15Mn0.43O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
对比例3
(一)制备Na0.67Ni0.18Mg0.18Co0.3Sn0.2Mn0.14O2正极材料。(原材料为Na2CO3、NiO、MgO、Co3O4、SnO2、Mn2O3,其余步骤同实施例1)
(二)对Na0.67Ni0.18Mg0.18Co0.3Sn0.2Mn0.14O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
对比例4
(一)制备Na0.67Ni0.12Cu0.12Mg0.12Co0.3Mn0.34O2正极材料。(原材料为Na2CO3、NiO、CuO、MgO、Co3O4、Mn2O3,其余步骤同实施例1)
(二)对Na0.67Ni0.12Cu0.12Mg0.12Co0.3Mn0.34O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
对比例5
(一)制备Na0.67Ni0.36Al0.1Fe0.1Co0.1Ti0.1Mn0.24O2正极材料。(原材料为Na2CO3、NiO、Al2O3、Co3O4、Fe2O3、TiO2、Mn2O3,其余步骤同实施例1)
(二)对Na0.67Ni0.36Al0.1Fe0.1Co0.1Ti0.1Mn0.24O2样品粉末进行XRD测试(具体步骤同实施例1)
(三)应用(具体步骤同实施例1)
Figure BDA0003138714120000051
Figure BDA0003138714120000061
通过上述实施例与对比例的对比可以看出,通过高温固相法,在相同的温度和反应时间的条件下,实施例1、2、3、4、5在过渡金属层元素种类不小于7种不大于10种的情况下获得了O3相,而对比例1、2、3、4、5的过渡金属层组分不满足这已要求均未获得O3相,故基于高熵过渡金属层组分设计低钠含量的O3型层状正极材料的方法有效可行。
综上所述,本发明基于构筑高熵过渡金属层组分得到的低钠含量O3型钠离子电池层状正极材料,相应的制备方法简单,原料易得,价格低廉,因此本发明可以对高性能的钠离子电池正极层状材料结构的优化设计提供新的见解,具有广阔的应用前景。
上述内容仅为本发明的优选实施例,并非用于限制本发明的实施方案,本领域普通技术人员根据本发明的主要构思和精神,可以十分方便地进行相应的变通或修改,因此本发明的保护范围应以权利要求书所要求的保护范围为准。

Claims (8)

1.一类低钠含量O3型钠离子层状正极材料,其特征在于:该层状正极材料化学式Na0.67AxByCzDrO2,A选自二价金属元素中的两种或三种,B选自三价金属元素中的两种或三种,C选自四价金属元素中的两种或三种、D选自五价金属元素中的一种或两种;
层状正极材料Na0.67AxByCzDrO2中过渡金属层元素种类在7~10种之间;
层状正极材料Na0.67AxByCzDrO2中x、y、z、r分别为对应元素所占过渡金属元素组分的摩尔分数,关系满足x+y+z+r=1,且2.8≤2x+3y+4z+5r≤3.2。
2.根据权利要求1所述的一类低钠含量的O3型钠离子层状正极材料,其特征在于所述的A元素为Ni、Cu、Mg或Zn中的两种或三种。
3.根据权利要求1所述的一类低钠含量的O3型钠离子层状正极材料,其特征在于所述的B元素为Fe、Co、Al、Sc或In中的两种或三种。
4.根据权利要求1所述的一类低钠含量的O3型钠离子层状正极材料,其特征在于所述的所述的C元素为Mn、Ti、Sn、V、Cr、Zr或Hf中的两种或三种。
5.根据权利要求1所述的一类低钠含量的O3型钠离子层状正极材料,其特征在于所述的所述的D元素为Sb、Nb、Mo、Pt或Bi中的一种或两种。
6.根据权利要求1所述的一类低钠含量的O3型钠离子层状正极材料,其特征在于所述的一类低钠含量的O3型钠离子层状正极材料,具体制备方法如下:
(1)由相应元素的金属氧化物按照比例进行投料研磨混匀,研磨时间24~36h,将研磨混匀后的粉末用压片机在10MPa的压力下压成直径为10mm的圆片;
(2)将圆片放在坩埚中移至马弗炉中进行程序升温煅烧;煅烧温度为800~1000℃;煅烧时间为10~15h,得到所述的一类低钠含量的O3型钠离子电池层状正极材料。
7.根据权利要求6所述的一类低钠含量的O3型钠离子层状正极材料,其特征在于所述的程序升温煅烧步骤中,升温速率为3~8℃ min-1
8.根据权利要求6所述的一类低钠含量的O3型钠离子层状正极材料,其特征在于所述的所述的相应氧化物具体为NiO,CuO,MgO,ZnO,Fe2O3,Co3O4,Al2O3,Sc2O3,In2O3,Mn2O3,TiO2,SnO2,VO2,Cr2O3,ZrO2,HfO2,Sb2O3,Nb2O5,MoO3,PtO2,Bi2O5
CN202110726094.0A 2021-06-29 2021-06-29 一类低钠含量的o3型钠离子电池层状正极材料 Pending CN113410456A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110726094.0A CN113410456A (zh) 2021-06-29 2021-06-29 一类低钠含量的o3型钠离子电池层状正极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110726094.0A CN113410456A (zh) 2021-06-29 2021-06-29 一类低钠含量的o3型钠离子电池层状正极材料

Publications (1)

Publication Number Publication Date
CN113410456A true CN113410456A (zh) 2021-09-17

Family

ID=77680029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110726094.0A Pending CN113410456A (zh) 2021-06-29 2021-06-29 一类低钠含量的o3型钠离子电池层状正极材料

Country Status (1)

Country Link
CN (1) CN113410456A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064657A (zh) * 2022-06-24 2022-09-16 中南大学 一种高熵层状金属氧化物及其制备方法和应用
CN115064693A (zh) * 2022-06-24 2022-09-16 中南大学 一种o3相高熵层状金属氧化物及其制备方法和应用
WO2024092314A1 (en) * 2022-11-04 2024-05-10 University Of Technology Sydney Cathode materials

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795551A (zh) * 2014-07-17 2015-07-22 中国科学院物理研究所 一种层状含铜氧化物材料及其制备方法和用途
US20160218363A1 (en) * 2013-09-09 2016-07-28 The Regents Of The University Of California Lithium and sodium containing layered oxide material, cathodes and sodium ion electrochemical cells
CN112467119A (zh) * 2020-12-02 2021-03-09 东北大学秦皇岛分校 一种层状高熵氧化物钠离子电池正极材料制备方法及应用
CN112582600A (zh) * 2020-12-11 2021-03-30 中钢集团南京新材料研究院有限公司 一种高熵单晶电池正极材料制备方法及得到的产品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160218363A1 (en) * 2013-09-09 2016-07-28 The Regents Of The University Of California Lithium and sodium containing layered oxide material, cathodes and sodium ion electrochemical cells
CN104795551A (zh) * 2014-07-17 2015-07-22 中国科学院物理研究所 一种层状含铜氧化物材料及其制备方法和用途
CN112467119A (zh) * 2020-12-02 2021-03-09 东北大学秦皇岛分校 一种层状高熵氧化物钠离子电池正极材料制备方法及应用
CN112582600A (zh) * 2020-12-11 2021-03-30 中钢集团南京新材料研究院有限公司 一种高熵单晶电池正极材料制备方法及得到的产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENGLONG ZHAO等: "An O3-type Oxide with Low Sodium Content as the Phase-Transition-Free Anode for Sodium-Ion Batteries", 《ANGEW. CHEM. INT. ED.》 *
CHENGLONG ZHAO等: "High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries", 《ANGEW. CHEM. INT. ED.》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115064657A (zh) * 2022-06-24 2022-09-16 中南大学 一种高熵层状金属氧化物及其制备方法和应用
CN115064693A (zh) * 2022-06-24 2022-09-16 中南大学 一种o3相高熵层状金属氧化物及其制备方法和应用
CN115064693B (zh) * 2022-06-24 2024-05-28 中南大学 一种o3相高熵层状金属氧化物及其制备方法和应用
WO2024092314A1 (en) * 2022-11-04 2024-05-10 University Of Technology Sydney Cathode materials

Similar Documents

Publication Publication Date Title
Shi et al. High-thermal-and air-stability cathode material with concentration-gradient buffer for Li-ion batteries
Zhou et al. Formation and effect of residual lithium compounds on Li-rich cathode material Li1. 35 [Ni0. 35Mn0. 65] O2
Mao et al. Effect of chromium and niobium doping on the morphology and electrochemical performance of high-voltage spinel LiNi0. 5Mn1. 5O4 cathode material
Kubota et al. Layered oxides as positive electrode materials for Na-ion batteries
Verde et al. Effect of morphology and manganese valence on the voltage fade and capacity retention of Li [Li2/12Ni3/12Mn7/12] O2
CN113410456A (zh) 一类低钠含量的o3型钠离子电池层状正极材料
Okumura et al. LISICON-based amorphous oxide for bulk-type all-solid-state lithium-ion battery
CN112310390A (zh) O3型钠离子电池层状正极材料以及通过元素掺杂提升材料纯度的方法
Myung et al. Synthesis of Li [(Ni0. 5Mn0. 5) 1-x Li x] O2 by Emulsion Drying Method and Impact of Excess Li on Structural and Electrochemical Properties
CN112838206B (zh) 一类空气稳定性优异的层状氧化物正极材料以及通过调节钠含量改善空气稳定性的方法
CN113113589B (zh) 一种改善钠离子层状正极材料超晶格结构的方法
EP1807888A2 (en) Manganese oxide composite electrodes for lithium batteries
Kan et al. Exploration of a metastable normal spinel phase diagram for the quaternary Li–Ni–Mn–Co–O system
US10153487B2 (en) Lithium complex oxide
CN112290013B (zh) 高容量的钠离子电池p2型正极材料以及通过抑制钠/空位有序提升比容量的方法
CN103682292B (zh) 高振实密度的钛酸锂材料制备方法
Song et al. Structural analysis of layered Li2MnO3–LiMO2 (M= Ni1/3Mn1/3Co1/3, Ni1/2Mn1/2) cathode materials by Rietveld refinement and first-principles calculations
Zheng et al. Surface phase conversion in a high-entropy layered oxide cathode material
Lin et al. Ab initio exploration of Co-free layered oxides as cathode materials in Li ion batteries
Kong et al. New insights in Al‐doping effects on the LiNiO2 positive electrode material by a sol‐gel method
Yu et al. Phase stability of garnet solid-electrolyte interfacing with various cathodes in all-solid-state batteries
Wen et al. Synergistic Effects of Ni2+ and Mn3+ on the Electrochemical Activation of Li2MnO3 in Co-Free and Ni-Poor Li-Rich Layered Cathodes
Ge et al. Irreversible Transition from GaO6 Octahedra to GaO4 Tetrahedra for Improved Electrochemical Stability in Ga-Doped Li (Ni0. 9Co0. 1) O2
Kan et al. Low-Temperature Synthesis, Structural Characterization, and Electrochemistry of Ni-Rich Spinel-like LiNi2–y Mn y O4 (0.4≤ y≤ 1)
Windmüller et al. Impact of fluorination on phase stability, crystal chemistry, and capacity of LiCoMnO4 high voltage spinels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210917